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ABSTRACT20

The Coronavirus pandemic caused by the novel SARS-CoV-2 has signi�cantly impacted human health
and the economy, especially in countries struggling with �nancial resources for medical testing and
treatment, such as Brazil’s case, the third most affected country by the pandemic. In this scenario,
machine learning techniques have been heavily employed to analyze different types of medical data, and
aid decision making, offering a low-cost alternative. Due to the urgency to �ght the pandemic, a massive
amount of works are applying machine learning approaches to clinical data, including complete blood
count (CBC) tests, which are among the most widely available medical tests. In this work, we review the
most employed machine learning classi�ers for CBC data, together with popular sampling methods to
deal with the class imbalance. Additionally, we describe and critically analyze three publicly available
Brazilian COVID-19 CBC datasets and evaluate the performance of eight classi�ers and �ve sampling
techniques on the selected datasets. Our work provides a panorama of which classi�er and sampling
methods provide the best results for different relevant metrics and discuss their impact on future analyses.
The metrics and algorithms are introduced in a way to aid newcomers to the �eld. Finally, the panorama
discussed here can signi�cantly bene�t the comparison of the results of new ML algorithms.
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INTRODUCTION35

The Coronavirus disease (COVID-19) caused by the novel SARS-CoV-2 has spread from China and36

quickly transmitted to other countries. Since the beginning of 2020, the COVID-19 pandemic has37

signi�cantly impacted human health and severely affected the global economy and �nancial markets38

(82; 83), especially in countries that cannot test their population and develop strategies to manage the crisis.39

In a scenario of large numbers of asymptomatic patients and shortages of tests, targeted testing is essential40

within the population (86). The objective is to identify people whose immunity can be demonstrated and41

allow their safe return to their routine.42

The diagnosis of COVID-19 is based on the clinical and epidemiological history of the patient (46) and43

the �ndings of complementary tests, such as chest tomography (CT-scan) (14; 38) or nucleic acid testing44

(74; 25). Nevertheless, the symptoms expressed by COVID-19 patients are nonspeci�c and cannot be45
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used for an accurate diagnosis. CT-scan �ndings are seen with numerous pathogens and do not necessarily46

add diagnostic value (48; 62). Currently, Real-Time Polymerase Chain Reaction (RT-PCR) tests of viral47

RNA in �uid, typically obtained from the nasopharynx or oropharynx, are the gold-standard test for48

COVID-19 detection (55; 24), together with proper clinical observations. The World Health Organization49

released several RT-PCR protocols to provide a proper diagnosis, help testing populations, and monitor50

the disease spread. However, RT-PCR to diagnose COVID-19 has some limitations: reported sensitivities51

vary (104; 101); long turn-around times; and tests are not universally available (shortage of PCR primers,52

reagents or equipment) (49; 37).53

The high demand for RT-PCR tests is highlighting the limitations of this type of diagnosis. Testing54

the entire population for COVID-19 is not feasible due to the cost, unavailability of PCR primers, lack of55

human and material resources, or even the delay from sample collection to test results. Instead, we need56

more targeted testing to manage the pandemic (88; 39), and various efforts are being made worldwide to57

build strategies for such approach (Fang; 91; 100; 108). The optimal approach would be to collect and58

combine different data sources and use them to identify and prioritize the patients to be tested by RT-PCR.59

In this sense, complete blood count (CBC) is the world’s most widely available hematological laboratory60

test, where and Ferrari et al. (45) suggest routine blood tests as a potential diagnostic tool for COVID-19.61

Moreover, hematological changes in patients affected by COVID-19 were reported in many works62

(96; 76; 57; 61). Laboratory �ndings include leukopenia (40; 54), lymphopenia (54; 16; 63), and63

thrombocytopenia (31; 77). Some authors have also suggested changes in the neutrophil/lymphocyte ratio64

in the severe disease progression of COVID-19 patients (89). However, de�ning the speci�c hematological65

alteration pro�le of COVID-19 differentiating it from other in�ammatory or infectious processes is not66

simple.67

Recently, arti�cial intelligence techniques, especially Machine Learning (ML), have been employed68

to analyze CBC data and assist in screening of patients with suspected COVID-19 infection (105; 107;69

51; 1; 8; 20; 65; 102). ML is a huge �eld of study in Computer Science and Statistics that executes70

computational tasks through algorithms that rely on learning patterns from data samples to automate71

inferences. Class imbalance is common in many real-world applications and affects the quality and72

reliability of ML approaches (75; 66; 78). Most importantly, class imbalance is the reality of almost73

all biological datasets, as we demonstrated in previous works after the manual curation of more than74

30.000 cancer datasets (42; 44; 43). Imbalanced data refers to classi�cation problems where we have an75

unequal number of instances for different classes. A well-known class imbalance scenario is the medical76

diagnosis task of detecting disease, where the majority of the patients are healthy, and the prediction77

of rare conditions is crucial (70). Additionally, it is common for biological datasets to be imbalanced78

since there are numerous limitations in generating, managing, and acquiring new samples, especially79

clinical data that heavily depends on patients willing to release their data or participating in clinical80

trials. Learning from these imbalanced data sets can be dif�cult, and non-standard ML methods are81

often required to achieve desirable results, especially in situations of low-prevalence diseases or clinical82

conditions.83

In ML, a major issue is the release of multiple approaches, all valid in their way, but that needs to be84

discussed to provide a proper panorama of their applications on different types of data. Additionally, due85

to its low-cost nature, applying ML approaches to aid medical decision making is invaluable for countries86

struggling with �nancial resources to make strategic medical decisions.87

This paper aims to: (i) review predictive ML techniques to predict the positivity or negativity for88

COVID-19 from CBC data; (ii) evaluate the impact of eight different classi�ers and �ve distinct sampling89

methods already used for CBC data on three Brazilian CBC datasets; and (iii) evaluate which is the best90

overall classi�er, as well as for each particular case.91

In this sense, the eight classi�ers were Support Vector Machines (SVM), Decision Trees (DT), K-92

Nearest Neighbors (KNN), Random Forest (RF), Multi-Layer Perceptron (MLP), Logistic Regression93

(LR), Na¤�ve Bayes (NB), and eXtreme Gradient Boosting (XGBoost). Moreover, the �ve tested sampling94

methods for the imbalanced class problem were Random Under Sampling (RUS), Random Over Sam-95

pling (ROS), Adaptive Synthetic Sampling (ADASYN), Synthetic Minority Over Sampling TEchnique96

(SMOTE), and Synthetic Minority Over Sampling TEchnique Tomek links (SMOTETomek). Considering97

the importance of the application, the number of different algorithms available, and the rapid increase in98

publications reporting different ML approaches to handle COVID-19 CBC data, a survey summarising the99

main advantages, drawbacks, and challenges of the �eld can signi�cantly aid future works. A work�ow100
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summarizing the steps taken in this work can be found in Fig.1.101

Figure 1. Methodological steps used in this work.

