
Enhancing the e-learning system based on
a novel tasks’ classification load-balancing
algorithm
Ayman E. Khedr1,*, Amira M. Idrees1,* and Rashed Salem2

1 Information Systems Department, Faculty of Computers and Information Technology, Future
University in Egypt, Cairo, Egypt

2 Information Systems Department, Faculty of Computers and Information, Menoufia University,
Cairo, Egypt

* These authors contributed equally to this work.

ABSTRACT
In the educational field, the system performance, as well as the stakeholders’
satisfaction, are considered a bottleneck in the e-learning system due to the high
number of users who are represented in the educational system’s stakeholders
including instructors and students. On the other hand, successful resource utilization
in cloud systems is one of the key factors for increasing system performance which is
strongly related to the ability for the optimal load distribution. In this study, a
novel load-balancing algorithm is proposed. The proposed algorithm aims to
optimize the educational system’s performance and, consequently, the users’
satisfaction in the educational field represented by the students. The proposed
enhancement in the e-learning system has been evaluated by two methods, first, a
simulation experiment for confirming the applicability of the proposed algorithm.
Then a real-case experiment has been applied to the e-learning system at Helwan
University. The results revealed the advantages of the proposed algorithm over other
well-known load balancing algorithms. A questionnaire was also developed to
measure the users’ satisfaction with the system’s performance. A total of 3,670
thousand out of 5,000 students have responded, and the results have revealed a
satisfaction percentage of 95.4% in the e-learning field represented by the students.

Subjects Algorithms andAnalysis of Algorithms, Artificial Intelligence, Computer Education, Data
Mining and Machine Learning, Data Science
Keywords Cloud computing, Load balancing, Classification data mining, Students’ satisfaction,
E-learning

INTRODUCTION
E-learning is a term that refers to adapting the information technology tools as well as
communication methods in the education sector. E-learning has a positive impact on the
education sector for both local and institutional environments. At the institutional
level, e-learning provides different tools for students’ managerial aspects as well as
educational aspects. The managerial aspects such as students’ enrollment, while the
educational aspects such as providing course material and online exams. The local level
provides the learning activities for a single course or group of courses. Investing in both
levels is essential for ensuring the continuous development in the educational sector which
consequently provides continuous development in the whole economy as discussed in

How to cite this article Khedr AE, Idrees AM, Salem R. 2021. Enhancing the e-learning system based on a novel tasks’ classification load-
balancing algorithm. PeerJ Comput. Sci. 7:e669 DOI 10.7717/peerj-cs.669

Submitted 7 December 2020
Accepted 19 July 2021
Published 9 September 2021

Corresponding author
Amira M. Idrees,
amira.mohamed@fue.edu.eg

Academic editor
Lerina Aversano

Additional Information and
Declarations can be found on
page 24

DOI 10.7717/peerj-cs.669

Copyright
2021 Khedr et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.669
mailto:amira.�mohamed@�fue.�edu.�eg
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.669
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

Van Hilten (2015) that higher education will continuously have its impact on economic
development.

Different success factors are introduced for e-learning including the management
process, continuous development, the level of quality of the system infrastructure, and
the system’s continuous availability and reliability (McGill, Klobas & Renzi, 2014).
As discussed in Sultan et al. (2017) and Al Mazroi, Khedr & Idrees (2021), the system’s
success is measured by the user satisfaction level through the high quality of the system and
the availability of the system’s usage. As discussed in Van Hilten (2015), one of the main
challenges of e-learning success is overcoming the infrastructure issues which is a key
factor for the e-learning environment. Infrastructure is a basic requirement for the
successful access of e-learning tools. Fernández et al. (2012) presented a situation in a
“machine learning course at Stanford that accepted over 160,000 students as applicants.
The high number of students emphasized the strong requirement of a reliable
infrastructure that clearly exceeded the capability of a conventional server. This demand
for a highly reliable infrastructure resulted in the failure of the required activities and
requests, especially in peak time. This situation highlighted the impact of cloud computing
on e-learning systems.

Through many researches, cloud computing has been introduced to be a solution for
higher resources’ utilization than conventional servers. With its elasticity, fast, scalability,
and flexibility features, cloud computing has been introduced as an innovative direction
of empowering IT solutions. Different benefits can be obtained when applying the
e-learning system on the cloud platform, the following can summarize some of these
benefits: One of the main benefits is ensuring the enhancement of the e-learning system’s
performance as the system’s services will be deployed on the cloud platform. Deploying
the system’s services on the cloud computing platform also leads to the reduction of
the system’s cost such as maintenance and administration cost. Another benefit is the
continuous availability of the system’s services for the system’s stakeholders. The students
and teachers can use the services from different places using different devices.

One of the main features of cloud computing is flexibility. Therefore, e-learning systems
can be mounted as required to ensure maintaining the required level of investment
(Mostafa et al., 2020). The continuous availability of up-to-date software is also one of
the vital benefits that have a positive impact on e-learning systems. Although cloud
computing has its high positive impact on e-learning systems, however, cloud computing
may face different challenges such as maintaining data, system security, ensuring load
balancing among the system’s working nodes, providing the availability for data backup
and portability, support the multiple platforms, and ensure the system’s reliability
(Kalapatapu & Sarkar, 2012).

Load balancing is defined as the process of improving the resources’ utilization targeting
to effectively enhance the tasks’ response time (Ramana, Subramanyam & Ananda
Rao, 2011). This improvement is reached through re-distributing the load among the
system’s nodes. Load balancing ensures the balance in the load that is provided to the
systems’ nodes in order to avoid overloading one node while under-loading another.
Different load balancing algorithms are introduced for reaching the required target. These

Khedr et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.669 2/28

http://dx.doi.org/10.7717/peerj-cs.669
https://peerj.com/computer-science/

algorithms will be presented in “Related Work”. Load balancing algorithms are evaluated
in cloud computing through the measurement of different criteria. These criteria are
throughput, overhead, fault tolerance, response time, complexity, performance, scalability,
resource utilization, speed, overhead, power consumption and waiting time. These criteria
are interrelated, which leads to the effect of one criterion on the other. For example,
response time, speed, and waiting time have a direct impact on performance.

The remaining of the paper includes a brief background in “Background” and the
related work is discussed in “Related Work”. The proposed approach is discussed in detail
in “E-Learning Based on Task Classification Load Balancing Algorithm” while the
evaluation measures are discussed in “Evaluation Measures Applied in the Case Studies”.
The experiments are then illustrated in “Simulation Case Study” and “Real Case Study
Applied in E-Learning System and Experimental Results” with discussing these results in
“Conclusion”. Finally, the conclusion is discussed in “Conclusion”.

BACKGROUND
Load balancing algorithms follow one of the two approaches, static and dynamic (Elmasry,
Khedr & Nasr, 2019). Algorithms that follow the static approach need to determine the
system’s capabilities such as the system’s resources and the required communication
time (Khedr, Idrees & Alsheref, 2019). The algorithms that follow the static approach apply
the round-robin algorithm, which is a simple technique with low resource utilization.
However, this algorithm does not guarantee equity in the load distribution as the current
status of the servers is not considered (Chen, Chen & Kuo, 2016). This situation highlighted
that static algorithms are not suitable for cloud systems.

On the other hand, the main concept of the dynamic approach is the continuous
monitoring of the current system’s status. This leads to the possibility of the tasks’
migration from one node to another based on the current status of these nodes. One of
the considerations of dynamic algorithms is complexity. However, this was not highlighted
by many researchers due to other benefits such as the high performance and accuracy
in the load distribution for the system’s nodes (Kanakala, Reddy & Karthik, 2015).
Different researches followed the dynamic approach such as (De Falco et al., 2015).
The proposed approaches considered scheduling the tasks based on the system’s status.
However, the high cost and eliminated considerations of different vital factors were
noticed.

Different load balancing algorithms have been proposed such as in Afzal & Abdur
Rahman (2020) which proposed a load balancing approach that aimed at minimizing
the whole task’s executing time and reached a satisfactory result. However, it did not
consider the migration time of the task through the network. Earlier, another research in
Afzal & Kavitha (2018b) considered the migration process by proposing a load balance
algorithm based on migrating tasks to the less loaded machines with minimum migration
cost. The proposed algorithm succeeded in its objective. However, the current research
has an advancement for direct allocation to the required machines with no need for
migrating from machines which ensures less total execution time. Finally, the research in

Khedr et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.669 3/28

http://dx.doi.org/10.7717/peerj-cs.669
https://peerj.com/computer-science/

Afzal, Kavitha & Gull (2020) discussed the relation between different factors including the
number of servers, number of tasks, and different time parameters such as waiting time
and response time. The research concluded that following the parallel approach is
satisfying when the allocation rate is higher than the tasks’ arrival rate. The research also
concluded that the relationship between the waiting time and the required tasks is a linear
relation. In the current research, the parallel approach is followed with overcoming the
negative aspects in the concluded relationships.

