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Labeled data is the main ingredient for classification task. Obtaining labeled data is not
always available and free. Semi-supervised learning solves the problem of labeling the
unlabeled instances through some heuristic. Self-training is one of the most widely-used
comprehensible approach for labeling the data. Traditional self-training approaches tend to
show low classification accuracy when the majority of the data is unlabeled. A novel
approach named Self-Training Associative Classification using Ant Colony Optimization (ST-
AC-ACO) has been proposed in this paper to label and classify the unlabeled data instances
to improve self-training classification accuracy by exploiting the association among
attribute values (terms) and between a set of terms and class labels of the labeled
instances. Ant Colony Optimization (ACO) has been employed to construct associative
classification rules based on labeled and pseudo-labeled instances. Experiments
demonstrate the superiority of the proposed associative self-training approach to its
competing traditional self-training approaches.
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ABSTRACT

Labeled data is the main ingredient for classification task. Obtaining labeled data is not always available

and free. Semi-supervised learning solves the problem of labeling the unlabeled instances through some

heuristic. Self-training is one of the most widely-used comprehensible approach for labeling the data.

Traditional self-training approaches tend to show low classification accuracy when the majority of the

data is unlabeled. A novel approach named Self-Training Associative Classification using Ant Colony

Optimization (ST-AC-ACO) has been proposed in this paper to label and classify the unlabeled data

instances to improve self-training classification accuracy by exploiting the association among attribute

values (terms) and between a set of terms and class labels of the labeled instances. Ant Colony

Optimization (ACO) has been employed to construct associative classification rules based on labeled

and pseudo-labeled instances. Experiments demonstrate the superiority of the proposed associative

self-training approach to its competing traditional self-training approaches.
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1 INTRODUCTION

Associative Classification combines frequent-pattern discovery of Association Rule Mining (ARM)

Nguyen et al. (2018), Agrawal and Srikant (1994) with classification. The objective of ARM is to discover

mutual association of items in itemsets for prediction of inter-dependence of items in given transactions .

Frequent patterns are discovered to analyze whether a specific pattern of items is dependent on existence25

of another pattern Narvekar and Syed (2015). The difference between associative classification and ARM

is that in an associative classification rule consequent is always a class label Aburub and Hadi (2018).

Semi-supervised Learning (SSL) is and emerging technique to label the instances where majority

of the instances in given data is unlabeled Zhu et al. (2013). There are two types of SSL. One is called

Semi-Supervised Classification in which SSL is used for classification purpose. The other type is called30

Semi-Supervised Clustering or constrained clustering which is used to improve clustering performance

with the help of labeled instances Li et al. (2019), Triguero et al. (2015). Semi-Supervised classification

(SSC) is the subject of this paper.

Self-labeling is one the most widely-used approach to perform SSC Yarowsky (1995), Li and Zhou

(2005). It consists of two phases. In the first phase, labeled data is used to train traditional classifiers (e.g.35

C4.5 Quinlan (1993)) to find a mapping between data distribution and class labels. This knowledge is

then used in the second phase to assign labels to unlabeled instances of the data set. There are two slightly

different ways of training and assigning labels in semi-supervised learning. One is called the inductive

learning in which only labeled instances are used during training and unlabeled instances are assigned

labels only, without being part of the training. The other approach is called the transductive learning40

in which iterative procedure is followed to label the selected unlabeled instances and then use them as

part of the labeled set to label remaining unlabeled instances Zhu et al. (2013). There are two types of

self-labeling in literature named self-training and co-training Ling et al. (2009).

Self-training employs one classification algorithm to construct classification rules using labeled

instances. It is retrained on extended labeled set of instances (see Definition 3) containing both the labeled45

and pseudo-labeled instances to refine classification model. Self-training doesn’t make any specific
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assumptions about the underlying dataset except that it assumes its classification model is correct Zhu

et al. (2013).

Co-training Fujino et al. (2008) splits the underlying datasets vertically. Each partition is called a

view. Each view is used to train a traditional classifier independent of other views Blum and Mitchell50

(1998). After training of classifier on all views, the classifiers share their model with each other to teach

each other about the most confident predictions. Co-training assumes that the underlying dataset can be

split into multiple conditionally independent views Jiang et al. (2013).

Ant Colony Optimization (ACO)is a meta heuristic inspired by social behavior of ants Parpinelli et al.

(2002). ACO does not guarantee optimum solution, but it attempts to discover optimum or near-optimum55

solution to the given problem. Despite of not providing the guaranteed optimal solution, ACO has been

successfully applied in various optimization problems such as Constraint Satisfaction Problem Guan

et al. (2021) and data mining problems to show promising results outperforming deterministic greedy

algorithms Shahzad and Baig (2011).

The main motivation of the proposed approach is to improve classification accuracy of self-training60

by replacing the conventional classification algorithms with associative classification method assisted by

the ACO meta-heuristic to achieve a diverse and more robust classifier.

This paper proposes a transductive self-training Semi-Supervised Classification by exploiting mutual

association among attributes-values of underlying data. The proposed approach employs associative

classification using ACO for self-training of labeling the unlabeled data and then classification based on65

the self-training. This technique is named Self-Training-based Associative Classification using Ant Colony

Optimization (ST-AC-ACO). The reason for choosing self-training that it doesn’t make any assumption

about the data distribution. It makes only assumption that its class predictions or pseudo-labeling are

correct Witten et al. (2011) Blum and Mitchell (1998). Unlike traditional semi-supervised algorithms,

ST-AC-ACO employs associative classification which adds another step of discovering frequent patterns70

in the labeled instances to construct more robust classifier. The robustness comes from rule construction

based on frequent patterns rather than one-step classification Hadi et al. (2018), Venturini et al. (2018).

Associative classification as self-training is new to our knowledge and experiments show that it has

outperformed existing self-training algorithms (see section 5). The significance of results of classification

accuracy is tested using non-parametric Wilcoxon Signed Rank Test Garcı́a et al. (2010) for each partition75

to verify the results.