The survey will �rst explain the employed methodology, the tested datasets’ characteristics, and the102

chosen evaluation metrics. Afterward, a brief review of the major ML predictors used on CBC COVID-19103

datasets is conducted, followed by a review of techniques to handle imbalanced data. Section 1.3 also104

shows the diversity of approaches already applied to COVID-19 CBC data. This exposition is succeeded105

by describing the main �ndings, listing the lessons learned from the survey, and conclusions.106

1 PRELIMINARIES107

1.1 Datasets108

At the time of this work, Brazil was the third country most affected by the COVID-19 pandemic, reaching109

more than 16 million con�rmed cases. Thus, discussing data gathered from Brazil can become invaluable110

to understand SARS-CoV-2 data. Complete datasets used in the present study were obtained from an open111

repository of COVID-19-related cases in Brazil. The database is part of the COVID-19 Data Sharing/BR112

initiative (79), and it is comprised of information about approximately 177;000 clinical cases. Patient113

data were collected from three distinct private health services providers in the S�ao Paulo State, namely114

the Fleury Group1, the Albert Einstein Hospital2 and the S·�rio-Liban�es Hospital3, and a database for115

patients from each institution was built. The data from COVID-19 patients was collected from February116

26th, 2020 to June 30th, 2020, and the control data (individuals without COVID-19) was collected from117

November 1st, 2019 to June 30th, 2020.118

Patient data is provided in an anonymized form. Three distinct types of patients information are119

provided in this repository: (i) patients demographic data (including sex, year of birth, and residence zip120

code); (ii) clinical and/or laboratory exams results (including different combinations of the following121

data: hemogram and blood cell count results, blood tests for a biochemical pro�le, pulmonary function122

tests, and blood gas analysis, diverse urinalysis parameters, detection of a panel of different infectious123

diseases, pulmonary imaging results (x-ray or CT scans), among others. COVID-19 detection by RT-PCR124

tests is described for all patients, and serology diagnosis (in the form of speci�c IgG and IgM antibody125

detection) is provided for some samples; and (iii) when available, information on each patient clinical126

progression and transfers, hospitalization history, as well as the disease outcome (primary endpoints, as127

1https://www.�eury.com.br
2https://www.einstein.br
3https://www.hospitalsiriolibanes.org.br
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death or recuperation). Available information is not complete for all patients, with a distinct combination128

of results provided individually.129

Overall baseline characteristics can be found on the complete database, available at the FAPESP130

COVID-19 Data Sharing/BR4. The most common clinical test results available for all patients is the131

hemogram data. As such, it was selected for the testing of the current sample set. Twenty distinct132

hemogram test parameters were obtained from the database, including hematocrit (%), hemoglobin (g=dl),133

platelets (�103 ml), mean platelet volume ( f l), red blood cells (�106 ml), lymphocytes (�103 ml),134

leukocytes (�103 ml), basophils (�103 ml), eosinophils (�103 ml), monocytes (�103 ml), neutrophils135

(�103 ml), mean corpuscular volume (MCV) ( f l), mean corpuscular hemoglobin (MCH) (pg), mean136

corpuscular hemoglobin concentration (MCHC) (g=dl), red blood cell distribution width (RDW) (%), %137

Basophils, % Eosinophils, % Lymphocytes % Monocytes, and % Neutrophils (Fig. 2 and Fig. 3).138

Patients with incomplete (missing data) or no data available for the above parameters were not included139

in the present analysis. For patients with more than a single test result available, a unique hemogram test140

was used, with the selection based on the blood test date. In this sense, same-day results to the PCR-test141

collection date was adopted as a reference, or the day closest to the test.142

More information regarding the three distinct datasets’ distributions can be found in Figs. 2 and 3.143

The most relevant information assessed in the present study is database size, the number of available144

clinical test results, gender distribution (male or female), and COVID-19 RT-PCR test result (classi�ed as145

positive or negative) ratio. The parameters for each data subset are described for the original dataset and146

for the subset of selected samples used in this study (after removal of patients containing missing values),147

as seen in Table 1.148

The column �class ratio� in Table 1 shows the level of class imbalance for each dataset. It was149

computed by dividing the number of positive samples by the number of negative samples. The number of150

negative samples from the Albert Einstein Hospital and the Fleury Group exceeds the positive samples.151

This is expected from disease data since the number of infections will be small compared to the entire152

population. However, in the S·�rio-Liban�es Hospital data, there is over forty times the amount of positive153

samples compared to negative samples. This represents another source of bias in the data acquisition: the154

dataset consists of patients tested because they had already shown COVID-19-like symptoms, skewing the155

data to positive samples. This is crucial because the decision to test a patient for COVID-19 in institutions156

that struggle with funds is a common judgment call.157

Table 1. Data Summary of the initial full dataset and selected subsets of samples. Albert Einstein
Hospital (HAE); Fleury Group (FLE) and S·�rio-Liban�es Hospital (HSL). Class ratio is represented as the
ratio of the total of selected positive/negative samples.

Dataset Samples PCR Positive PCR Negative Class ratioOriginal Selected Male Female Total Male Female Total
HAE 44879 4567 758 642 1400 1461 1706 3167 0.442
FLE 129597 803 111 145 256 225 322 547 0.468
HSL 2732 515 301 202 503 9 3 12 41.916
Total samples 177208 5885 1170 989 2159 1695 2031 3726 0.579

1.1.1 Data Characterization158

For data characterization, we use two metrics: the Bhattacharyya Distance (BD); and the Kolmogorov-159

Smirnov statistics (KS). We will now present both metrics, followed by a discussion of its results in the160

studied datasets. The goal is to determine the separability between the negative and positive classes among161

the three datasets. BD calculates the separability between two Gaussian distributions (5). However, it162

depends on the covariance inverse matrix for multivariate cases, which can be nonviable for datasets with163

high dimensionality, such as the ones employed in this paper. Therefore, we will use its univariate form as164

in Equation 1 (33).165
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4
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4https://repositoriodatasharingfapesp.uspdigital.usp.br/
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Figure 2. Distributions of white blood cells related variables for positive (purple) and negative (green)
classes of the three datasets: Albert Einstein Hospital (HAE), Fleury Group (FLE), and S·�rio-Liban�es
Hospital (HSL). The central white dot is the median.

where s2 and u are the variance and mean of the statistical distributions of the j � th variable for groups b166

and s, respectively. The �rst part of Eq. 1 distinguishes classes by the differences between variances, while167

the second part distinguishes classes by the differences between its weighted means. For classi�cation168

purposes, we would expect low variance within classes and a high difference between means. Therefore,169

we will complement the BD value by analyzing the probability density functions to verify which part of170

Eq. 1 in�uences the highest BD values.171

The other employed characterization metric is the D statistic from the two samples Kolmogorov-
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Figure 3. Distributions of red blood cells related variables for positive (purple) and negative (green)
classes of the three datasets: Albert Einstein Hospital (HAE), Fleury Group (FLE), and S·�rio-Liban�es
Hospital (HSL). The central white dot is the median.