On the other hand, different evaluation metrics for load balance algorithms have been
introduced. The research in Afzal & Kavitha (2018a) presented the evaluation metrics in a
hierarchical representation. The metrics were divided into performance and economic
metrics while the second level for both branches was qualitative and quantitative following
by dependent and independent metrics’ classification. In the current research and
according to the classification presented in Afzal & Kavitha (2018a), evaluating the
proposed algorithm followed the performance plan and covered both the dependent
and independent quantitative directions. The research in Afzal & Kavitha (2018a) was
followed by Afzal & Kavitha (2019) which presented load balance algorithms classification
hierarchy. The classification included two main branches, they are scheduling and load
allocation. According to the presented hierarchy, the proposed algorithm in the current
study follows the scheduling branch. It also has an advance over the proposed classification
as it considers memory, CPU, server load and task characteristics.

RELATED WORK
The high impact on the e-learning systems has attracted many researchers to introduce
different research in this field (Hassouna et al., 2020). Different educational organizations
targeted to deploy their e-learning systems over cloud computing platforms such as in
Angelova, Kiryakova & Yordanova (2015). Focusing on load balancing algorithms, this
section presents different research that has been introduced in applying load balancing
algorithms over the e-learning systems that are deployed on the cloud computing platform.

As argued by Mihaescu et al. (2011), most of the current e-learning systems are
deployed on a determined machine with no ability for distributing its infrastructure’s
components. The research in Mihaescu et al. (2011) highlighted that this situation raises a
serious issue of the e-learning systems’ scalability which directly affects its performance.
Therefore, the load balancing benefits allowed the researchers to be highly motivated for
introducing load balancing algorithms as a solution. Mihaescu et al. (2011) presented an
infrastructure for an e-learning system that was based on applying the load balancing
paradigm based on weighting the required service. The system has been applied to a
simulation tool. The introduced system included a fixed set of servers with no ability for
extending this set, this issue was one of the authors’ future works. The research also did not
provide a clear description of the load balancing methodology as well as the tasks’
weighting approach.

Another research (Rajarajeswari, 2013) introduced an approach for load balancing in
e-learning systems. The proposed approach depended on applying a clustering technique
to cluster the working nodes, then estimating their workload is performed. Based on the

Khedr et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.669 4/28

http://dx.doi.org/10.7717/peerj-cs.669
https://peerj.com/computer-science/

determined workload for each node, the required tasks are then distributed to the less-
loaded nodes. The proposed approach applies the k-means algorithm for clustering nodes
without introducing any proof of the suitability of this algorithm for the applied
characteristics. The research also did not consider the variations of the required tasks in the
distribution process. Finally, the proposed load balancing approach in Rajarajeswari
(2013) has not been compared with other well-known algorithms.

Recently, Dominic & Francis (2014) proposed a load-balancing approach in e-learning.
The proposed approach adopted the concept of developing a hashing table with the nodes
which store the task data. The data stored in the hashing table is then used in building a
binary tree for connecting all working tasks. This binary tree is the main source for
identifying the available servers. Based on the discussion of the research, the binary tree is
the main step for minimizing the search time to respond to the required tasks. The
implementation and evaluation of the proposed approach have not been introduced with
highlighting that it was one of the future work for the authors in addition to the required
explanation of the binary tree contribution. More recently, Khedr & Idrees (2017a)
proposed a comparison of two load balancing algorithms targeting to propose the suitable
model to enhance the educational process. The research introduced an experimental result
that revealed the advancement of the load balancing algorithm “task scheduling
algorithms” over the “Random Allocation Load balancing” in the educational field. The
authors highlighted that more research is required to include different parameters such as
power consumption and different network load situations.

Finally, a study by the same authors (Khedr & Idrees, 2017b) presented the impact of
applying the e-learning system on the cloud environment. The research focused on the
students’ satisfaction level in one of the Egyptian universities through enhancing the
system’s performance. Applying the enhanced system has revealed students’ satisfaction
level equal to 89.7%. As the previously discussed research has revealed different
limitations, this study aimed to prove the applicability of the proposed algorithm by
comparing the algorithm with some of the previously proposed algorithms. The evaluation
included a set of standard metrics.

E-LEARNING BASED ON TASK CLASSIFICATION LOAD
BALANCING ALGORITHM
In this section, a task classification load balancing algorithm (TCLB) is proposed. The
main target for the proposed task is to efficiently allocate the users’ requests on the cloud
server nodes. The efficient allocation ensures the highest utilization of the cloud nodes and
the highest throughput with the lowest response time. Efficient distribution of the
workload is achieved through applying a mining technique as a preparatory phase in order
to classify the users’ requests and estimate the resources’ consumption by the network
tasks. The classification phase is based on different criteria such as tasks’ memory usage
and CPU utilization. Classifying the workload is a key phase to successfully determine the
appropriate cloud node for execution. The following sub-sections describe the algorithm
architecture, the main phases, and the pseudo-code of the proposed algorithm.

Khedr et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.669 5/28

http://dx.doi.org/10.7717/peerj-cs.669
https://peerj.com/computer-science/

The main contribution of the proposed algorithm can be summarized as follows:

1. Optimizing the cloud node selection for executing a determined user’s request based
on applying mining techniques. A classification algorithm is applied to select the best
cloud node for executing the determined task. Successful selection of the cloud node
ensures the optimization for the whole execution process of the system.

2. Maintaining the pre-executed tasks repository is performed. This repository is
considered a historical resources repository. It is used to estimate the required resources
for the new users’ tasks by searching for similar tasks in this repository. In case that there
were no similar tasks in the repository, then applying the classification step is
performed. This procedure minimizes the required estimation time for the tasks as it
ensures that the classification phase is only fired in case that the required task is not
previously performed by other users.

3. Continuous enriching of the pre-executed tasks repository ensures a continuous
enhancement in the classification process, which is one of the main steps towards
optimization.

The proposed e-learning system architecture
The task classification load balancing algorithm includes two main phases namely “Task
Classifier”, and “Task Allocator” which are illustrated in Fig. 1. The task classifier phase
focuses on the determination of the task requirements by applying a classification
algorithm to discover the group that the task belongs to. The task classifier phase receives
its input from the cloud portal which gathers all the users’ requests and classifies them.
The output of the task classifier is then inserted in the tasks’ pool with the required
information. Then the task allocator phase is responsible for allocating the tasks to the
suitable server based on the proposed technique which will be discussed in detail.

Description of the proposed e-learning system’s main phases
The detailed steps of each phase are described in this section in two perspectives. First, the
basic functions’ steps are demonstrated to highlight the general process of each phase as

Figure 1 The proposed e-learning system architecture. Full-size DOI: 10.7717/peerj-cs.669/fig-1

Khedr et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.669 6/28

http://dx.doi.org/10.7717/peerj-cs.669/fig-1
http://dx.doi.org/10.7717/peerj-cs.669
https://peerj.com/computer-science/

well as the formal description of the main algorithm’s components. Then, the pseudo-code
is illustrated to present the algorithm’s detailed steps.

Phase 1: task classifier phase
The main outcome of the “Task Classifier Phase” is the successful estimation of the
resources’ requirements for the users’ requests. This outcome is reached by classifying the
users’ requests to the most representative classes. Each class is represented by a set of
features that map to the task’s description as well as the system’s description. The input of
“Task Classifier Phase” is the set of the users’ requests that reside in the cloud portal
pool. The cloud portal pool (CP) that includes the users’ requests is formally represented as
a set of tasks from T1 to Tn by formula 1.

CP ¼ fT1;T2; . . . ;Tng j n ∈ N; n is the number of tasks (1)

The main outcome of the “Task Classifier Phase” is reached by applying three main
steps, they are the Primary data preparation step, the task clustering step, and the task
classification step. The following subsections provide a detailed description of each step.

— Primary Data Preparation Step

The first step is to prepare the primary data which is essential for initializing the
algorithm. This primary data is represented in a set of tasks that are described by a set of
parameters. The parameters’ set includes two categories of elements. The first category
represents the task such as the required CPU utilization and the required memory
utilization. While the second category represents the server such as the server’s response
time and latency. On the other hand, the primary data can be obtained by two methods.
One of these methods is simulation-based in which random requests are generated,
then these requests are performed on the system’s server and the required parameters are
measured. The second method is using the pre-performed tasks in the network as the
description of these tasks resides in the tasks’ log pool.