The rest of the paper is as follows: Section 2 presents the preliminary background of SSL and

ACO, section 3 presents related work, section 4 explains our proposed technique, section 5 demonstrates

experimental results and comparison of the proposed technique with other self-training techniques and

section 6 concludes the paper.80

2 BACKGROUND

This section presents the basic definitions of terms related to SSL, Associative Classification and ACO.

2.1 Basic terms in SSL

Definition 1. Labeled set L is a subset of dataset D consisting of the data instances which have class

labels.85

Definition 2. Unlabeled set U is a subset of D consisting of the data instances which don’t have class

labels.

Mathematically:

D = L∪U (1)

Moreover

L∩U = φ (2)

Definition 3. Extended labeled set EL is a sub set of D which is initially L (i.e. EL = L). Instances from

U are assigned labels and included in the EL. Such instances that are assigned labels by some heuristic

are called pseudo=labeled instances. When all the instances from U are labeled and added to EL, the EL90

becomes equal to D Triguero et al. (2014), Zhu et al. (2013), Triguero et al. (2015).
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Definition 4. Enlargement of EL is the process of selecting instances from U , assigning them labels and

moving them from U to EL. There are three proposed mechanisms for EL enlargement. Triguero et al.

(2015). They are:

• Incremental: A fixed number of instances are chosen from U to move to EL after assigning most95

appropriate class to each instance Jiang et al. (2013).

• Batch: Each instance is evaluated under additional criteria before being added to EL. The basic criterion

is the measure of confidence or similarity of an instance to some labeled instances for assigning the most

appropriate class. After each instance is labeled, all pseudo-labeled instances are moved to EL in a single

batch.100

• Amend: Pseudo-labeled instances are continuously monitored and re-evaluated to measure any mis-

labeling. Mis-labeled pseudo-labeled instances are re-labeled. This technique is more accurate than others

but its much higher time complexity makes it impractical for application Li and Zhou (2005).

2.2 Basic terms of Associative Classification

Definition 5. Pattern is an associative classification rule that states association of an itemset X with a105

class label Y . The antecedent of a pattern is X while the consequent is Y Agrawal and Srikant (1994),

Hadi et al. (2018).

Definition 6. Support of a pattern (X => Y ) is calculated as:

Supp(X => Y ) = P(X ∪Y ) (3)

where Supp(X => Y ) denotes the support of pattern i f XthenY while P(X ∪Y ) represents the probability

of occurrence of itemset X with class label Y Hadi et al. (2018), Nguyen et al. (2018).

Definition 7. Confidence of a pattern (X => Y ) Venturini et al. (2018), Hadi et al. (2018) is calculated

as:

Con f (X => Y ) = P(Y |X) (4)

where Con f (X =>Y ) denotes confidence of the pattern X =>Y while P(Y |X) represents the probability110

of occurrence of class label Y given the occurrence of itemset X Agrawal and Srikant (1994).

2.3 Ant Colony Optimization (ACO)

A problem can be represented as a 2-dimensional graph data structure in ACO algorithm Parpinelli et al.

(2002). The pheromone and the heuristic are used to calculation of the selection probability of a path in

the graph by an ant. ACO has most of its applications on categorical data sets. Each attribute of a discrete115

(categorical) dataset contains a finite set of discrete values called terms. Terms are represented by nodes

and selection probabilities of a term being chosen are represented by edges of the graph as shown in figure

1. Terms of the same attribute can’t be connected in the graph because only one term of an attribute can

be selected in a pattern. For example T 1 and T 2 belong to same attribute in the given figure. The node

marked with ∞ is the sink node which can be selected after selection of at least one term. The search120

process of an ant is terminated when an ant reaches sink node.

Definition 8. Pheromone in ACO acts for the material deposited by real ants when searching for food. It

is used to guide other ants during search of the most optimum paths. Pheromone values can be initialized

to zero or some arbitrary value between 0 and 1. A more appropriate way of initializing the pheromone

values is given in equation 5 Shahzad and Baig (2011).125

τi j =
1

∑i∈A bi

(5)

where τi j denotes the pheromone value between nodes (terms) i and j, A represents set of attributes while

bi represents number of terms of the ith attribute.
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Figure 1. ACO representation as a graph data structure.

Definition 9. Heuristic is a problem-dependent value which usually evaluates the fitness of the solution

component. An example heuristic can be the weight of the edge between two nodes. Ant Miner algorithm

Parpinelli et al. (2002) uses entropy measure used in information theory. Heuristic value is calculated

using equations 6 and 7.

Pi j = P(w|Ai =Vi j) (6)

H(W |Ai =Vi j) =− ∑
w∈C

Pi jlog(Pi j) (7)

where H represents heuristic value between nodes (terms) i and j, w represents the class label, C represents

set of class labels, Ai represents the i-th attribute, Vi j represents j-th value of Ai and P(w|Ai = Vi j)
represents the conditional probability of class label w given that Ai =Vi j has occurred.130

Definition 10. Selection probability is the guideline for ants to search for most optimal paths. Probability

is a combination of pheromone and heuristic values Guan et al. (2021), Mohan and Baskaran (2012)

Pi j =
[τi j]

α [ηi j]
β

∑v∈V [τiv]α [ηiv]β
(8)

where Pi j denotes probability of selecting node j from node i and vice versa, τi j represents pheromone

between nodes i and j, while ηi j represents problem-dependent heuristic value. Parameters α and β
represent the weights of pheromone and heuristic values respectively.135

Definition 11. Pheromone of search paths evaporates (decreases) over time. Pheromone evaporation rate

ρ is usually kept constant in ACO and is a user-defined parameter. Its value is kept around 0.1 Parpinelli

et al. (2002).

Definition 12. The increase in the pheromone values of paths with best results is called pheromone

update. This update increases the selection probability of edges in best paths for future iterations by ants140

Shahzad and Baig (2011).

