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ABSTRACT

Video captioning, i.e., the task of generating captions from video sequences creates a

bridge between the Natural Language Processing and Computer Vision domains of

computer science. The task of generating a semantically accurate description of a video

is quite complex. Considering the complexity, of the problem, the results obtained in

recent research works are praiseworthy. However, there is plenty of scope for further

investigation. This paper addresses this scope and proposes a novel solution.Most video

captioningmodels comprise two sequential/recurrent layers—one as a video-to-context

encoder and the other as a context-to-caption decoder. This paper proposes a novel

architecture, namely Semantically Sensible Video Captioning (SSVC) which modifies

the context generationmechanismbyusing twonovel approaches—‘‘stacked attention’’

and ‘‘spatial hard pull’’. As there are no exclusivemetrics for evaluating video captioning

models, we emphasize both quantitative and qualitative analysis of our model. Hence,

we have used the BLEU scoring metric for quantitative analysis and have proposed a

human evaluation metric for qualitative analysis, namely the Semantic Sensibility (SS)

scoring metric. SS Score overcomes the shortcomings of common automated scoring

metrics. This paper reports that the use of the aforementioned novelties improves the

performance of state-of-the-art architectures.

Subjects Human–Computer Interaction, Computer Vision, Data Mining and Machine Learning,

Natural Language and Speech

Keywords Video captioning, Stacked attention, Spatial Hard Pull, Sequence to sequence, LSTM

INTRODUCTION

The incredible success in the image captioning domain has led the researchers to explore

similar avenues like video captioning. Video captioning is the process of describing a

video with a complete and coherent caption using Natural Language Processing. The core

mechanism of video captioning is based on the sequence-to-sequence architecture (Gers,

Schmidhuber & Cummins, 2000). In video captioning models, the encoder encodes the

visual stream and the decoder generates the caption. Such models are capable of retaining

both the spatial and temporal information which is essential for generating semantically

correct video captions. This requires the video to be split up into a sequence of frames. The
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Caption: “Potatoes are being chopped by a knife”

Figure 1 Video captioning task.

Full-size DOI: 10.7717/peerjcs.664/fig-1

model uses these frames as input and generates a series of meaningful words in the form

of a caption as output. In Fig. 1, an example of a video captioning task has been shown.

Video captioning has many applications, for example, the interaction between humans

and machines, aid for people with visual impairments, video indexing, information

retrieval, fast video retrieval, etc. Unlike image captioning where only spatial information

is required to generate captions, video captioning requires the use of a mechanism that

combines spatial information with temporal information to store both the higher level and

the lower level features to generate semantically sensible captions. Although there are good

works in this field, there is still plenty of opportunity for investigation. One of the main

opportunities is improving the ability of models to extract high-level features from videos

to generate a more meaningful caption. This paper primarily focuses on this aspect.

In our paper, we propose a novel architecture that is based on the seq2seq model

proposed by Venugopalan et al. (2015). Our novel architecture tries to improve upon this

work following the guidelines laid out by preceding literature. Our novel architecture

aims to show a possible direction for potential future research. The goal of our model

is to encode a video (presented in the form of a sequence of images) in order to extract

information from it and decode encoded data to generate a sentence (presented in the form

of a sequence of words). On the encoder side, along with the bi-directional LSTM layers,

our model uses the combination of two novel methods—a variation of dual-attention

(Nam, Ha & Kim, 2017), namely, Stacked Attention, and a novel information extraction

method, namely, Spatial Hard Pull. The Stacked Attention network sets the priority to the

object in the video layer-by-layer. To overcome the redundancy of similar information

being lost in the LSTM layers, we introduce the Spatial Hard Pull layer. On the decoding
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side, we employ a sequential decoder with a single layer LSTM and a fully connected layer

to generate a word from a given context produced by the encoder.

Most text generation architectures use BLEU (Papineni et al., 2002) as the scoring

metrics. But due to it’s inability of considering recall, few variations, includingROUGE (Lin,

2004), METEOR (Banerjee & Lavie, 2005), etc., are introduced. Though these automatic

scoring metrics are modified in different ways to give more meaningful results, they

have their shortcomings (Kilickaya et al., 2016; Aafaq et al., 2019b). On top of that, no

scoring metrics, solely used for the purpose of video captioning, are available to the best

of our knowledge. Some relevant works (Xu et al., 2017; Pei et al., 2019) have used human

evaluation. To get a better understanding of the captioning capability of our model, we

perform qualitative analysis based on human evaluation and propose ourmetric, ‘‘Semantic

Sensibility Score’’ or ‘‘SS Score’’, in short, for video captioning.