The outcome of this step is presented as a set named (LogReq) that includes a group of
vectors. Each vector represents a task associated with its parameters’ values. For more
clarification, the log file set (LogReq) is the set of all tasks that are previously served in the
network with their associated parameters’ values. The log file set members are represented
as vectors. This vector representation has a total of eight elements. The first element is
the task identifier Ti and the remaining seven elements describe the performance
measurements of the server as well as the task on focus. These eight measurements are the
throughput (TTH), response time (TRT), processor utilization (TPU), memory usage
(TMU), bandwidth utilization (TBU), latency (TL), error rate (TER), reliability (TREL).
The previous description of the log file set (LogReq) is formally represented by formula 2
and is considered the main input of the next step “clustering step”.

LogReq ¼ f,Ti;TTHi;TRTi;TPUi;TMUi;TBUi;TLi;TERi;TRELi. j i ∈ Ng (2)

— Tasks’ Clustering Step

Khedr et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.669 7/28

http://dx.doi.org/10.7717/peerj-cs.669
https://peerj.com/computer-science/

In this step, a clustering algorithm is applied for grouping the generated tasks. An
extensive review is performed in order to determine the suitable algorithm to be applied.
Xu & Wunsch (2005) have performed a survey on clustering algorithms. The survey
discussed that the clustering algorithms are following two approaches; they are
partitioning and hierarchical. As the current data is not hierarchical in nature, therefore,
the study should follow the partitioning approach. Focusing on the partitioning approach,
Xu & Wunsch (2005) presented the k-means algorithm and its enhancements.
The study revealed that k-means had the advantage of its computational simplicity.
This simplicity is reflected in the low time complexity which is equal to O(nct) where n is
the number of iterations, c is the number of classes, and t is the number of tasks. Another
research that was presented by Xu & Tian (2015) confirmed the advantages of using
the k-means algorithm due to its suitability for large datasets in addition to its simplicity in
implementation.

One of the main drawbacks of k-means was the random determination of the initial
point due to the optimization of the non-convex data which was also highlighted in
Lindsten, Ohlsson & Ljung (2011). This drawback was further considered in a research
conducted by Khedr, El Seddawy & Idrees (2014). The research proposed that determining
the centroid initial point instead of the random initial cluster point is more accurate.
Another consideration is the requirement of pre-determining the suitable number of
clusters as this affects the data distribution to the clusters. However, this was not a
bottleneck in this research, as it is determined that the number of clusters will be equal to
the number of servers of the network.

For more clarification, the main objective of the research is the uniform distribution of
the required tasks to ensure equal load for all participating servers in the available
operating time. The research follows the partitioning approach, not the hierarchical
approach, which also led to the ability for a one-level partitioning. Therefore, the number
of clusters was set to be equal to the number of available servers. This decision has
been reached for ensuring the implementation simplicity without the need to further
allocating different clusters’ members to the same server.

The set of classes (C) associated with the parameters describing the class is formally
represented by formula 3. Moreover, the set of vectors representing the classes associated
with their members; which are the clustered users’ requests (CLustT); is formally
represented by formula 4.

The set of tasks’ classes (C) include a set of vectors that equal to the number of classes,
the elements of each vector are the class name (Ca) and the set of performance parameters
that describe this class. These eight measurements are the throughput (CTH), response
time (CRT), processor utilization (CPU), memory usage (CMU), bandwidth utilization
(CBU), latency (CL), error rate (CER), reliability (CREL)

C ¼ f,Ca;CTHa;CRTa;CPUa;CMUa;CBUa;CLa;CERa;CRELa . j a ∈ mg (3)

where: m is the number of classes
The set of clustered tasks (ClustT) is also represented as a set of vectors. The elements of

each vector are the class name proceeded by the tasks that are members of this class.

Khedr et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.669 8/28

http://dx.doi.org/10.7717/peerj-cs.669
https://peerj.com/computer-science/

The number of elements in each vector depends on the number of tasks that belong to each
class.

CLustT ¼f,Cb;Ts; . . . ;Tv . g j b 2 f1; 2; . . . ; fg; s; y 2 f1; 2; . . . ng (4)

where: ∃ Ca = Cb such that < Ca , CTHa, CRTa, CPUa, CMUa, CBUa, CLa, CERa, CRELa > ∈
C, f number of classes, and n number of tasks

The outcome of this step is the training data for the next step “Tasks’ classification step”
which produces the main phase outcome.

— Tasks Classification Step

In this step, classifying the users’ requests that exist in the cloud portal pool is applied.
The main aim of this step is to determine an accurate estimation of the attributes which
describe the user’s request. The main outcome of this step is to describe each task with
the required resources to accomplish this task in addition to the predicted performance of
the server that is executing the task. This outcome will further be considered in the task
allocation phase as a critical input to successfully distribute the tasks in the servers’ pool
with ensuring high performance.

A survey was presented in Abd AL-Nabi & Ahmed (2013) which highlighted the
advantages of the decision tree algorithms for classification. These advantages were the
lower computation time which is O(m· n) compared with other classification techniques’
categories where m is the number of records and n is the number of attributes (Esmeir &
Markovitch, 2007). One of the efficient decision tree algorithms is ID3 (Khedr, Idrees &
El Seddawy, 2016a), whose advantage is its ability to deal with noise data. However, as
illustrated in Abd AL-Nabi & Ahmed (2013) and other researches such as in Pirdavani et al.
(2015), the main drawback of the decision tree algorithms is the high cost in building the
tree with the positive relationship between the number of clusters and the error rate.

This research applied the enhanced ID3 algorithm which was presented in Khedr, Idrees
& El Seddawy (2016a) targeting to hinder the drawback. Khedr, Idrees & El Seddawy
(2016a) engaged the concept of data partitioning which consequently revealed the
opportunity for parallelism in applying the ID3 algorithm on the data subsets
simultaneously. The proposed approach adopted the examination of the data subsets with
setting the decision of examining the data element for the classification task within its
siblings with no consideration to other data elements. This approach revealed the
opportunity for higher performance while maintaining the classification accuracy level.
The enhancement in the research of Khedr, Idrees & El Seddawy (2016a) succeeded to
overcome the limitations of the decision tree algorithms. Khedr, Idrees & El Seddawy
(2016a) proved its applicability in different domains by applying two experiments with
different characteristics in two domains. They are banking and radiology data. The
classified users’ requests (CLassT) are represented as sets of vectors representing the classes
that are associated with their members. The formal representation for CLassT is in formula
5. The elements of each vector include the class identifier as the first member in the

Khedr et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.669 9/28

http://dx.doi.org/10.7717/peerj-cs.669
https://peerj.com/computer-science/

vector followed by the tasks that are classified as members of the class. The number of
elements in each vector depends on the number of the classified tasks of each class.

CLassT ¼ ,Cb;Tv; . . . ;Tw .f gjb 2 1; 2; . . . ; ff g; v;w 2 1; 2; . . . nf g (5)

where: ∃ Ca = Cb such that < Ca , CTHa, CRTa, CPUa, CMUa, CBUa, CLa, CERa, CRELa >, f
is the number of classes, and n is the number of tasks

These results present the tasks’ membership in a determined class. Based on this
classification, the required resources for each task are estimated based on the average
requirements for all the members in the same class. This assumption is applied based
on the study presented by Dahab et al. (2010) which confirmed a claim targeting the
relation between siblings. Dahab et al. (2010) claimed that the siblings normally act in the
same manner. This claim was further confirmed by a research presented in Khedr et al.
(2017) which is applied in a different field and proved the applicability of the assumption in
general. Therefore, this study determines the required resources by applying the same
concept in estimating the required resources for a determined task based on its class
membership.

Phase 2: task allocator phase
The basic function steps of the task Allocator phase can be discussed as follows:

First, the classified users’ requests set members “CLassT” are determined, the “CLassT”
set is previously described in formula 5. Then, determining the available servers set
members “AvailServers” is performed through selecting the servers whose availability
status is below the threshold. Finally, allocating the users’ requests to their most suitable
servers is applied. The set of servers (ServList) is formally described in formula 6
which represents the servers with the terms (S1 to St) where t is the number of servers.
Moreover, the set of available servers (AvailServ) is formally described in formula 7 which
is a subset of the servers set (ServList) and represents the servers which availability status is
below the threshold. This means that the servers are available for more tasks’ allocation.

ServList ¼ S1; . . .St j t 2 Nf g (6)

where: t is the number of servers in the system

AvailServ ¼ Sh j h 2 1; 2;::tð Þf g (7)

where: h is the number of available servers in the system, AvailServ 4 ServList, Sh ∈
ServList

The allocation idea is to determine the total availability percentage in the network as
well as the total requests’ resources estimation. The allocation is performed in two steps.
The first step is to allocate tasks to servers which are above the minimum availability
threshold of a server j. Then the second step is to continue allocating the remaining
requests to the servers with respect to the minimum availability threshold. The availability
threshold is maintained to ensure the high performance of the system. As discussed by
Khedr, Kholeif & Hessen (2015), the allocation of all the resources of a server leads to the
degradation of the server’s performance. Therefore, maintaining a minimum allocation
threshold is one of the key factors of maintaining the system’s performance.

