
Smart Brix – A continuous evolution framework for Container
application deployments
Johannes M Schleicher, Michael Vögler, Christian Inzinger, Schahram Dustdar

Container-based application deployments have received significant attention in recent
years. Operating system virtualization based on containers as a mechanism to deploy and
manage complex, large-scale software systems has become a popular mechanism for
application deployment and operation. Packaging application components into self-
contained artifacts has brought substantial flexibility to developers and operation teams
alike. However, this flexibility comes at a price. Pracitioners need to respect numerous
constraints ranging from security and compliance requirements, to specific regulatory
conditions. Fulfilling these requirements is especially challenging in specialized domains
with large numbers of stakeholders. Moreover, the rapidly growing number of container
images to be managed due to the introduction of new or updated applications and
respective components, leads to significant challenges for container management and
adaptation. In this paper, we introduce Smart Brix, a framework for continuous evolution of
container application deployments that tackles these challenges. Smart Brix integrates
and unifies concepts of continuous integration, runtime monitoring, and operational
analytics. Furthermore, it allows practitioners to define generic analytics and
compensation pipelines composed of self-assembling processing components to
autonomously validate and verify containers to be deployed. We illustrate the feasibility of
our approach by evaluating our framework using a case study from the smart city domain.
We show that Smart Brix is horizontally scalable and runtime of the implemented analysis
and compensation pipelines scales linearly with the number of container application
packages.
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ABSTRACT9

Container-based application deployments have received significant attention in recent years. Operating
system virtualization based on containers as a mechanism to deploy and manage complex, large-scale
software systems has become a popular mechanism for application deployment and operation. Packaging
application components into self-contained artifacts has brought substantial flexibility to developers and
operation teams alike. However, this flexibility comes at a price. Practitioners need to respect numerous
constraints ranging from security and compliance requirements, to specific regulatory conditions. Fulfilling
these requirements is especially challenging in specialized domains with large numbers of stakeholders.
Moreover, the rapidly growing number of container images to be managed due to the introduction of
new or updated applications and respective components, leads to significant challenges for container
management and adaptation. In this paper, we introduce Smart Brix, a framework for continuous
evolution of container application deployments that tackles these challenges. Smart Brix integrates and
unifies concepts of continuous integration, runtime monitoring, and operational analytics. Furthermore, it
allows practitioners to define generic analytics and compensation pipelines composed of self-assembling
processing components to autonomously validate and verify containers to be deployed. We illustrate the
feasibility of our approach by evaluating our framework using a case study from the smart city domain. We
show that Smart Brix is horizontally scalable and runtime of the implemented analysis and compensation
pipelines scales linearly with the number of container application packages.
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1 INTRODUCTION28

In recent years, we have seen widespread uptake of operating system virtualization based on contain-29

ers (Soltesz et al., 2007) as a mechanism to deploy and manage complex, large-scale software systems.30

Using containers, developers create self-contained images of application components along with all31

dependencies that are then executed in isolation on top of a container runtime (e.g., Docker1, rkt2, or32

Triton3). By packaging application components into self-contained artifacts, developers can ensure that33

the same artifact is consistently used throughout the complete software release process, from initial testing34

to the final production deployment. This mechanism for application deployment has become especially35

popular with practitioners executing projects following DevOps (Hüttermann, 2012) principles. Based36

on the convergence of development and operations, DevOps advocates a high degree of automation37

throughout the software development lifecycle (e.g., to implement continuous delivery (Humble and38

Farley, 2010)), along with an associated focus on deterministic creation, verification, and deployment39

of application artifacts using Infrastructure as Code (IaC) (Nelson-Smith, 2014) techniques, such as40

Dockerfiles4 for containerized applications.41

1https://www.docker.com/
2https://github.com/coreos/rkt
3https://www.joyent.com/
4https://docs.docker.com/engine/reference/builder/
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These properties allow for straightforward implementation of immutable infrastructure deployments,42

as advocated by IaC approaches. Application container images are usually created using a layered structure43

so that common base functionality can be reused by multiple container images. Application-specific44

artifacts are layered on top of a base file system so that for subsequent updates only the modified layers45

need to be transferred among different deployment environments. Container engine vendors such as46

Docker and CoreOS provide public repositories where practitioners can share and consume container47

images, both base images for common Linux distributions (e.g., Ubuntu, CoreOS, CentOS, or Alpine)48

to subsequently add custom functionality, as well as prepared application images that can be directly49

used in a container deployment. Once uploaded to a repository, a container image is assigned a unique,50

immutable identifier that can subsequently be used to deterministically deploy the exact same application51

artifact throughout multiple deployment stages. By deploying each application component in its own52

container5, practitioners can reliably execute multiple component versions on the same machine without53

introducing conflicts, as each component is executed in an isolated container.54

However, since each container image must contain every runtime dependency of the packaged55

application component, each of these dependency sets must be maintained separately. This leads to56

several challenges for practitioners. Over time, the number of active container images grows due to57

the introduction of new applications, new application components, and updates to existing applications58

and their components. This growing number of container images inherently leads to a fragmentation of59

deployed runtime dependencies, making it difficult for operators to ensure that every deployed container60

continues to adhere to all relevant security, compliance, and regulatory requirements. Whenever, for61

instance, a severe vulnerability is found in a common runtime dependency, practitioners either have62

to manually determine if any active container images are affected, or initiate a costly rebuild of all63

active containers, irrespective of the actual occurrence of the vulnerability. We argue that practitioners64

need a largely automated way to perform arbitrary analyses on all container images in their deployment65

infrastructure. Furthermore, a mechanism is required that allows for the enactment of customizable66

corrective actions on containers that fail to pass the performed analyses. Finally, in order to allow67

practitioners to deal with the possibly large number of container images, the overall approach should be68

able to adapt it’s deployment to scale out horizontally.69

In this paper, we present Smart Brix, a framework for continuous evolution of container applications.70

