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ABSTRACT
Background: Machine learning is one kind of machine intelligence technique
that learns from data and detects inherent patterns from large, complex datasets.
Due to this capability, machine learning techniques are widely used in medical
applications, especially where large-scale genomic and proteomic data are used.
Cancer classification based on bio-molecular profiling data is a very important topic
for medical applications since it improves the diagnostic accuracy of cancer and
enables a successful culmination of cancer treatments. Hence, machine learning
techniques are widely used in cancer detection and prognosis.
Methods: In this article, a new ensemble machine learning classification model
named Multiple Filtering and Supervised Attribute Clustering algorithm based
Ensemble Classification model (MFSAC-EC) is proposed which can handle class
imbalance problem and high dimensionality of microarray datasets. This model first
generates a number of bootstrapped datasets from the original training data
where the oversampling procedure is applied to handle the class imbalance problem.
The proposed MFSAC method is then applied to each of these bootstrapped datasets
to generate sub-datasets, each of which contains a subset of the most relevant/
informative attributes of the original dataset. The MFSAC method is a feature
selection technique combining multiple filters with a new supervised attribute
clustering algorithm. Then for every sub-dataset, a base classifier is constructed
separately, and finally, the predictive accuracy of these base classifiers is combined
using the majority voting technique forming the MFSAC-based ensemble classifier.
Also, a number of most informative attributes are selected as important features
based on their frequency of occurrence in these sub-datasets.
Results: To assess the performance of the proposed MFSAC-EC model, it is applied
on different high-dimensional microarray gene expression datasets for cancer
sample classification. The proposed model is compared with well-known existing
models to establish its effectiveness with respect to other models. From the
experimental results, it has been found that the generalization performance/testing
accuracy of the proposed classifier is significantly better compared to other
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well-known existing models. Apart from that, it has been also found that the
proposed model can identify many important attributes/biomarker genes.

Subjects Bioinformatics, Data Mining and Machine Learning
Keywords Machine learning, Ensemble classifier, Filter, Attribute clustering, DNA Microarray,
Gene expression data

INTRODUCTION
Cancer is one of the most fatal diseases around the globe (Tabares-Soto et al., 2020;
Hambali, Oladele & Adewole, 2020). According to the World Health Organization report,
Cancer is marked as the second most deadly disease and an estimated 9.7 million
deaths around the world in 2018 have occurred due to this signature disease (Hambali,
Oladele & Adewole, 2020). Generally, one in every six deaths all over the world, occurs due
to cancer. So, within 2,030, the number of new cancer patients per year will increase
approximately by 25 million (Hambali, Oladele & Adewole, 2020; NIH, 2019). Although
several advanced techniques are already developed for the detection of cancer, the proper
prognosis of cancer patients, till date, is very poor and the survival rate is also very low
(Tabares-Soto et al., 2020; Hambali, Oladele & Adewole, 2020; Kourou et al., 2015). It has
been already found that for very accurate cancer sample classification or prediction,
adequate information is not available from the clinical, environmental, and behavioral
characteristics of patients (Kourou et al., 2015; Hambali, Oladele & Adewole, 2020;
Tabares-Soto et al., 2020). Recently, due to different types of bio-molecular data analysis,
several genetic disorders with different biological characteristics have been revealed which
are very helpful for early identification and prognosis of cancer and also to discern the
responses for different types of treatment (Colozza et al., 2005; Greller & Tobin, 1999; Li,
Xie & Liu, 2018; Liu et al., 2011; Pilling, Henderson & Gardner, 2017; Su et al., 2001; Swan
et al., 2013).

With the rapid advancements in genomic, proteomic, and imaging high-throughput
technologies (Colozza et al., 2005; Greller & Tobin, 1999; Li, Xie & Liu, 2018; Liu et al.,
2011; Pilling, Henderson & Gardner, 2017; Su et al., 2001; Swan et al., 2013), now it is
possible to accumulate huge amount (in the order of thousands) of different bio-molecular
information of patients. Using this huge amount of information, researchers have been
trying to develop more advanced techniques for early detection and proper prognosis of
cancer, and also to improve cancer therapy for improvement of patients’ survival rate.
To analyze this huge amount of information, lab-based approaches are not adequate as
these methods are costly and time-consuming. So, computational or in-silico methods like
statistical methods, machine learning, deep learning, etc. have been being used extensively
in this field.

It is well-known fact that in cancer-causing cells, gene expression is either overexpressed
or under expressed (Tabares-Soto et al., 2020). So, measurement of gene expression in
cancer cells can give adequate information to improve cancer diagnostic procedures.
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Nowadays, different developing countries have been using this procedure for cancer
sample detection. It is already known that using DNA microarray technology it is
possible to measure the expression level of a numerous number of genes for a single
experiment/sample simultaneously. The outcome of DNAmicroarray technology is a gene
expression data matrix. This matrix carries information about the expression level of a
huge number of genes for a limited number of samples (such as diseased patient samples
and normal samples). The presence of the limited number of samples in this data matrix is
due to the lack of availability of samples. So, based on information of gene expression
data matrix, cancer sample classification is one of the essential tasks in the field of cancer
research (Chin et al., 2016; Dashtban & Balafar, 2017; Ding & Peng, 2005; Elyasigomari
et al., 2017; Furey et al., 2000; Golub et al., 1999; Nada & Alshamlan, 2019; Tabares-Soto
et al., 2020).

Using computational or in-silico approaches, gene expression-based cancer sample
classification task has been reviewed extensively in different papers (Chin et al., 2016;
Dashtban & Balafar, 2017; Ding & Peng, 2005; Elyasigomari et al., 2017; Furey et al., 2000;
Golub et al., 1999; Nada & Alshamlan, 2019; Tabares-Soto et al., 2020). However, the main
difficulties in the sample classification task arise due to several factors. First, in these
data sets, a substantially small number of samples is available (generally in the order of
hundreds) compared to the availability of a huge number of genes (generally in the order of
thousands) (Chin et al., 2016; Hambali, Oladele & Adewole, 2020; Nada & Alshamlan,
2019). For sample classification, genes are treated as features/attributes. So, the high-
dimensional gene space is an overhead for most classification algorithms. Second, only a
very few genes are informative (differentially expressed) and the rest of the section is non-
informative (noisy) (Chin et al., 2016; Hambali, Oladele & Adewole, 2020; Nada &
Alshamlan, 2019) for sample classification and responsible for degrading the classifier’s
performance. Gene dimension reduction by identification of informative genes as
biomarkers can improve the classification accuracy of classifiers. Apart from the
improvement of classification accuracy, the identification of informative biomarkers (here,
informative genes) has great prospects from a biomedical point of view. These are
beneficial for finding the biological reason for a disorder, assessing disease risk, and
developing therapeutic targets. The third problem arises due to the small sample size which
creates an overfitting problem in classifier construction. Another problem that degrades
classifier performance is the sample class imbalance problem. This problem occurs due to
the presence of more instances/samples of one class (majority class) with respect to other
class(es) (minority class) in a dataset.

A fairly large number of works have been already developed for sample classification.
These works are divided into two categories. In the first category (Chin et al., 2016;
Hambali, Oladele & Adewole, 2020;Nada & Alshamlan, 2019), the major emphasis is given
to the selection of relevant genes for the reduction of feature space. Then based on this
reduced feature space, predictive/classification accuracy of the samples is measured using
different existing single classification models like naïve Bayes, support vector machine,
relevance vector machine, K-nearest neighbor, decision tree, logistic regression, etc. As
gene selection is a feature selection task, so based on feature selection techniques, these
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methods are divided into different categories. These are (1) filter methods (2) wrapper
methods (3) embedded methods and (4) hybrid methods. Before we mention the second
category of classification methods, let us first elaborate on the first category methods one
by one.

Filter methods (Chin et al., 2016; Hambali, Oladele & Adewole, 2020; Nada &
Alshamlan, 2019) select a subset of features without taking any information from any
classification model. These methods select features that are differentially expressed with
respect to sample class labels. The filter methods rank individual features according to their
class discrimination power based on some statistical score function and then select a
number of high-ranked features to form a reduced and relevant feature subset. The
popular statistical score functions used in filter methods are Fisher’s score, Signal to Noise
ratio (SNR), correlation coefficient, mutual information, Relief (Das et al., 2019), etc.
Filter methods are computationally simple, fast, and unbiased in favor of any specific
classifier as these methods do not consider any knowledge from any classifier at the feature
selection phase. The drawback of filter methods is that the number of selected features is
based solely on the trial-error method.

Wrapper methods (Chin et al., 2016; Hambali, Oladele & Adewole, 2020; Nada &
Alshamlan, 2019), on the other hand, judge discrimination capability of a feature
subset using classification error rate or prediction accuracy of a classifier as the feature
evaluation function. It selects the most discriminative feature subset via minimizing the
classification error rate or maximizing the classification accuracy of a classifier. The
wrapper methods generally achieve better classification accuracy than the filter methods
because the selection of feature subset is classifier-dependent. One drawback of these
methods is that these are biased to used classifiers and another drawback is that these
are computationally more expensive than the filter methods as generation of the best
feature subset for the high-dimensional dataset is an NP-complete problem. Due to these
reasons, these methods are not applicable for high-dimensional datasets.