Khedr et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.669 10/28

http://dx.doi.org/10.7717/peerj-cs.669
https://peerj.com/computer-science/

The term (TY) refers to the task class. Each class is characterized by a set of parameters
that describe the effect of the task on the server status. These parameters are the server’s
throughput (CTH), response time, (CRT), CPU utilization (CPU), memory usage
(CMU), bandwidth utilization (CBU), latency (CL), and error rate (CER). These
parameters are determined based on the task class. As discussed earlier, each task is
assigned to a determined class, therefore, the values of these parameters are the class
description that the task belongs to. Determining the task type is a key factor in estimating
the parameters which will determine the estimated server’s performance.

The type (TY) of a task j can be described as a vector of seven elements as follows:

TYj, ¼CTHq;CRTq;CPUq;CMUq;CBUq;CLq;CERq. jj2 1; . . .:nf g;q2 1; . . .:cf g (8)

where: ∃a = q s.t < Ca , CTHa, CRTa, CPUa, CMUa, CBUa, CLa, CERa, CRELa > ∈ C
n number of tasks, c number of classes
The requirements (TL) of a task (T) are characterized by three parameters, they are:

the required CPU utilization for task T (TPU), the required memory usage for task T
(TMU), and the required bandwidth usage for the task T (TBU). These parameters are
determined based on the task type (TY).

TLj¼ TYj (9)

— Calculate the Total Current Load of the Working Server

The total current load (TCL) of a determined server at the allocated time (t) is identified
by the total consumed percentage of the three parameters CPU utilization, memory usage,
and bandwidth.

Therefore, the set of tasks allocated to a server i (TSi) can be described as follows:

TSi¼ Tf ; . . .:Tejf ; e 2 1; . . .:nð Þf g (10)

where i is the server id, n is the number of tasks in the cloud portal. Tf, Te ∈ CP
The total current load (TCL) of the server i can be described in formula 11 as a vector

representing the server’s current processor utilization, memory usage, and bandwidth
usage. This vector can be further explained as each member represents the accumulation of
the usage for the server’s included tasks. Formulas 12, 13, and 14 represent the
accumulation of processor utilization (PU), memory usage (MU), and bandwidth
utilization (BU) respectively.

TCLi ¼ ,PUi;MUi;BUi. (11)

PUi ¼ PUi þP
TPUjjj 2 1; . . . :nf g; i 2 1; . . . :mf g;Tj 2 TSi; (12)

MUi ¼ MUi þP
TMUjjj 2 1; . . . :nf g; i 2 1; . . . :mf g;Tj 2 TSi; (13)

BUi ¼ BUi þP
TBUjjj 2 1; . . . :nf g; i 2 1; . . . :mf g;Tj 2 TSi; (14)

where: n number of tasks, m number of servers, TSi is the set of tasks working for the
server i

— Calculate the Available Resources of the Working Server

Khedr et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.669 11/28

http://dx.doi.org/10.7717/peerj-cs.669
https://peerj.com/computer-science/

The available resources (ARes) of a determined server j at the allocated time are
calculated by determining the remaining percentage of the three parameters: CPU
utilization, memory usage, and bandwidth utilization. Therefore, the available resources
(ARes) of server j are described as a vector of three elements as in formula 15. The three
vector elements are further explained as each member represents the accumulation of
the server availability. Formulas 16, 17, and 18 represents the accumulation of the
processor utilization (APU), accumulation of memory usage (AMU), and accumulation of
bandwidth utilization (ABU) respectively.

AResj ¼ ,APUj;AMUj;ABUj . (15)

APUj ¼ SPUj� PUjjj 2 1; . . . :nf g; i 2 1; . . . :mf g (16)

AMUj ¼ SMUj �MUjjj 2 1; . . . :nf g; i 2 1; . . . :mf g (17)

ABUj ¼ SBUj � BUjjj 2 1; . . . :nf g; i 2 1; . . . :mf g (18)

— Calculate the Server’s Working Performance

The working performance (WP) is calculated by three parameters, they are CPU
utilization (PU), memory usage (MU), and server bandwidth (BU). As discussed earlier in
this section, each parameter has its weight (WPU, WMU, WBU) for the same parameters
respectively, which measure the importance of the parameter in estimating the server’s
performance.

The working performance (WP) of a server i is calculated as presented in formula 19:

WPi ¼ PUi�WPUþMUi�WMUþ BUi=TBU� 100ð Þ �WBUð Þ=3 (19)

where TBU is the total network bandwidth.
Then, calculating the network total performance (TP) is formally illustrated in

formula 20.

TP ¼
Xm

ði¼1Þ Pi=m (20)

where p represents the performance and m is the number of servers

— Calculating the Weight of the Server

The weight of a server (W) is calculated by determining the percentage of the server’s
performance to the total servers’ performance in the network.

The weight (W) of a server i is calculated as in formula 21:

Wi ¼ Pi=TP� 100 Where TP is the total network performance (21)

— Calculate the Estimated Performance of the Server

The estimated performance (EP) of the server is related to the total estimated utilization
(TEP) of all tasks that are planned to be allocated on the server and the working
performance of the server (WP). The parameters describing the tasks’ performance are the
server’s throughput (CTH), the response time (CRT), CPU utilization (CPU), memory
usage (CMU), bandwidth utilization (CBU), latency (CL), and error rate (CER).

Khedr et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.669 12/28

http://dx.doi.org/10.7717/peerj-cs.669
https://peerj.com/computer-science/

As discussed earlier in this section, each parameter has its associated weights (WCTH,
WCRT, WCPU, WCMU, WCBU, WCL, and WCER) which contribute to estimating the
server’s performance.

The estimated utilization (TEP) of a task i can be described as in formula 22:

TEPi ¼ CTHi=TTH � 100ð Þ �WCTH þ CRTi=TRT � 100ð Þ �WCRT

þ CPUi �WCPU þ CMUi �WCMU þ CBUi=TBU � 100ð Þ �WCBU

þ CLi=TL � 100ð Þ �WCL þ CERi �WCERÞ=7
(22)

where TTH is the total throughput of the network, TRT is the total response time of the
network, TL is the total latency of the network.

The estimated allocation performance (EAP) of the server j is related to the estimated
utilization (TEP) of all tasks that are planned to be allocated on the server j

— The set of allocated tasks to a server can be formally described as in formula 23:

AllocTj ¼ Sr; . . . sd r; d 1; 2; ::; nð Þ; n ¼j jCPjf g (23)

— The estimated allocation performance (EAP) of the server i can be described as in
formula 24:

EAPj ¼ P
TEPi= STjj j (24)

where:|STj| = n (the number of elements in the set of allocated tasks for server j), i ∈
{1,….n}

— Finally, the estimated performance (EP) of the server i can be described as in
formula 25:

EPj ¼ WPjþ EAPjð Þ=2 (25)

The pseudo-code of task classification load balancing algorithm
The pseudo-code describing the Task Classification Load Balancing Algorithm is described
in Fig. 2.

EVALUATION MEASURES APPLIED IN THE CASE STUDIES
As discussed in “Background”, different parameters can be considered for evaluating the
proposed algorithm. These parameters are presented in different research such as in
Milani & Navimipour (2016) and Khedr, Idrees & Elseddawy (2016b) which include the
following: “Algorithm nature, performance, flexibility, implementation, resource
utilization, communication overhead, stability, adaptability, response time, reliability,
complexity, and cost”. Ragsdale (2011) argued in his study that different attributes that
describe the same entity may have a correlation relation between them. The attribute
which has a strong relationship with other attributes is considered to be redundant.
Therefore, although the previous set of parameters requires to be measured in order to

Khedr et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.669 13/28

http://dx.doi.org/10.7717/peerj-cs.669
https://peerj.com/computer-science/

Figure 2 The pseudo-code for the proposed Task Classification Load Balancing algorithm.
Full-size DOI: 10.7717/peerj-cs.669/fig-2

Khedr et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.669 14/28

http://dx.doi.org/10.7717/peerj-cs.669/fig-2
http://dx.doi.org/10.7717/peerj-cs.669
https://peerj.com/computer-science/

ensure the applicability of the proposed algorithm as well as its advancement over other
load balancing algorithms, however, the relations between these parameters can reduce
the evaluation cost step as these relations ensure the effect of one parameter on another.
In this section, the relations between the evaluation parameters are introduced, and
then the set of parameters that will be included in the evaluation step are determined based
on these relations.