RELATED WORKS

For the past few decades, much work has been conducted on analysing videos to extract

different forms of information, such as, sports-feature summary (Shih, 2017; Ekin, Tekalp

& Mehrotra, 2003; Ekin & Tekalp, 2003; Li & Sezan, 2001), medical video analysis (Quellec

et al., 2017), video finger-print (Oostveen, Kalker & Haitsma, 2002) and other high-level

features (Chang et al., 2005; Divakaran, Sun & Ito, 2003; Kantorov & Laptev, 2014). These

high-level feature extraction mechanisms heavily relied on analyzing each frame separately

and therefore, could not retain the sequential information. When the use of memory

retaining cells like LSTM (Gers, Schmidhuber & Cummins, 2000) became computationally

possible, models were only then capable of storing meaningful temporal information

for complex tasks like caption generation (Venugopalan et al., 2015). Previously, caption

generation was mostly treated with template based learning approaches (Kojima, Tamura

& Fukunaga, 2002; Xu et al., 2015) or other adaptations of statistical machine translation

approach (Rohrbach et al., 2013).

Sequence-to-sequence architecture for video captioning

Video is a sequence of frames and the output of a video captioning model is a sequence

of words. So, video captioning can be classified as a sequence-to-sequence(seq2seq)

task. Sutskever, Vinyals & Le (2014) introduce the seq2seq architecture where the encoder

encodes an input sentence, and the decoder generates a translated sentence. After the

remarkable result of seq2seq architecture in different seq2seq tasks (Shao et al., 2017;

Weiss et al., 2017), it is only intuitive to leverage this architecture in video captioning

works like (Venugopalan et al., 2015). In recent years, different variations of the base

seq2seq architecture has been widely used, e.g., hierarchical approaches (Baraldi, Grana

& Cucchiara, 2017; Wang et al., 2018a; Shih, 2017), variations of GAN (Yang et al., 2018),

boundary-aware encoder approaches (Shih, 2017; Baraldi, Grana & Cucchiara, 2017) etc.

Attention in sequence-to-sequence tasks

In earlier seq2seq literature (Venugopalan et al., 2015; Pan et al., 2017; Sutskever, Vinyals

& Le, 2014), the decoder cells generate the next word from the context of the preceding
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word and the fixed output of the encoder. As a result, the overall context of the encoded

information often got lost and the generated output became highly dependent on the last

hidden cell-state. The introduction of attention mechanism (Vaswani et al., 2017) paved

the way to solve this problem. The attention mechanism enables the model to store the

context from the start to the end of the sequence. This allows the model to focus on

certain input sequences on each stage of output sequence generation (Bahdanau, Cho &

Bengio, 2014; Luong, Pham &Manning, 2015). Luong, Pham &Manning (2015) proposed

a combined global-local attention mechanism for translation models. In global attention

scheme, the whole input is given attention at a time, while the local attention scheme

attends to a part of the input at a given time. The work on video captioning enhanced

with these ideas. Bin et al. (2018) describe a bidirectional LSTM model with attention

for producing better global contextual representation as well as enhancing the longevity

of all the contexts to be recognized. Gao et al. (2017) build a hierarchical decoder with

a fused GRU. Their network combines a semantic information based hierarchical GRU,

and a semantic-temporal attention based GRU and a multi-modal decoder. Ballas et al.

(2016) proposed to leverage the frame spatial topology by introducing an approach to

learn spatio-temporal features in videos from intermediate visual representations using

GRUs. Similarly, several other variations of the attention exists including multi-faceted

attention (Long, Gan & De Melo, 2018),multi-context fusion attention (Wang et al., 2018a)

etc. All these papers use one attention at a time. This limits the available information for

the respective models. Nam, Ha & Kim (2017) introduce a mechanism to use multiple

attentions. With their dual attention mechanism, they have retained visual and textual

information simultaneously. Ziqi Zhang and team have achieved commendatory scores

by proposing an object relational graph (ORG) based encoder capturing more detailed

interaction features and designed a teacher-recommended learning (TRL) method to

integrate the abundant linguistic knowledge into the caption model (Zhang et al., 2020).