Definition 13. ACO algorithm is terminated when either a user-defined maximum number of iterations

has been executed or the best searched path hasn’t been changed for a (user-defined) number of iterations

Mohan and Baskaran (2012).
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3 RELATED WORK145

Shahzad et al proposed a robust classifier using associative classification using Ant Colony Optimization

for labeled data sets Shahzad and Baig (2011). This model uses the select class first approach to construct

rules for a selected class only. Rules for all the classes are constructed ny choosing classes one-by-one.

This technique experimentally showed much better accuracy than its competitors. This approach has been

applicable to supervised classification problems only.150

Aburub et al developed an associative classification algorithm for prediction of existence of under-

ground water at a given place Aburub and Hadi (2018). Again this algorithm has been developed for

associative classification of fully-labeled data.

Associative classification approaches have been applied for labeled datasets only and there exists no

work on associative classification for semi-supervised learning of datasets containing unlabeled instances155

according to our knowledge.

Xiaojin et al put forward the initial formalization and classification of Semi-Supervised Learning

(SSL) techniques Zhu and Goldberg (2009).

Triguero et al presented a taxonomic study of self-leveling techniques in Semi-Supervised Classi-

fication. This study provides a critical review of the self-labeling methods and also presents software160

tools for self-labeling SSC in Triguero et al. (2015). The main contribution of this research work in-

cludes proposing of new taxonomy of self-labeling methods, analysis and deduction of transductive and

inductive capabilities of the self-labeling methods, and establishing an experimental methodology of the

state-of-the-art self-labeling techniques along with the introduction of self-labeling module for KEEL

software. The problem with this approach is that it compares self-training and co-training versions of165

traditional classification algorithms and no additional measure is used in classification process like feature

selection or associative classification.

Zhu et al applied Semi-Supervised Learning approach for text representing and term classification

based on term-weight in Zhu et al. (2013). The experimental results proved the effectiveness of results by

the proposed method when compared to the results of supervised classification methods.170

More recently, Li et al presented an incremental SSL method for classification of streaming data

in Li et al. (2019). This approach proposes a model consisting of generative network used to learn

representations from input (autoencoders), discriminant structure used to regularize the generative network

by building pairwise similarity/dissimilarity (semi-supervised hashing), and the bridge which connects

the generative network with the discriminant structure. The proposed approach employs transductive175

learning and falls in the category of generative methods of semi-supervised learning. They compared their

incremental model on evolving streaming data with the state-of-the-art incremental learning approaches

like Learn++, AdalinMLP, etc. This approach named ISLSD/ISLSD-E showed to be experimentally

more accurate than the supervised incremental learning approaches in competition. Despite its good

performance, the proposed approach doesn’t provide comprehensible rule-based classifier.180

As per our knowledge, there exists no associative classification approach for self-training, self-labeling

or even entire semi-supervised classification.

We argue that since associative classification increases the robustness and confidence of classification

rules Shahzad and Baig (2011)Hadi et al. (2018)Venturini et al. (2018), it is more logical and a natural

way to incorporate associative classification for pseudo-labeling and rule construction in self-trained185

semi-supervised classification. Thus the main contribution of the proposed approach is the utilization

of ACO-based associative classification for self-training and construction of comprehensible rule-based

classifier to achieve higher classification accuracy than self-trained versions of classical classification

algorithms.

In the proposed approach, an ACO-based transductive self-trained semi-supervised associative classi-190

fication algorithm has been presented. This is a rule-based semi-supervised classifier

4 PROPOSED METHODOLOGY

The proposed approach consists of three components, the transductive self-training mechanism of SSL,

principles of associative classification and rule construction by ACO.

Algorithm 1 illustrates the proposed ST-AC-ACO algorithm. The sets L, EL and U represent the set195

of labeled instances, the set of extended labeled instances and set of unlabeled instances respectively. The

underlying dataset is initially partitioned into training set and test set. The training set is then partitioned
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into U and L according to a user-specific proportion. The EL consists of both the originally-labeled and

pseudo-labeled (labeled by the algorithm) instances.

The While loop (lines 5-19) executes until all the instances in U have been pseudo-labeled and moved200

to EL. It is important to note that the training and test sets are prepared using uniform class distribution.

Similarly, instances from training set are randomly picked from each class according to the uniform class

distribution to remove class labels before adding to U . The remaining instances are added to L. The key

step is to maintain the specific proportion of labeled instances in L from the training set. Further detail

has been explained in section 5.205

Pheromone is initialized as illustrated in equation 9:

τi j =
1

|Terms|
(9)

where Terms is the set of terms in the data set.

The Heuristic function is the second component for probabilistic selection of terms. Equation 10 is

used to calculate heuristic value for the selection of the first term.

ηi =
|termi,classk|+1

|termi|+ |classes|
(10)

where ηi is the heuristic value for selection of the ith term as the 1st term of the rule antecedent, and

classk represents kth class.210

After the selection of the first term, heuristic function for the each subsequent term is calculated by

equation 11.

ηi j =
|termi, term j,classk|× |term j,classk|

|termi,classk|× |classk|
(11)

where ηi j is the heuristic value for link between the current item termi and a selection candidate

item term j while |termi, term j,classk| represents the frequency of instances containing itemset {itemi,

item j,classk}.215

Since there can exist non-associative classification rules consisting of one term, T Rules set (line 10)

would contain single-term rules constructed by the algorithm 2.

ARules is the list of rules constructed by ants (line 11) returned by the function ConstructAntRules()
demonstrated in algorithm 3. Class Rules list is constructed by the union of T Rules and ARules (line 12).

Class Rules are in turn added to the global rule list named Rules (line 13).220

After the rules for all classes are constructed, the RulesList is sorted (line 15) in the descending order

of con f idence and then support (if two rules have equal value of con f idence).