Smart Brix integrates and unifies concepts of continuous integration, runtime monitoring, and operational71

analytics systems. Practitioners are able to define generic analytics and compensation pipelines composed72

of self-assembling processing components to autonomously validate and verify containers to be deployed.73

The framework supports both, traditional mechanisms such as integration tests, as well as custom, business-74

relevant processes, e.g., to implement security or compliance checks. Smart Brix not only manages the75

initial deployment of application containers, but is also designed to continuously monitor the complete76

application deployment topology to allow for timely reactions to changes (e.g., in regulatory frameworks or77

discovered application vulnerabilities). To enact such reactions to changes in the application environment,78

developers define analytics and compensation pipelines that will autonomously mitigate problems if79

possible, but are designed with an escalation mechanism that will eventually request human intervention80

if automated implementation of a change is not possible. To illustrate the feasibility of our approach81

we evaluate the Smart Brix framework using a case study from the smart city domain. We show that82

the runtime of the implemented analysis and compensation pipelines scales linearly with the number of83

analyzed application packages, and that it adds little overhead compared to container acquisition times.84

The remainder of this paper is structured as follows. In Section 2 we present a motivating scenario85

and relevant design goals for our framework. We present the Smart Brix framework in Section 3, along86

with a detailed discussion of the framework components. In Section 4 we evaluate our approach using a87

case study from the smart city domain. Related work is discussed in Section 6, followed by a conclusion88

and outlook for further research in Section 7.89

2 MOTIVATION90

In this paper, we base our discussion on a scenario containing a multi-domain expert network as created91

within URBEM6, a research initiative of the city of Vienna and TU Wien. To tackle the emerging92

5https://docs.docker.com/engine/articles/dockerfile_best-practices/
6http://urbem.tuwien.ac.at
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Figure 1. Smart City Loop

complexities that arise in the smart city domain, we introduced a novel Smart City Loop (Schleicher et al.,93

2015b), which is depicted in Fig. 1. This loop outlines a reactive system that enables stakeholders to make94

informed decisions based on the models and analyses of interdisciplinary domain experts who in turn can95

access the large amounts of data provided by smart cities. In URBEM, a network consists of experts in96

the domains of energy, mobility, mathematics, building physics, sociology, as well as urban and regional97

planning. URBEM aims to provide decision support for industry stakeholders to plan for the future of the98

city of Vienna and represents a Distributed Analytical Environment (DAE) (Schleicher et al., 2015c).99

The experts in this scenario rely on a multitude of different models and analytical approaches to100

make informed decisions based on the massive amounts of data that are available about the city. In turn,101

these models rely on a plethora of different tools and environments that lead to complex requirements102

in terms of providing the right runtime environment for them to operate. The used tools range from103

modern systems for data analytics and stream processing like Cassandra and Spark, to proprietary tools104

developed by companies and research institutes with a large variance in specific versions and requirements105

to run them. Additionally, these domains have to deal with a broad range of different stakeholders and106

their specific security and compliance requirements. Models sometimes need to tailor their runtime107

environment to specific technology stacks to ensure compliance or to be able to access the data they need.108

Managing and satisfying all these requirements is a non-trivial task and a significant factor hindering109

broader adoption. Therefore, this environment offers an optimal case for the advantages that come with110

the use of container-based approaches. Operations teams that need to integrate these models no longer111

need to be concerned with runtime specifics. Experts simply build containers that can be deployed in the112

heterogenous infrastructures of participating stakeholders.113

However, several challenges remain. In URBEM the team of experts with their plethora of different114

models created over 250 different images that serve as the foundation for running containers. The models115

in these containers are fueled by data from several different stakeholders in the scenario, ranging from116

research institutions in the City of Vienna to industry stakeholders in the energy and mobility domain.117

Each of them mandates a very distinct set of security and compliance requirements that need to be met in118

order to run them. These requirements in turn are subject to frequent changes and the containers need to119

be able to evolve along with them. Additionally, even though the container approach provides isolation120

from the host system it is still vital to ensure that the containers themselves are not compromised. This121

calls for means to check the systems running inside the container for known vulnerabilities, an issue122

that is subject to heavy and fast-paced change, again requiring according evolution. A recent study7
123

shows that in the case of Docker, depending on the version of the images, more than 70% of the images124

show potential vulnerabilities, with over 25% of them being severe. This also begs the question of125

7http://www.banyanops.com/blog/analyzing-docker-hub/
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Figure 2. Smart Brix Framework Overview

who is responsible for checking and fixing these vulnerabilities, the operations team or the experts who126

created them? Despite these security and compliance constraints, the ever-changing smart city domain127

itself makes it necessary for experts to stay on top of the novel toolsets that emerge in order to handle128

requirements stemming from topics like Big Data or IoT. This leads to a rapid creation and adaptation129

of models and their according containers, which in turn need be checked against these constraints again.130