In Embedded methods (Chin et al., 2016; Hambali, Oladele & Adewole, 2020; Nada &
Alshamlan, 2019), the optimal feature subset is selected through the unique learning
procedure of a specific classifier at the time of classifier construction. Actually, in these
methods, the optimal feature subset selection part is embedded as part of classifier
construction. These methods are faster than wrapper methods but are biased to the specific
classifier. In embedded approaches, the feature selection process is specific for a particular
classifier and is not applicable to other classifiers. These are also computationally
expensive. Due to these reasons for high-dimensional datasets, these methods are not
applicable. On the other hand, recently hybrid feature selection methods (Chin et al., 2016;
Hambali, Oladele & Adewole, 2020; Nada & Alshamlan, 2019) are also developed. In
hybrid methods, different category-based methods are combined to take advantage of all of
these methods for improving classification accuracy.

Apart from these methods, clustering techniques (Chin et al., 2016; Hambali, Oladele &
Adewole, 2020) are also used for feature selection purposes. Clustering techniques divide
the data space in such a manner that objects in the same cluster are similar while in
different clusters they are dissimilar. For the feature selection task, clustering methods
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(famous as attribute clustering in feature selection domain) (Au et al., 2005) divide the
features into several distinct clusters and then reduce the feature dimension by selecting a
small number of significant features from each cluster. A lot of unsupervised gene
(attribute) clustering algorithms (Au et al., 2005; Chin et al., 2016; Hambali, Oladele &
Adewole, 2020) are already developed for this task. However, these methods are
unsuccessful to find informative functional groups of genes for sample classification as
in clustering genes, no supervised information from sample classes is considered (Au et al.,
2005; Chin et al., 2016; Hambali, Oladele & Adewole, 2020). So, scientists have developed a
number of supervised gene (attribute) clustering algorithms (Dettling & Buhlmann,
2002; Hastie et al., 2000; Hastie et al., 2001;Maji & Das, 2012) in which genes are grouped
using supervised information from sample classes and a reduced gene set is formed via
selecting the most informative genes from each cluster.

All the above-mentioned variants deliver comparable feature selection and classification
accuracy. Quite often this type of classification models with only a few genes and with a
limited number of training samples can classify the majority of training samples correctly,
but the generalization capability of such classification models cannot be guaranteed
(Bolón-Canedo, Sánchez-Maroño & Alonso-Betanzos, 2012; Ghorai et al., 2011; Nagi &
Bhattacharyya, 2013; Wang, 2006,Wang, Li & Fanget, 2012; Yang et al., 2010). So, the
most important task for a medical diagnosis system is to improve the classification
accuracy of unknown samples (generalization performance) which cannot be solved by
this type of classification model.

Apart from this problem, the microarray data is related to several uncertainties due to
fabrication, hybridization, and image processing procedure in microarray technology.
These uncertainties introduce various types of noise in microarray data. Due to the
presence of these uncertainties with a limited number of training samples, the
conventional machine learning approaches face challenges to develop reliable classification
models.

To overcome the above-mentioned problems, it is therefore essential to develop general
approaches and robust methods. In this regard, researchers are motivated to develop the
second category-based model. These are the different robust ensemble classification
models (Bolón-Canedo, Sánchez-Maroño & Alonso-Betanzos, 2012; Ghorai et al., 2011;
Nagi & Bhattacharyya, 2013; Osareh & Bita, 2013; Wang, 2006; Wang, Li & Fanget, 2012;
Yang et al., 2010) which can overcome small sample size problems and are capable of
removing uncertainties of gene expression data.

Ensemble methods (Dietterich, 2000) are a class of machine learning technique which
combines multiple base learning algorithms to produce one optimal predictive model.
Ensemble classification model refers to a group of individual/base classifiers that are
trained individually on the trained dataset in a supervised classification system and finally,
an aggregation method is used to combine the decisions produced by the base classifiers.
These ensemble classification models have the potential to alleviate the small sample size
problem by applying multiple classification models on the same training data or on
bootstrapped samples (sampling with replacement) of the training data to decrease the
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chance of overfitting in the training data. In this way, the training dataset is utilized more
efficiently, and as a consequence, the generalization ability is improved.

Although different category-based ensemble classification models exist in the literature
but these ensemble models are not capable of addressing all the above-mentioned
problems (small sample size, high dimensional feature space, and sample class imbalance
problem) related to microarray data.

In this regard, here a new Multiple Filtering and Supervised Attribute Clustering
algorithm-based ensemble classification model named MFSAC-EC is proposed. In this
model, first, a number of bootstrapped versions of the original training dataset are created.
At the time of the creation of bootstrapped versions, an oversampling technique
(Błaszczyński, StefanowskiŁ & Idkowiak, 2013) is adopted to solve the class imbalance
problem. For every bootstrapped dataset a number of sub-datasets (each with a subset
of genes) are generated using the proposed MFSAC method. The MFSAC is a hybrid
method combining multiple filters with a new supervised attribute clustering method.
Then for every sub-dataset, a base classifier is constructed. Finally, based on the prediction
accuracy of all these base classifiers of all sub-datasets for all bootstrapped datasets an
ensemble classifier (EC) is formed using the majority voting technique.

The novelty of the proposed MFSAC-EC model is that here the emphasis is given
simultaneously on the high dimensionality problem of gene expression data, small sample
size problem as well as the class imbalance problem. All of these problems at the same
time are not considered in any existing ensemble classification model. First of all, due
to the use of bootstrapping method with a class balancing strategy, the proposed model can
handle a small sample size and overfitting problem. Second, in MFSAC, different filter
methods are used with their unique characteristics. So, different characteristics-based
relevant gene subsets are selected via different filters to form different sub-datasets from
every bootstrapped dataset. Finally, every gene subset is modified using a supervised
attribute clustering algorithm. In this way, the high-dimensionality problem of gene
expression data is handled here. Apart from this, from the MFSAC generated sub-datasets,
the frequency of occurrence is counted for every gene and informative genes are ranked
accordingly. The prediction capability of the proposed model is experimented with over
different microarray datasets and compared with the existing well-known models.
Experimental outputs demonstrate the superiority of the proposed model over existing
models.

MATERIALS & METHODS
The proposed MFSAC-EC model is composed of different filter score functions, a new
supervised attribute clustering method, and an ensemble classification method. In the
following subsections, first, a brief overview is given on different filter score functions and
then the proposed MFSAC-EC model is described.

Preliminaries
In this paper, a data set (here, a microarray gene expression data set) is represented by a
data matrix, KU�V , withU data objects (samples) and V features (genes). The set of objects
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or samples is represented as E ¼ E1; E2; . . . ::; Es; . . .EUf g while the set of genes is
represented as G ¼ G1;G2; . . . . . . ;Gt; . . . :GVf g. Here, each sample is a V-dimensional
feature vector containing V number of gene expression values. Similar way, every gene is a
U-dimensional vector containing U number of sample values. Here, CU�1 is a class
vector representing the associated class label for every sample. The class label is taken from
a set DC ¼ d1; d2; . . . ::; dj; . . . dN

� �
with N distinct class labels.

Brief overview of filter score functions used in MFSAC
The filter score functions used in the proposed MFSAC-EC model are modified Fisher
score (Gu, Li & Han, 2011), modified T-test (Zhou & Wang, 2007), Chi-square (Das et al.,
2019), Mutual information (Das et al., 2019), Pearson correlation coefficient (Leung &
Hung, 2010), SNR (Leung & Hung, 2010) and Relief-F (Das et al., 2019). A summary of
these seven filters used in the MFSAC-EC model is given in the Table S1.

Proposed MFSAC-EC model
In the proposed MFSAC-EC model, initially, bootstrapping (sampling with replacements)
with a class balancing procedure of samples is applied on training dataset K to create D
number of different bootstrapped versions from the training dataset. Here, every
bootstrapped dataset with U samples is formed by random sampling with replacements
U times from the original dataset K . After that oversampling procedure is applied to each
minority class to achieve data balance. Oversampling consists of increasing the minority
class instances by their random replication to exactly balance the cardinality of the
minority and majority classes in each bootstrapped dataset. Due to oversampling each
bootstrapped dataset will contain more instances than the original dataset.

The MFSAC method of the MFSAC-EC model, which is an integration of multiple
filters and a new supervised attribute (gene) clustering method, is applied on every newly
created bootstrapped (BKl) training dataset. The proposed MFSAC method first calculates
the class relevance score of every gene present in the bootstrapped training dataset
using each filter score function FTxð Þ; x ¼ 1 to 7 mentioned above. Then for each filter
score function, a sub-dataset SDlx with a gene subset (GSlx) is created by selecting a
predefined number (let P) of the most relevant genes from the full gene set G. So,
GSlxj j ¼ P: After that on every gene subset GSlxð Þ of every sub-dataset SDlx, the SAC
(Supervised Attribute Clustering) method is applied and a set of clusters CGSlx and
corresponding cluster representatives (considered as modified features) are formed.
Finally, Q numbers of most relevant cluster representatives are selected as modified
features and a reduced sub-dataset RSDlx of the sub-dataset SDlx is formed. How the SAC
method works on GSlx of every sub-dataset SDlx is discussed below.