The process of randomly selection of unlabeled instances from U and assigning them the most suitable

labels has been described in lines 16 and 17. The selected instances are called pseudo-labeled and are

moved from U to EL set (line 18). Number of instances added from U to EL is illustrated in equation 12).225

n =

{

|U |, if µ >= |U |

r, otherwise.
(12)

where n represents the number of instances to be selected from U , mu is the user-defined parameter which

sets the maximum number of instances to be selected in one iteration, U represents the set of unlabeled

instances and r is a random number [1,µ]. Moreover, the instances are chosen randomly from U to move

to EL. This mechanism provides some level of dynamic extension of the EL as opposed to existing

approaches like the approaches proposed in Jiang et al. (2013), Triguero et al. (2015), etc which employ230

the mechanism of selecting, pseudo-labeling and adding (to the EL set) a fixed static number of instances

from U set.

The proposed algorithm uses the RuleList to label the selected instances. Terms of each of the selected

instance are compared to antecedents the sorted rules. The consequent of the first rule whose antecedent

matches an instance is assigned as the label of the instance.235
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Algorithm 1 SSAC-ACO

1: Set RuleList← φ
2: Initialize L, U

3: Set EL← L

4: Initialize minSupp, minCon f , NoO f Ants

5: while U 6= φ do

6: Initialize phermone

7: Initialize heuristic

8: for Each class label c do

9: Set Class Rules← φ
10: Set T Rules←ConstructTermRules()
11: Set ARules←ConstructAntRules()
12: Set Class Rules = T Rules∪ARules

13: Set RuleList← RuleList ∪Class Rules

14: end for

15: Sort RuleList by con f idence and support(in descending order).

16: Randomly select Instances from U .

17: Assign class labels to each instance in Instances using RuleList.

18: Set U ←U− Instances and EL← EL∪ Instances.

19: end while

20: Prune RuleList and remove duplicate rules (if any).

21: Test RuleList on TestSet.

22: Display Results.

The constructed rules are then pruned to remove any redundant terms from rules (line 20) and then

duplicate rules are removed if there exist any. Finally the RuleList is used to calculate the accuracy on

TestSet and report the results (lines 21-22).

Algorithm 2 ConstructTermRules()

1: Set Rules← φ
2: for Each term do ⊲ Rule for each term

3: Construct 1-term rule for term, such that (term => c).
4: Calculate support and con f indence of rule.

5: if thensupport ≤ minSupp

6: Set pheromone← 0 for all term trails.

7: else if support ≥ minSupp And con f indence≥ minCon f then

8: Set Rules← Rules∪ rule.

9: end if

10: Return Rules

11: end for

Algorithm 2 illustrates the process of construction of single-term rules. Such rules determine the

association of each individual term of the dataset to class labels. Line 3 describes the calculations of240

support (equation 3) and confidence (equation 4) of the single-term rule. Line 6 is used to set pheromone

trails to 0 from the term of the current rule if support is less then a user-defined minSupport threshold. If

support and con f idence values of the current rule meet the minSupport and minCon f idence thresholds

respectively, the rule is added to the Rules list (line 8).

Algorithm 3 illustrates the construction of associative classification rules by ants. Variable g represents245

the generation index of the ant rules. Each ant constructs an associative classification rule consisting

of g number of terms in its antecedents. The initial value of g is set to 2 (line 1). The while construct

(lines 2-17) present the evolutionary process of the rule construction. The variable minCoverage is a

user-defined parameter which specifies the proportion of EL that has to be covered by the MultiRules

rule list constructed by ants before termination of the rule construction process and its value is in range250

[0,1]. Lines 5-8 describe how each ant t constructs a rule consisting of at most g terms. The variable
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Algorithm 3 ConstructAntRules()

1: Set g← 2. ⊲ Generation counter

2: while g 6= |attributes| And coverage≤ minCoverage do

3: Set MultiRules← φ ⊲ Multi-term rules

4: Set t← 1 ⊲ Ant index

5: repeat

6: Let ant t construct a maximum of g-term rule such that (rule => c).
7: Set t← t +1

8: until t > noO f Ants

9: for Each rule constructed by ants do

10: Calculate support and con f idence of rule

11: if support ≥ minSupp And ≥ minCon f then

12: Set MultiRules←MultiRule∪ rule

13: end if

14: end for

15: Update pheromone.

16: Set g← g+1

17: end while

18: return MultiRules

c represents the selected class. For each rule in the ants-constructed rules, if support and con f idence

meet the threshold values, the rule is added to the MultiRules list (lines 9-14). During construction of a

multi-term rule, there are two steps involved. In the first step, an ant has to select first term using equation

10255

The second step is to select subsequent terms of a multi-term rule. The pheromone (definition 8)

for each possible ant path and heuristic function (definition 9) are the component of the calculation of

the selection probability of each subsequent term (definition 10, equation 8). Every subsequent term is

probabilistically selected and added to the rule of the current ant t.

Thepheromone and consequently the probability matrices are updated after all ants of the g-th

generation construct their rules. The pheromone for each path from termi to term j is evaporated and is

updated using equation 13.

τi j(g+1) = τi j(g)× (1−ρ) (13)

where ρ is a user-defined parameter called pheromone evaporation rate (definition 11).260

The pheromone of paths used in construction of rules that were added to the MutiRules list is increased

and further updated by using equation 14.

τi j(g+1) = τi j(g)× (1−
1

1+ con fr

) (14)

where r represents index of the rule in Rules list.

5 EXPERIMENTAL RESULTS

For the purpose of evaluation of performance of the proposed SSAC-ACO algorithm and comparison with265

other proposed approaches, we have used 20 SSC datasets from KEEL dataset repository 1.

Table 1 displays the datasets used to evaluate the performance of the proposed approach and other

self-training approaches. Most of the chosen datasets either consists of balanced class distribution or a

class distribution that was made balanced by merging some of the low-frequency classes to a new class

label during pre-processing. The column with heading |Att| represents the number of attributes of datasets,270

|Inst| represents the number of instances of datasets, |Class| represents the number of classes of data

datasets and the last column demonstrates whether a dataset is either balanced or imbalanced with respect

to class distribution.