Last but not least, these containers need to comply to certain non-functional requirements that arise from131

the specific situations they are applied in. This calls for the ability to constantly check containers against132

certain runtime metrics that need to be met in order to ensure that these systems are able to deliver their133

excepted results within stakeholder-specific time and resource constraints.134

All these factors lead to a complex environment that calls for an ability to easily adapt and evolve135

containers to their ever-changing requirements. Specifically, we identify the following requirements in the136

context of our domain:137

• The ability to check a large amount of heterogenous containers against an open set of evolving138

requirements. These requirements can be vulnerabilities, compliance constraints, functional tests,139

or any other metric of interest for the domain.140

• The ability to mitigate issues and evolve these containers based on the the results from the previously141

mentioned checks.142

• An approach that is applicable in the context of operations management, while still enabling the143

participation of experts both for checking as well as evolution.144

• An approach that can be applied to existing deployments as well as utilized to test new ones.145

3 THE SMART BRIX FRAMEWORK146

In this section, we introduce the Smart Brix framework for continuos evolution of container-based deploy-147

ments, which addresses the previously introduced requirements. We start with a framework overview,148

followed by a detailed description of all framework elements, and conclude with a comprehensive149

description of our proof of concept implementation including possible deployment variants.150

3.1 Framework Rationales151

The Smart Brix framework follows the microservice (Newman, 2015) architecture paradigm and an152

overview of the main framework components is shown in Fig. 2. The framework is logically organized153

into four main facets, which group areas of responsibility. Each of these facets is composed of multiple154

4/17

PeerJ Comput. Sci. reviewing PDF | (CS-2016:01:8649:1:0:REVIEW 11 May 2016)

Manuscript to be reviewedComputer Science



components where each of these components represents a microservice. The components in the Analyzer155

and Compensation Facet are managed as self-assembling components8, an approach we already success-156

fully applied in previous work (Schleicher et al., 2015a). Each of these components follows the Command157

Pattern (Gamma et al., 1994) and consists of multiple processors that are able to accept multiple inputs158

and produce exactly one output. This functional approach enables a clean separation of concerns and159

allows us to decompose complex problems into manageable units.160

Fig. 3 illustrates an example of auto-assembly within the Analyzer facet. We see a set of processors,161

where each processor is waiting for a specific type of input and clearly specifies the output it produces.162

The processors use a message-oriented approach to exchange input and output data, where each output163

and input is persistently available in the message queue and accessible by any processor. In this example164

we perform an analysis of a custom-built Debian-based container that hosts the Apache HTTPD server.165

There are two potential processors for the input Artifact, each of them able to handle a different container166

format. Since in our example the Artifact is a Docker Container, only the Docker Analyzer reacts and167

produces as output a Docker Image. In the next step there are two active processors, the Docker Base168

Image Analyzer and the Docker Package System Analyzer, both taking Docker Images as input. Since the169

Docker Base Image Analyzer cannot determine a base image for the given Docker Image, it produces170

no output. However, the Docker Package System Analyzer is able to determine that the image uses a171

DPKG-based package system and produces the according output. Now the DPKG Package Analyzer172

reacts by taking two inputs, the original Artifact as well as the DPKG output and inspects the Artifact173

via the DPKG command to produce a Package List. In the last step of this auto-assembly example the174

Vulnerability Analyzer listens for a Package List and produces a List of Vulnerabilities. This enables a175

straightforward auto-assembly approach, where connecting previous outputs to desired inputs leads to an176

automatically assembled complex system consisting of simple manageable processors. A processor itself177

can be anything and is not bound to any specific functionality, so it can be created completely flexibel178

depending on the task at hand. This approach further eliminates the necessity of complex composition179

and organization mechanisms, enabling dynamic and elastic compositions of desired functionality, where180

processors can be added on demand at runtime. This enables the previously mentioned creation of open181

and flexible analytics and compensation pipelines based on this principle.182

Additionally, the components in the analyzer and compensation facets follow the principle of Confi-183

dence Elasticity, which means that a component or processor produces a result that is augmented with a184

confidence value (c ∈R,0≤ c≤ 1), with 0 representing no certainty and 1 representing absolute certainty185

about the produced result. This allows for the specification of acceptable confidence intervals for the186

framework, which augment the auto-assembly mechanism. The confidence intervals are provided as187

optional configuration elements for the framework. In case the provided confidence thresholds are not188

met, the framework follows an escalation model to find the next component or processor that is able to189

provide results with higher confidence until it reaches the point where human interaction is necessary to190

produce a satisfactory result (illustrated in Figure 4). Each processor (pi) from the set of active processors191

(Pa) provides a confidence value ci. We define the overall confidence value of all active processors (ca) as192

ca = ∏pi∈Pa ci. The compensation stops when ca meets the specified confidence interval of the framework193

or a processor represents a human interaction which has a confidence value of (ci = 1).194

3.2 Smart Brix Manager195

In order to initiate a container evolution, the Smart Brix Manager is invoked via the Smart Brix API with196

the following parameters: (i) a set of Containers to be inspected with (ii) the necessary Credentials to197

analyze and evolve them, as well as an optional (iii) set of Artifacts necessary to compensate or analyze198

the containers. In a first step the Smart Brix Manager queries the Repository Manager to see if there are199

already known issues for the supplied containers. If any known issues are found, the Smart Brix Manager200

creates a corresponding compensation topic via the messaging infrastructure by publishing the container201

identifiers as well as the found issues. This represents an input that will subsequently be consumed by the202

corresponding Compensation Handlers and starts the previously described auto-assembly process in the203

Compensation Facet.204

If no issues were found, the Smart Brix Manager hands off the supplied Containers, Credentials and205

Artifacts to the Dependency Manager that is responsible for storing them in the Dependency Repository.206

As a next step, the Smart Brix Manager creates a corresponding analyzer topic via the messaging207

8http://techblog.netflix.com/2014/06/building-netflix-playback-with-self.html
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Figure 3. Example of auto assembling processors within the analyzer facet.