— Relation between response time, service time, transmission time and waiting time

“Response Time” can be defined as the total required time for the server to perform the
required service. It is the time interval between the service’s requests till the end of
executing the service. Three-time intervals are involved, they are “Service Time”, “Waiting
Time”, and “Transmission Time”. “Service Time” can also be defined as the required time
interval to perform the required service. Moreover, “Waiting Time” is the time interval
in which the service was waiting in the tasks’ pool without any assignment to any server.
Finally, “Transmission Time” is the required time interval for the task to move from the
tasks’ pool to the server. The response time is the total time produced by the summation of
the three-time intervals, the request’s waiting time, service time, and transmission time.
This reveals that if any of the three parameters increase, then the response time also
increases. Therefore, the servers’ response time parameter can reflect the remaining
required time parameters to perform the service. Response time is one of the parameters
which will be used for the experiments’ evaluation in this study.

— Relation between reliability, availability and downtime

The system’s availability metric illustrates the total percentage in which the system
performs its tasks relative to the total time. The total time describes the summation of the
amount of downtime and the time in which the system is performing its tasks (Barker,
Ramirez-Marquez & Rocco, 2013). Moreover, the system reliability metric illustrates
the percentage of success for the system to accomplish the required tasks efficiently even
in a limited factor (Pham, 2006). As discussed by Barker, Ramirez-Marquez & Rocco
(2013), the availability of the system is directly affected by the system’s reliability. It is
revealed by Barker, Ramirez-Marquez & Rocco (2013) that the reliability of the system
increases the system’s availability which, consequently, reduces the system’s downtime.
Based on this relation, this study measures the system reliability for the experiments’
evaluation in this study.

— Relation between resource utilization, memory utilization, CPU utilization and
network Bandwidth

One of the performance measures is “resource utilization”. This parameter is divided
into all the system’s resources such as CPU utilization, memory utilization, and the
system’s bandwidth. The conducted experiments in this research provide a measurement
of these resources.

Khedr et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.669 15/28

http://dx.doi.org/10.7717/peerj-cs.669
https://peerj.com/computer-science/

— Relation between performance, latency, bandwidth, throughput and response time

According to (Alshaer, 2015), the performance of load balancing algorithms is measured
through measuring different parameters including latency and throughput. The research
in (Alshaer, 2015) presented different metrics for measuring the performance which
included network bandwidth, throughput, latency, and fault tolerance with highlighting
that the metrics that measure the performance can vary depending on the system's nature.

— Relationship between fault tolerance, throughput, scalability and response time

The research conducted in Sharma, Singh & Sharma (2008) discussed the relation
between fault tolerance to be a direct negative relationship with the system’s performance.
The fault tolerance metric presents the applicability of the system to adapt the system
for continuing operating with the existence of failure in the network. Sharma, Singh &
Sharma (2008) argued that fault tolerance has a direct effect on the system’s performance.
If the system cannot recover from failure, then the system performance will directly
be affected negatively. Moreover, as discussed in Sharma, Singh & Sharma (2008),
performance is the main factor that can provide a clear view of the system’s scalability,
the same research also provided that the main parameters for measuring the performance
are the response time and throughput. In this research, the experiments’ evaluation
included the average response time, minimum response time, and maximum response
time as well as the number of hits per time unit.

SIMULATION CASE STUDY
Three experiments have been conducted to evaluate the applicability of the proposed
algorithm. First, a simulation experiment has been conducted. A dataset was generated by
(https://github.com/httperf/httperf) website. The dataset included 5,000 records; each
record represented a task. The dataset is described by ten features. Four features are related
to the task, they are type, size, processing time usage, and memory usage. The remaining
six features describe the server, they are latency, response time, availability, throughput,
success-ability, and reliability.

The authors used the StresStimulus; a load testing tool for web applications and
cloud server performance. StresStimulus is a load-testing tool for websites as well as mobile
and enterprise apps. It determines the web performance and scalability of the application
under the rigors of heavy traffic load. Hundreds of thousands of physical users are
realistically emulated through on-premises load generators or in a cloud-testing
environment. At the same time, server monitoring information is collected in real-time to
pinpoint application performance bottlenecks and isolate web speed issues. It’s an end-to-
end test wizard that walks you through recording, configuring, and executing tests.
The emulating workload included the following:

� Load Patterns: simulate production load, peak load, or run a stress test, set the number
of VUs and select a steady or a step load pattern. If necessary, adjust the VU count after
the test has started.

Khedr et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.669 16/28

https://github.com/httperf/httperf
http://dx.doi.org/10.7717/peerj-cs.669
https://peerj.com/computer-science/

� The browser and the network mix: let the test client behave as hundreds of computers
connected via different networks and using different browsers. Select browsers and
network types from the list and add them to the mix. You can also add a custom network
with a specific connection speed.

The evaluation of the “Task Classification” phase was performed using the five-fold
validation approach. Determining the correctly classified tasks is applied by comparing
between the task’s parameters and the cluster’s parameters in which the task is a member.
The comparison was based on an acceptable range above and under the cluster’s
parameters which guarantee a non-interference between clusters. This range is represented
by the maximum and minimum values of the parameters which characterize the cluster’s
members. For more clarification, all tasks have been run and their attributes have been
measured. Then these tasks have been involved in the clustering phase, then the five-fold
validation has been applied. 90% of the records that belong to each cluster have been
considered as training data and 10% of each cluster have been considered as the testing
data. The considered records have been altered for each fold so that it is included as
training for all other folds. At the end of this process, each record should be involved in one
of the iterations as a member of the testing dataset. Therefore, all members in the dataset
are now having two labels, the original clustered label, and the predicted label after
applying the enhanced ID3 algorithm. Then the evaluation process of the Enhanced ID3
algorithm (Khedr, Idrees & El Seddawy, 2016a) revealed the success of correct classification
equal to 92.3% of the tasks with a total of 4,615 correctly classified tasks. The presented
result reveals an error rate equal to 7.7% with a total of 385 incorrectly classified tasks.

After applying the proposed task classification load-balancing algorithm on the
generated data, the performance of the system has been measured. The response time was
equal to 2,588.5 ms, latency was equal to 39.2 ms, throughput was equal to 12.6 hits/s, and
reliability was equal to 72.6. These results were further compared with five of the load
balancing algorithms, they are round-robin, weighted round-robin, win-win, task
scheduling, and bee colony algorithms. The comparison revealed that the proposed
algorithm strongly competes with the other load-balancing algorithms due to its high
performance which is illustrated in the evaluation measures. Table 1 presents the
evaluation measures for the six algorithms.

REAL CASE STUDYAPPLIED IN E-LEARNING SYSTEM AND
EXPERIMENTAL RESULTS
The main aim of the applied experiment is to evaluate the users’ satisfaction represented in
the students as well as the enhancement of the e-learning system targeting to support the
educational field. The positive relation between the system performance and user
satisfaction has been illustrated in different research such as in Lima et al. (2014).

In this study, two experiments have been applied in the e-learning system, which is the
field on focus. The first experiment included 1,000 students while the second experiment
included 5,000 students. The students belong to the faculty of commerce and business
administration in Helwan University. The university is a governmental Egyptian

Khedr et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.669 17/28

http://dx.doi.org/10.7717/peerj-cs.669
https://peerj.com/computer-science/

university. The aim of applying two experiments with a different number of students is to
confirm the applicability of the proposed algorithm during peak time. Both experiments
have been evaluated by measuring the determined evaluation parameters which are
discussed in “Evaluation Measures Applied in the Case Studies”. The learning system
proposed five types of tasks representing the educational activities such as lectures’ videos,
lectures’ notes, and performing exams. The students were eligible to perform five
mandatory tasks and were requested to perform the assigned tasks in 60 min. No
arrangement was required except for the online exam whose duration was 20 min as
the last task. The authors used the Moodle system as an E-learning platform for the
students, which is installed on Windows server 2008 R2 with the latest PHP version and
SQL server 2008. All materials, quizzes, and assignments have been uploaded to the
Moodle system.

The students are connected at different periods and under different tasks with different
sizes. The authors used a rented cloud host for the experiment which had the following
hardware and software configuration:

� Hardware configuration: 14 GB–24 GB RAM, 6 GB RAM Dynamic, 10 CPU Cores,
24 GHz Total CPU Power, 500 GB SSD Disk Space, Super Memory Cache.

� Network configuration: Unlimited Free SSL for Life (256 bits), VPN Support, Forex
Optimized, Free CDN, CloudFlare Railgun, Unmetered Monthly Traffic, 1,000 Mbps
Network Port, Uptime Guarantee, Unlimited Maximum Number of Web Sites.

� Software available: OS: Windows_2008_R2_Std, Crystal Reports Support, Webmail:
Horde, Tomcat/Java Support, MS SQL Express, MS SQL, Oracle XE Support, MySQL
Support, Microsoft Access, Automatic Backups (Snapshots), SolidCP Control Panel,
Web Application Gallery, Classic ASP, ASP.NET 1.1, ASP.NET 2.0, PHP 4, PHP 5, Perl,
CGI-BIN.