METHODOLOGY

As shown in Fig. 2, this paper proposes a novel architecture that uses a combination

of stacked-attention (see Fig. 3) and spatial-hard-pull on top of a base video-to-text

architecture to generate captions fromvideo sequences. This paper refers to this architecture

as Semantically Sensible Video Captioning (SSVC).

Data pre-processing and representation

The primary input of the model is a video sequence. The data pre-processor converts a

video clip into a usable video sequence format of 15 frames before passing it to the actual

model. Each converted video sequence contains 15 frames placed separated by an equal

time gap. The primary output of the model is a sequence of words. The words are stacked

to generate the required caption.

Visual feature extraction

A video is nothing but a sequence of frames. Each frame is a 2D image with n channels.

In sequential architectures, either the frames are directly passed into ConvLSTM
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Figure 2 Proposed model with stacked attention and spatial hard pull.

Full-size DOI: 10.7717/peerjcs.664/fig-2

Figure 3 Diagram of stacked attention.

Full-size DOI: 10.7717/peerjcs.664/fig-3
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(Xingjian et al., 2015) layer(s) or the frames are individually passed through a convolutional

block and then are passed into LSTM (Gers, Schmidhuber & Cummins, 2000) layer(s). For

our computational limitations, our model uses the latter option. Like ‘‘Sequence to

Sequence–Video to Text’’ (Venugopalan et al., 2015), our model uses a pre-trained VGG16

model (Simonyan & Zisserman, 2014) and extracts the fc7 layer’s output. This CNN layer

converts each (256×256×3) shaped frame into (1×4096) shaped vectors. These vectors

are primary inputs of our model.

Textual feature representation

Each video sequence has multiple corresponding captions and each caption has a variable

number ofwords. In ourmodel, to create captions of equal length all the captions are padded

with ‘‘pad’’ markers. The ‘‘pad’’ markers help create a uniformity in the data structure.

The inclusion of ‘‘pad’’ markers do not create any change in the output as they are omitted

during the conversion of tokenized words to complete sentences. A start marker, and an

end marker, marks the start and end of each caption. The entire text data is tokenized,

and each word is represented by a one-hot vector of shape (1×uniquewordcount ). So, a

caption with m words is represented with a matrix of shape (m×1×uniquewordcount ).

Instead of using these one-hot vectors directly, our model embeds each word into vectors

of shape (1× embeddingdimension) with a pre-trained embedding layer. The embedded

vectors are semantically different and linearly distant in vector space from others on the

basis of relationship of the corresponding words.

Base architecture

Like most sequence-to-sequence models, our base architecture consists of a sequential

encoder and a sequential decoder. The encoder converts the sequential input vectors into

contexts and the decoder converts those contexts into captions. This work proposes an

encoder with double LSTM layers with stacked attention. The introduction of a mechanism

that stacks attention and the mechanism of pulling spatial information from input vectors

are the two novel concepts in this paper and are discussed in detail in later sections. The

purpose of using the hard-pull layer is to bring superior extraction capabilities to themodel.

Since the rest of the model relies on time-series information, the hard-pull layer is necessary

for combining information from separate frames and extract general information. The

purpose of stacking attention layers is to attain a higher quality temporal information

retrieval capability.

Multi-layered sequential encoder

The proposed method uses a time-distributed fully connected layer followed by two

consecutive bi-directional LSTM layers. The fully connected layer works on each frame

separately and then their output moves to the LSTM layers. In sequence-to-sequence

literature, it is common to use stacked LSTM for encoder. For it, our intuition is, the

two layers capture separate information from the video sequence. Figure 4 shows having

two layers ensures optimum performance. The output of the encoder is converted into

a context. In relevant literature, this context is mostly generated using a single attention
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Figure 4 Comparing Stacked Attention with variations in encoder attention architecture. (A) BLEU1,

(B) BLEU2, (C) BLEU3, (D) BLEU4, (E) SS-Score.

Full-size DOI: 10.7717/peerjcs.664/fig-4

layer. This is where this paper proposes a novel concept. With the mechanism mentioned

in later sections, our model generates a spatio-temporal context.

Single-layered sequential decoder

The proposed decoder uses a single layer LSTM followed by a fully connected layer to

generate a word from a given context. In relevant literature, many models have used

stacked decoder. Most of these papers suggest, each layer of decoder handles separate

information, while our model uses a single layer. Our experimental results show that

having stacked decoder does not improve the result much for our architecture. Therefore,
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instead of stacking decoder layers, we increased the number of decoder cells. Specifically,

we have used twice as many cells in decoder than in encoder and it has shown the optimum

output during experimentation.