Figure 4. Confidence Adaptation Model Escalation
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Figure 5. Smart Brix Manager Sequence Diagram

infrastructure and publishes the container identifiers to it. This generates an input that will be consumed208

by the corresponding Analyzers and starts another auto-assembly process in the Analyzer Facet. The209

Smart Brix Manager then listens to the created topic and waits for a response from the Analyzer Facet.210

If any analyzer responds, the manager checks the confidence value of the provided results against the211

configured confidence interval of the framework. If the results satisfy the interval it uses the Repository212

API to store them in the Analytics Repository. If the confidence intervals are not satisfied, it waits for213

a configured timeout for additional results to emerge. If this fails the framework escalates according to214

the principle of Confidence Elasticity and marks the containers as required for human interaction. If the215

confidence interval was met, the Smart Brix Manager initiates the previously mentioned auto-assembly216

process in the Compensation Facet. The Smart Brix Manager then listens to the created topic and waits217

for a response from any compensation handler. In case of a response, it checks the confidence values218

by applying the same approach as for the Analyzer Facet, and stores them as compensations into the219

Analytics Repository. A corresponding sequence diagram illustrating this is shown in Figure 5.220

Furthermore, the Smart Brix Manager provides API endpoints to query the results of analytics and221

compensation processes, as well as the current status via container identifiers.222

3.3 Repository Manager223

The Repository Manager provides a repository for storing analytics results of all analyzed containers as224

well as their corresponding compensations. The Analytics Repository itself is a distributed key value store225

that enables Analyzers as well as Compensation Handlers to store information without being bound to a226

fixed schema. In addition, this enables the previously mentioned open extensibility of our auto-assembly227

approach by allowing every component to choose the required storage format. Finally, the Repository228

Manager provides a service interface to store and retrieve analytics and compensation information as well229

as an interface for querying information based on container identifiers or other attributes.230

3.4 Dependency Manager231

The Dependency Manager handles necessary credentials and artifacts that are needed for processing232

containers. The Dependency Manager provides a service interface that allows the Smart Brix Manager to233

store artifacts and credentials associated with specific containers. Additionally, it provides a mechanism234

for components in the Analyzer and Compensation Facets to retrieve the necessary credentials and artifacts235

for the corresponding container IDs. Finally, it acts as service registry for components in the Utility Facet236

and exposes them to the Compensation and Analyzer Facet. The Dependency Manager uses a distributed237

key value store for its Dependency Repository in order to store the necessary information.238
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3.5 Utility Facet239

The general role of the Utility Facet is to provide supporting services for Analyzers, Compensation240

Handlers, and Managers of the framework. Components in the Utility Facet register their offered241

services via the Dependency Manager. This provides an open and extensible approach that allows242

to incorporate novel elements in order to address changing requirements of container evolution. In243

our current architecture, the Utility Facet contains three components. First, a Vulnerability Hub, which244

represents a service interface that allows Analyzers as well as Compensation Handlers to check artifacts for245

vulnerabilities. The Vulnerability Hub can either utilize public repositories (e.g., the National Vulnerability246

Database9), or any other open or proprietary vulnerability repository. The second component is a247

Compliance Hub that allows to check for any compliance violations in the same way the Vulnerability Hub248

does. This is an important element in heterogenous multi-stakeholder environments, where compliance249

to all specified criteria must be ensured at all times. The last element is a Metric Hub, which allows to250

check artifacts for certain relevant metrics in order to ensure relevant Quality of Service constraints for251

containers.252

3.6 Analyzers253

The task of the components within the Analyzer Facet is to test containers for potential vulnerabilities,254

compliance violations or any other metrics. The facet is invoked by the Smart Brix Manager, which255

triggers an auto-assembly process for the given containers that should be analyzed. The Analyzer Facet256

can contain components for the most prominent container formats like Docker or Rkt, but due to the257

fact that we utilize the auto-assembly approach, we are able to integrate new container formats as they258

emerge. For analyzing a container an analyzer follows three basic steps: (i) Determine the base layer of259

the container in order to know how to access the package list. (ii) Determine the list of installed packages260

including their current version. (iii) Match the list of installed packages against a set of vulnerabilities,261

issues, or compliance constraints in order to determine the set of problems.262

Every step can follow a different set of strategies to analyze a container represented as different263

processors, each of them with a specific confidence value. Possible processors for these steps are: (i) Base264

Image Processors, which try to determine the base layer of a container by matching their history against265

known base image IDs. (ii) Similarity Processors that try to select a base layer based on similarities in the266

history of the container with known containers by performing actions like collaborative filtering and text267

mining. (iii) Convention Processors that try to determine the base layer by trying common commands and268

checking their results. (iv) Human Provided Processors, which are human experts that manually analyze a269

container.270

In order to access the containers and to perform analytics, the components within the Analyzer Facet271

interact with the Dependency Manager. The manager provides them with the necessary credentials for272

processing containers. Once the analyzers have processed a container, they publish the results, which are273

augmented with the confidence value, to the corresponding topic where the Smart Brix Manager carries274

on as previously described.275

3.7 Compensation Handlers276

The components in the Compensation Facet generate potential compensations for containers that have277

been previously identified by the Analyzers. Like the Analyzers, the Compensation Handlers are invoked278

by the Smart Brix Manager, which starts an auto-assembly process for the containers with problems279

that should be compensated. We provide components for the most prominent container formats, with280

the ability to extend the list as new formats emerge. The compensation handlers follow three basic281

steps: (i) Apply a compensation strategy for the container and the identified problem; (ii) Verify if the282

compensation strategy could be applied by rebuilding or restarting the container; (iii) Verify that the283

problems could be eliminated or reduced.284

Again, every step can utilize a set of different processors, each of them with a specific confidence285

value, which represent different strategies. Possible processors are: (i) Container Processors, which try286

to use the base image’s package manager to upgrade packages with identified vulnerabilities. (ii) Image287