1https://sci2s.ugr.es/keel/semisupervised.php

8/22PeerJ Comput. Sci. reviewing PDF | (CS-2021:02:57826:0:1:NEW 13 Feb 2021)

Manuscript to be reviewedComputer Science



Table 1. Datasets used for experiments

Sr.

No

DataSet |Att| |Ins| |Class| Class dist

1 Appendicitis 7 106 2 Imbalanced

2 Australian 14 690 2 Balancesd

3 Automobile 24 159 4 Balancesd (Pre)

4 Breast Cancer 9 286 2 Imbalanced

5 Cleveland 13 297 2 Balancesd (Pre)

6 Contraceptive 9 1473 3 Balancesd

7 CRX 15 653 2 Balancesd

8 Flare 11 1066 5 Balancesd (Pre)

9 German 20 1000 2 Balancesd

10 Glass 9 214 3 Balancesd (Pre)

11 Haberman 3 306 2 Imbalanced

12 Heart 13 270 2 Balancesd

13 Iris 4 151 3 Balancesd

14 LED7Ligit 7 550 10 Balancesd

15 Lymphography 18 148 2 Balancesd (Pre)

16 Mammographic 5 830 2 Balancesd

17 Mushroom 22 5644 2 Balancesd

18 Pima 8 768 2 Balancesd

19 Saheart 9 462 2 Balancesd

20 Tae 5 151 3 Balancesd

Table 2 lists parameter values used in training phase of the ST-AC-ACO and competing state-of-the-art

self-training classification algorithms. Number of ants, pheromone evaporation rate (ρ) and minimum275

coverage (MinCoverage) have been set as in Shahzad and Baig (2011), while values for minimum support

and minimum confidence threshold have been specified by determining the most suitable values by

experimentation. Minimum coverage value 1.0 means that training will stop when all instances of the

EL have been covered by the list of discovered rules. Parameters for ST-C4.5 and ST-SMOG (SVM)

have been set according to the setting in Zhu et al. (2013). Self-Training C4.5 (ST-C4.5) requires two280

parameters namely confidence level c and minimum number of itemsets per leaf of the decision tree.The

algorithm post-prunes the tree. Self-training Sequential Minimal Optimization (ST-SMO) is SVM variant

Kumar et al. (2020). Parameter C is set to value 1 to achieve higher training accuracy because the

ST-SMO is trained on labeled data to correctly assign labels to unlabeled instances during training. The

selected three competitors have been the best performing self-training algorithms in the KEEL tool Zhu285

et al. (2013). That is why they have been chosen for comparison with the performance of he proposed

ST-AC-ACO algorithm.
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Table 2. Algorithm parameters used in experiments

Algorithm Parameter

name

Value

ST-AC-ACO

No of ants 30

Min support 0.05

Min confi-

dence

0.45

rho 0.09

Min coverage 1

ST-C4.5

c 0.25

i 2

Pruning Post-prune

ST-NB None N/A

ST-SMO

Kernal type Polynomial

Polynomial

degree

1

Fit logistic

model

TRUE

C 1

Tolerance pa-

rameter

0.001

epsilom 1.00E-12

The proposed ST-AC-ACO algorithm has been implemented in C# while its competitor algorithms

used in experimentation have been part of the Semi-Supervised Learning module of the KEEL Alcalá-

Fdez et al. (2009) software. A significant difference between implementation of ST-AC-ACO and KEEL290

implementation is that ST-AC-ACO implementation does not require separate partition files for each

partition of datasets. The software is developed to create partition during runtime and to remove labels of

the instances of the unlabeled instances before training. Thus the user doesn’t have to prepare labeled

partitions for datasets. The implementation software for ST-AC-ACO and pre-processed datasets can

be found online 2. We have used 10-cross-fold validation mechanism for evaluation and comparisons.295

The classification accuracy of ST-AC-ACO has been compared with classification accuracies of ST-C4.5,

ST-NB and ST-SMO algorithms.

The experimentation was setup for 4 sets consisting of 10%, 20%, 30% and 40% labeled data. Table

3 to Table 6 demonstrate the comparison of performance the classification accuracy comparison of the

above-mentioned algorithms respectively. The Figure 2, Figure 3, Figure 4 and Figure 5 present the300

visualization of the appropriate tables mentioned above.

2http://www.hamidawan.com.pk/research/
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Figure 2. Accuracy comparison over 10% labeled data

Table 3. Classification comparison on 10% labeled data

Datasets ST-AC-ACO ST-C3.5 ST-NB ST-SMO

Appendicitis 89.64% 80.25% 79.45% 79.15%

Australian 85.80% 81.93% 75.83% 80.02%

Automobile 54.25% 37.89% 34.67% 29.52%

Breast Cancer 78.34% 69.66% 72.42% 69.89%

Cleveland 67.03% 51.06% 53.39% 41.84%

Contraceptive 71.21% 47.33% 74.12% 79.88%

CRX 87.58% 86.00% 75.68% 82.26%

Flare 71.49% 71.57% 71.12% 51.24%

German 73.30% 68.68% 67.81% 59.02%

Glass 61.13% 49.66% 40.94% 48.93%

Haberman 75.80% 70.21% 79.69% 61.88%

Heart 89.26% 72.33% 69.59% 76.26%

Iris 93.33% 81.48% 79.26% 94.18%

LRD7Ligit 65.00% 60.74% 56.10% 56.81%

Lymphography 54.73% 62.32% 5.59% 54.22%

Mammographic 98.07% 79.39% 73.30% 77.10%

Mushroom 100.00% 99.55% 92.43% 99.39%

Pima 81.25% 66.10% 69.00% 62.07%

Saheart 74.03% 63.82% 64.78% 62.27%

Tae 58.29% 38.97% 36.61% 40.76%

As obvious from table 3, ST-AC-ACO algorithm comprehensively beat its competing algorithms on
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Appendicitis (with 89.64% accuracy as compared to 80.25% accuracy of ST-C4.5 algorithm), Automobile

(with 54.25% accuracy as compared to 37.89% accuracy of ST-C4.5 algorithm), Breast cancer (with