For any sub-dataset SDlx, the SAC method starts by selecting the gene from the subset
(GSlx) with the highest FTx value. Let gene Gli 2 GSlx with the highest FTx value be
selected as the first member (let FTx Gli; Cð Þ ¼ A) and it also becomes the initial cluster
representative R R ¼ Glið Þ) of the first cluster C1GSlx and Gli is deleted from GSlx: In
effect, Gli 2 C1GSlx, and GSlx ¼ GSlx � Glif g and so FTx R; Cð Þ ¼ A. This cluster is then
grown up in parallel with the cluster representative refinement process which is described
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next. In this process, the gene (let Glm) with next highest FTx value is taken from GSlx
subset and is merged with the current cluster representative R. The merging is done in two
ways. First, the expression profile of Glm is directly added with R and a temporary
augmented representative TRþ is formed and its FTx value (let B1) is calculated. The
second one is that the sign-flipped value of the expression profile of Glm is added with R
and another temporary augmented representative TR� is formed and its FTx value (let B2)
is calculated. If FTx TRþ; Cð Þ � FTx TR�; Cð Þ that is B1 � B2 then TRþ is chosen else

TR� is chosen. Let TRþ is chosen. Now if FTx TRþ; Cð Þ > FTx R; Cð Þ then R ¼ TRþ

otherwise, R is unaltered. Similar way if TR� is chosen and if FTx TR�; Cð Þ > FTx R; Cð Þ
then R ¼ TR� otherwise, R remains unchanged. If R is modified then the gene Glm is
included in the cluster and Glm is deleted from GSlx. In effect, Glm 2 C1GSlx; and
GSlx ¼ GSlx � Glmf g. So, the next chosen gene is included in the current cluster if it
improves the class relevance value of the current cluster representative. The merging
process is described in Fig. 1.

Here g0 represents the current cluster representative Rð Þ and its class relevance score
((FTx; R), here Pearson score), is shown. Now among all the genes g1, g2, g3, g4, and g5,
the Pearson score of g1 is the highest. So, g1 is chosen for the merging process. Then g1
is added with R to create the temporary augmented representative (TRþ ¼ Rþ g1) and
also its sign-flipped value is added with the R to form the temporary augmented
representative (TR� ¼ R� g1). The Pearson score of TRþ is greater than the Pearson
score of TR�, so TRþ is chosen. Now the Pearson score of TRþ is greater than the Pearson
score of R, so TRþ is considered as the current cluster representative and R ¼ TRþ:
This process is continued for all other genes. Now, g3 is chosen as it is the gene with the
next highest Pearson value. g3 and its sign-flipped value are added individually with
current cluster representative R to form TRþ ¼ Rþ g3 and TR� ¼ R� g3 respectively.
In this case, Pearson score of TR� is greater than the Pearson score of TRþ. So, TR� is
chosen. Then Pearson score of TR� is Checked with the Pearson score of R and here
Pearson score of TR� is greater than the Pearson score of R. So, TR� is considered as
current cluster representative and R ¼ TR�. In this way, cluster representative is refined.
This process is repeated for every member of GSlx subset.

After the formation of the first cluster and its corresponding augmented representative,
R is assigned to ARlx1 that means ARlx1 ¼ R; and the supervised clustering process is
repeated to form the second cluster with the gene (let GlzÞ with next highest FTx

value from GSlx subset. In this way a set of clusters CGSlx ¼ C1GSlx;C2GSlx; . . . ::;f
CkGSlx; . . . :g and their corresponding augmented cluster representatives ARlx ¼
ARlx1; . . . . . . . . . ;ARlxk; . . . . . .f g are formed. After that Q number of most powerful

augmented cluster representatives are chosen (as modified features) according to their FTx

value from the generated clusters and with these Q number of modified features, a reduced
sub-dataset RSDlx of sub-dataset SDlx is formed.

In this way, for every bootstrapped version (BKl) of the training dataset, seven
number of RSDlx sub-datasets are created and for every RSDlx an individual classifier is
constructed using any existing classifier and finally, an ensemble classifier (EC) is formed
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by combining all these classifiers of all bootstrapped versions using the majority voting
technique. To classify every sample using this ensemble classifier, each classifier votes or
classifies the sample for a particular class, and the class for which the highest number of
votes is obtained is considered as the output class.

MFSAC method based informative attribute ranking
For every gene (feature/attribute), the frequency of occurrence that means the total
number of times it appears in all sub-datasets generated by the MFSAC method for all
bootstrapped versions is calculated. Then according to their frequency of occurrence, those
genes are ordered or ranked. The top-ranked genes with the highest occurrence frequency
are considered the most informative cancer-related genes.

Figure 1 Cluster representative refinement procedure. Each row of the table represents the gene with its class relevance value in terms of Pearson
correlation coefficient with respect to sample class row. TR+ and TR− represent the augmented gene with their class relevance score in terms of
Pearson correlation coefficient with respect to sample class row. Full-size DOI: 10.7717/peerj-cs.671/fig-1
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Algorithm: MFSAC-EC

Input: A KU�V data matrix (here, gene expression data matrix) containing U number of data objects (here, cancer samples) and V number of attributes
(here, genes).

Output: An ensemble classifier MFSAC-EC is formed to classify test samples. From MFSAC generated sub-datasets, informative genes are selected
according to their rank. Every gene is ranked according to its frequency of occurrence.

Definitions:

E ¼ E1; E2; . . . ::;Es; . . . EUf g is the set of objects or samples of KU�V data matrix. Every sample Es is a V dimensional vector.

G ¼ G1;G2; . . . . . . ;Gt ; . . . :GVf g is the set of features or genes of KU�V data matrix. Every gene Gt is a U dimensional vector.

BK ¼ BK1; BK2; . . . ;BKl; . . . ::;BKDf g is a set of the bootstrapped version of the original training dataset. In every bootstrapped dataset the number of
samples varies from the original dataset but the number of features is the same as the original dataset.

CU�1 is a class vector representing the associated class label for every sample. For a data matrix N distinct class labels exist and class labels are taken
from a set DC ¼ d1; d2; . . . ::; dk; . . . dNf g.
FTx Gt ; Cð Þ is xth filter score function which returns the class relevance value of Gt gene with respect to class vector C using FTx score function, for
x ¼ 1 to 7 as 7 represents the total number of filtering score functions used here.

GSlx GSlx ¼ Pð Þ is a set of top-ranked genes of G selected using FTx score function and SDlx is corresponding sub-dataset of BKl . Here SDlx is a data
matrix containing P number of genes.

CGSlx ¼ C1GSlx; C2GSlx; . . . ::; CkGSlx; . . . :f g and ARlx ¼ ARlx1; . . . . . . . . . ; ARlxk; . . . . . .f g are the set of clusters and corresponding cluster
representatives respectively generated from the corresponding subset GSlx of SDlx . Here every ARlxk is a vector.

TR+, TR−, R are vectors similar to a gene vector.

RSDl ¼ RSDl1; RSDl2; . . . . . . ::;RSDlx; . . . . . .RSDl7f g is a set of sub-datasets each containingQ number of most relevant cluster representatives formed
for every bootstrapped dataset BKl .

CFl ¼ ICl1; ICl2; . . . . . . ::; IClx; . . . . . . ICl7f g is a set of classifiers formed for every bootstrapped dataset.

1. Create D number bootstrapped version of training dataset K .

2. For Every bootstrapped dataset BKl repeat step 3

3. Repeat for x ¼ 1 to 7

A. Repeat for t ¼ 1 to V

a) Calculate class relevance score FTx Gt ; Cð Þ of Gt gene, where Gt 2 G; with respect to class vector C

B. Select P number of top-ranked genes from G based on FTx score function and form GSlx gene subset with corresponding SDlx sub-dataset

C. Set k ¼ 0

D. Repeat until GSlx ¼ [

a) Set k ¼ kþ 1

b) Set ARlxk ¼ 0; R ¼ 0; and i ¼ 0

c) Select the gene (let Gli) whose FTx score value is maximum among all genes of GSlx and set R ¼ Gli

d) Add Gli to CkGSlx , and delete Gli from GSlx

e) Set count =1

f) Repeat for j ¼ 1 to jGSlxj
I. Compute first augmented representatives TRþ by adding Glj 2 GSlx with R that means TRþ ¼ Rþ Glj

II. Compute second augmented representatives TR� by adding sign-flipped version of Glj 2 GSlx with R that means TR� ¼ R� Glj

III. Compute class relevance value FTx TRþ; Cð Þ and FTx TR�; Cð Þ using FTx score function

IV. If FTx TRþ; Cð Þ � FTx TR�; Cð Þthen
If FTx TRþ; Cð Þ > FTx R; Cð Þ then
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The block diagram of the proposed MFSAC-EC model is shown in Fig. 2, while the
block diagram of the MFSAC method is shown in Fig. 3. The algorithm of the proposed
model is described below.

Description and preprocessing of the datasets
The experimentation has been carried out over ten publicly available different gene
expression binary class and multi-class datasets. Among these datasets, eight datasets are
cancer datasets and two arthritis datasets. The eight cancer datasets are Leukemia
(Golub et al., 1999), Colon (Alon et al., 1999), Prostate (Singh et al., 2002), Lung (Gordon
et al., 2002), RBreast (Veer et al., 2002), Breast (West et al., 2001), MLL (Armstrong et al.,
2001), and SRBCT (Khan et al., 2001). To show the accuracy of the proposed model
with respect to other than cancer datasets here two arthritis datasets RAHC (Van der Pouw
Kraan et al., 2003) and RAOA (van der Pouw Kraan et al., 2007) are also considered. The
summary of the datasets is represented in Table 1.

In the Lesukemia dataset (Golub et al., 1999), the gene expression data matrix is
prepared using Affymetrix oligonucleotide arrays. The original dataset consists of two
datasets: the training dataset and the testing dataset. The training dataset consists of 38
samples (27 Acute Lymphoblastic Leukemia (ALL) and 11 Acute Myeloid Leukemia
(AML)) while the test dataset consists of 34 samples (20 Acute Lymphoblastic Leukemia
(ALL) and 14 Acute Myeloid Leukemia (AML)), each with 7,129 probes from 6,817 genes.
For the Leukemia dataset, training and test datasets are merged here and genes with

Algorithm: (continued)

� SetR ¼ Rþ Glj and add Glj to CkGSlx and delete Glj from GSlx
� count = count +1

V. If FTx TR�; Cð Þ > FTx TRþ; Cð Þ then
If FTx TR�; Cð Þ > FTx R; Cð Þ then

� SetR ¼ R� Glj and add Glj to CkGSlx and delete Glj from GSlx
� count = count + 1

g) Set R ¼ R=count

h) Set ARlxk ¼ R

E. Select Q number of most relevant cluster representatives according to FTx score from ARlx set and form RSDlx sub-data set.