Processors that try to build a new image without the vulnerabilities; (iii) Similarity Processor that try to288

compensate via applying steps from similar containers that do not show these vulnerabilities; (iv) Human289

Provided Processors, which are human experts that manually compensate a container.290

9https://nvd.nist.gov/
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The Compensation Handlers interact with the Dependency Manager in a similar way like the Analyzers291

to retrieve the necessary credentials to operate. As Image Processors and Similarity Processors build new292

images in order to compensate, they can request the necessary artifacts associated with an image to be293

able build them.294

3.8 Implementation295

We created a proof of concept prototype of our framework based on a set of RESTful microservices296

implemented in Ruby. Each component that exposes a service interface relies on the Sinatra10 web297

framework. The Repository Manager and the Dependency Manager utilize MongoDB11 as their storage298

backend, which enables the previously described distributed, open, and extendable key value store for299

their repositories. We implemented a Vulnerability Hub that uses a SQLite12 storage backend to persist300

vulnerabilities in a structured format. It holds the recent data from the National Vulnerability Database13
301

(NVD), specifically the listed Common Vulnerabilities and Exposures (CVEs). This CVE Hub allows302

to import the CVEs posted on NVD, stores them in its repository, and allows to search for CVEs by303

vulnerable software name as well as version via its Sinatra-based REST interface.304

To enable the auto-assembly mechanism for each processor within each component in the Analyzer305

and Compensation Facet, we use a message-oriented middleware. Specifically, we utilize RabbitMQ’s14
306

topic and RPC concepts, by publishing each output and listening for its potential inputs on dedicated307

topics. We implemented a Docker Analyzer component with a Base Image Processor and a Convention308

Processor-based strategy. The Docker Analyzer first tries to determine the operating system distribution309

of the container by analyzing its history. Specifically, it uses the Docker API to generate the history for the310

container and selects the first layer’s ID, which represents the base layer. It then matches this layer against311

a set of known layer IDs, which matches corresponding operating system distributions to determine which312

command to use for extracting the package list. If a match is found, it uses the corresponding commands313

to determine the package list. If the determined operating system is Ubuntu or Debian, it will use dpkg314

to determine the package list. If it was CentOS, yum is used, and if it was Alpine, apk. After parsing the315

package command output into a processable list of packages, it checks each package name and version by316

using the CVE Hub via its REST interface. When this step is finished the Analyzer publishes the list of317

possible vulnerabilities, including analyzed packages along with several runtime metrics. In case the base318

image strategy fails, the Docker Analyzer tries to determine the base layer including the corresponding319

operating system via a convention processor. Specifically, it test if the image contains any of the known320

package managers. Based on the results the analyzer determines the distribution flavor and continues as321

described above.322

We further implemented a Docker Compensation Handler with a Container Processor and an Image323

Processor based compensation strategy. The Container Processor tries to upgrade the container using the324

operating system distribution’s package manager. After this operation succeeds, it checks if the number of325

vulnerabilities are reduced, by comparing the new version of packages against the CVE Hub. If this was326

the case it augments the results with a confidence value based on the percentage of fixed vulnerabilities327

and publishes the results. The Image Processor tries to fix the container by generating a new container328

manifest (e.g., Dockerfile). More precisely, it uses the Docker API to generate the image history and then329

derives a Dockerfile from this history. After this step, the Image Processor exchanges the first layer of330

the Dockerfile with the newest version of its base image. In cases where it cannot uniquely identify the331

correct Linux flavor, it generates multiple Dockerfiles, for example one for Ubuntu and one for Debian.332

It then checks the Dockerfiles’ structure for potential external artifacts. Specifically, it searches for any333

COPY or ADD commands that are present in the Dockerfile. If this is the case, it contacts the Dependency334

Manager and attempts to retrieve the missing artifacts. Once this is finished the Image Processor tries to335

rebuild the image based on the generated Dockerfile. After this step is finished, the Image Processor again336

checks the new list of packages against the CVE Hub, and if it could improve the state of the image it337

publishes the results with the corresponding confidence value. The prototype implementation is available338

online and can be found at https://bitbucket.org/jomis/smartbrix/.339

10http://www.sinatrarb.com/
11https://www.mongodb.org/
12https://www.sqlite.org/
13https://nvd.nist.gov/
14https://www.rabbitmq.com/
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Figure 6. Evaluation Setup of Smart Brix running in inspection mode

3.9 Deployment Modes340

The Smart Brix Framework provides a container for each facet and therefore supports deployment on341

heterogeneous infrastructures. The framework enables wiring of components and aspects via setting the342

container’s environment variables, enabling dynamic setups. We distinguish between two fundamental343

deployment modes, Inspection Mode and Introspection Mode.344

3.9.1 Inspection Mode345

The Inspection Mode allows the framework to run in a dedicated inspection and compensation setting.346