Smirnov test (KS test). The KS test is a non-parametric approach that quanti�es the maximum difference
between samples’ univariate empirical cumulative distribution values (i.e., the maximum separability
between two distributions) (69) (Eq. 2).

Dw = max
x

(jF1(x)� F2(x)j) (2)

where D is the D statistic, such that w denotes which hemogram result is being analyzed, F1 and F2 are the172

cumulative empirical distributions of classes 1 and 2, and x are the obtained hemogram result. Dw values173

belongs to the [0;1] interval, where values closer to one suggest higher separability between classes (103).174

Table 2 shows the D statistics and BD for all variables for the three datasets. Firstly, we will discuss the175

BD and D statistic results for each dataset, followed by comparing such results among all datasets.176

Regarding the dataset separability in the HSL dataset, the D statistic yields Basophils, Basophils#,177

Monocytes, and Eosinophils as the variables with higher distance between the Cumulative Probability178

Function from positive and negative diagnosed patients. Complementing this analysis by the BD and179

the Probability Density Function (PDF) represented in Fig. 2, the distribution of Basophils, Basophils#,180

and Eosinophils from the negative patients has a higher mean. Besides the higher D statistics, the BD is181

lower than other variables, indicating that the distributions are similar; however, one group (in this case,182

the negative group) has systematically higher values. On the other hand, the other variable with high183

D statistic (Monocytes) has a �attened distribution for the negative patients, increasing its variance and184

consequentially its BD once the positive cases variance is small. The small sample size may jeopardize185

such distribution for negative patients. Complementarily, it is notable that this variable does not have a186

linear separation between classes.187

As for the HAE dataset, the variables Basophils, Lymphocytes, Eosinophils and Leukocytes yields188

the higher D statistic. All of them have the same characteristic: similar distribution but with negative189

distribution with higher values. It is noteworthy that the higher BD (Basophils and Eosinophils) can be190
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Table 2. Separability between the negative and positive classes among the three datasets: Albert Einstein
Hospital (HAE), Fleury Group (FLE), and S·�rio-Liban�es Hospital (HSL). The measurements use the D
statistic from the two samples Kolmogorov-Smirnov test and the Bhattacharyya Distance (BD). Results
discussed in the main text are in bold.

Dataset HAE Fleury HSL
Metric D BD D BD D BD
Basophils 0.44347422 0.1093475440.39832324 0.1239094680.5530152 0.128723071
Basophils# 0.26185597 0.044430226 0.26696041 0.072622562 0.5134195 0.060896636
Eosinophils 0.36455659 0.1221014670.37579268 0.0251153060.4035785 0.064312109
Eosinophils# 0.27756710 0.079652624 0.29135483 0.021484520 0.2544732 0.053442595
Hematocrit 0.04615025 0.001316698 0.06618487 0.000919540 0.2186879 0.102645043
Hemoglobin 0.04477401 0.001378191 0.04644653 0.000805809 0.2246521 0.075094381
Leukocytes 0.33311854 0.047967439 0.26427531 0.052397912 0.3838635 0.039014095
Lymphocytes 0.36963620 0.062785398 0.25569870 0.061582964 0.3767396 0.403552831
Lymphocytes# 0.12035703 0.005370303 0.07941756 0.004850382 0.2118953 0.028591171
MCH 0.04013623 0.001484414 0.12921332 0.003343355 0.1332008 0.046784507
MCHC 0.06169042 0.002329520 0.08791562 0.000733363 0.241385 0.026525034
MCV 0.02552077 0.001154490 0.11282421 0.003395792 0.1262425 0.005559854
MPV 0.08549484 0.004425247 0.10364774 0.001952862 0.3941352 0.061132905
Monocytes 0.13738870 0.009761443 0.08424503 0.000729551 0.5071239 0.298304067
Monocytes# 0.21209752 0.039584296 0.25387054 0.065947897 0.2866137 0.047593113
Neutrophils 0.20823515 0.017075831 0.20752399 0.028776921 0.2147117 0.017162327
Neutrophils# 0.10296563 0.004152348 0.11590208 0.006048081 0.2412194 0.035741201
Platelets 0.19882651 0.017029215 0.25435615 0.025766064 0.1380053 0.006938773
RDW 0.05403243 0.000959759 0.05025994 0.001709993 0.2370775 0.053964873
RedbloodCells 0.03797104 0.001037148 0.07508998 0.003083063 0.1618622 0.040136647

attributed to outliers. From Fig. 2 and 3 it can be noticed that such distributions present different means191

(as corroborated by the D statistic) combined with spurious values with high distance from the modal192

distribution point, resulting in a larger variance.193

The variables yielding the higher D statistic on the FLEURY dataset are Basophils and Eosinophils.194

Regarding the Basophils distributions, the curve from negative cases is �atterer than the positive case195

curve. Even so, it is notable that the negative distribution has higher values, and both variances are small,196

resulting in a high BD. For the comparison of the Eosinophils in positive and negative cases, the existence197

of spurious values increases the variance for both distributions. However, the D statistic indicates that this198

variable provides good separability between classes.199

Moreover, besides having variables with more potential separability (D statistics), the imbalance200

between classes is much more signi�cant on the HSL dataset, which may bias such analysis. Both HAE201

and Fleury datasets have similar characteristics regarding classes’ sample size proportions. However, the202

HAE has more variables with high D statistics, and its values are higher as well.203

On a �nal note, CBC data is highly prone to �uctuations. Some variables, such as age and sex, are204

among the most discussed sources of immunological difference, but others are sometimes unaccounted.205

For example, a systematic review in 2015 by Paynter et al. (84) demonstrated that the immune system206

is signi�cantly modulated by distinct seasonal changes in different countries, which, by its turn, impact207

respiratory and infectious diseases. Similarly, circadian rhythm can also impact the circulation levels of208

different leukocytes (87). Distinct countries have speci�c seasonal �uctuations and, sometimes, extreme209

circadian regulations - thus, immune responses’ inherent sensibility should always be considered a210

potential bias. This also impacts the comparison between different computational approaches that use211

datasets from other researchers for testing or training. While this work focuses on the application of212

ML and sampling algorithms to this data, a more in-depth biological analysis regarding the interaction213

between sex, age, and systemic in�ammation from these Brazilian datasets can be found in the work of214

Ten-Caten et al. (95).215
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1.2 Evaluation Metrics216

The metrics to evaluate how well a classi�er performs in discriminating between the target condition217

(positive for COVID-19) and health can be derived from a �confusion matrix� (Table 3) that contrasts the218

�true� labels obtained from the �gold standard� to the predicted labels. From it, we have four possible219

outcomes: either the classi�er correctly assigns a sample as positive (with the target condition) or as220

negative (without the target condition), and in this case, we have true positives, and true negatives or the221

prediction is wrong, leading to false positives or false negatives.222

Table 3. Confusion matrix of binary classi�cation. True positives = TP; True negatives = TN; False
positives = FP; False negatives = FN.