Training and inference behaviour

To mark the start of a caption and to distinguish the mark from the real caption, a ‘‘start’’

token is used at the beginning. The decoder uses this token as a reference to generate the

first true word of the caption. Figure 2 represents this as ‘‘first word’’. During inference,

each subsequent word is generated with the previously generated word as reference. The

sequentially generated words together form the desired caption. The loop terminates upon

receiving the ‘‘end’’ marker.

During training, if each iteration in the generation loop uses previously generated word,

then one wrong generation can derail the entire remaining caption. Thus error calculation

process becomes vulnerable. To overcome this, like most seq-to-seq papers, we use the

teacher forcing mechanism (Lamb et al., 2016). The method uses words from the original

caption as reference for generating the next words during the training loop. Therefore, the

generation of each word is independent of previously generated words. Figure 2 illustrates

this difference in training and testing time behaviour. During training, ‘‘Teacher Forced

Word’’ is the word from the reference caption for that iteration.

Proposed context generation architecture

The paper proposes two novel methods. The methods show promising signs to make

progress in the field of video captioning.

Stacked attention

Attention creates an importance map for individual vectors from a sequence of vectors.

In text-to-text, i.e., translation models, this mapping creates a valuable information that

suggests which word or phrase in the input side has higher correlation to which words

and phrases in the output. However, in video captioning, attention plays a different

role. For a particular word, instead of determining which frame (from original video) or

frames to put more emphasis on, the stacked attention emphasizes on objects. This paper

uses a stacked LSTM. Like other relevant literature (Venugopalan et al., 2015; Song et al.,

2017), this paper reports separate layers to carry separate information. So, if each layer

has separate information, it is only intuitive to generate separate attention for each layer.

Our architecture stacks the separately generated attentions and connects them with a fully

connected layer with tanh activation. The output of this layer determines whether to put

more emphasis on the object or the action.

fattn([h,ss])= as(W2 ∗atanh(W1[h,ss]+b1)+b2) (1)

cattn = dot (h,fattn([h,ss])) (2)

cst = arelu(Wst [cattn1,cattn2,...,cattnn]+bst ) (3)
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where,

• h= encoder output for 1 layer

• ss= decoder state is repeated to match h’s dimension

• as(x)=
exp(x−max(x))

∑

exp(x−max(x))atten

• n= number of attention layers to be stacked

• cattn = context for single attention

• dot () function represents scalar dot-product

• cst = stacked context for n encoder layers.

Equation (1) is the attention function. Equation (2) uses the output of this function to

generate the attention context for one layer. Equation (3) combines the attention context

of several layers to generate the desirable spatio-temporal context. The paper also refers

to this context as ‘‘stacked context’’. Figure 3 corresponds with these equation. In SSVC,

we have particularly used n= 2, where n is the number of attention layers in the stacked

attention.

The stacked attention mechanism generates the spatio-temporal context for the input

video sequence. All types of low-level context required to generate the next word is available

in this novel context generation mechanism.

Spatial Hard Pull

Amaresh & Chitrakala (2019) mentions that most successful image and video captioning

models mainly learn to map low-level visual features to sentences. They do not focus on

the high-level semantic video concepts - like actions and objects. By low-level features, they

meant object shapes and their existence in the video. High-level features refer to proper

object classification with position in the video and the context in which the object appears

in the video. On the other hand, our analysis of previous architectures shows that almost

identical information is often found in nearby frames of a video. However, passing the

frames through LSTM layer does not help to extract any valuable information from this

almost identical information. So, we have devised a method to hard-pull the output of the

time-distributed layer and use it to add high-level visual information to the context. This

method enables us to extract meaningful high-level features, like objects and their relative

position in the individual frames.

This method extracts information from all frames simultaneously and does not consider

sequential information. As the layer pulls spatial information from sparsely located frames,

this paper names it ‘‘Spatial Hard Pull’’ layer. It can be compared to a skip connection.

But unlike other skip connections, it skips a recurrent layer, and directly contributes to the

context. The output units of the fully connected (FC) layer of this spatial-hard-pull layers

determines how much effect will the sparse layer have on the context. Figure 5 indicates

the performance improvement in the early stages due to SHP layer and the fall of scores in

the later stages due to high variance.
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Figure 5 Evaluating model performance with varied hard-pull units. (A) BLEU1, (B) BLEU2, (C)

BLEU3, (D) BLEU4, (E) SS-Score.