In this mode the framework ideally runs exclusively without any other containers and utilizes the full347

potential of the host systems. This means that the Smart Brix Managers wait until they receive an explicit348

request to analyze and compensate an artifact.349

3.9.2 Introspection Mode350

The Introspection Mode allows the framework to run in an active container setup. In this mode the351

framework constantly watches deployed containers via the Smart Brix Manager. The Manager can be352

provided with a list of containers to watch via a configuration setting. This provided list of containers353

is then analyzed and compensated. If no container lists are supplied, the Manager watches all running354

containers on the platform. In this case it initiates a check whenever new images are added, an image of a355

running container changes, or new vulnerabilities are listed in the CVE Hub.356

4 EVALUATION357

4.1 Setup358

For our evaluation we used the following setup. We provisioned three instances in our private OpenStack359

cloud, each with 7.5GB of RAM and 4 virtual CPUs. Each of these instances was running Ubuntu 14.04360

LTS with Docker staged via docker-machine15. For our evaluation we choose the inspection deployment361

variant of our framework in order to stress-test the system without other interfering containers. We362

deployed one manager container representing the Management Facet, as well as two utility containers363

containing the CVE Hub and the Messaging Infrastructure on one instance. We then distributed 12364

analyzer containers with 12 compensation containers over the remaining two instances. Additionally,365

we deployed a cAdvisor16 container on every instance to monitor the resource usage and performance366

characteristics of the running containers. Fig. 6 shows an overview of the deployed evaluation setup.367

4.2 Experiments368

Since we currently only have around 250 images in our URBEM setting, we extended the number of369

images to be evaluated. In order to get a representative set of heterogenous images we implemented a370

15https://docs.docker.com/machine/install-machine/
16https://github.com/google/cadvisor
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Figure 7. Comparison of runtime for analytics between one instance and two instances

small service to crawl Docker Hub17. The Docker Hub is a public repository of Docker container images371

of different flavors. These images range from base images, like Ubuntu and CentOS etc., to more complex372

images like Cassandra and Apache Spark. We utilized the search function of the Hub to collect a set of373

4000 images ordered by their popularity (number of pulls and number of stars), which ensures that we374

focus on a set with a certain impact. We then extracted the name and the corresponding pull commands375

along with the latest tag to form the URI of the image. This set of 4000 URIs represented the source for376

our experiments, which was then split into 3 sets containing 250, 500, and 1000 images to be tested.377

4.2.1 Analyzer Experiments378

We started our experiments with a focus on the Analyzer Facet of the framework. First, we started the379

analyzer containers on one instance and started our tests with the 250 image set. After the run finished380

we repeated it with the 500 and 1000 image set. After the tests with one instance, we repeated the381

experiments with two instances where each run was repeated 3 times. During the tests we constantly382

monitored cAdvisor to ensure that the instances were not fully utilized in order to ensure this would not383

skew results. The focus of our experiments were not the performance characteristics of our framework,384

in terms of cpu, memory or disk usage, which is why we used cAdvisor only as a monitor to rule out385

overloading our infrastructure. We also did not utilize any storage backend for cAdvisor since this has386

shown to be a significant overhead which in turn would have skewed our results.387

After the runs had finished we evaluated the vulnerability results. The analyzers logged the analyzed388

images, their base image flavor (e.g. Ubuntu, Debian etc.), processing time to analyze the image, pull389

time to get the image from the DockerHub as well as the overall runtime, number of packages, size of the390

image, and number of vulnerabilities.391

Over all our experiments the analyzers showed that around 93% of the analyzed images have vulnera-392

bilities. This mainly stems from the fact that our implemented analyzers have a very high sensitivity and393

check for any potentially vulnerable software with any potentially vulnerable configuration. However, this394

does not necessarily mean that the specific combination of software and configuration in place shows the395

detected vulnerability. If we only take a look at the images with a high severity according to their CVSS18
396

score, around 40% show to be affected which is conclusive with recent findings19. These results underline397

the importance to implement the measures proposed by our framework. However, the focus of our work398

and the aim of our experiments was not to demonstrate the accuracy of the implemented vulnerability399

detection, but the overall characteristics of our framework, which we discuss in the remainder of this400

section.401

17https://hub.docker.com/
18https://nvd.nist.gov/cvss.cfm
19http://www.banyanops.com/blog/analyzing-docker-hub/
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Figure 8. Comparison of processing time for analytics with two instances

Figure 9. Comparison of pulltime and processing time for compensation with two instances
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Figure 10. Comparison of processing time for compensation with two instances

We first compared the overall runtime of our analyzers, specifically the difference for one instance vs402

two instance deployments, the results are shown in Fig. 7. Based on the results we see that our approach403

can be horizontally scaled over two nodes leading to a performance improvement of around 40%. The fact404

that in our current evaluation setting we were not able to halve the overall runtime using two instances405

stems from several factors. On the one hand, we have a certain overhead in terms of management and406

coordination including the fact that we only deployed one manager and storage asset. On the other hand,407

a lot of the runtime is caused by the acquisition time, which is clearly bound by network and bandwidth.408

Since our infrastructure is equipped with just one 100 Mbit uplink that is shared by all cloud resources,409

this is a clear bottleneck. We also see that the majority of wall clock time is spent for acquisition and that410

the actual processing time only amounts to approximately 3% of the overall runtime. The fact that the411

acquisition time for the 1000 image set does not grow linearly like the runs with the 250 and 500 image set,412

stems from Docker’s image layer cache. In this case the overall acquisition time grows slower, because a413

lot of images in the 1000 set share several layers, which, if already pulled by another analyzer in a previous414

run, do not need to be pulled again, hence reducing the acquisition time. Finally, we demonstrate that the415

average processing time of our framework is stable, which is shown in Fig. 8. We further notice a small416

increase in average processing time for the 250 image set, which is caused by the fact that this set contains417

more images with larger package numbers compared to the overall amount of images tested, resulting in a418

slightly higher average processing time. As illustrated in Table 1, per-package processing times remain419

stable throughout the performed experiments, with a median of 0.558s and a standard deviation of 0.257s.420