�Gold standard�
Subjects with the disease Subjects without the disease

Classi�er Predicted as positive TP FP (Type I Error)
Predicted as negative FN (Type II Error) TN

Some metrics can assess the discriminative property of the test, while others can determine its223

predictive ability (93), and not all are well suited for diagnostic tasks because of imbalanced data (97).224

For instance, accuracy, sometimes also referred to as diagnostic effectiveness, is one of the most used225

classi�cation performance (97). Still, it is greatly affected by the disease prevalence, and increases as the226

disease prevalence decrease (93). Overall, prediction metrics alone won’t re�ect the biological meaning of227

the results. Consequentially, especially in diagnostic tasks, ML approaches should always be accompanied228

by expert decisions on the �nal results.229

This review focuses on six distinct metrics commonly used in classi�cation and diagnostic tasks that230

are well suited for imbalanced data (93; 97). This also allows for a more straightforward comparison of231

results in the literature. Each of these metrics evaluates a different aspect of the predictions and is listed in232

Table 4 together with a formula on how they can be computed from the results of the confusion matrix.233

Sensitivity (also known as �recall�) is the proportion of correctly positive classi�ed samples among234

all positive samples. It can be understood as the probability of getting a positive prediction in subjects235

with the disease or a model’s ability to recognize samples from patients (or subjects) with the disease.236

Analogously, speci�city is the proportion of correctly classi�ed negative samples among all negative237

samples, describing how well the model identi�es subjects without the disease. Sensitivity and speci�city238

are not dependants on the disease prevalence in examined groups (93).239

The likelihood ratio (LR) is a combination of sensitivity and speci�city used in diagnostic tests. The240

ratio of the expected test results in samples from patients (or subjects) with the disease to the samples241

without the disease. LR+ measures how much more likely it is to get a positive test result in samples with242

the disease than samples without the disease, and thus, it is a good indicator for ruling-in diagnosis. Good243

diagnostic tests usually have an LR+ larger than 10 (93). Similarly, LR- measures how much less likely it244

is to get a negative test result in samples with the disease when compared to samples without the disease,245

being used as an indicator for ruling-out the diagnosis. A good diagnostic test should have an LR- smaller246

than 0:1 (93).247

Another global metric for the comparison of diagnostic tests is the diagnostic odds ratio (DOR). It248

represents the ratio between LR+ and LR- (97), or the ratio of the probability of a positive test result if the249

sample has the disease to the likelihood of a positive result if the sample does not have the disease. DOR250

Table 4. Metrics used to compare the algorithms. True positives = TP; True negatives = TN; False
positives = FP; False negatives = FN.

Metric Formula Range Target value
Sensitivity TP/(TP+FN) [0;1] � 1
Speci�city TN/(FP+TN) [0;1] � 1
LR+ sensitivity / (1-speci�city) [0;+¥ ) > 10
LR- (1-sensitivity) / speci�city [0;+¥ ) < 0:1
DOR (TP/FN)/(FP/TN) [0;+¥ ) > 1
F1-score TP / (TP + 1/2 (FP + FN)) [0;1] � 1
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can range from zero to in�nity, and a test is only useful with values larger than 1:0 (50). The last metric251

used in this work is the F1-score, also known as F-measure. It ranges from zero to one and is a metric of252

general classi�cation performance (97).253

1.3 Machine Learning Approaches254

Among several ML applications in real-world situations, classi�cation tasks stand up as one of the most255

relevant applications, ranging from classi�cation of types of plants and animals to the identi�cation256

of different diseases prognoses, such as cancer (42; 44; 43; 52), H1N1 Flu (27), Dengue (109), and257

COVID-19 (Table 5). The use of these algorithms in the context of hemogram data from COVID-19258

patients is summarized in Table 5.259

Table 5. Studies that use ML algorithms on COVID-19 hemogram data (in alphabetical order by the
surname of the �rst author).

Source Data Algorithms
AlJame et al. (2) CBC, Albert Einstein Hospital, Brazil XGBoost
Alves et al. (3) CBC, Albert Einstein Hospital, Brazil Random Forest, Decision Tree, Criteria Graphs
Assaf et al. (7) Clinical and CBC pro�le, Sheba Medical Center, Israel MLP, Random Forest, Decision Tree
Avila et al. (8) CBC, Albert Einstein Hospital, Brazil Na¤�ve-Bayes
Banerjee et al. (9) CBC, Albert Einstein Hospital, Brazil MLP, Random Forest, Logistic Regression
Bao et al. (10) CBC, Wuhan Union Hosp; Kunshan People’s Hosp, China Random Forest, SVM
Bhandari et al. (15) Clinical and CBC pro�le of (non) survivors, India Logistic Regression
Brinati et al. (21) CBC, San Raffaele Hospital, Italy Random Forest, Na¤�ve-Bayes, Logistic Regression, SVM, kNN
Cabitza et al. (23) CBC, San Raffaele Hospital, Italy Random Forest, Na¤�ve-Bayes, Logistic Regression, SVM, kNN
Dela�ori et al. (36) Mass spectrometry, COVID-19, plasma samples, Brazil Tree Boosting, Random Forest
de Freitas Barbosa et al. (35) CBC, Albert Einstein Hospital, Brazil MLP, SVM, Random Forest, Na¤�ve-Bayes
Joshi et al. (67) CBC of patients from USA and South Korea Logistic Regression
Silveira (92) CBC, Albert Einstein Hospital, Brazil XGBoost
Shaban et al. (90) CBC, San Raffaele Hospital, Italy Fuzzy inference engine, Deep Neural Network
Soares et al. (94) CBC, Albert Einstein Hospital, Brazil SVM, SMOTEBoost, kNN
Yan et al. (105) Laboratory test results and mortality outcome, Wuhan XGBoost
Zhou et al. (110) CBC, Tongji Hospital, China Logistic Regression