F. Construct a classifier Clx for RSDlx sub-data set

4. Apply a test sample over all the classifiers of all bootstrapped dataset and calculate the prediction accuracy of each classifier

5. Apply simple voting over all predictions to form an ensemble classifier EC and get final prediction.

6. Calculate number of occurrences for every gene for all RSDlx sub-datasets across all bootstrapped versions and rank them according to their count.

7. Select a number of top-ranked genes as informative genes.

8. End
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missing values are removed and finally, the dataset with 7,070 genes and 72 samples is
prepared.

In the Colon cancer dataset (Alon et al., 1999), gene expression of 6,500 genes for 62
samples is measured using Affymetrix oligonucleotide arrays. Among these 62 samples,
40 are Colon cancer samples and 22 are normal samples. Among these 6,500 genes, 2,000
genes are selected based on the confidence of measured expression levels.

Prostate cancer dataset (Singh et al., 2002) also consists of training and testing datasets.
In the training dataset, among 102 samples, 50 are normal samples and 52 are prostate
cancer samples. In the test dataset among 34 samples, 25 are prostate cancer samples and 9
are normal prostate samples. Gene expression of every sample is measured with respect to
12,600 genes using Affymetrix chips. Here, training and test datasets are merged, and a
dataset with 12,600 genes and 136 samples is formed.

The Lung cancer dataset (Gordon et al., 2002) consists of 181 samples. Among these
samples, 31 are malignant pleural mesothelioma and rest150 adenocarcinoma of lung
cancer. Each sample is represented by 12,533 genes and the gene expression of every
sample is measured using Affymetrix human U95A oligonucleotide probe arrays.

Figure 2 Block diagram of the proposed MFSAC-EC model. Here BK1, BK2…BKD are D number of
bootstrapped datasets. RSD11…RSD17 represent different reduced sub-datasets of BK1 bootstrapped
datasets after applying MFSAC method. IC11 to IC17 represent individual classifiers applied on RSD11…
RSD17 respectively. Full-size DOI: 10.7717/peerj-cs.671/fig-2
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In Rbreast data set (Veer et al., 2002), the patients, who are considered as breast cancer
patients after 5 years intervals of initial diagnosis, fall under the category of relapse and
rest as no relapse of metastases. A total of 97 samples have been provided in which 46
patients developed distance metastases within 5 years and they are considered as relapse
while the remaining remained healthy and are labeled as non-relapse. This dataset
comprises 24,481 genes and among them, 293 are removed.

In the Breast cancer dataset (West et al., 2001), the gene expression of 49 samples is
measured using HuGeneFL Affymetrix microarray arrays. Breast tumors are positive or
negative in the presence or absence of estrogen receptors (ER). In this dataset, 25 samples
are ER+ tumors and 24 samples are ER- tumors.

MLL (Armstrong et al., 2001) is a type of dataset which comprises of training data set of
57 leukemia samples including 20 ALL, 17 MLL, and 20 AML and the test dataset
including four ALL, three MLL, and eight AML samples. For MLL cancer dataset training

Figure 3 Block diagram of MFSAC method. BKl is the lth bootstrapped dataset. FT1… FT7 are the
seven filter score functions as Table S1. SD11…SD17 are sub-datasets created after applying filter score
functions. SAC is the Supervised attribute clustering method applied to generate RSD11…RSD17 reduced
sub-datasets. Full-size DOI: 10.7717/peerj-cs.671/fig-3

Table 1 Description of cancer gene expression datasets.

Dataset Data Dimension Gene ×
Sample (Original)

Data Dimension Gene
× Sample (Used)

Sample
Class
Labels

Dataset Data Dimension Gene ×
Sample (Original)

Data Dimension Gene
× Sample (Used)

Sample
Class
Labels

Leukemia 7,129 × 72 7,070 × 72 2 Breast 7,129 × 49 7,129 × 49 2

Colon 2,000 × 62 2,000 × 62 2 MLL 12,582 × 72 12,582 × 72 3

Prostate 12,600 × 136 12,600 × 136 2 SRBCT 2,308 × 63 2,308 × 63 4

Lung 12,533 × 181 12,533 × 181 2 RAHC 41,057 × 50 41,057 × 50 2

Rbreast 24,481 × 97 24,188 × 97 2 RAOA 18,433 × 30 18,433 × 30 2
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and test, datasets are merged here and finally, the dataset with 12,582 genes and 72 samples
are prepared.

SRBCT dataset (Khan et al., 2001) is introduced as a dataset comprising of gene-
expression for identifying small round blue-cell tumors of childhood SRBCT and
samples of this dataset are further divided into four class which are neuroblastoma,
rhabdomyosarcoma, non-Hodgkin lymphoma, and Ewing family of tumors and they are
obtained from cDNA microarrays. A training set consisting of 63 SRBCT tissues, a test
set consisting of 20 SRBCT and 5 non-SRBCT samples are available. Here we have
considered only the training dataset. Each tissue sample is already standardized to zero
mean value and has a unit variance across the genes.

RAHC commonly known as Rheumatoid Arthritis versus Healthy Controls is a data
set (Van der Pouw Kraan et al., 2003) which comprises of gene expression characterizing as
peripheral blood cells of 32 patients with RA, three patients with probable RA, and 15 age
with sex-matched healthy controls performed under microarrays with a complexity of
26,000 unique genes of 46,000 elements.

RAOA commonly known as Rheumatoid Arthritis versus Osteoarthritis is a dataset
(van der Pouw Kraan et al., 2007) that includes the gene expression of thirty patients in
which 21 of them are with RA and the remaining 9 of them are with OA. The Cy5 labeled
experimental cDNA and Cy3 labeled common reference sample were pooled and
hybridized to the lymphochips (consisting of 18,000 cDNA spots which symbolize
immunology in the genes of relevance).

RESULTS
To assess the performance of the proposed MFSAC-EC model, four well-known existing
classifiers named K-Nearest Neighbor (Duda, Hart & Stork, 1999), Naive Bayes (Duda,
Hart & Stork, 1999), Support vector machine (Vapnik, 1995), and Decision tree (c4.5)
(Duda, Hart & Stork, 1999) are applied independently in this model and four different
ensemble classification models are formed. To prove the superiority of the proposed
model, it is compared with existing well-known filter methods (used here) and existing
recognized gene selection methods (Ding & Peng, 2005; Au et al., 2005;Maji & Das, 2012)
and also with different existing ensemble classifiers (Bolón-Canedo, Sánchez-Maroño &
Alonso-Betanzos, 2012; Nagi & Bhattacharyya, 2013; Osareh & Bita, 2013; Wang, 2006;
Wang, Li & Fanget, 2012). To analyze the performance, the methods are applied to
different publicly available cancer and other disease-related gene expression datasets.
The major metrics used here for evaluations of the performance of the proposed classifier
are the cross-validation method (LOOCV, fivefold, and tenfold), ROC Curve, and Heat
map.

Tools used
The algorithms are implemented using Python programming language and Scikit-learn
libraries (Pedregosa et al., 2011) which are explained in Komer, Bergstra & Eliasmith (2014)
for ML algorithms. The programs are executed on an online Colab platform with 12 GB
RAM and Intel(R) Xeon(R) processor available in the “CPU” Runtime Type at the time
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of writing. Figures and tables are generated in the Matplotlib library (Hunter, 2007) and
also in Microsoft Excel. The python codes used here are available at https://github.com/
NSECResearchCD-SLB/PEERJ_MFSAC_EC.

In the following subsections, first, the different types of metrics used here are discussed,
and then the performance of the proposed MFSAC-EC model is verified with respect to
these metrics. This is followed by comparing the classification performance of the
proposed model with different existing methods in terms of tenfold cross-validation.
The proposed model does not only perform the task of classification but also ranks every
attribute or gene in descending order based on its information present in the dataset.
To show the effectiveness of this ranking procedure topmost eight genes from Colon
cancer and Leukemia cancer datasets are represented with their corresponding names,
symbols, and references in significant cancer-related journals to demonstrate their
significant roles in these cancers.

Evaluation metrics
The performance of the proposed MFSAC-EC classifier is established with respect to the
following measures.

Cross-validation method

The first well-known metric used here to evaluate the classification model performance is
the k-fold cross-validation method (Wang, Li & Fanget, 2012). In the k-fold cross-
validation method, the dataset is randomly divided into k number of folds and k-1
folds are used for training and one fold is used for testing. The process is repeated for k
number of times and average classification accuracy is taken. When k is set at 1 that means
the fold size is equal to the size of the dataset (training dataset size is equal to one less
than the number of samples in the dataset and validation is done using the remaining
sample) then it is considered as Leave one out cross-validation method (LOOCV). For k is
equal to two, the cross-validation method is named the household method. It has been
found that when k is set at a very small value that means the fold size is large then the
accuracy of the classification model is affected by low bias and high variance problems.
On the other hand, if k is set at a high value that means the fold size is not so large then the
classification accuracy of the classification model has a high bias but low variance. It has
been found that tenfold cross-validation method outperforms the LOOCV method
(Breiman & Spector, 1992; Ambroise &McLachlan, 2002; Asyali et al., 2006) and it has been
also endorsed that the tenfold cross-validation method as a better measure for
classification.