Set Median Processing Time Standard Deviation Processing Time No. of packages
250 0.620s 0.255s 153,275
500 0.564s 0.263s 303,483
1000 0.537s 0.252s 606,721
Overall 0.558s 0.257s 1,063,479

Table 1. Median and standard deviation for processing time per package over all runs with two instances

4.2.2 Compensation Experiments421

In the the next part of our experiments we focused on the Compensation Facet of our framework. In order422

to test the ability to automatically handle compensations of vulnerable images, we tested the implemented423

Container Processor strategy. This strategy compensates found vulnerabilities via automatic upgrades of424

existing images. It takes no human intervention, has a very high confidence, keeps all artifacts within the425

images and is therefore optimal to test the auto-compensation ability of our framework. In the process426
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of compensation the Container Processor generates a new image with the upgraded packages. In order427

to test this image for improvement we have to store it. This means that for every tested image we have428

to hold the original image as well as its compensated version. Specifically, we choose to test the most429

vulnerable images (images with the most vulnerable packages) out of the 1000 image set we tested that430

are also the most prominent images in our URBEM scenario. This left us with 150 images, which we split431

in three sets with 50, 100, and 150 images and started our compensation tests. We then repeated each432

run to demonstrate repeatability and to balance our results. Since the Compensation Facet follows the433

same principle as the Analyzer Facet we omitted testing it on one instance and immediately started with434

two instances. After the tests finished, we compared the newly created images to the original ones and435

checked if the number of vulnerabilities could be reduced.436

Overall our experiments showed that from the 150 images we were able to auto-compensate 34 images437

by reducing the number of vulnerabilities. This illustrates that even a rather simple strategy leads to a438

significant improvement of around 22,6%, which makes this a very promising approach. In a next step,439

we compared the overall runtime of our compensation handlers for the three tested sets, and the results are440

shown in Fig. 9. We again can clearly see that the major amount of time is spent for acquisition, in this441

case pulling the images that need to be compensated. The compensation itself only takes between 24%442

and 28% of the overall runtime and shows linear characteristics correlating with the number of images to443

be compensated. The comparatively low increase in acquisition time for the 150 image set again can be444

explained with the specific characteristics we see in Docker’s layer handling.445

In a next step, we compared the average processing time for each set, and the results are shown in446

Fig. 10. We again notice similar characteristics as we saw with our analyzers. The average processing time447

as well as the median processing time are stable. The small increase for the 50 image set is explained with448

a larger number of images that contain more packages. This fact leads to relatively longer compensation449

times when upgrading them.450

5 DISCUSSION451

Our experiments showed that our framework is able to scale horizontally. We further demonstrated that the452

majority of the runtime, both when analyzing and compensating images is caused by the image acquisition,453

which is bandwidth bound. Given the fact that in most application scenarios of our framework the images454

will not necessarily reside on Docker Hub, but instead in a local registry, this factor greatly relativizes.455

The processing time itself scales linearly with the number of analyzed packages, and the same was shown456

for the compensation approach. Furthermore, the processing time in our current evaluation setup is mostly457

constrained by the prototypical vulnerability checking mechanism and the chosen storage system, which458

both are not the focus of our contribution. The implementation of different vulnerability checkers, along459

with more efficient storage and caching of vulnerability data could lead to further reduction in processing460

time and will be tackled in future work. An additional aspect we did not specifically address in this paper461

is the fine-grained scale-out of components in all Smart Brix facets.462

5.1 Threats to Applicability463

While the presented framework fulfills the requirements set forth in the previously introduced URBEM464

project, certain threats to the general applicability of Smart Brix remain.465

Currently, the auto-assembly mechanism introduced in Section 3.1 attempts to eagerly construct466

analysis and compensation pipelines that are loosely structured along the level of specificity of the467

performed analysis. Hence, the number of created pipelines can grow exponentially with the number468

of candidate components in the worst case. If all components for a given level of specificity accept all469

inputs produced in the previous level, and all subsequent components accept all produced outputs in turn,470

the number of created pipelines would grow exponentially with the number of components per level of471

specificity. This problem can be mitigated by introducing a transparent consolidation mechanism that472

delays the propagation of produced outputs of a certain type for a specified amount of time, orders them473

by the reported confidence values, and only submits one (or a few) of the produced output values with474

the highest confidence values for further consumption by other components. Due to the relatively small475

number of processing components required for the URBEM use case, we left the implementation of this476

consolidation mechanism for future work.477
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6 RELATED WORK478

The rapid adoption of container-based execution environments for modern applications enables increased479

flexibility and fast-paced evolution. Next to this fast-paced evolution of containers, new containers are480

deployed whenever functionality has to be added, which leads to massive amounts of containers that need481

to be maintained. While the container provides an abstraction on top of the operating system, it is still482

vital that the underlying system complies to policies or regulations to avoid vulnerabilities. However,483

checking the plethora of available environments and adapting them accordingly, is not a trivial task.484

Among several approaches stemming from the area of SOA like the works of Lowis and Accorsi485

(2009), Yu et al. (2006) which deal with classic service vulnerabilities as well as the work of Li et al.486