Full-size DOI: 10.7717/peerjcs.664/fig-5

PROPOSED SCORING METRIC

No automatic scoringmetric has been designed yet for the sole purpose of video captioning.

The existingmetrics that have been built for other purposes, like neuralmachine translation,

image captioning, etc., are used for evaluating video captioning models. For quantitative

analysis, we use the BLEU scoring metric (Papineni et al., 2002). Although these metrics

serve similar purposes, according to Aafaq et al. (2019b), they fall short in generating

‘‘meaningful’’ scores for video captioning.

BLEU is a precision-based metric. It is mainly designed to evaluate text at a corpus level.

BLEU metric can be calculated in reference to 1 sentence or in reference to a corpus of

sentences (Brownlee, 2019). Though the BLEU scoring metric is widely used, Post (2018);
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(A) SSVC: “a woman is cutting a piece of meat”
GT: “a woman is cutting into the fatty areas of a pork chop”
SS Score: 1.0 , BLEU1: 1.0, BLEU2: 1.0, BLEU3: 1.0, BLEU4: 1.0

(B) SSVC: “a person is slicing a tomato”
GT: “someone wearing blue rubber gloves is slicing a tomato with a large knife”
SS Score:0.825 , BLEU1: 1.0, BLEU2: 1.0, BLEU3: 1.0, BLEU4: 1.0

(C) SSVC: “a man is mixing ingredients in a bowl”
GT: “chicken is being season”
SS Score:0.94 , BLEU1: 1.0, BLEU2: 0.84, BLEU3: 0.61, BLEU4: 0.0

Figure 6 In (A) (Source: https://www.youtube.com/watch?v=6t0BpjwYKco{&}t=230s) and

(B) (Source: https://www.youtube.com/watch?v=j2Dhf-xFUxU{&}t=20s), our model is able to

extract the action part correctly and gets decent score in both SS and BLEU score. In (C) (Source:

https://www.youtube.com/watch?v=uxEhH6MPH28{&}t=29s), the output is perfect and SS Score is

high. However, BLEU4 is 0.

Full-size DOI: 10.7717/peerjcs.664/fig-6

Callison-Burch, Osborne & Koehn (2006); Graham (2015) demonstrate the inefficiency of

BLEU scoring metric in generating a meaningful score for tasks like video captioning. A

video may have multiple contexts. So, machines face difficulty to accurately measure the

merit of the generated captions as there is no specific right answer. Therefore, for video

captioning, it is more challenging to generate meaningful scores to reflect the captioning

capability of the model. As a result, human evaluation is an important part to judge the

effectiveness of the captioning model. In fact, Figs. 6, 7, 8 and 9, and 10 show this same fact

that a higher BLEU score is not necessarily a good reflection of the captioning capability.

On the other hand, our proposed human evaluation method portrays a better reflection of

the model’s performance compared to the BLEU scores.

Semantic sensibility(SS) score evaluation

To get a better understanding of captioning capability of our model, we perform qualitative

analysis that is based on human evaluation similar to Graham, Awad & Smeaton (2018),
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(A) SSVC: “a woman is slicing an onion”
GT: “someone is cutting red bell peppers into thin slices”
SS Score:0.5 , BLEU1: 0.83 , BLEU2: 0.70 , BLEU3: 0.63, BLEU4: 0.537

(B) SSVC: “a man is cutting a piece of meat”
GT: “a man is peeling a carrot”
SS Score: 0.41 , BLEU1: 0.75 , BLEU2: 0.5, b3:0.0 , BLEU4: 0.0

Figure 7 In (A) (Source: https://www.youtube.com/watch?v=VahnQw2gTQY{&}t=298s) and (B)

(Source: https://www.youtube.com/watch?v=YS1mzzhmWWA{&}t=9s), our model is able to extract

only the action part correctly. The generated caption gets mediocre score in both SS and BLEU score.

Full-size DOI: 10.7717/peerjcs.664/fig-7

(A) SSVC: “a man is jumping.”
GT: “a guy typing on a computer”
SS Score: 0.125 , BLEU1: 0.75 , BLEU2: 0.7 , BLEU3: 0.62 , BLEU4: 0.0

(B) SSVC: “a kitten is playing with a toy”
GT: “a cat in a cage is angrily meowing at something”
SS Score: 0.375 , BLEU1: 0.57 , BLEU2: 0.30, BLEU3: 0.0, BLEU4: 0.0

Figure 8 In (A) (Source: https://www.youtube.com/watch?v=R2DvpPTfl-E{&}t=20s) and (B) (Source:

https://www.youtube.com/watch?v=1hPxGmTGarM{&}t=9s), the generated caption is completely

wrong in case of actions, but BLEU1 gives a very high score. On the contrary, SS Score heavily penalizes

them.