In training-testing random splitting the dataset is initially randomly partitioned into
training set (2/3rd of the dataset) and testing set (1/3rd of the dataset) with 50 runs.

ROC curve analysis
The performance of the proposed classifier for two-class datasets is also judged using
Receiver Operator Characteristic (ROC) analysis (Wang, Li & Fanget, 2012). It is a visual
method for evaluating binary classification models. Under this analysis, the following
measures are considered to judge the binary classification model.
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Classification accuracy (Acc) is defined as,

Acc ¼ TP þ TN
TP þ FP þ TN þ FN

0 � Acc � 1

The sensitivity (SN) or True Positive Rate (TPR) can be defined as,

SN ¼ TPR ¼ TP
TP þ FN

The specificity SPð Þ or True Negative Rate TNRð Þ can be defined as,

SP ¼ TNR ¼ TN
TN þ FP

The False Positive Rate FPRð Þ can be defined as:

FPR ¼ 1� specificityð Þ ¼ FP
FP þ TN

The Positive Predicted Value PPVð Þ can be defined as:

PPV ¼ TP
TP þ FP

The Negative Predicted Value NPVð Þ can be defined as:

NPV ¼ TN
TN þ FN

where TP, TN, FP, FN are true positive, true negative, false positive, and false negative
respectively.

The ROC curve is plotted considering TPR along the y-axis and FPR along the x-axis.
The area under the ROC curve (AUC) is used to represent the performance of the
binary classification model. The higher AUC value of a ROC curve for a particular
classification model signifies the better performance of the classification model in
differentiating positive and negative examples. The range of AUC value is 0 <= AUC <= 1.

Heat map analysis
A heatmap is a data representation diagram in which the values for a variable of interest
are portrayed using a data matrix. In this data matrix, the values of the variable are
represented across two-axis variables as a grid of colored squares. The axis variables are
divided into ranges and each cell’s color represents the intensity of that variable for the
particular ranges of values of axis variables.

Here, the performance of the proposed classifier for multi-class datasets is judged
using Heat map representation of confusion matrix (Liu et al., 2014), where a confusion
matrix is a tabular representation to visualize the performance of a classification model in
terms of true positive, true negative, false positive and false negative.
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Parameter estimation
Before running the MFSAC-EC, the parameters are settled down. In MFSAC-EC the input
training dataset is bootstrapped. The proposed MFSAC-EC model is run here varying
the number of bootstrapped datasets (D) from five to 30 and the classification accuracy of
this model is more or less the same from 10 to the rest of the range. So, the number of
bootstrapped datasets for every training dataset for this model is set at 10.

In MFSACmethod, initially P number of genes is selected by each filter method. Here in
Table 2, the classification accuracy of the proposed model is shown with respect to
different values of P. From Table 2, it has been found that the proposed model gives the
best result for P = 100 for RAOA and RAHC datasets. In case of Breast cancer, Lung
cancer, MLL and SRBCT datasets it gives the best result at P = 200. For Leukemia datasets
it gives the best result at P = 500. So, it can be said that MFSAC-EC gives best result
for P value within 200 to 500 in all cases for all datasets except Colon and Prostate. In
Colon and Prostate, it shows the best result for P = 1,500.

Here we have used SVM, DT (C4.5), NB, and KNN classifiers individually for forming
different ensemble classification models. All the classifiers are implemented using Scilit-
learn libraries of Python. For all classifiers, we have set parameters with default parameter
values. For DT as default setting we have used splitting function = Gini, Splitting
criterion = best, height = none (that means for every sample it reaches a leaf/class node).
For SVM, we have used the RBF kernel function. For KNN we have chosen K (number of
nearest neighbor) value from three to seven.

The overall execution time of a single run of the MFSAC-EC model (considering
bootstrapped dataset creation, feature selection using MFSAC, and then generating
classification accuracy of test samples using LOOCV, fivefold, tenfold, and random
splitting) and testing time using only tenfold are shown for different datasets in Table 3.

Classification performance of the proposed MFSAC-EC classifier
In Table 4, using the LOOCVmethod, the classification accuracy of our proposedMFSAC-
EC model is 100% for different datasets (Leukemia, Breast, RBreast, Lung, RAOA, and
RAHC) for all cases. In the Prostate dataset, we did not get 100% accuracy using our
model with respect to any type of existing classifier. In MLL, Colon, and SRBCT it also
gives 100% accuracy using all types of ensemble classifiers.

In Tables 5 and 6, it has been shown that using fivefold and tenfold cross-validation,
MFSAC-EC does not provide 100% accuracy only for Colon and Prostate cancer datasets.
For other datasets, it provides 100% accuracy with respect to all types of ensemble
classifiers.

To show the generalization property of the proposed ensemble classifiers, the
classification accuracy of these classifiers is also measured repeatedly with respect to the
random splitting of the dataset into a training set (2/3 data of original dataset) and test
set (1/3 data of original dataset). Random splitting is done with care such that class
proportion is alike in the training set and test set. In Table 7, the classification accuracy of
the above mentioned four different types of ensemble classifiers for the different number
of cluster representatives is shown in different datasets which are based on the best result of
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50 random splitting of the dataset into a training set (2/3 data of original dataset) and test
set (1/3 data of original dataset).

From the results of Tables 4 to 7, it has been observed that classification accuracy in the
LOOCV method, fivefold cross-validation, and tenfold cross-validation methods is

Table 3 Total execution time in a single run of MFSAC-EC on different datasets. Total execution time in a single run of MFSAC-EC including
Bootstrapped dataset creation, Feature Selection by filter methods and supervised attribute clustering approach, Training, Testing using LOOCV,
fivefold, tenfold, and Random Splitting is given in the first row. While execution time using only tenfold Cross Validation is given in the 2nd row.
Here the time for the best P value is shown here.

Leukemia RAHC MLL RAOA SRBCT Breast Lung Rbreast COLON Prostrate

No. of Feature
selected for best
result

500 100 200 100 200 200 100 500 1,200 3,000

Total Time Taken 8 min 23 s 7 min 32 s 7 min 54 s 4 min 43 s 5 min 17 s 4 min 2 s 11 min 14 s 10 min 22 s 17 min 40 s 1 h 18 min 41 s

Time Taken for only
10 fold

35 s 30 s 41 s 36 s 30 s 32 s 36 s 33 s 30 s 36 s

Table 4 Classification accuracy of the proposed MFSAC-EC model with respect to LOOCV. Classification accuracy (%) of MFSAC-EC model
has been shown in terms of LOOCV with respect to four ensemble classifiers MFSAC-EC + NB, MFSAC-EC+KNN, MFSAC-EC+DT, and MFSAC-
EC+SVM. Every ensemble classifier is run 50 times using LOOCV for every dataset and the accuracy is shown which is obtained maximum number
of times.

Dataset Proposed model Cluster representatives Dataset Proposed model Cluster representatives

1 2 3 1 2 3

COLON MFSAC-EC NB 100 98.39 98.39 MLL MFSAC-EC NB 100 100 100

KNN 98.39 100 100 KNN 100 100 100

DT 98.39 98.39 98.39 DT 100 100 100

SVM 100 98.4 98.4 SVM 100 100 100

Prostate NB 97.06 97.79 98.53 SRBCT NB 96.83 100 100

KNN 97.79 97.79 98.53 KNN 96.83 100 100

DT 97.79 98.53 97.79 DT 96.83 98.41 100

SVM 98.53 99.26 99.26 SVM 82.54 98.41 100

Leukemia NB 100 100 100 Lung NB 100 100 100

KNN 100 100 100 KNN 100 100 100

DT 100 100 100 DT 100 100 100

SVM 100 100 100 SVM 100 100 100

RAOA NB 100 100 100 RAHC NB 100 100 100

KNN 100 100 100 KNN 100 100 100

DT 100 100 100 DT 100 100 100

SVM 100 100 100 SVM 100 100 100

Breast NB 100 100 100 RBreast NB 100 100 100

KNN 100 100 100 KNN 100 100 100

DT 100 100 100 DT 100 100 100

SVM 100 100 100 SVM 100 100 100

Bose et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.671 19/40

http://dx.doi.org/10.7717/peerj-cs.671
https://peerj.com/computer-science/


higher than the random splitting of the dataset, and the overall generalization performance
of the proposed classification model is also good.

The performance of the proposed model for different two-class datasets with respect to
different parameters like SN, SP, PPV, NPV, FPR is shown in Table 8. From this table,
it is found that the performance of the proposed model is very good with respect to all
these parameters for all two-class datasets.

In Fig. 4, the ROC curve is shown for different two-class datasets. In Figs. 4A, 4B,
and 4C, the ROC curves are shown for Breast cancer using LOOCV, for Colon cancer
using fivefold cross validation, and for RAHC dataset using tenfold cross-validation
respectively. The ROC curves for Leukemia Cancer, and Lung cancer datasets using
LOOCV are given in Figs. S1A and S1B respectively. For Breast cancer, Leukemia cancer,
and Lung cancer, the AUC value is equal to 1.0 in every case. The ROC curves are
shown for RAOA, and RBreast cancer datasets using fivefold cross-validation in Figs. S2A,
and S2B respectively. For these datasets also the prediction accuracy using fivefold cross
validation is very high according to the AUC value. In Fig. S2C, the ROC curves are shown

Table 5 Classification accuracy of the proposed MFSAC-EC model with respect to fivefold cross validation. Classification accuracy (%) of
MFSAC-EC model has been shown in terms of fivefold Cross Validation with respect to four ensemble classifiers MFSAC-EC + NB, MFSAC-EC
+KNN, MFSAC-EC+DT, and MFSAC-EC+SVM. Every ensemble classifier is run 50 times using fivefold Cross Validation for every dataset and the
accuracy is shown which is obtained maximum number of times.