(2010), Lowis and Accorsi (2011) propose a novel method for analyzing cloud-based services for certain487

types of vulnerabilities. Next to general models and methods for classifying and analyzing applications,488

several approaches emerged that allow vulnerability testing. They range from service oriented approaches489

for penetration and automated black box testing introduced by Bau et al. (2010) and Li et al. (2015a) to490

model based vulnerability testing like the work of Lebeau et al. (2013) as well as automated vulnerability491

and infrastructure testing methods (e.g. Shahriar and Zulkernine (2009); Hummer et al. (2013)). Antunes492

and Vieira (2013) introduce SOA-Scanner, an extensible tool for testing service-based environments for493

vulnerabilities. Based on an iterative approach the tool discovers and monitors existing resources, and494

automatically applies specific testing approaches. More recently also large scale distributed vulnerability495

testing approaches have been introduced (e.g. Evans et al. (2014); Zhang et al. (2014)). In contrast to our496

approach, the aforementioned tools solely concentrate on testing and identifying possible security threats,497

but do not provide means for adapting the observed application or its environment accordingly.498

More recently, container-based approaches are applied in the literature to ease development and499

operation of applications. Tosatto et al. (2015) analyze different cloud orchestration approaches based on500

containers, discuss ongoing research efforts as well as existing solutions. Furthermore, the authors present501

a broad variety of challenges and issues that emerge in this context. Wettinger et al. (2014) present an502

approach that facilitates container virtualization in order to provide an alternative deployment automation503

mechanism to convergent approaches that are based on idempotent scripts. By applying action-level504

compensations, implemented as fine-grained snapshots in the form of containers, the authors showed505

that this approach is more efficient, more robust, and easier to implement as convergent approaches.506

However, compared to our approach, the authors do not provide a framework for analyzing container507

application deployments, which based on identified issues triggers according compensation mechanisms.508

Gerlach et al. (2014) introduce Skyport, a container-based execution environment for multi-cloud scientific509

workflows. By employing Docker containers, Skyport is able to address software deployment challenges510

and deficiencies in resource utilization, which are inherent to existing platforms for executing scientific511

workflows. In order to show the feasibility of their approach, the authors add Skyport as an extension to an512

existing platform, and were able to reduce the complexities that arise when providing a suitable execution513

environment for scientific workflows. In contrast to our approach the authors solely focus on introducing514

a flexible execution environment, but do not provide a mechanism for continuously evolving container-515

based deployments. Li et al. (2015b) present an approach that leverages Linux containers for achieving516

high availability of cloud applications. The authors present a middleware that is comprised of agents517

to enable high availability of Linux containers. In addition, application components are encapsulated518

inside containers, which makes the deployment of components transparent to the application. This allows519

monitoring and adapting components deployed in containers without modifying the application itself.520

Although this work shares similarities with our approach, the authors do not provide a framework for521

testing container-based deployments, which also supports semi-automatic compensation of found issues.522

Next to scientific approaches, also several industrial platforms emerged that deal with the development523

and management of container-based applications, with the most prominent being Tutum20 and Tectonic21.524

These cloud-based platforms allow building, deploying and managing dockerized applications. They are525

specifically built to make it easy for users to develop and operate the full spectrum of applications, reaching526

from single container apps, up to distributed microservices stacks. Furthermore, these platforms allow527

keeping applications secure and up to date, by providing easy patching mechanisms and holistic systems528

views. In contrast to our approach, these platforms only focus on one specific container technology, and529

20https://www.tutum.co
21https://tectonic.com
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are not extensible. IBM recently introduced the IBM Vulnerability Advisor22, a tool for discovering530

possible vulnerabilities and compliance policy problems in IBM containers. While IBM’s approach531

shares similarities with our work, they are solely focusing on Docker containers that are hosted inside532

their own Bluemix environment and therefore do not provide a generic approach. Furthermore, their533

Vulnerability Advisor only provides guidance on how to improve the security of images, but does not534

support mechanisms to evolve containers.535

7 CONCLUSION536

The numerous benefits of container-based solutions have led to a rapid adoption of this paradigm in recent537

years. The ability to package application components into self-contained artifacts has brought substantial538

flexibility to developers and operation teams alike. However, to enable this flexibility, practitioners need539

to respect numerous dynamic security and compliance constraints, as well as manage the rapidly growing540

number of container images. In order to stay on top of this complexity it is essential to provide means541

to evolve these containers accordingly. In this paper we presented Smart Brix, a framework enabling542

continuous evolution of container application deployments. We described the URBEM scenario as a543

case study in the smart city context and provided a comprehensive description of its requirements in544

terms of container evolution. We introduced Smart Brix to address these requirements, described its545

architecture, and the proof of concept implementation. Smart Brix supports both, traditional continuous546

integration processes such as integration tests, as well as custom, business-relevant processes, e.g., to547

implement security, compliance, or other regulatory checks. Furthermore, Smart Brix not only enables548

the initial management of application container deployments, but is also designed to continuously549

monitor the complete application deployment topology and allows for timely reaction to changes (e.g.,550

discovered application vulnerabilities). This is achieved using analytics and compensation pipelines that551

will autonomously detect and mitigate problems if possible, but are also designed with an escalation552

mechanism that will eventually request human intervention if automated implementation of a change553

is not possible. We evaluated our framework using a representative case study that clearly showed that554

the framework is feasible and that we could provide an effective and efficient approach for container555

evolution.556

As part of our ongoing and future work, we will extend the presented framework to incorporate more557

sophisticated checking and compensation mechanisms. We will integrate mechanisms from machine558

learning, specifically focusing on unsupervised learning techniques as a potential vector to advance559

the framework with autonomous capabilities. We also aim to integrate the Smart Brix framework with560

our work on IoT cloud applications (Inzinger et al., 2014; Vögler et al., 2015b,a). Furthermore, we561

plan to conduct a large-scale feasibility study of our framework in heterogenous container application562

deployments.563
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