78.34% accuracy as compared to 72.42% accuracy of ST-Naive Bayesian algorithm), Cleveland (with305

67.03% accuracy as compared to 53.39% accuracy of ST-NB), Glass (with 61.13% accuracy as compared

to 49.66% accuracy of ST-C4.5), Heart (with 89.26% accuracy as compared to 76.26% accuracy of

ST-SMO), Mammographic (with 98.07% accuracy as compared to 77.10% accuracy of ST-SMO), Pima

(with 81.25% accuracy as compared to 69.00% accuracy of ST-NB), Sahrart (with 74.03% accuracy

as compared to 64.78% accuracy of ST-NB) and Tae (with 58.29% accuracy as compared to 40.76%310

accuracy of ST-SMO). With the help of Wilcoxon’s signed rank text Garcı́a et al. (2010), we show that

ST-AC-ACO beat non-associative self-training versions of classification algorithms in 17 of 20 datasets

with a significant margin on 10% labeled data..

Table 4 presents accuracy comparison of the self-training algorithms on 20% labeled data. ST-C4.5

came closer to ST-AC-ACO over German dataset by showing comparable accuracy 69.18% to ST-AC-315

ACO’s 70.20%). ST-NB showed comparable accuracy (89.00%) on Appendicitis to that of ST-AC-ACO

(87.64%), while it was beaten by ST-AC-ACO on 10% labeled Appendicitis dataset. ST-NB beat ST-

AC-ACO by showing 81.92% in comparison of ST-AC=ACO’s 74.49% on Haberman dataset. S-SMO

beat ST-AC-ACO on Contraceptive dataset by showing 84.05%accuracy against 74.54% of ST-AC-ACO.

Wilcoxon’s tests show that despite of being behind on a couple of occasions, ST-AC-ACO beat its320

competitors in accuracy on 15 out of 20 datasets. Figure 3 demonstrates the visual analysis of the results

for the results displayed in table 4.

Table 4. Classification comparison on 20% labeled data

Datasets ST-AC-ACO ST-C4.5 ST-NB ST-SMO

Appendicitis 87.64% 80.74% 89.00% 72.25%

Australian 97.54% 82.52% 77.02% 81.27%

Automobile 58.63% 45.34% 40.23% 44.26%

Breast Cancer 77.30% 70.22% 71.97% 62.95%

Cleveland 67.69% 53.11% 52.18% 43.72%

Contraceptive 74.54% 47.39% 73.96% 84.06%

CRX 96.94% 85.51% 76.32% 84.57%

Flare 71.11% 72.83% 73.26% 58.65%

German 70.20% 69.18% 68.54% 61.14%

Glass 67.32% 54.28% 42.72% 56.57%

Haberman 74.49% 70.96% 81.92% 65.43%

Heart 97.04% 73.44% 77.54% 77.85%

Iris 96.67% 88.43% 89.44% 91.94%

LED7Ligit 75.20% 67.94% 60.64% 62.72%

Lymphography 91.05% 70.65% 1.23% 66.02%

Mammographic 98.07% 82.43% 76.33% 78.87%

Mushroom 100.00% 99.83% 94.11% 99.77%

Pima 81.76% 68.78% 72.94% 65.56%

Saheart 81.81% 67.16% 67.22% 60.39%

Tae 65.54% 36.82% 41.06% 38.74%

Table 5 displays summary of accuracy comparison of self-training algorithms on 30% labeled data.

Figure 4 presents the visual analysis of the same results. ST-AC-ACO didn’t improve much its accuracy
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Figure 3. Accuracy comparison of ST-AC-ACO with other Self Training Algorithms over 20% labeled

data

from its results on 20% labeled data while comparing to ST-C4.5 algorithm. ST-C4.5 showed comparable325

results on Haberman dataset by showing 70.70.32% accuracy as compared to 73.53% of ST-AC-ACO.

ST-AC-ACO lost its lead from ST-NB on German dataset as both the algorithms showed almost same

accuracy of about 70%. Nevertheless, ST-AC-ACO comprehensively beat ST-NB by showing 73.12%

accuracy to 45.06%. While both the algorithms comparable accuracies to each other on 10% and 20%

labeled data sets. Moreover, ST-SMO suddenly dropped its lead that it attained against ST-AC-ACO330

on 20% labeled Counterceptive data and showed only 47.89%. This shows the lack of robustness of

ST-SMO as compared to probabilistic approaches like ACO and Naive Bayesian self-training approaches.

Wilcoxon tests show that ST-C4.5 gave a little tougher competition to ST-AC-ACO despite the proposed

approach still managed to show comprehensively higher accuracy on its competitors on 13 out of 20

datasets.335
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Figure 4. Accuracy comparison of ST-AC-ACO with other Self Training Algorithms over 30% labeled

data

Table 5. Classification comparison on 30% labeled data

Datasets ST-AC-ACO ST-C4.5 ST-NB ST-SMO

Appendicitis 85.09% 83.38% 87.08% 76.27%

Australian 98.12% 83.82% 77.59% 81.56%

Automobile 64.17% 55.31% 46.15% 51.29%

Breast Cancer 77.25% 67.96% 71.74% 59.56%

Cleveland 68.33% 51.44% 51.50% 43.65%

Contraceptive 73.12% 48.95% 45.06% 47.89%

CRX 98.77% 84.82% 76.93% 84.70%

Flare 69.34% 72.89% 73.56% 63.79%

German 70.00% 69.86% 70.79% 62.37%

Glass 73.85% 55.43% 43.09% 61.05%

Haberman 73.53% 70.32% 82.08% 66.75%

Heart 97.04% 74.44% 79.59% 77.08%

Iris 96.67% 90.63% 90.32% 93.89%

LED7Ligit 81.60% 67.94% 61.59% 67.59%

Lymphography 91.86% 73.37% 16.63% 78.77%

Mammographic 98.07% 83.26% 79.70% 79.45%

Mushroom 100.00% 99.90% 94.89% 99.90%

Pima 78.52% 72.00% 72.78% 67.68%

Saheart 83.12% 65.63% 68.03% 60.31%

Tae 73.54% 42.13% 49.65% 44.73%
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Figure 5. Accuracy comparison of ST-AC-ACO with other Self Training Algorithms over 40% labeled