The number of features and characteristics of different datasets might be a barrier for distinctive260

classi�cation learning techniques. Furthermore, it is of extreme importance a better understanding and261

characterization of the strengths and drawbacks of each classi�cation technique used (72). The following262

classi�ers’ choice was based on their use as listed in Table 5, as they are the most likely to be used in263

experiments with COVID-19 data.264

1.3.1 Na¤�ve Bayes265

One of the �rst ML classi�cation techniques is based on the Bayes theorem (Eq. 3). The Na¤�ve Bayes266

classi�cation technique is a probabilistic classi�er that calculates a set of probabilities by counting the267

frequency and combinations of values in the dataset. The Na¤�ve Bayes classi�er has the assumption that268

all attributes are conditionally independent, given the target value (64).269

P(AjB) =
P(A)P(BjA)

P(B)
(3)

where P(A) is the probability of the occurrence of event A, P(B) is the probability of occurrence of event270

B, and P(AjB) is the probability of occurrence of event A when B also occurs. Likewise, P(BjA) is the271

probability of event B when A also occurs.272

In imbalanced datasets, the Na¤�ve Bayes classi�cation algorithm biases the major class results in273

the dataset, as it happens with most of the classi�cation algorithms. To handle the imbalanced data274

set in biomedical applications, the work of (80) evaluated different sampling techniques with the NB275

classi�cation. The used sampling techniques did not show a signi�cant difference in comparison with the276

imbalanced data set.277

1.3.2 Support Vector Machines278

Support Vector Machine (SVM) (34) is a classical supervised learning method for classi�cation that279

works by �nding the hyperplane (being just a line in 2D or a plane in 3D) capable of splitting data points280

into different classes. The �learning� consists of �nding a separating hyperplane that maximizes the281

distance between itself and the closest data points from each class, called the support vectors. In the cases282

9/24PeerJ Comput. Sci. reviewing PDF | (CS-2021:03:59682:1:1:NEW 5 Jun 2021)

Manuscript to be reviewedComputer Science



where the data is not linearly separable, kernels are used to transform the data by mapping it to higher283

dimensions where a separating hyperplane can be found (58). SVM usually performs well on new datasets284

without the need for modi�cations. It is also not computationally expensive, has low generalization errors,285

and is interpretative in the case of the data’s low dimensionality. However, it is sensitive to kernel choice286

and parameter tuning and can only perform binary classi�cation without algorithmic extensions (58).287

Although SVM achieves impressive results in balanced datasets, when an imbalanced dataset is used,288

the rating performance degrades as with other methods. In Batuwita and Palade (12), it was identi�ed289

that when SVM is used with imbalanced datasets, the hyperplane is tilted to the majority class. This bias290

can cause the formation of more false-negative predictions, a signi�cant problem for medical data. To291

minimize this problem and reduce the total number of misclassi�cations in SVM learning, the separating292

hyperplane can be shifted (or tilted) to the minority class (12). However, in our previous study, we293

noticed that for curated microarray gene expression analyzes, even in imbalanced datasets, SVM generally294

outperformed the other classi�ers (42). Similar results were highlighted in other reviews (4).295

1.3.3 K-Nearest Neighbors296

The nearest neighbor algorithm is based on the principle that instances from a dataset are close to each297

other regarding similar properties (72). In this way, when unclassi�ed data appears, it will receive298

the label accordingly to its nearest neighbors. The extension of the algorithm, known as k-Nearest299

Neighbors (kNN), considers a parameter k, de�ning the number of neighbors to be considered. The300

class’s determination is straightforward, where the unclassi�ed data receives the most frequent label of its301

neighbors. To determine the k nearest neighbors, the algorithm considers a distance metric. In our case,302

the Euclidean Distance (Eq. 4) is used:303

D(x;y) =

s
n

å
i=1

jxi � yij2 (4)

where x and y are two instances with n comparable characteristics. Although the kNN algorithm is a304

versatile technique for classi�cation tasks, it has some drawbacks, such as determining a secure way305

of choosing the k parameter, being sensitive to the similarity (distance) function used (72), and a large306

amount of storage for large datasets (58). As the kNN considers the most frequent class of its nearest307

neighbors, it is intuitive to conclude that for imbalanced datasets, the method will bias the results towards308

the majority class in the training dataset (68).309

For biological datasets, kNN is particularly useful for data from non-characterized organisms, where310

there is little-to-non previous information to identify molecules and their respective bioprocesses correctly.311

Thus, this �guilty by association� approach becomes necessary. This logic can be extrapolated to all types312

of biological datasets that possess such characteristics.313

1.3.4 Decision Trees314

Decision trees are one of the most used techniques for classi�cation tasks (58), although they can also be315

used for regression. Decision trees classi�es data accordingly to their features, where each node represents316

a feature, and each branch represents the value that the node can assume (72). A binary tree needs to317

be built based on the feature that better divides the data as a root node to classify data. New subsets318

are created in an incremental process until all data can be categorized (58). The �rst limitation of this319

technique is the complexity of constructing a binary tree (considered an NP-Complete problem). Different320

heuristics were already proposed to handle this, such as the CART algorithm (19). Another important fact321

is that decision trees are more susceptible to over�tting (58), requiring the usage of a pruning strategy.322

Since de�ning features for splitting the decision tree is directly related to the training model perfor-323

mance, knowing how to treat the challenges imposed by imbalanced datasets is essential to improve324

the model performance, avoiding bias towards the majority class. The effect of imbalanced datasets in325

decision trees could be observed in (32). The results attested that decision tree learning models could326

reach better performance when a sampling method for imbalanced data is applied.327

1.3.5 Random Forest328

Random Forests are an ensemble learning approach that uses multiple non-pruned decision trees for329

classi�cation and regression tasks. To generate a random forest classi�er, each decision tree is created330

from a subset of the data’s features. After many trees are generated, each tree votes for the class of331
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the new instance (18). As random forest creates each tree based on a bootstrap sample of the data, the332

minority class might not be represented in these samples, resulting in trees with poor performance and333

biased towards the majority class (29). Methods to handle the high-imbalanced data were compared by334

(29), including incorporating class level weights, making the learning models cost-sensitive, and reducing335

the amount of the majority class data for a more balanced data set. In all cases, the overall performance336

increased.337

1.3.6 XGBoost338

The XGBoost framework was created by Chen and Guestrin (30), and is used on decision tree ensemble339

methods, following the concept of learning from previous errors. More speci�cally, the XGBoost uses the340

gradient of the loss function in the existing model for pseudo-residual calculation between the predicted341

and real label. Moreover, it extends the gradient boosting algorithm into a parallel approach, achieving342

faster training models than other learning techniques to maintain accuracy.343

The gradient boosting performance in imbalanced data sets can be found in (22), where it outperforms344

other classi�ers such as SVM, decision trees, and kNN in credit scoring analysis. The eXtreme Gradient345