Full-size DOI: 10.7717/peerjcs.664/fig-8
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(A) SSVC: “a man is driving a car”
GT: “a car drives backwards while trying to escape the police”
SS Score: 0.667 , BLEU1: 1.0, BLEU2: 1.0, BLEU3: 1.0 , BLEU4: 0.9

Figure 9 In the figure, the black car is driving away while being chased by a police car (Source: https:

//www.youtube.com/watch?v=3opDcpPxllE{&}t=50s). Our SSVCmodel only predicts the driving part.

Thus, the generated captions only partially capture the original idea. However, BLEU evaluates them with

very high score where SS Score evaluates them accordingly.

Full-size DOI: 10.7717/peerjcs.664/fig-9

(A) SSVC: “a man is writing”
GT: “someone is burning the tops of two cameras with a torch”
SS Score: 0.0 , BLEU1: 0.75 , BLEU2: 0.0, BLEU3: 0.0, BLEU4: 0.0

(B) SSVC: “a woman is pouring milk into a bowl”
GT: “a powdered substance is being shifted into a pan”
SS Score: 0.0 , BLEU1: 0.625 , BLEU2: 0.52 , BLEU3: 0.36 , BLEU4: 0.0

(C) SSVC: “a man is mixing a pot of water”
GT: “a fish is being fried in a pan”
SS Score: 0.0 , BLEU1: 0.625 , BLEU2: 0.42 , BLEU3: 0.31 , BLEU4: 0.0

Figure 10 In (A) (Source: https://www.youtube.com/watch?v=D1tTBncIsm8{&}t=841s), (B) (Source:

https://www.youtube.com/watch?v=Cv5LsqKUXc{&}t=71s), and (C) (Source: https://www.youtube.

com/watch?v=2FLsMPsywRc{&}t=45s), the generated caption is completely wrong, but BLEU1 gives a

very high score where SS Score gives straight up zero. Therefore, BLEU performs poorly here.

Full-size DOI: 10.7717/peerjcs.664/fig-10

Xu et al. (2017) and Pei et al. (2019). We propose a human evaluation metric, namely

‘‘Semantic Sensibility’’ score, for video captioning. It evaluates sentences at a contextual

level from videos based on both recall and precision. It takes 3 factors into consideration.

These are the grammatical structure of predicted sentences, detection of themost important
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element (subject or object) in the videos and whether the captions give an exact or

synonymous analogy to the action of the videos to describe the overall context.

It is to be noted that for the latter two factors, we take into consideration both the recall

and precision values according to their general definition. In case of recall, we evaluate

these 3 factors from our predicted captions and match them with the corresponding

video samples. Similarly, for precision, we judge these factors from the video samples and

match them with the corresponding predicted captions. Following such comparisons, each

variable is assigned to a boolean value of 1 or 0 based on human judgment. The significance

of the variables and how to assign their values are elaborated below:

Sgrammar

Sgrammar =

{

1, if grammatically correct

0, otherwise
(4)

Sgrammar evaluates the correctness of grammar of the generated caption without considering

the video.

Selement

Selement =

1
R

∑R
i=1Selement irecall

+ 1
P

∑P
i=1Selement iprecision

2
(5)

where,

• R = number of prominent objects in video

• P = number of prominent objects in caption

As Saction evaluates the action-similarity between the predicted caption and its

corresponding video, Selement evaluates the object-similarity. For each object in the caption,

the corresponding Selementprecision receives a boolean score and for the major objects in the

video, the corresponding Selementrecall receives a boolean score. The average recall and average

precision is combined to get the Selement .

Saction

Saction =
Sactionrecall +Sactionprecision

2
(6)

Saction evaluates the ability to describe the action-similarity between the predicted caption

and its corresponding video. Sactionrecall and Sactionprecision separately receives a boolean score

(1 for correct, 0 for incorrect) for action recall and action precision respectively. By action

recall, we determine if the generated caption has successfully captured the most prominent

action of the video segment. Similarly, by action precision, we determine if the action

mentioned in the generated caption is present in the video or not.