data

Table 6. Classification comparison on 40% labeled data

Datasets ST-AC-ACO ST-C4.5 ST-NB ST-SMO

Appendicitis 86.64% 43.09% 46.72% 29.70%

Australian 98.55% 69.70% 52.81% 67.15%

Automobile 63.58% 64.53% 55.17% 61.61%

Breast Cancer 76.26% 13.48% 31.14% 22.40%

Cleveland 68.67% 22.78% 29.07% 22.77%

Contraceptive 76.92% 23.87% 18.62% 19.96%

CRX 98.47% 69.24% 55.03% 65.75%

Flare 73.46% 64.82% 67.69% 50.29%

German 70.10% 26.79% 29.33% 30.53%

Glass 69.57% 41.51% 21.63% 51.27%

Haberman 74.17% 75.90% 85.84% 74.43%

Heart 97.41% 52.74% 58.92% 58.84%

Iris 97.33% 85.00% 86.00% 87.00%

LED7Ligit 84.00% 64.74% 57.77% 64.54%

Lymphography 95.95% 56.90% 0.00% 59.14%

Mammographic 98.07% 69.00% 59.40% 58.31%

Mushroom 100.00% 100.00% 89.19% 99.81%

Pima 75.12% 37.28% 39.05% 30.28%

Saheart 78.12% 24.15% 34.96% 18.50%

Tae 71.50% 43.45% 37.80% 45.57%

Table 6 accompanied by figure 5 presents a comparative analysis of accuracies of self training

algorithms on 40% labeled data. The proposed ST-AC-ACO algorithm regained comprehensive lead

over ST-C4.5 that it lost on 20% labeled Appendicitis, Flare and German datasets as C4.5 failed to keep
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comparable accuracy on these datasets by showing 43.09%, 64.82% and 26.79% respectively. Similarly,

ST-AC-ACO regained lead over ST-NB on Appendicitis (86.64% to 46.72%) and German(70.10% to340

29.33%) datasets only because it kept its accuracy while ST-NB failed to maintain accuracy on more

labeled ratio of labeled data. However, ST-NB kept its significant lead over ST-AC-ACO on Haberman

dataset by showing 85.15% accuracy to 74.27%. Finally talking about comparison of accuracy comparison

of ST-AC-ACO and ST-SMO, ST-AC-ACO gained a significant lead over ST-SMO on Iris dataset by

showing 97.33% average classification accuracy in comparison to 87.00%.345

To validate the results of experiments we performed statistical analysis using Wilcoxon Signed Rank

Test Garcı́a et al. (2010). The reason to use this test instead of other statistical significance tests like

pair-wise t-test is that this test is non=parametric and makes no assumption about normal distribution

of the underlying data. In our experimentation testing, our null hypothesis (H0) states that there is no

significant difference between the medians of accuracies (10-X folds) of ST-AC-ACO and its competitor350

on a specific dataset. The alternate hypothesis (H1) states that there is a significant difference between

medians of accuracies of ST-AC-ACO and its competitor on a specific dataset. When H0 is not rejected,

the accuracy of ST-AC-ACO is comparable (Comp) to its competitor. If average accuracy of ST-AC-ACO

is higher than that of its competitor, we conclude that ST-AC-ACO has won (Win), otherwise we conclude

that ST-AC-ACP has lost (Loss). The threshold (wcritical) is 8 for 10 readings (10-X fold validation). More355

details of the statistical test can be downloaded from the website 3 .

Table 7 presents the significance analysis of comparison of ST-AC-ACO with ST-C4.5, ST-NB and ST-

SMO on 10% labeled data. The bottom three lines describe the summary of wins,defeats and comparable

results achieved by ST-AC-ACO against ST-C4.5, ST-NB and ST-SMO respectively. It is important to

note that the proposed ST-AC-ACO beat all the competitors on 15 datasets.360

3http://www.hamidawan.com.pk/research/
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Table 7. Wilcoxon Signed Rank Test Result on 10% labeled data - ACO vs others (wcritical = 8)

Dataset

vs ST-C4.5 vs ST-NB vs ST-SMO

W-

Stat

Result W-

Stat

Result W-

Stat

Result

Appendicitis 9 Comp 6 Win 9 Comp

Australian 0 Win 0 Win 0 Win

Automobile 2 Win 3 Win 0 Win

Breast-Cancer 1 Win 3 Win 2 Win

Cleveland 0 Win 0 Win 0 Win

Contraceptive 0 Win 20 Comp -12 Comp

CRX 0 Win 0 Win 0 Win

Flare -26.5 Comp 27 Comp 0 Win

German 0 Win 1 Win 0 Win

Glass 0 Win 0 Win 0 Win

Haberman 7 Win -12 Comp 0 Win

Heart 0 Win 0 Win 0 Win

Iris 0 Win 1 Win 12 Comp

LED7Digit 2 Win 1 Win 1 Win

lymphography 0 Win 0 Win 0 Win

Mammographic 0 Win 0 Win 0 Win

mushroom 0 Win 0 Win 0 Win

Prima 0 Win 0 Win 0 Win

Sahara. 1 Win 1 Win 1 Win

Tae 0 Win 0 Win 1 Win

Win 18 17 17

Loss 0 0 0

Comp 2 3 3
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Table 8. Wilcoxon Signed Rank Test Result on 20% labeled data - ACO vs others (wcritical = 8)