Boost was also applied to credit risk assignment with imbalanced datasets in (26), achieving better results346

than its competitors.347

1.3.7 Logistic Regression348

Logistic regression is a supervised classi�cation algorithm that builds a regression model to predict the349

class of a given data based on a sigmoid function (Eq. 5). As occurs in linear models, in logistic regression,350

learning models compute a weighted sum of the input features with a bias (47). Once the logistic model351

estimated the probability of p of a given data label, the label with p � 50% will be assigned to the binary352

classi�cation data.353

g(z) =
1

1+ e�z (5)

1.3.8 Multilayer Perceptron354

A multilayer perceptron is a fully connected neural network with at least three layers of neurons: one355

input layer, one hidden layer, and an output layer. The basic unit of a neural network is a neuron that is356

represented as nodes in the neural network, and have an activation function, generally, a sigmoid function357

(Eq. 5), which is activated accordingly to the sum of the arriving weighted signals from previous layers.358

For classi�cation tasks, each output neuron represents a class, and the value reported by the i-th output359

neuron is the amount of evidence in supported i-th class (73), i.e., if an MLP has two output neurons -360

meaning that there are two classes - the output evidence could be (0:2;0:8), resulting to the classi�cation361

of the class supported by the highest value, in this case, 0:8. Based on the learning model prediction’s362

mean square error, each connection assigned weights are adjusted based on the backpropagation learning363

algorithm (73). Although the MLPs have shown impressive results in many real-world applications, some364

drawbacks must be highlighted. The �rst one is the determination of the number of hidden layers. An365

underestimation of the neurons number can cause a poor classi�cation capability, while the excess of366

them can lead to an over�tting scenario, compromising the model generalization. Another concern is367

related to the computational cost of the backpropagation, where the process of minimizing the MSE takes368

long runs of simulations and training. Furthermore, one of the major characteristics is that MLPs are369

black-box methods, making it hard to understand the reason for their output (72).370

Regarding the capabilities of MLPs in biased data, an empirical study is provided by (71), showing that371

MLP can achieve satisfactory results in noisy and imbalanced datasets even without sampling techniques372

for balancing the datasets. The analysis provided by the authors showed that the difference between the373

MLP with and without sampling was minimal.374

1.4 Techniques to Handle Imbalanced Data375

As introduced before, the COVID-19 CBC data is highly imbalanced. In a binary classi�cation problem,376

class imbalance occurs when one class, the minority group, contains signi�cantly fewer samples than the377

other class, the majority group. In such a situation, most classi�ers are biased towards the larger classes378

and have meager classi�cation rates in the smaller classes. It is also possible that the classi�er considers379

everything as the largest class and ignores the smaller class. This problem is faced not only in the binary380

class data but also in the multi-class data (98).381
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A signi�cant number of techniques have been proposed in the last decade to handle the imbalanced382

data problem. In general, we can classify these different approaches as sampling methods (pre-processing)383

and cost-sensitive learning (56). In cost-sensitive learning models, the minority class misclassi�cation384

has a higher relevance (cost) than the majority class instance misclassi�cation. Although this can be a385

practical approach for imbalanced datasets, it can be challenging to set values for the needed matrix cost386

(56).387

The use of sampling techniques is more accessible than cost-sensitive learning, requiring no speci�c388

information about the classi�cation problem. For these approaches, a new dataset is created to balance the389

classes, giving the classi�ers a better opportunity to distinguish the decision boundary between them (59).390

In this work, the following sampling techniques are used, chosen due to their prominence in the literature:391

Random Over-Sampling (ROS), Random Under-Sampling (RUS), Synthetic Minority Over-sampling392

TEchnique (SMOTE), Synthetic Minority Over-sampling Technique with Tomek Link (SMOTETomek),393

and Adaptive Synthetic Sampling (A-DASYN). All of them are brie�y described in this section. A t-SNE394

visualization of each sampling technique’s effect for the three datasets used can be seen in Fig. 4.395

Figure 4. Visualization of the negative (purple) and positive (green) samples from the Albert Einstein
Hospital (AE), Fleury Laboratory (FLEURY) and Hospital Sirio Liban�es (HSL) using t-SNE for all the
different sampling schemes.

1.4.1 Random Sampling396

In classi�cation tasks that use imbalanced datasets, sampling techniques became standard approaches for397

reducing the difference between the majority and minority classes. Among different methods, the most398

simpler ones are the RUS and ROS. In both cases, the training dataset is adjusted to create a new dataset399

with a more equanimous class distribution (59).400

For the under-sampling approach, most class instances are discarded until a more balanced data401

distribution is reached. This data dumping process is done randomly. Considering a dataset with 100402

minority class instances and 1000 majority class instances, a total of 900 majority class instances would403

be randomly removed in the RUS technique. At the end of the process, the dataset will be balanced with404

200 instances. The majority class will be represented with 100 instances, while the minority will also405

have 100.406

In contrast, the random over-sampling technique duplicates minority class data to achieve better data407

distribution. Using the same example given before, with 100 instances of the minority class and 1000408

majority class instances, each data instance from the minority class would be replicated ten times until409

both classes have 1000 instances. This approach increases the number of instances in the dataset, leading410

us to 2000 instances in the modi�ed dataset.411

However, some drawbacks must be explained. In RUS, the data dumping process can discard a412
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considerable number of data, making the learning process harder and resulting in poor classi�cation413

performance. On the other hand, for ROS, the instances are duplicated, which might cause the learning414

model over�tting, inducing the model to a lousy generalization capacity and, again, leading to lower415

classi�cation performance (59).416

1.4.2 Synthetic Minority Over-sampling Technique (SMOTE)417

To overcome the problem of generalization resulting from the random over-sampling technique, (28)418

created a method to generate synthetic data in the dataset. This technique is known as SMOTE. To419

balance the minority class in the dataset, SMOTE �rst selects a minority class data instance Ma randomly.420

Then, the k nearest neighbors of Ma, regarding the minority class, are identi�ed. A second data instance421

Mb is then selected from the k nearest neighbors set. In this way, Ma and Mb are connected, forming a422

line segment in the feature space. The new synthetic data is then generated as a convex combination423

between Ma and Mb. This procedure occurs until the dataset is balanced between the minority and majority424

classes. Because of the effectiveness of SMOTE, different extensions of this over-sampling technique425

were created.426

As SMOTE uses the interpolation of two instances to create the synthetic data, if the minority class is427

sparse, the newly generated data can result in a class mixture, which makes the learning task harder (17).428