SS score calculation

Combining equations Eqs. (4), (5) and (6), the equation for the SS Score can be obtained.

SSScore =
1

N

N
∑

n=1

(

Sgrammar ∗
Selement +Saction

2

)

(7)
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During this research work, the SS Score was calculated by 4 final-year undergraduate

students studying at the Department of Computer Science and Engineering at the Islamic

University of Technology. They are all Machine Learning researchers and are fluent English

speakers. Each caption was separately scored by at least two annotators to make the scoring

consistent and accurate.

RESULTS

Dataset and experimental setup

Our experiments are primarily centered around comparing our novel model with different

commonly used architectures for video captioning like simple attention (Gao et al., 2017;

Wu et al., 2018), modifications of attention mechanism (Yang et al., 2018; Yan et al., 2019;

Zhang et al., 2019), variations of visual feature extraction techniques (Aafaq et al., 2019a;

Wang et al., 2018b) etc that provide state-of-the-art results. We conducted the experiments

under identical computational environment - Framework: Tensorflow 2.0, Platform:

Google Cloud Platform with a virtual machine having an 8-core processor and 30GB RAM,

GPU: None. We used the Microsoft-Research Video Description (MSVD) dataset (Chen &

Dolan, 2011). It contains 1970 video snippets together with 40 English captions (Chen, Li

& Hu, 2020) for each video. We split the entire dataset into training, validation, and test

set with 1200, 100, and 670 snippets respectively following previous works (Venugopalan

et al., 2015; Pan et al., 2016). To create a data-sequence, frames from a video are taken

with a fixed temporal distance. We used 15 frames for each data-sequence. After creating

the data-sequences, we had almost 65000 samples in our dataset. Though there is a large

number of samples in the final dataset, the number of distinct trainable videos are only

1200. 1200 videos is not a large enough number. Having a larger dataset would be better

for the training.

For the pre-trained embedding layer, we used ‘glove.6B.100d’ (Pennington, Socher &

Manning, 2014). Due to lack of GPU, we used 256 LSTM units in each encoder layer and

512 LSTM units in our decoder network and trained each experimental model for 40

epochs. To analyse the importance of the Spatial Hard Pull layer, we also tuned the Spatial

Hard Pull FC units from 0 to 45 and 60 successively.

One of the most prominent benchmarks for video data is TRECVid. Particularly,

the 2018 TRECVid challenge Awad et al. (2018) that included video captioning, video

information retrival, activity detection, etc could be an excellent benchmark for our work.

However, due to our limitations like lack of enough computational resources, rigidity in

data pre-processing due to memory limitation and inability to train on a bigger dataset,

we could not analyse our novel model with global benchmarks like TRECVid. On top of

that, some of the benchmark models use multiple features as input to the model. However,

we only use a single 2D based CNN feature as input as we wanted to make an extensive

study on the capability of 2D CNN for video captioning. So, we implemented some of the

fundamental concepts used in most state-of-the-art works on our experimental setup with

single input 2D CNN feature. Thus, we performed ablation study to make a qualitative and

quantitative analysis of our model. The performance of our two proposed novelties shows

potential for improvement.
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We used the BLEU score as one of the two main scoring criteria. To calculate BLEU on a

dataset withmultiple ground-truth captions, we used the Corpus BLEU calculationmethod

(Brownlee, 2019). The BLEU scores reported throughout this paper actually indicates the

Corpus BLEU Score. Our proposed architecture, SSVC, with 45 hard-pull units and

2 layer stacked attention gives the BLEU score of ‘‘BLEU1’’: 0.7072, ‘‘BLEU2’’: 0.5193,

‘‘BLEU3’’: 0.3961, ‘‘BLEU4’’: 0.1886 after 40 epochs of training with the best combination

of hyper-parameters. For generating the SS Score, we considered the first 50 random videos

from the test set. We obtained an SS Score of 0.34 for the SSVC model.

Ablation study of stacked attention

• No attention: Many previous works (Long, Gan & De Melo, 2018; Nam, Ha & Kim,

2017) mentioned that captioning models perform better with some form of attention

mechanism. Thus, in this paper, we avoid comparing use of attention and no attention

mechanisms.

• Non stacked (or single) attention: In relevant literature, though the use of attention is

very common, the use of stacked attention is quite infrequent. Nam, Ha & Kim (2017)

have shown the use of stacked (or dual) attention and improvements of performance

that are possible through it. In Fig. 4, the comparison between single attention and

stacked attention indicates dual attention has clear edge over single attention.