Dataset Proposed model Cluster representatives Dataset Proposed model Cluster representatives

1 2 3 1 2 3

COLON MFSAC-EC NB 96.77 96.77 96.77 MLL MFSAC-EC NB 100 100 100

KNN 98.39 96.77 96.77 KNN 98.61 100 100

DT 98.39 96.77 98.39 DT 98.61 100 100

SVM 98.39 96.77 96.77 SVM 100 100 100

Prostate NB 97.06 97.79 98.53 SRBCT NB 98.41 100 100

KNN 97.79 97.79 99.26 KNN 96.83 100 100

DT 97.06 97.79 94.85 DT 96.83 98.41 100

SVM 97.79 98.53 99.26 SVM 96.83 100 100

Leukemia NB 100 100 100 Lung NB 100 100 100

KNN 100 100 100 KNN 100 100 100

DT 100 100 100 DT 100 99.44 100

SVM 100 100 100 SVM 100 100 100

RAOA NB 100 100 100 RAHC NB 100 100 100

KNN 100 100 100 KNN 100 100 100

DT 100 100 100 DT 100 100 100

SVM 100 100 100 SVM 100 100 100

Breast NB 100 100 100 RBreast NB 100 100 100

KNN 100 100 100 KNN 100 100 100

DT 100 100 100 DT 100 100 100

SVM 100 100 100 SVM 100 100 100
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for Prostate cancer using tenfold cross-validation. From these curves of tenfold cross
validation, it may be seen that except for Prostate cancer, for all other datasets the AUC
value is 1 and for Prostate cancer, the AUC value is close to 1.

In Figs. 5A and 5B, heatmap representation of the confusion matrix are shown for
multi-class datasets: SRBCT and MLL with respect to fivefold cross-validation, and tenfold
cross-validation respectively. From these figures, it is clear that for the proposed model
prediction accuracy is accurate in most cases.

Comparison of MFSAC-EC model with well-known existing filter
methods used in this model
In Fig. S3, the proposed MFSAC-EC model in combination with different existing
classifiers is compared with different filter methods used in this model with respect to
SRBCT, RAHC, Prostate, and Colon datasets in terms of tenfold cross-validation. In all
cases, the performance of the proposed model is significantly better with respect to all
filters.

Table 6 Classification accuracy of the proposed MFSAC-EC model with respect to tenfold cross validation. Classification accuracy (%) of
MFSAC-EC model has been shown in terms of tenfold cross validation with respect to four ensemble classifiers MFSAC-EC + NB, MFSAC-EC
+KNN, MFSAC-EC+DT, and MFSAC-EC+SVM. Every ensemble classifier is run 50 times using tenfold cross validation for every dataset and the
accuracy is shown which is obtained maximum number of times.

Dataset Proposed model Cluster representatives Dataset Proposed model Cluster representatives

1 2 3 1 2 3

COLON MFSAC-EC NB 98.39 98.39 98.39 MLL MFSAC-EC NB 100 100 100

KNN 98.39 98.39 100 KNN 100 100 100

DT 98.39 98.39 98.39 DT 100 100 100

SVM 98.39 98.39 98.39 SVM 100 100 100

Prostate NB 97.06 97.79 98.53 SRBCT NB 96.83 96.83 100

KNN 97.79 97.79 99.26 KNN 92.06 100 100

DT 97.06 97.79 94.85 DT 95.24 96.83 100

SVM 97.79 98.53 99.26 SVM 80.95 92.06 100

Leukemia NB 100 100 100 Lung NB 100 100 100

KNN 100 100 100 KNN 100 100 100

DT 100 100 100 DT 100 100 100

SVM 100 100 100 SVM 100 100 100

Breast NB 100 100 100 RBreast NB 100 100 100

KNN 100 100 100 KNN 100 100 100

DT 100 100 100 DT 100 100 100

SVM 100 100 100 SVM 100 100 100

RAOA NB 100 100 100 RAHC NB 100 100 100

KNN 100 100 100 KNN 100 100 100

DT 100 100 100 DT 100 100 100

SVM 100 100 100 SVM 100 100 100
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Comparison of MFSAC-EC Model with Well-Known Existing Gene
Selection Methods
In Fig. 6, the MFSAC-EC model with different existing classifiers as base classifiers are
compared with existing well-known supervised gene selection methods named mRMR
(minimum redundancy maximum relevance framework) (Ding & Peng, 2005), MSG
(mutual information based supervised gene clustering algorithm) (Maji & Das, 2012), CFS
(Correlation-based Feature Selection) (Ruiz, Riquelme & Aguilar-Ruiz, 2006), and FCBF
(Fast Correlation-Based Filter) (Ruiz, Riquelme & Aguilar-Ruiz, 2006) with respect to
different classifiers using tenfold cross-validation method. From these results, it has been
found that the proposed model outperforms in most of the cases.

In Fig. 7, the MFSAC-EC model is compared with well-known existing unsupervised
gene selection methods named MGSACO (Tabakhi et al., 2015), UFSACO (Tabakhi,
Moradi & Akhlaghian, 2014), RSM (Lai, Reinders & Wessels, 2006), MC (Haindl et al.,
2006), RRFS (Ferreira & Figueiredo, 2012), TV (Theodoridis & Koutroumbas, 2008), and
LS (Liao et al., 2014) with respect to DT, SVM, NB classifiers using random splitting

Table 7 Classification accuracy of the proposed MFSAC-EC model with respect to random splitting of the datasets. Classification accuracy (%)
of MFSAC-EC model has been shown in terms of random splitting with respect to four ensemble classifiers MFSAC-EC + NB, MFSAC-EC+KNN,
MFSAC-EC+DT, and MFSAC-EC+SVM. Every ensemble classifier is run 50 times using random splitting for every dataset and the accuracy is
shown which is obtained maximum number of times. For random splitting the dataset is divided into training (2/3) and testing (1/3) part 50 times
randomly.

Dataset Proposed model Cluster representatives Dataset Proposed model Cluster representatives

1 2 3 1 2 3

COLON MFSAC-EC NB 98.39 98.39 98.39 MLL MFSAC-EC NB 100 100 100

KNN 98.39 98.39 98.39 KNN 100 100 100

DT 98.39 98.39 98.39 DT 98.61 100 98.61

SVM 98.39 100 98.39 SVM 100 100 100

Prostate NB 94.68 95.74 93.62 SRBCT NB 95 85 95

KNN 97.87 96.81 92.55 KNN 95 100 90

DT 94.68 94.68 94.68 DT 80 90 95

SVM 94.68 96.81 94.68 SVM 65 75 95

Leukemia NB 100 100 100 Lung NB 100 100 100

KNN 100 100 100 KNN 100 100 100

DT 100 100 100 DT 100 100 100

SVM 100 100 100 SVM 100 100 100

RAOA NB 100 100 100 RAHC NB 100 100 100

KNN 100 100 100 KNN 100 100 100

DT 100 100 100 DT 100 100 81.25

SVM 100 100 100 SVM 100 100 81.25

Breast NB 100 100 100 RBreast NB 91.94 91.94 91.94

KNN 100 100 100 KNN 85.48 87.10 83.87

DT 100 100 100 DT 83.87 79.03 80.65

SVM 100 100 100 SVM 93.55 91.94 91.94
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method. From these results, it can be said that the MFSAC-EC model outperforms in all
cases.

Comparison of MFSAC-EC model with well-known existing ensemble
classification and DEEP learning models
In Table 9, the proposed MFSAC-EC model using the DT classifier is compared with well-
known existing ensemble classification models with respect to tenfold cross-validation.
These models are PCA-basedRotBoost (Osareh & Bita, 2013), ICA-based RotBoost
(Osareh & Bita, 2013), AdaBoost (Osareh & Bita, 2013), Bagging (Osareh & Bita, 2013),
Arcing (Osareh & Bita, 2013), Rotation Forest (Osareh & Bita, 2013), EN-NEW1 (Wang,
2006), and EN-NEW2 (Wang, 2006). From Table 9, it is clear that the proposed model
using DT classifier outperforms in all cases.

In Table 10, the proposed MFSAC-EC model using DT, NB, KNN as base classifiers are
compared with different existing ensemble classifiers with respect to tenfold cross-
validation. These classifiers are Bagging based ensemble classifier (Nagi & Bhattacharyya,
2013), Boosting based ensemble classifier (Nagi & Bhattacharyya, 2013), Stacking based
ensemble classifier (Nagi & Bhattacharyya, 2013), Heuristic breadth-first search-based
ensemble classifier (HBSA) (Wang, Li & Fanget, 2012), Sd_Ens (Nagi & Bhattacharyya,
2013), and Meta_Ens (Nagi & Bhattacharyya, 2013). In Table 11 our model using SVM
and KNN as base classifiers is compared with auto-encoder-based deep learning
models (Nabendu, Pintu & Pratyay, 2020) in terms of random splitting. Here, results are
shown only for the datasets for which results are available in the literature, and all other

Table 8 Evaluation of MFSAC-EC classifier based on SN, SP, PPV, NPV, FPR for two class data sets with respect to LOOCV. The performance
of the MFSAC-EC model for two class datasets is represented using Receiver Operator Characteristic (ROC) analysis. SN represents Sensitivity, SP
represents Specificity, PPV represents Positive Predicted Value, NPV represents Negative Predicted Value, and FPR represents False Positive Rate.