Because SMOTE became an effective over-sampling technique and still has some drawbacks, different429

variations of the method were proposed by different authors. A full review of these different types can be430

found in (17) and (59).431

1.4.3 Synthetic Minority Over-sampling Technique with Tomek link432

Although the SMOTE technique achieved better results than random sampling methods, data sparseness433

can be a problem, particularly in datasets containing a signi�cant outlier occurrence. In many datasets, it is434

possible to identify that different data classes might invade each class space. When considering a decision435

tree as a classi�er with this mixed dataset, the classi�er might create several specialized branches to436

distinguish the data class (11). This behavior might create an over-�tted model with poor generalization.437

In light of this fact, the SMOTE technique was extended considering Tomek links (99) by (11) for438

balancing data and creating more well-separated class instances. In this approach, every data instance that439

forms a Tomek link is discarded, both from minority and majority classes. A Tomek link can be de�ned440

as follows: given two samples with different classes SA and SB, and a distance d(SA;SB), this pair (SA;SB)441

is a Tomek link if there is not a case SC that d(SA;SC) < d(SA;SB) and d(SB;SC) < d(SB;SA). In this way,442

noisy data is removed from the dataset, improving the capability of class identi�cation.443

In the SMOTE technique, the new synthetic samples are equally created for each minority class data444

point. However, this might not be an optimized way to produce synthetic data since it can concentrate445

most of the data points in a small portion of the feature space.446

1.4.4 Adaptive Synthetic Sampling447

Using the adaptive synthetic sampling algorithm, ADASYN (60), a density estimation metric is used as448

a criterion to decide the number of synthetic samples for each minority class example. With this, it is449

possible to balance the minority and majority classes and create synthetic data where the samples are450

dif�cult to learn. The synthetic data generation occurs as follows: the �rst step is to calculate the number451

of new samples needed to create a balanced dataset. After that, the density estimation is obtained by the452

k-nearest neighbors for each minority class sample (Eq. 6) and normalization (Eq. 7). Then the number of453

needed samples for each data point is calculated (Eq. 8), and new synthetic data is created.454

ri =
Di

K
; i = 1; :::;ms (6)

�ri =
ri

ms

å
i=1

ri

(7)

gi = �ri � G (8)
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where ms is the set of instances representing the minority classes, Di the number of examples in the K455

nearest neighbors belonging to the majority class, gi de�nes the number of synthetic samples for each456

data point, and G is the number of synthetic data samples that need to be generated to achieve the balance457

between the classes.458

2 EXPERIMENTS AND RESULTS459

To evaluate the impact of the data imbalance on the Brazilian CBC datasets, we have applied the sampling460

techniques described in Section 1.4. They are discussed in three different aspects. The �rst one is the461

comparison between classi�cation methods without resampling. In this way, we can compare how each462

classi�er deals with the imbalance. The second aspect is related to the sampling methods of ef�ciency463

compared to the original datasets.464

Table 6. Hyperparameter ranges used in our analyses.

Classi�er Parameters
Naive Bayes - -
Support Vector Machines kernel: rbf; linear

gama: 0.0001 - 0.001
c: 1 - 1000

Random Forest n-estimators: 50; 100; 200
criterion: gini; entropy
max depth: 3 - 10
min samples split: 0.1 - 0.9

XgBoost n-estimators: 50; 100; 200
max depth: 3 - 10
learning rate: 0.0001 - 0.01

Decision Tree criterion: gini; entropy
max depth: 3 - 10
min samples split: 0.1 - 1.0

K-Nearest Neighbors n neighbors: 3; 5; 7; 10; 15; 50
weights: uniform; distance

Logistic Regression - -
Multi Layer Perceptron activation: logistic; tanh; relu

solver: sgd; adam
alpha: 0.0001; 0.001; 0.01
learning rate init: 0.0001; 0.001; 0.01
early stopping: True; False
batch size: 16; 64; 128
hidden layer sizes: (10, 10, 2); (5, 10, 5); (10); (10, 20, 5); (10, 10); (100); (30, 10)

Each classi�cation model was trained with the same training set (70% of samples) and was tested to465

the same test set (30% of samples). The features were normalized using the z-score. Evaluation metrics466

were generated by 31 runs considering random data distribution in each partition. The proposed approach467

was implemented in Python 3 using Scikit-Learn (85) as a backend. The COVID-19 classes were de�ned468

using RT-PCR results from the datasets. Sampling techniques were applied only on the training set.469

Hyperparameters were optimized using the Randomized Parameter Optimization approach available in470

scikit-learn and the values in Table 6. The aim of optimizing the hyperparameters is to �nd a model471

that returns the best and most accurate performance obtained on a validation set. Fig. 1 schematizes the472

methodological steps used in this work.473

Different results were obtained for each classi�cation method with an imbalanced dataset, as can474

be seen in Figs. 5, 6, and 75. In terms of F1 Score all classi�cation models achieved values ranging475

around 0:5 to 0:65 for the Albert Einstein and Fleury datasets. Although the F1 Score is widely used476

to evaluate classi�cation tasks, it must be carefully analyzed in our case since the misclassi�cation has477

more impact, especially in false-negative cases, making it necessary to observe other indexes. When the478

5The statistical comparison between the algorithms (Dunn’s Multiple Comparison Test with Bonferroni correction) is available
in the GitHub repository: https://github.com/sbcblab/sampling-covid
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sensitivity index is considered, it draws attention to the disparity between the NB classi�cation model and479

the others.480

The NB model achieved a sensitivity of around 0:77 for the Albert Einstein dataset (Fig. 5a) and around481

0:72 for the Fleury dataset (Fig. 6a). Hence, it is possible to consider the NB as the classi�cation model482

to better detect the true positive cases (minority class) in these data sets. However, when considering the483

speci�city (Figs. 5b and 6b), it is notable that NB achieved the worst performance overall. A possible484

explanation for this disparity is that NB classi�es most of the data as positive for possible SARS-CoV-2485

infection. This hypothesis is then con�rmed when we analyze the other two indexes (DOR and LR+),486

showing NB bias to the minority class. When considering other classi�cation models regarding sensitivity487

and speci�city, the LR, RF, and SVM achieved better results, ranging from 0:55 to 0:59 for sensitivity488

and 0:89 to 0:93 for speci�city. This better balance between sensitivity and sensibility is mirrored in the489

F1 Score , where RF, SVM, and LR achieved better performance than other methods (and comparable490

to NB) while achieving better DOR and LR+.491

Figure 5. Average test results from 31 independent runs for several classi�ers and sampling schemes
trained on the Albert Einstein Hospital data. Black lines represent the standard deviation, while the white
circle represents the median.