A comparison has been presented between the proposed algorithm and five of the
well-known load-balancing algorithms. The comparison revealed to the higher impact of
the proposed algorithm on the e-learning system performance. The idea of selecting
algorithms of both static and dynamic categories is to reveal the advancement of the
proposed algorithms on different mechanisms. The contributing algorithms in the
comparison were round-robin, task scheduling, weight round-robin, min-min, and
bee-colony.

Table 1 Evaluation measures results for the six load balancing algorithms.

Evaluation metric Task classification Round robin Min-Min Weighted round robin Task scheduling Bee colony

Response time (ms) 2,588.5 5,618.2 9,014.6 5,107.9 4,176.9 5,852.0

Latency (ms) 39.2 206.7 322.9 110.4 57.8 317.0

Throughput (Hits/second) 12.6 3.3 0.4 2.9 9.5 4.2

Reliability (%) 72.6 64.4 67.8 67.6 70.0 68.5

Khedr et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.669 18/28

http://dx.doi.org/10.7717/peerj-cs.669
https://peerj.com/computer-science/

Briefly, the task scheduling algorithm targets prioritizing tasks based on a defined
criterion to reach higher resources’ utilization for the defined tasks in the appropriate time
scheduling. The task scheduling algorithm allocates the tasks in a first-come-first-served
strategy which has no criteria for assignment other than the available resources
(Al-Maytami et al., 2021). On the other hand, the round-robin algorithm allocates tasks
following the equal processor time distribution for the participating tasks using a time unit
called “quantum”. The critical issue for round-robin is the good determination of the
quantum duration time, which is the main pillar for its algorithm. Identifying incorrect
large quantum time leads to raising the response time, while incorrect small quantum time
leads to processor overhead. Consequently, identifying quantum duration may affect the
task processing either to be completed or to be re-scheduled at the end of the queue to
continue processing (Balharith & Alhaidari, 2019).

Moreover, the weighted round-robin algorithm provides weights for the services to
identify the service’s requirements. Weighted round-robin divides the tasks into classes
and then assigns fixed weight representing the quantum segments for each class. Although
the algorithm is considered simple and low in computation, however, the fixed weight
is not suitable for non-equal load tasks. This situation leads to lower throughput and poor
performance in high traffic conditions (Saidu et al., 2014). Additionally, the min-min
task schedules the required services in an ascending order based on their required
execution time frame. That is the task with a required smaller time execution is served first.
However, this strategy does not consider the machines’ load distribution and results
in delaying the larger execution time tasks by preferring the tasks with lower time
execution (Mathew, Sekaran & Jose, 2014). Finally, the bee-colony algorithm is used for
scheduling tasks based on the foraging behavior of the honeybees which reflects the
self-organization approach. It considers the previous nodes’ status while applying the load
balance for the current nodes. As the bees announce the food representing the solution,
therefore, the duration for the announcement raises the computation time.

The experiments’ results (1,000 students, 5,000 students)
This section illustrates the experimental results of the proposed task classification load
balancing algorithm for a system with a load of 1,000 active students performing different
tasks in the first experiment and 5,000 students in the second experiment. The results
also present the measures for the five mentioned load-balancing algorithms: round-robin,
task scheduling, weight round-robin, min-min, and bee-colony. Table 2 presents the
measures’ results for the algorithms under testing. Moreover, Fig. 3 demonstrates the
monitoring of the system while using each of the six algorithms, the proposed algorithm
(LBTC), bee colony (LBBC), min-min (LBMM), round robin (LBRR), weighted round-
robin (LBWRR), and task scheduling (LBTS). The illustrated comparisons in both Table 2
and Fig. 3 confirm that the proposed algorithm provides the highest performance
compared with other algorithms in the peak time. These results are further discussed in
“Comments on the Experiments’ Results” and the behavior of the proposed algorithm is
explained.

Khedr et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.669 19/28

http://dx.doi.org/10.7717/peerj-cs.669
https://peerj.com/computer-science/

Evaluation of the users’ satisfaction
The target of the proposed study is to enhance the e-learning system targeting to increase
the users’ satisfaction level, which is considered one of the most important targets for using
e-learning systems. A comparison has been applied between the e-learning system after
applying the proposed algorithm and the e-learning system which has been developed in
Khedr & Idrees (2017b). The reason for comparing these systems is that both of them have
been applied in Helwan University, which provides a clear focus of the enhancement
perspective.

Measuring users’ satisfaction has been on focus for a long time, therefore, scales have
been proposed for this target. In Omar (1993), a user satisfaction scale has been developed
which included 23 items that were following five factors. However, the only factor
named “Information Quality and Accessibility” is considered in this study. Other scales
have been proposed which focused on the same factors such as in Tojib & Sugianto (2007).
The research considered the same factors for B2E products, the proposed scale was applied
in Sugianto & Tojib (2007).

The main focus of this study is considering the factor of Information Accessibility.
Therefore, this study has developed a review containing seven questions to measure the
seven items representing this factor. The students provided two separate answers for
each question, one for the previously applied e-learning system (Khedr & Idrees, 2017b),
and the second answer for the proposed e-learning system. Therefore, two columns are
provided for the questions, the first column before applying the proposed algorithm, and
the second column after applying the proposed algorithm. A comparison has been
performed for the students’ satisfaction level in both systems. The target of this
comparison is to ensure the increase in the students’ satisfaction level when using the
proposed system in the perspective of “Information Quality and Accessibility”. Seven
measures have been included in the questionnaire, which are the system’s timeliness,
system availability, the flexibility of data, user confidence in the system, system’s ease of
access, system’s ease of use, and system’s reliability.

The provided review follows the five-point Likert scale that is introduced in Likert
(1932). The five-point scale is presented for the reviews’ questions individually. The
student determined his satisfaction level considering the question topic by selecting one

Table 2 Evaluation measures’ results for the algorithms (5,000 students).

Metric Proposed task classification Round robin Task scheduling Weight round robin Min-Min Bee colony

Avg. response time (ms) 4,870 10,570 9,740 9,610 16,960 11,010

Min. response time (ms) 1,229 1,242 225 1,909 6,764 1,217

Max. response time (ms) 70,111 60,061 8,033 19,911 31,005 138,342

Avg. latency (ms) 2,548.657 809.13 2,200.33 5,430.44 5,421.94 5,280.58

Avg. bandwidth (KB) 92.21 52.8 85.52 70.28 60.26 73.34

Avg. throughput (h/s) 9.88 2.58 7.45 2.27 0.3 3.29

Speed (ms) 6.77 5.25 5.9 4.45 3.48 5.87

Reliability 73.45 65.22 70.87 68.42 68.66 69.33

Khedr et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.669 20/28

http://dx.doi.org/10.7717/peerj-cs.669
https://peerj.com/computer-science/

Figure 3 System monitoring comparison between five of the well-known algorithms and the
proposed algorithm (experiment 5,000 students). Full-size DOI: 10.7717/peerj-cs.669/fig-3

Khedr et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.669 21/28

http://dx.doi.org/10.7717/peerj-cs.669/fig-3
http://dx.doi.org/10.7717/peerj-cs.669
https://peerj.com/computer-science/

value 1 which represents strongly disagree to five which represents strongly agree.
Analyzing the results of this review is performed using a statistical method to present the
student’s satisfaction level. The review has been distributed to the students and 3,670
out of 5,000 responses have been collected, the results of the review questions are
demonstrated in Table 3. The results revealed an increase in the students’ satisfaction level
considering the system’s performance.

Comments on the experiments’ results
It is revealed in the experiment’s results that the proposed task classification load balancing
algorithm has the lowest response time. As previously discussed in “Evaluation Measures
Applied in the Case Studies”, response time is related to the waiting time, transmission
time, and execution time. Based on the proposed algorithm’s approach, the waiting
time is minimized as the tasks are classified and then allocated in groups, not in sequence,
based on the classification results which leads to a lower waiting time to the tasks in
allocation as well as lower total transmission time. The execution time is also minimized as
the successful allocation to the cloud nodes that are less utilized leads to a higher
performance of the cloud nodes which supports faster execution of the required tasks. It is
also revealed in the evaluation results that the task classification load balancing algorithm
maintains the highest bandwidth of the system. Bandwidth is measured in bits/second,
which represents the allowed amount of data that migrated from one point to the other
through the network in the time unit. As the proposed algorithm has the lowest response
time and, consequently, the lowest transmission time leads to more user requests being
allowed in the system and migrate through the network for execution. The higher
considered users’ requests in a time unit lead to the higher availability of the bandwidth.

Moreover, the throughput is measured by the number of hits per second-time unit.
These hits represent the users’ requests. This means that the higher number of hits in a
second reveals that the system can accept a larger number of requests. The system
becomes able to accept the hits when it has available resources and available bandwidth.
Therefore, based on the minimum response time of the proposed algorithm and the high

Table 3 Results of evaluation measures for the algorithms.