Dataset Proposed model SN SP PPV NPV FPR Dataset Proposed model SN SP PPV NPV FPR

Leukemia MFSGC-EC NB 100 100 100 100 0 Breast MFSGC-EC NB 100 100 100 100 0

KNN 100 100 100 100 0 KNN 100 100 100 100 0

DT 100 100 100 100 0 DT 100 100 100 100 0

SVM 100 100 100 100 0 SVM 100 100 100 100 0

Prostate NB 98.7 98.3 98.7 98.3 1.7 Rbreast NB 100 100 100 100 0

KNN 98.7 98.3 98.7 98.3 1.7 KNN 100 100 100 100 0

DT 100 96.61 97.46 100 3.4 DT 100 100 100 100 0

SVM 100 98.3 98.7 100 1.7 SVM 100 100 100 100 0

Colon NB 100 100 100 100 0 Lung NB 100 100 100 100 0

KNN 100 100 100 100 0 KNN 100 100 100 100 0

DT 100 100 100 100 0 DT 100 100 100 100 0

SVM 100 100 100 100 0 SVM 100 100 100 100 0

RAHC NB 100 100 100 100 0 RAOA NB 100 100 100 100 0

KNN 100 100 100 100 0 KNN 100 100 100 100 0

DT 100 100 100 100 0 DT 100 100 100 100 0

SVM 100 100 100 100 0 SVM 100 100 100 100 0
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fields are marked as “Not Found”. In all cases, the MFSAC-EC model outperforms all the
well-known existing ensemble models (except for the Colon cancer dataset) and deep
learning models which in turn validates the usefulness of the proposed model.

Biological significance analysis
The top eight genes selected by the MFSAC-EC model for Colon cancer and Leukemia are
listed in Table 12. For every gene, the name and symbol of the gene as well as the Accession
number of the Affymetrix chip are listed. Apart from this information, to validate
those genes, biomedical literature of the genes is searched and for every gene, the
corresponding reference about its role and significance for a particular disease is provided.

DISCUSSION
In this paper, a new Multiple Filtering and Supervised Attribute Clustering algorithm-
based ensemble classification model named MFSAC-EC is proposed. The main motivation

Figure 4 AUC for for three datasets using MFSAC-EC+ KNN, MFSAC-EC+NB, MFSAC-EC+ DT and MFSAC-EC+ SVM classifiers. (A) For
the breast cancer dataset using LOOCV. (B) For the colon cancer dataset using fivefold cross validation. (C) For RAHC dataset using tenfold cross
validation. Full-size DOI: 10.7717/peerj-cs.671/fig-4

Bose et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.671 24/40

http://dx.doi.org/10.7717/peerj-cs.671/fig-4
http://dx.doi.org/10.7717/peerj-cs.671
https://peerj.com/computer-science/


behind this work is to develop a machine learning-based ensemble classification model to
overcome the over-fitting problem which arises due to the presence of sample class
imbalance problem, small sample size problem, and also high dimensional feature set
problem in the microarray gene expression dataset, to enhance the prediction capability of
the proposed model.

Nowadays, in designing machine learning models, the use of ensemble methodology has
been increasing day by day as it incorporates multiple learning algorithms and also
training datasets in different efficient manners to improve the overall prediction accuracy
of the model. Due to the inclusion of prediction accuracy of multiple learning models and
also the use of different bootstrapping datasets, the chances of potential overfitting in
training data is greatly reduced in the ensemble models, and as a consequence the
prediction accuracy increases. One necessary condition of the superior performance of an
ensemble classifier with respect to its individual member/base classifier is that every base
classifier should be very accurate and diverse (Osareh & Bita, 2013). A classifier is
considered accurate if its generalization capability is high and two classifiers satisfy diverse
property if their prediction in classifying the same unknown samples vary from each other.
The general principle of ensemble methods is to rearrange training datasets in different

Figure 5 Heatmap of MFSAC-EC with base classifiers NB, KNN, DT and SVM, respectively, for multiclass datasets. (A) For the SRBCT dataset
using fivefold cross validation. (B) For MLL dataset using tenfold cross validation. Full-size DOI: 10.7717/peerj-cs.671/fig-5
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ways (either by resampling or reweighting) and build an ensemble of base classifiers by
applying a base classifier on every rearranged training dataset (Osareh & Bita, 2013).

In our proposed ensemble model, at first, a number of bootstrapped datasets of the
original training dataset is created. In every bootstrapped dataset, the class imbalance
problem is solved using the oversampling method. Then for every bootstrapped dataset, a
number of sub-datasets are created using the MFSAC method (which is a hybrid method
combining multi-filters and a new supervised attribute/gene clustering method), and
then for every generated sub-dataset, a base classifier is constructed using any existing
classification model. After that, a new ensemble classifier (EC) is formed using the majority
voting scheme by combining the prediction accuracy of all those base classifiers.

The prediction accuracy of the proposed model is verified by applying it to high-
dimensional microarray gene expression data From Figs. 6, and 7 it has been found that the
classification accuracy of the MFSAC-EC model is much better than the well-known
existing gene selection methods. From Tables 9, 10, and 11, it has been also found that the

Figure 6 Comparison of MFSAC-EC with other well-known supervised gene selection methods and full gene set in terms of fivefold cross
validation for all datasets. In each figure classification accuracy (%) of MFSAC-EC model along with other supervised gene selection methods
for all datasets are represented using different colored bars using (A) NB (B) KNN (c) DT and (D) SVM as base classifier.

Full-size DOI: 10.7717/peerj-cs.671/fig-6
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Figure 7 Comparison of MFSAC-EC with other well-known unsupervised gene selection methods in
terms of random splitting for different datasets. Classification accuracy (%) of the MFSAC-EC model
along with other unsupervised gene selection methods for four datasets are represented with different
colored bars using (A) NB (B) DT and (C) SVM as base classifier.

Full-size DOI: 10.7717/peerj-cs.671/fig-7
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proposed MFSAC-EC classification model is superior to the existing ensemble
classification models in almost every case. The superior performance of the proposed
model is due to the following reasons:

� The generation of the different bootstrapped versions of training data and also the use of
the oversampling procedure to balance the cardinality of majority class and minority
class in every bootstrapped dataset reduces the chances of the overfitting problem of a
classifier.

Table 9 Comparison of MFSAC-EC + DT with different existing Ensemble classifiers using DT in terms of tenfold cross validation. Here
MFSAC-EC + DT model is compared with existing ensemble classifiers where DT is used as base classifier. C4.5 algorithm is used as DT.

MFSAC-
EC

PCA-based RotBoost ICA-based RotBoost AdaBoost Bagging Arcing Rotation Forest EN-
NEW1

EN-
NEW2

Colon 98.39 95.48 96.1 94.97 94.92 69.35 95.21 79.03 83.87

Leukemia 100 98.75 98.77 98.22 97.47 Not Found 97.97 Not Found Not Found

Breast 100 94.39 97.88 98.89 92.74 80.41 98.6 94.85 95.88

Lung 100 98.11 99.54 96.3 97.08 97.24 97.56 98.34 99.45

Prostate 97.79 Not Found Not Found 90.44 94.12 87.5 Not Found 94.85 97.06

MLL 100 98.86 99.31 97.63 97.11 91.67 97.61 93.06 98.61

SRBCT 100 99.5 99.59 98.16 96.46 Not Found 97.44 Not Found Not Found

Table 10 Comparison of MFSAC-EC using DT, KNN, NB, SVM with different existing Ensemble classifiers using DT, KNN, NB, SVM in
terms of tenfold cross validation. Here classification accuracy (%) of four ensemble classifiers MFSAC-EC + NB, MFSAC-EC + KNN,
MFSAC-EC+DT, andMFSAC-EC+SVM are shown with respect to results of other existing ensemble classifiers with the same base learners. The best
accuracy (%) for every dataset is shown in bold.

Dataset MFSAC-EC Bagging Boosting Stacking HBSA SD_Ens Meta_Ens

DT NB KNN SVM DT NB KNN DT NB KNN DT NB KNN KNN SVM

Leukemia 100 100 100 100 94.12 88.23 73.53 91.18 88.24 75.53 91.18 91.18 91.18 88.46 88.46 92.45 94.12

Colon 98.39 98.39 100 98.39 95.16 66.13 90.32 98.39 87.1 91.94 98.39 93.59 93.59 75 85 94.4 99.21

Prostate 97.79 99.26 99.26 99.26 26.47 26.47 38.24 26.47 26.47 52.94 26.47 26.47 52.94 85.29 97.06 52.94 52.94

Lung 100 100 100 100 91.28 96.64 97.32 81.88 95.3 97.99 97.99 97.99 96.64 Not
Found

Not
Found

81.88 97.99

Breast 100 100 100 100 78.95 36.84 68.42 68.42 36.84 68.42 68.42 68.42 68.42 Not
Found

Not
Found

73.49 79.87

Table 11 Comparison of MFSAC-EC using SVM and KNN with respect to different existing deep learning classifiers using random splitting.
Here classification accuracy (%) of two ensemble classifiers MFSAC-EC + KNN, and MFSAC-EC+SVM are shown with respect to results of other
existing ensemble classifiers with the same base learners. The best accuracy (%) for every dataset is shown in bold.