When considering three key indexes (F1 Score, Sensitivity, and Speci�city), we can observe that492

15/24PeerJ Comput. Sci. reviewing PDF | (CS-2021:03:59682:1:1:NEW 5 Jun 2021)

Manuscript to be reviewedComputer Science



Figure 6. Average test from 31 independent runs for several classi�ers and sampling schemes trained on
the Fleury Group data. Black lines represent the standard deviation, while the white circle represents the
median.

the sampling techniques improved the learning models regarding the classi�cation of positive cases of493

SARS-CoV-2 from the Albert Einstein dataset in comparison with the original data, except for NB. Thus,494

reducing the bias to the majority class observed in the original data set, especially when considering495

the speci�city (the proportion of correctly classi�ed negative samples among all negative samples). For496

Albert Einstein and Fleury datasets, sampling techniques improve the sensitivity and lower all classi�ers’497

speci�city. For the HSL dataset, we see the opposite; resampling decreases the sensitivity and improves498

the speci�city. This happens because while for Albert Einstein and Fleury, the majority class is negative,499

the majority class is positive for HSL.500

Furthermore, with sampling techniques, the DOR was improved in the Albert Einstein dataset. With501

Fleury data, the learning models with sampling did not achieve tangible DOR results. A possible502

explanation of this outcome can be related to the data sparseness, an ordinary circumstance observed503

in medical or clinical data. This is further corroborated by the data visualization using t-SNE in Fig.4.504

Moreover, the number of samples used with the Fleury dataset could be determinant for the poor505

performance. Nevertheless, overall, no sampling technique appears to be a clear winner, especially506

considering the standard deviation. The performance of each sampling technique is conditioned by the507
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Figure 7. Average test results from 31 independent runs for several classi�ers and sampling schemes
trained on the S·�rio-Liban�es Hospital. Black lines represent the standard deviation, while the white circle
represents the median.

data, metric, and classi�er at hand.508

Regarding the decrease in LR+ when the Albert Einstein or Fleury data is balanced, LR+ represents509

the probability of samples classi�ed as positive being truly positive. The difference of LR+ values in510

the original datasets compared to the resampled data is due to the classi�er trained on the original data511

labeling most samples as negative, even when facing a positive sample. Thus, it is important to note512

that when the data is balanced, the bias towards the negative class diminishes, and the model has more513

instances being classi�ed as (true or false) positives.514

None of the combinations of classi�ers and sampling methods achieved satisfactory results for the515

S·�rio-Liban�es Hospital dataset (Fig. 7). The sensitivity of all options was close to one, and the speci�city516

was close to zero, indicating that almost all samples are being predicted as the majority class (in this517

case, the positive). This was expected due to the large imbalance of this dataset, and even the sampling518

methods, although able to narrow the gap, were not enough to achieve satisfactory results. Due to these519

poor results, the other metrics are non-satisfactory, and their results can be misleading. For instance, if520

one were only to check the F1 Score , the classi�cation results would seem satisfactory. As listed in521

Table 1 and illustrated in Fig. 7, this dataset had the largest imbalance, with over forty times more positive522
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than negative samples. Moreover, the total number of available samples was the smallest among the three523

datasets. The results suggest that using standard ML classi�ers is not useful for such drastic cases even524

when sampling techniques are applied, and researchers should be cautious when dealing with similar525

datasets (low sample quantity and high imbalanced data).526

The results obtained in our simulations showed that ML classi�cation techniques could be applied527

as an assistance tool for COVID-19 diagnosis in datasets with a large enough number of samples and528

moderate levels of imbalance (less than 50%), even though some of them achieved poor performance or529

biased results. It is essential to notice that the NB algorithm reached better classi�cation when targeting530

the positive cases for SARS-CoV-2. However, it skews the classi�cation in favor of the minority class.531

Hence, we believe that SVM, LR, and RF approaches are more suitable to the problem.532

Future research can be conducted with these limitations in mind, building ensemble learning models533

with RF, SVM, and LR, and different approaches to handle the imbalanced data sets, such as the use of534

cost-sensitive methods. It is also important to note that some of these classi�ers, such as MLP, cannot535

be considered easily interpretable. This presents a challenge for their use of medical data, in which536

one should be able to explain their decisions. Both issues could be tackled in the future using feature537

selection (4; 52) or algorithms for explainable arti�cial intelligence (106; 81; 6). The method of relevance538

aggregation, for instance, can be used to extract which features from tabular data were more relevant for539

the decision making of neural networks and was shown to work on biological data (53). Feature selection540

algorithms can also be used to spare computational resources by training smaller models and to improve541

the performance of models by removing useless features.542

3 CONCLUSIONS543

The COVID-19 pandemic has signi�cantly impacted countries that cannot test their population and develop544

strategies to manage the crisis and those with substantial �nancial limitations. Arti�cial intelligence and545

ML play a crucial role in better understanding and addressing the COVID-19 emergency and devising546

low-cost alternatives to aid decision making in the medical �eld. In this sense, ML techniques are being547

applied to analyze different data sources seeking to identify and prioritize patients tested by RT-PCR.548

Some features that appear to be the most representative of the three analyzed datasets are basophils549

and eosinophils, which are among the expected results. The work of Banerjee et al. (9) showed that550

patients displayed a signi�cant decrease in basophils, as well as eosinophils, something also discussed in551

other works (13).552

Having imbalanced data is common, but it is especially prevalent when working with biological553

datasets, and especially with disease data, where we usually have more healthy control samples than554

disease cases, and an inherent issue in acquiring clinical data. This work reviews the leading ML methods555

used to analyze CBC data from Brazilian patients with or without COVID-19 by different sampling and556

classi�cation methods.557

Our results show the feasibility of using these techniques and CBC data as a low-cost and widely558

accessible way to screen patients suspected of being infected by COVID-19. Overall, RF, LR, and SVM559

achieved the best general results, but each classi�er’s ef�cacy will depend on the evaluated data and560

metrics. Regarding sampling techniques, they can alleviate the bias towards the majority class and improve561

the general classi�cation, but no single method was a clear winner. This shows that the data should be562

evaluated on a case-by-case scenario. More importantly, our data point out that researchers should never563

rely on the results of a single metric when analyzing clinical data since they show �uctuations, depending564

on the classi�er and sampling method.565

However, the application of ML classi�ers, with or without sampling methods, is not enough in the566

presence of datasets with few samples available and large class imbalance. For such cases, that more567

often than not are faced in the clinical practice, ML is not yet advised. Even for adequate datasets and568

algorithms, the selection of proper metrics is fundamental. Sometimes, the values can camou�age biases569

in the results and poor performance, like the NB classi�er’s case. Our recommendation is to inspect570

several and distinct metrics together to see the greater picture.571
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