Item Proposed E-learning system Previous E-learning system
(Khedr & Idrees, 2017b)

Count % Count %

Timeliness 3,464 95.37 3,272 89.16

Availability 3,500 96.37 3,119 84.99

Quick flexible access to data 3,475 94.69 3,096 84.36

Flexibility of data and reports 3,461 94.3 3,270 89.11

User confidence in system 3,509 95.6 3,370 91.85

Ease of access to system 3,570 97.72 3,091 84.23

Ease of use 3,430 93.46 3,304 90.05

Average 3,450 95.36 3,217 87.66

Khedr et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.669 22/28

http://dx.doi.org/10.7717/peerj-cs.669
https://peerj.com/computer-science/

bandwidth availability, this leads to the availability of the network to receive a higher
number of hits. Additionally, the latency metric demonstrates the delay that the system
may face during the operation. It is clear that lower latency is required to avoid bottlenecks
in the network. The evaluation measures revealed that the proposed system provides
the lowest latency among all the compared systems. This result is due to the low response
time which grants the availability of the system to respond to more requests. This fast
response normally leads to a lower latency of the system.

Finally, focusing on the algorithm complexity, the research in Ganeshan, Srinivasalou &
Kousick (2013) reveals that the linear complexity of the round-robin and weighted round-
robin algorithms to be O(1) which is the lowest complexity, however, it is discussed
earlier in “Background” that static algorithms are less efficient, while Desai & Prajapati
(2013) revealed the quadratic complexity of the min-min algorithm. Following the big O
notation in calculating the algorithm complexity, it is deducted that the proposed
algorithm is also following the linear complexity paradigm which contributes to the
proposed algorithm due to its acceptable complexity and higher performance.

CONCLUSION
This study proposed a novel load balancing algorithm that can be efficiently applied to the
cloud environment. The target of applying the proposed algorithm is to enhance the
e-learning system by ensuring the students’ highest satisfaction degree. This target is
reached through optimizing the performance of the proposed algorithm in the e-learning
process in general and in the peak time in specific.

The proposed algorithm was based on two main phases, the first phase targeted to
classify the users’ requests based on the required resources and the predicted system’s
performance. Then the second phase targeted the efficient requests’ allocation to the
servers while maintaining the system’s performance. The allocation was based on selecting
the lowest utilized server with respect to the highest utilized server as well as retaining the
lowest utilization threshold. The allocation methodology aimed to avoid the servers’
over-loading and ensure a balanced load distribution.

The study proved the efficiency of the proposed algorithm through two main
experiments. The first experiment was a simulation-based experiment that aimed to
confirm the applicability of the classification phase and its impact on the whole process by
evaluating the algorithm’s performance. The second experiment was a real-case
experiment, the system was applied in Helwan University in Egypt which included two
sub-experiments, 1,000 and 5,000 students. The results revealed the positive impact of
the proposed algorithm on the e-learning system which is deployed on a cloud
environment. The performance of the system was evaluated through the standard metrics
which revealed satisfying results. The users’ satisfaction is also evaluated through
distributing a questionnaire to the students. the questionnaire followed a standard user
satisfaction scale to determine their satisfaction degree. The results revealed a satisfaction
percentage equal to 93.9%. The proposed algorithm was compared with well-known

Khedr et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.669 23/28

http://dx.doi.org/10.7717/peerj-cs.669
https://peerj.com/computer-science/

algorithms to prove its advantages over these algorithms which followed different
approaches, these algorithms are min-min, round-robin, weighted round-robin, task
scheduling, and bee colony algorithms.

The future plan of this research is to apply the proposed algorithm in different domains,
as well as examining the applicability to dynamically determine the suitable classification
algorithm based on the field under examination. As different fields usually have different
tasks to be applied, then determining the suitable classification algorithm will certainly
raise the accuracy degree of the classification results. Moreover, the dependency between
the tasks could be further considered for enhancing the proposed algorithm.

ACKNOWLEDGEMENTS
With deep appreciation, the authors would like to thank Eng. Hesham, Elmasry and Eng.
Shrouk Hoassam for their support of this publication.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Ayman E. Khedr conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

� Amira M. Idrees conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

� Rashed Salem conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

The Faculty of Commerce and Business Administration, Helwan University granted
approval to conduct the experiment.

Data Availability
The following information was supplied regarding data availability:

Data and code are available in the Supplementary Files.

Khedr et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.669 24/28

http://dx.doi.org/10.7717/peerj-cs.669#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.669
https://peerj.com/computer-science/

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.669#supplemental-information.

REFERENCES
Abd AL-Nabi DL, Ahmed SS. 2013. Survey on classification algorithms for data survey on

classification algorithms for data. Computer Engineering and Intelligent Systems 4(8):18–24.

Afzal S, Abdur Rahman B. 2020. A hybrid multiple parallel queuing model to enhance QoS in
cloud computing. International Journal of Grid and High Performance Computing 12(1):18–34
DOI 10.4018/IJGHPC.

Afzal S, Kavitha G. 2018a. A taxonomic classification of load balancing metrics: a systematic
review. In: 33rd Indian Engineering Congress, Udaipur, 2018: Technical Volume. 85–90.

Afzal S, Kavitha G. 2018b. Optimization of task migration cost in infrastructure cloud computing
using IMDLB algorithm. In: 2018 International Conference on Circuits and Systems in Digital
Enterprise Technology (ICCSDET). Piscataway: IEEE.

Afzal S, Kavitha G. 2019. Load balancing in cloud computing—a hierarchical taxonomical
classification. Journal of Cloud Computing: Advances, Systems and Applications 8:22.

Afzal S, Kavitha G, Gull S. 2020. Parallel queuing model in a dynamic cloud environment-study of
impact on QoS: an analytical approach. In: Raju K, Senkerik R, Lanka S, Rajagopal V, eds. Data
Engineering and Communication Technology. Advances in Intelligent Systems and Computing.
Vol. 1079. Singapore: Springer.

Al Mazroi A, Khedr AE, Idrees AM. 2021. A proposed customer relationship framework based on
information retrieval. Expert Systems With Applications 176:114882.

Al-Maytami BA, Fan P, Hussain A, Baker T, Liatsis P. 2021. A task scheduling algorithm with
improved makespan based on prediction of tasks computation time algorithm for cloud
computing. IEEE Access 7:160916–160926.

Alshaer H. 2015. An overview of network virtualization and cloud network as a service.
International Journal of Network Management 25(1):1–30 DOI 10.1002/nem.1882.

Angelova N, Kiryakova G, Yordanova L. 2015. Cloud-based LMS for E-learning. Trakia Journal of
Sciences 13(1):386–391 DOI 10.15547/tjs.2015.s.01.066.

Balharith T, Alhaidari F. 2019. Round robin scheduling algorithm in CPU and cloud computing: a
review. In: 2019 2nd International Conference on Computer Applications & Information Security
(ICCAIS). Piscataway: IEEE.

Barker K, Ramirez-Marquez JE, Rocco CM. 2013. Resilience-based network component
importance measures. Reliability Engineering and System Safety 117(2):89–97
DOI 10.1016/j.ress.2013.03.012.

Chen S-L, Chen Y-Y, Kuo S-H. 2016. CLB: a novel load balancing architecture and algorithm for
cloud services. Computers & Electrical Engineering 58:154–160.

Dahab MY, Idrees AM, Hassan HA, Rafea A. 2010. Pattern based concept extraction for Arabic
documents. The International Journal of Intelligent Computing and Information Sciences
10(2):1–14.

De Falco I, Laskowski E, Olejnik R, Scafuri U, Tarantino E, Tudruj M. 2015. Extremal
optimization applied to load balancing in execution of distributed programs. Applied Soft
Computing 30(4):501–513 DOI 10.1016/j.asoc.2015.01.048.

Desai T, Prajapati J. 2013. A survey of various load balancing techniques and challenges in cloud
computing. International Journal of Scientific & Technology Research 2(11):158–161.

Khedr et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.669 25/28

http://dx.doi.org/10.7717/peerj-cs.669#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.669#supplemental-information
http://dx.doi.org/10.4018/IJGHPC
http://dx.doi.org/10.1002/nem.1882
http://dx.doi.org/10.15547/tjs.2015.s.01.066
http://dx.doi.org/10.1016/j.ress.2013.03.012
http://dx.doi.org/10.1016/j.asoc.2015.01.048
http://dx.doi.org/10.7717/peerj-cs.669
https://peerj.com/computer-science/

Dominic M, Francis S. 2014. Load balancing using peers in an E-learning environment.
International Journal of Computer Science and Business Informatics 14(1):22–29.

Elmasry HE, Khedr AE, Nasr MM. 2019. An adaptive technique for cost reduction in cloud data
centre environment. International Journal of Grid and Utility Computing 10(5):448–464
DOI 10.1504/IJGUC.2019.102011.