• Triple Attention: Since the use of dual attention has improved performance in

comparison to single attention, it is only evident to create a triple attention to check the

performance. Figure 4 shows that triple attention under-performs in comparison to all

other variants.

Considering our limitations, our stacked attention gives satisfactory results for both

BLEU and SS Score in comparison to the commonly used attention methods when

performed on similar experimental setup. Graphs in Fig. 4 suggest the same fact that our

stacked attention improves the result of existing methods due to improved overall temporal

information. Moreover, we can clearly see that the 2 layer LSTM encoder performs much

better than single or triple layer encoder. Combining these two facts, we can conclude that,

our dual encoder LSTMwith stacked attention has the capability to improve corresponding

architectures.

Ablation study of spatial hard pull

To boost the captioning capability, some state-of-the-art works like Pan et al. (2017)

emphasized on the importance of retrieving additional visual information.We implemented

the same fundamental idea in our model with the Spatial Hard Pull. To depict the

effectiveness of our Spatial Hard Pull (SHP), we conducted experiments with our stacked

attention as a constant and changed the SHP FC units with 0, 45 and 60 units successively.

Figure 5 shows that as the number of SHP FC units are increased from 0 to 45, both

BLEU and SS Score get better and again gradually falls from 45 to 60. The performance

improvement in the early stages indicate that SHP layer is indeed improving the model.

The reason for fall of scores in the later stages is that the model starts to show high variance.
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Hence it is evident from this analysis that our approach of using SHP layer yields satisfactory

result compared to not using any SHP layer.

DISCUSSION

By performing various trials on a fixed experimental setting, we analysed the spatio-

temporal behaviour of a video captioning model. After seeing that single layer encoder

LSTM causes more repetitive predictions, we used double and triple layer LSTM encoder

to encode the visual information into a better sequence. Hence, we were able to propose

our novel stacked attention mechanism with double encoder layer that performs the best

among all the variations of LSTM layers that we tried. The intuition behind this mechanism

is that, as our model separately gives attention to each encoder layer, this generates a better

overall temporal context for it to decode the video sequence and decide whether to give

more priority to the object or the action. And the addition of Spatial Hard Pull to this model

bolsters its ability to identify and map high level semantic visual information. Moreover,

the results also indicate that addition of excess SHP units drastically affect the performance

of the model. Hence, a balance is to be maintained while increasing the SHP units so that

the model does not over-fit. As a result, both of these key components of our novel model

greatly contributed to improving the overall final performance of our novel architecture,

that is based upon the existing fundamental concepts of state of art models.

Although the model performed good in qualitative and quantitative analysis, our

proposed SS Scoring method provides greater insight to analyse video captioning models.

The autometrics, although useful, cannot interpret the videos correctly. In our experimental

results, we can see a steep rise in the BLEU Score in Figs. 4 and 5 at early epochs even

though the predicted captions are not up to the mark. These suggest the limitations of

BLEU score in judging the captions properly with a meaningful score. SS Score considers

these limitations and finds a good semantic relationship between the context of the videos

and the generated language that portrays the video interpreting capability of a model into

language to its truest sense. Hence, we can safely evaluate the captioning capability of our

Stacked Attention with Spatial Hard Pull mechanism to better understand the acceptability

of the performance of our novel model.

CONCLUSION AND FUTURE WORK

Video captioning is a complex task. This paper shows how stacking the attention layer for

a multi-layer encoder makes a more semantically accurate context. Complementing it, the

Sparse Sequential Join, introduced in this paper, is able to capture the higher level features

with greater efficiency.

Due to our computational limitations, our experiments use custom pre-processing and

constrained training environment. We also use a single feature as input unlike most of

the state-of-the-art models. Therefore, the scores we obtained in our experiments are not

comparable to global benchmarks. In future, we hope to perform similar experiments with

industry standard pre-processing with multiple features as input.
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The paper also introduces the novel SS Score. This deterministic scoring metric has

shown great promise in calculating the semantic sensibility of a generated video-caption.

However, since it is a human evaluation metric, it relies heavily on human understanding.

Thus, a lot of manual work is to be put behind it. For the grammar score, we can use

Naber (2003)’s ‘‘A Rule-Based Style and Grammar Checker’’ technique. This will partially

automate the SS Scoring method.
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