Dataset

vs ST-C4.5 vs ST-NB vs ST-SMO

W-

Stat

Result W-

Stat

Result W-

Stat

Result

Appendicitis 11 Comp -25 Comp 3 Win

Australian 0 Win 0 Win 0 Win

Automobile 7 Win 3 Win 8 Comp

Breast-Cancer 3 Win 4 Win 1 Win

Cleveland 0 Win 0 Win 0 Win

Contraceptive 0 Win 24 Comp 0 Loss

CRX 0 Win 0 Win 0 Win

Flare -21 Comp -18 Comp 0 Win

German 11 Comp 0 Win 0 Win

Glass 1 Win 0 Win 7 Win

Haberman 4 Win -2 Loss 0 Win

heart 0 Win 0 Win 0 Win

Iris 8 Comp 3 Win 10 Comp

LED7Digit 11 Comp 4 Win 4 Win

lymphography 0 Win 0 Win 0 Win

Mammographic 0 Win 0 Win 0 Win

mushroom 0 Win 0 Win 0 Win

Pima 2 Win 3 Win 0 Win

Saheart. 0 Win 0 Win 0 Win

Tae 0 Win 2 Win 1 Win

Win 15 16 17

Loss 0 1 1

Comp 5 3 2

Table 8 demonstrates the significance analysis of comparison on 20% labeled data. ST-AC-ACO lost

only on 1 dataset each to ST-NB and ST-SMO. It is important to note that the proposed ST-AC-ACO beat

all the competitors on 12 datasets.
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Table 9. Wilcoxon Signed Rank Test Result on 30% labeled data - ACO vs others (wcritical = 8)

Dataset

vs ST-C4.5 vs ST-NB vs ST-SMO

W-

Stat

Result W-

Stat

Result W-

Stat

Result

Appendicitis 15.5 Comp 24 Comp 6 Win

Australian 0 Win 0 Win 0 Win

Automobile 13 Comp 8 Comp 16 Comp

Breast-Cancer 1 Win 2 Win 1 Win

Cleveland 0 Win 0 Win 0 Win

Contraceptive 0 Win 0 Win 0 Win

CRX 0 Win 0 Win 0 Win

Flare -20.5 Comp -17 Comp 1 Win

German 23 Comp -12 Comp 0 Win

Glass 1 Win 0 Win 16 Comp

Haberman 8 Comp -2 Loss 0 Win

heart 0 Win 0 Win 0 Win

Iris 11 Comp 2 Win 10 Comp

LED7Digit 10 Comp 5 Win 10 Comp

lymphography 0 Win 0 Win 3 Win

Mammographic 0 Win 0 Win 0 Win

mushroom 0 Win 0 Win 0 Win

Pima 2 Win 3 Win 0 Win

Saheart. 0 Win 0 Win 0 Win

Tae 1 Win 8 Comp 1 Win

Win 13 14 16

Loss 0 1 0

Comp 7 5 4

Table 9 demonstrates the significance analysis of comparison on 30% labeled data. According to the

results, ST-C4.5 came closer to ST-AC-ACO by showing comparable accuracy on 5 datasets. ST-AC-ACO365

won from all competitors on 11 datasets.
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Table 10. Wilcoxon Signed Rank Test Result on 40% labeled data - ACO vs others (wcritical = 8)

Dataset

vs ST-C4.5 vs ST-NB vs ST-SMO

W-

Stat

Result W-

Stat

Result W-

Stat

Result

Appendicitis 0 Win 1 Win 0 Win

Australian 0 Win 0 Win 0 Win

automobile -22 Comp 24 Comp -23 Comp

Breast-Cancer 0 Win 0 Win 0 Win

Cleveland 0 Win 0 Win 0 Win

Contraceptive 0 Win 0 Win 0 Win

CRX 0 Win 0 Win 0 Win

Flare 7 Win 13 Comp 0 Win

German 0 Win 0 Win 0 Win

Glass 0 Win 0 Win 8 Comp

Haberman -22.5 Comp 0 Loss 27 Comp

Heart 0 Win 0 Win 1 Win

Iris 4 Win 1 Win 5 Win

LED7Digit 11 Comp 6 Win 6 Win

Lymphography 0 Win 0 Win 0 Win

Mammographic 0 Win 0 Win 0 Win

Mushroom 0 Comp 0 Win 0 Win

Pima 0 Win 0 Win 0 Win

Saheart. 0 Win 0 Win 0 Win

Tae 2 Win 2 Win 5 Win

Win 16 17 17

Loss 0 1 0

Comp 4 2 3

Table 10 demonstrates the significance analysis of comparison on 40% labeled data. As it is quite

clear that ST-AC-ACO comprehensively beat other self-training algorithms on majority of datasets.

ST-AC-ACO beat all competitors on 14 datasets.

As it has been shown that the power of associative property makes associative classification mechanism370

much more robust and reliable than other non-associative classifiers in semi-supervised classification

problem.. Due to discovery of implicit relationship among non-class attributes to determine frequent

patterns allows classification be more accurate and robust than merely constructing classification rules

without finding association among non-class attributes.

6 CONCLUSION375

A novel rule-based semi-supervised associative classification approach using ant colony optimization has

been proposed in this paper. The primary task of the approach is to learn from a very smaller ratio of

labeled data than unlabeled data to first label the unlabeled data and then apply the classification rules.

This approach uses labeled data to first discover associative classification rules with ACO and then using

those rules in transductive mechanism to label the unlabeled instances. The experimental results of the380
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proposed technique demonstrate that the proposed ST-AC-ACO algorithm is not only superior in accuracy

to its competing self-training algorithms but it is more robust as it tends to discover relationship between

a frequent itemset of non-lass attributes and the class labels. This approach can further be combined

with feature subset selection to remove unnecessary or redundant attributes for even better classification

accuracy. Moreover, the proposed approach can also be utilized for labeling and classification of big385

data with a little fraction of labeled data. Another future direction is to develop a mechanism to find

frequent patterns from the entire )labeled and unlabeled) dataset and assign the most confident class. A

more fundamental task in this regard is to re-define the SSL problem by omitting the classification and

presenting results just on pseudo-labeling, after all classification is a secondary task and its performance

directly depends on pseudo-labeling of unlabeled instances.390
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