Esmeir S, Markovitch S. 2007. Anytime learning of decision trees. Journal of Machine Learning
Research 8:891–933.

Fernández A, Peralta D, Herrera F, Benítez J. 2012. An overview of E-learning in cloud
computing. In:Workshop on Learning Technology for Education in Cloud (LTEC’12)—Advances
in Intelligent Systems and Computing. Vol. 173. Berlin, Heidelberg: Springer, 35–46.

Ganeshan K, Srinivasalou S, Kousick S. 2013. Implementation of honey bee algorithm through
cloud computing. IJREAT International Journal of Research in Engineering & Advanced
Technology 1(5):1–5.

Hassouna DH, Khedr AE, Idrees AM, ElSeddawy AI. 2020. Intelligent personalized system for
enhancing the quality of Learning. Journal of Theoretical and Applied Information Technology
98(13):2199–2213.

Kalapatapu A, Sarkar M. 2012. Cloud computing: an overview. Abingdon: Taylor & Francis.

Kanakala R, Reddy V, Karthik K. 2015. Performance analysis of load balancing techniques in
cloud computing. In: IEEE International Conference on Electrical, Computer and
Communication Technologies (ICECCT). Piscataway: IEEE.

Khedr AE, El Seddawy AI, Idrees AM. 2014. Performance tuning of K-Mean clustering algorithm
a step towards efficient DSS. International Journal of Innovative Research in Computer Science &
Technology 2(6):111–118.

Khedr AE, Idrees AM. 2017a. Adapting load balancing techniques for improving the performance
of e-learning educational process. Journal of Computers 12(3):250–257
DOI 10.17706/jcp.12.3.250-257.

Khedr AE, Idrees AM. 2017b. Enhanced E-learning system for E-courses based on cloud
computing. Journal of Computers 12(1):10–19 DOI 10.17706/jcp.12.1.10-19.

Khedr AE, Idrees AM, Alsheref FK. 2019. A proposed framework to explore semantic relations for
learning process management. International Journal of E-Collaboration 15(4):46–70
DOI 10.4018/IJeC.

Khedr AE, Idrees AM, El Seddawy AI. 2016a. Enhancing iterative dichotomiser 3 algorithm for
classification decision tree. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery 6(2):70–79 DOI 10.1002/widm.1177.

Khedr AE, Idrees AM, Elseddawy A. 2016b. Adaptive classification method based on data
decomposition. Journal of Computer Science 12(1):31–38 DOI 10.3844/jcssp.2016.31.38.

Khedr AE, Idrees AM, Hegazy A-F, El-Shewy S. 2017. A proposed configurable approach for
recommendation systems via data mining techniques. Enterprise Information Systems
12(2):196–217.

Khedr A, Kholeif S, Hessen S. 2015. Enhanced cloud computing framework to improve the
educational process in higher education: a case study of Helwan University in Egypt.
International Journal of Computers & Technology 14(6):5814–5823.

Likert R. 1932. A technique for the measurement of attitudes. Archives of Psychology 22(140):1–55.

Lima FR, Rodrigues EB, Maciel TF, Nordberg M. 2014. Resource allocation for improved
user satisfaction with applications to LTE. In: Resource Allocation and MIMO for 4G and
Beyond. New York: Springer, 63–104.

Khedr et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.669 26/28

http://dx.doi.org/10.1504/IJGUC.2019.102011
http://dx.doi.org/10.17706/jcp.12.3.250-257
http://dx.doi.org/10.17706/jcp.12.1.10-19
http://dx.doi.org/10.4018/IJeC
http://dx.doi.org/10.1002/widm.1177
http://dx.doi.org/10.3844/jcssp.2016.31.38
http://dx.doi.org/10.7717/peerj-cs.669
https://peerj.com/computer-science/

Lindsten F, Ohlsson H, Ljung L. 2011. Just relax and come clustering! a convexification of k-means
clustering. Linköping, Sweden: Automatic Control at Linköpings Universitet, Department of
Electrical Engineering.

Mathew T, Sekaran KC, Jose J. 2014. Study and analysis of various task scheduling algorithms in
the cloud computing environment. In: 2014 International Conference on Advances in
Computing, Communications and Informatics (ICACCI). Piscataway: IEEE.

McGill TJ, Klobas JE, Renzi S. 2014. Critical success factors for the continuation of E-learning
initiatives. Internet and Higher Education 22(4/5):24–36 DOI 10.1016/j.iheduc.2014.04.001.

Mihaescu MC, Burdescu DD, Mocanu M, Ionascu CM. 2011. Load balancing procedure for
building distributed e-learning systems. In: The Third International Conference on Mobile,
Hybrid, and On-Line Learning. IARIA, 82–87.

Milani AS, Navimipour NJ. 2016. Load balancing mechanisms and techniques in the cloud
environments: systematic literature review and future trends. Journal of Network and Computer
Applications 71(3):86–98 DOI 10.1016/j.jnca.2016.06.003.

Mostafa AM, Helmy YM, Khedr AE, Idrees AM. 2020. A proposed architectural framework for
generating personalized users’ query response. Journal of Southwest Jiaotong University
55(5):1–13.

OmarMH. 1993.Development of a user information satisfaction scale: an alternative measure with
wide applicability. Journal of Information Technology Management IV(2):1–13.

Pham H. 2006. System reliability concepts, Part of the Series Springer Series in Reliability
Engineering. Berlin: Springer, 9–75.

Pirdavani A, De Pauw E, Brijs T, Daniels S, Magis M, Bellemans T, Wets G. 2015. Application of
a rule-based approach in real-time crash risk prediction model development using loop detector
data. Traffic Injury Prevention 16(8):786–791 DOI 10.1080/15389588.2015.1017572.

Ragsdale S. 2011. The complex and motivating factors that affect faculty adoption of online
teaching. Journal of Applied Learning Technology 1(1):6–9.

Rajarajeswari S. 2013. ECLB: a novel exhaustive criterion based load balancing algorithm for
E-learning platform by data grid technologies. International Journal Advanced Networking and
Applications 4(6):1786–1792.

Ramana K, Subramanyam A, Ananda Rao A. 2011. Comparative analysis of distributed web
server system load balancing algorithms using qualitative parameters. VSRD-IJCSIT
1(8):592–600.

Saidu I, Subramaniam S, Jaafar A, Zukarnain ZA. 2014. A load-aware weighted round-robin
algorithm for IEEE 802.16 networks. EURASIP Journal on Wireless Communications and
Networking 226(1):817 DOI 10.1186/1687-1499-2014-226.

Sharma S, Singh S, Sharma M. 2008. Performance analysis of load balancing algorithms.
International Journal of Computer, Electrical, Automation, Control and Information Engineering
2(2):367–370.

Sugianto D-F, Tojib DR. 2007. Measuring user satisfaction with B2E portals. Monash Business
Review 3(1):1–8.

Sultan N, Khedr AE, Idrees AM, Kholeif S. 2017. Data mining approach for detecting key
performance indicators. Journal of Artificial Intelligence 10(2):59–65
DOI 10.3923/jai.2017.59.65.

Tojib DR, Sugianto LF. 2007. The development and Empirical validation of the b2E Portal user
satisfaction (b2EPus)scale. Journal of Organizational and End User Computing 19(3):43–63
DOI 10.4018/JOEUC.

Khedr et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.669 27/28

http://dx.doi.org/10.1016/j.iheduc.2014.04.001
http://dx.doi.org/10.1016/j.jnca.2016.06.003
http://dx.doi.org/10.1080/15389588.2015.1017572
http://dx.doi.org/10.1186/1687-1499-2014-226
http://dx.doi.org/10.3923/jai.2017.59.65
http://dx.doi.org/10.4018/JOEUC
http://dx.doi.org/10.7717/peerj-cs.669
https://peerj.com/computer-science/

Van Hilten LG. 2015.Higher education is key to economic development (but it’s not as simple as you
think)—Atlas: research for a better world. Amsterdam: Elsevier.

Xu D, Tian Y. 2015. A comprehensive survey of clustering algorithms. Annals of Data Science
2(2):165–193 DOI 10.1007/s40745-015-0040-1.

Xu R, Wunsch D. 2005. Survey of clustering algorithms. IEEE Transactions on Neural Networks
16(3):645–678 DOI 10.1109/TNN.2005.845141.

Khedr et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.669 28/28

http://dx.doi.org/10.1007/s40745-015-0040-1
http://dx.doi.org/10.1109/TNN.2005.845141
http://dx.doi.org/10.7717/peerj-cs.669
https://peerj.com/computer-science/

	Enhancing the e-learning system based on a novel tasks’ classification load-balancing algorithm
	Introduction
	Background
	Related work
	E-learning based on task classification load balancing algorithm
	Evaluation measures applied in the case studies
	Simulation case study
	Real case study applied in e-learning system and experimental results
	Conclusion
	flink9
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