Dataset SVM KNN

MFSAC-EC Folded Autoencoder Autoencoder MFSAC-EC Folded Autoencoder Autoencoder

Colon 100 90.15 73.11 98.39 81.09 56.97

Prostate 96.81 84.16 64.3 97.87 76.48 52.1

Leukemia 100 93.62 84.12 100 85.24 77.13
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� Different types of filter methods are used in the MFSAC method. It has been already
observed that one filter gives better performance for one dataset while the same gives
poor results for other datasets. This is because every filter uses separate metrics and so
the choice for a filter for a specific dataset is a very complex task. As different filter
methods are used in the MFSAC method, so different sub-datasets with different
characteristics-based attributes/genes are formed from each dataset. This is shown using
Venn diagram in Figs. S4A and S4B. Here for Leukemia and Prostate cancer datasets,
the first twenty genes, selected by each filter are shown. In case of Leukemia dataset,
Relief measure generates non-overlapping gene subset while using other filter metrics
presence of a small number of overlapping genes in different gene subsets are observed.
In Prostate cancer dataset, Relief generates non-overlapping gene subset and also
maximum number of genes are non-overlapping in gene subsets formed by Fisher score,
MI (mutual information). From these figures, it is clear that using different filter
methods different subsets of genes are selected and different sub-datasets are formed. It
shows diversity of those filter methods. As a consequence, the base classifiers prepared
on these diverse datasets are become diverse. This diversity increases the power of
ensemble classifier.

� Moreover, the genes selected by different filter methos are good biomarker also. In
Table 12, the top ranked eight genes selected by MFSAC-EC model are shown for
Leukemia and Colon cancer datasets. Among these genes, gene MPO (with column
number 1,720), CST3 (with column number 1,823), ZYX (with column number 4,788),
CTSD (with column number 2,062), CD79A/MB-1(with column number 2,583),
LYZ (with column number 6,738) in Leukemia dataset are important biomarkers as
these are selected by different filter methods mentioned in Fig. S4.

� In MFSAC, at first, a sub-dataset of the most relevant genes is selected by each filter
method. Then on each sub-dataset, the proposed supervised gene clustering algorithm is
applied and a reduced sub-dataset of modified attributes/features in the form of
augmented cluster representatives is generated. In this method, at the time of cluster
formation, genes are augmented based on their supervised information. In other words,
such augmentation is considered where it increases the class discrimination power.
Thus effectively, the class relevance of any augmented cluster representative is greater
than that of any single gene involved in that process. So, this modified sub-dataset
containing a reduced feature set in the form of augmented cluster representatives is
more powerful according to class discrimination power than the sub-dataset containing
a subset of the most relevant genes. Apart from this, it is well known fact in gene
expression data that two genes are functionally similar if they are pattern-based similar
(either positively co-expressed or negatively co-expressed) (Das et al., 2016). So, at
the time of the augmentation procedure, two types of augmentations are considered
here. One is that a gene is added with its original value with the current cluster
representative and another one is that the gene is added with its sign-flipped value with
the current cluster representative. This is because if the current cluster representative
and a gene are positively co-expressed then normal addition is considered but if they are
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negatively co-expressed then normal addition will hamper the addition process and in
that case, sign-flipping of that gene will give proper result. The effect of augmentation
with respect to every filter method is shown in Fig. 8. In Fig. 8, for the Breast cancer
dataset, at the time of supervised cluster formation from each filter generated subset,
the original gene, and its corresponding class relevance value, and also augmented
gene and its corresponding class relevance are shown. From Fig. 8, it is clear that for
every filter method the class relevance score of every original gene is increased with
respect to that filter after augmentation. In Fig. 8, different class labels are distinguished
by different colors.

Table 12 List of genes selected by MFSAC-EC model for the colon and leukemia cancer datasets.

Dataset Gene
name

Accession number Description Validation of genes

Colon TPM1 Hsa.1130 Human tropomyosin isoform mRNA, complete cds. Gardina et al. (2006), Thorsen et al. (2008),
Botchkina Inna et al. (2009)

IGFBP4 Hsa.1532 Human insulin-like growth factor binding protein-4
(IGFBP4) gene, promoter and complete cds.

Durai et al. (2007), Singh et al. (1994), Yu &
Rohan (2000)

MYL9 Hsa.1832 Myosin Regulatory Light Chain 2, Smooth Muscle
Isoform (Human); contains element TAR1 repetitive
element

Yan et al. (2012), Zhu et al. (2019)

ALDH1L1 Hsa.10224 Aldehyde Dehydrogenase, Mitochodrial X Precursor
(Homo sapiens)

Feng et al. (2018), van der Waals, Borel Rinkes
& Kranenburg (2018), Kozovska et al. (2018)

KLF9 Hsa.41338 Human mRNA for GC box binding protein/ Kruppel
Like Factor 9, complete cds

Brown et al. (2015), Ying et al. (2014), Simmen
et al. (2008)

MEF2C Hsa.5226 Myocyte-Specific Enhancer Factor 2, Isoform MEF2
(Homosapiens)

Chen et al. (2017), Giorgio, Hancock &
Brancolinic (2018), Su et al. (2016)

GADPH Hsa.1447 Glyceraldehyde 3-Phosphate Dehydrogenase Zhang et al. (2015), Tang et al. (2012)

TIMP3 Hsa.11582 Metalloproteinase Inhibitor 3 Precursor Su et al. (2019), Bai et al. (2007)

Leukemia TXN X77584_at TXN Thioredoxin Kamal et al. (2016), Léveillard & Aït-Ali
(2017), Karlenius & Tonissen (2010)

CSF3R M59820_at CSF3R Colony stimulating factor 3 receptor
(granulocyte)

Zhang et al. (2018), Ritter et al. (2020),
Klimiankou et al. (2019), Lance et al. (2020)

MPO M19508_xpt3_s_at MPO from Human myeloperoxidase gene Szuber & Tefferi (2018), Kim et al. (2012),
Lagunas-Rangel et al. (2017), Handschuh
(2019)

LYZ M21119_s_at LYZ Lysozyme Wang et al. (2013), Liu et al. (2018), Tong &
Ball (2014)

CST3 M27891_at CST3 Cystatin C (amyloid angiopathy and cerebral
hemorrhage)

Chen, Tsau & Lin (2010)

ZYX X95735_at Zyxin Chen, Tsau & Lin (2010), Qi & Yang (2013)

CTSD M63138_at CTSD Cathepsin D (lysosomal aspartyl protease) Wang et al. (2013)

CD79A/
MB-1
gene

U05259_rna1_at MB-1 membrane glycoprotein Wang et al. (2013), Kozlov et al. (2005)

Note:
Here second column represents the gene names while third column indicate the gene accession number. The fourth column indicates the description of the gene while the
fifth column indicates the literature where it has been referred as cancer biomarker.
The gene names and their corresponding accession numbers for both of the datasets COLON and LEUKEMIA can be found in the following links: COLON:
http://genomics-pubs.princeton.edu/oncology/affydata/index.html, http://genomics-pubs.princeton.edu/oncology/affydata/names.html. LEUKEMIA: https://www.
kaggle.com/crawford/gene-expression.
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Figure 8 Original gene (different class label with different color) and corresponding Augmented
gene with respect to different filter methods for Breast Cancer dataset. Seven figures for seven dif-
ferent filter score function are shown here. In each figure the original gene and augmented gene are
plotted with respect to sample class label. X-axis represents class label while Y-axis represents expression
value. Two different class labels are represented by blue and red color. The difference of expression values
of two classes in the augmented gene shows class discrimination ability of that gene. Gene number is the
column number in the original dataset. Full-size DOI: 10.7717/peerj-cs.671/fig-8
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� Finally, for each sub-dataset with modified attributes in the form of augmented cluster
representatives, a classifier is constructed using any existing classifier, and these
classifiers are combined using the majority voting technique to form an ensemble
classifier (EC). The use of different sub-datasets with optimal gene subsets in the form
of augmented cluster representatives and the formation of a classifier for every
sub-dataset can solve the overfitting problem of any single classifier. This is due to the
reason that not all sub-datasets can consistently perform well on all types of cancer
datasets (due to inherent characteristics of the datasets), but due to the use of majority
voting in ensemble classifiers, this problem can be solved or reduced.

Another outcome of our proposed model is to rank informative genes for every cancer
dataset. For this task, the frequency of occurrence of each gene present in the form of
augmented cluster representatives in every sub-dataset is counted and these genes are
ranked according to the counted value to measure the importance of those genes for any
specific disease, here cancer. To establish the biological significance of those selected genes
for every cancer dataset, their contribution has been confirmed by other existing studies
where they are referred already. From these existing studies, it is clear that the selected
genes are important for cancer class discrimination and also are important as cancer
biomarkers for molecular treatment targets.

CONCLUSIONS
Many machine learning and statistical learning-based classifiers for sample classification
already exist in the literature, but these methods are prone to suffer from overfitting due to
small sample size problems, class imbalance problems, and the curse of the high
dimensionality of microarray data. Although some of the existing methods can mitigate
these issues to quite an extent, the problems have still not been satisfactorily overcome.
Due to this reason, here a novel feature selection-based ensemble classification model
namedMFSAC-EC is proposed. It has been shown that the proposed model can handle the
above-mentioned issues present in existing models. To check the performance of the
proposed MFSAC-EC model, this classifier is applied to test sample classification accuracy
in high dimensional microarray gene expression data, a domain that will be beneficial in
the field of cancer research. From the experimental results, it has been found that the
proposed model outperforms all other well-known existing classification models combined
with the different recognized feature selection methods and also the newly developed
ensemble classifiers for all types of cancer datasets mentioned here. Apart from this
classification task, the proposed model can also rank informative attributes according to
their importance. The efficiency of the proposed model in this task is vindicated by finding
the most informative genes for the colon cancer and leukemia cancer datasets using
this model. These genes are biologically validated based on other well-known existing
studies. Consequently, it is clear that the selected genes are vital for sample class
discrimination and are also important biomarkers for molecular treatment targets of
deadly diseases.
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