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ABSTRACT
Deep learning is a relatively new computational technique for the description of the
musculoskeletal dynamics. The experimental relationships of muscle geometry in
different postures are the high-dimensional spatial transformations that can be
approximated by relatively simple functions, which opens the opportunity for
machine learning (ML) applications. In this study, we challenged general ML
algorithms with the problem of approximating the posture-dependent moment arm
and muscle length relationships of the human arm and hand muscles. We used two
types of algorithms, light gradient boosting machine (LGB) and fully connected
artificial neural network (ANN) solving the wrapping kinematics of 33 muscles
spanning up to six degrees of freedom (DOF) each for the arm and hand model with
18 DOFs. The input-output training and testing datasets, where joint angles were the
input and the muscle length and moment arms were the output, were generated by
our previous phenomenological model based on the autogenerated polynomial
structures. Both models achieved a similar level of errors: ANN model errors were
0.08 ± 0.05% for muscle lengths and 0.53 ± 0.29% for moment arms, and LGB model
made similar errors—0.18 ± 0.06% and 0.13 ± 0.07%, respectively. LGB model
reached the training goal with only 103 samples, while ANN required 106 samples;
however, LGB models were about 39 times slower than ANN models in the
evaluation. The sufficient performance of developed models demonstrates the future
applicability of ML for musculoskeletal transformations in a variety of applications,
such as in advanced powered prosthetics.

Subjects Bioinformatics, Computational Biology, Human-Computer Interaction, Algorithms and
Analysis of Algorithms, Artificial Intelligence
Keywords Machine learning, Deep neural networks, Muscle, Hand, Real-time, Biomechanics

How to cite this article Smirnov Y, Smirnov D, Popov A, Yakovenko S. 2021. Solving musculoskeletal biomechanics with machine
learning. PeerJ Comput. Sci. 7:e663 DOI 10.7717/peerj-cs.663

Submitted 12 March 2021
Accepted 16 July 2021
Published 26 August 2021

Corresponding author
Sergiy Yakovenko,
seyakovenko@hsc.wvu.edu

Academic editor
Li Zhang

Additional Information and
Declarations can be found on
page 15

DOI 10.7717/peerj-cs.663

Copyright
2021 Smirnov et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.663
mailto:seyakovenko@�hsc.�wvu.�edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.663
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/


INTRODUCTION
Machine learning (ML) with artificial neural networks (ANN) is revolutionizing
applications where recognition, cognition, and categorization abilities used to require
direct human involvement (LeCun, Bengio & Hinton, 2015). While the initial focus was on
the substitution of human operators, for example, in driving a vehicle (Shi et al., 2020),
classifying media (Gupta & Katarya, 2020), or for radiological diagnostics of benign or
malignant mass in mammography (Shen et al., 2019; McKinney et al., 2020), the reach of
ANN extended to the exploration of sensorimotor mechanisms (Richards et al., 2019) that
could potentially work in the closed-loop systems with human operator. The structural
and functional complexity of this system, which is distributed across multiple neural and
mechanical pathways (Valero-Cuevas, 2015) and has high-dimensional computations for our
segmented body control (Bernstein, 1967), offers a unique challenge and opportunities for
this approach. One of the opportunities lies within the innate ability of ANNs to absorb
and classify a high volume of multidimensional input-output relationships. This is not
dissimilar to biological processing responsible for coordinated spatiotemporal action of
multiple muscles generating movement. Yet another extreme expression of the neural
processing complexity and efficiency is the brain's ability to solve the Bernsteinian degrees of
freedom problem where the same motor goal of body control can be accomplished with
different kinematic solutions (Bernstein, 1967). ML methods based on ANNs can potentially
resolve or, at least, identify targets for the long-standing theoretical challenge that can
provide insight to the current theories of neural processing (McNamee & Wolpert, 2019)
and has multiple practical human-machine applications, e.g., in advanced prosthetics
(Dantas et al., 2019).

Developing a fast and intuitive interface with a high-dimensional artificial limb is a
challenging task solved increasingly with the help of pattern recognition algorithms
(Muceli & Farina, 2012; Geethanjali, 2016). Typically, myoelectric direct and proportional
control is used to decode motor intent from the recorded surface electromyography
(EMG) and convert it into joint torques or furthermore positions of the powered
prosthetic devices (Geethanjali, 2016). This was previously accomplished using ANN
algorithms decoding kinematics from EMG signals (Muceli & Farina, 2012). The intuitive
control requires an additional transformation based on the representation of the controlled
device and its neural control (Castellini & Van der Smagt, 2009). The failure to account
for the dynamics of prosthesis would lead to direct kinematic errors. The failure to
recognize the biological strategies in solving limb dynamics would reduce robustness and
intuitiveness of control even when the control of mechanical devices is perfectly tuned. The
latter would occur because the interlimb inertial dynamics is encoded within neural
commands even when limb dynamics changes. For example, mechanical shoulder
immobilization does not abolish the stabilizing shoulder muscle activity during elbow
movement (Gribble & Ostry, 1998, 1999; Debicki & Gribble, 2005). The expected
musculoskeletal dynamics persists within neural commands months and years after the
acute stage of limb trauma and amputations. The successful use of these commands for
prosthetic control would theoretically require the representation of pre-trauma
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musculoskeletal and segmental limb dynamics to account for the dynamics encoded within
neural control signals.

Relatively few studies applied ML techniques to musculoskeletal dynamics. The early
applications of simple feed-forward ANNs allowed mapping of an average locomotor
pattern of 16 EMGs to hip, knee, and ankle joint angles and moments (Sepulveda, Wells &
Vaughan, 1993). Even though the muscle paths and muscle force generation were not
simulated in this study, the decoding of posture was demonstrated with low errors.
The changes in the locomotor pattern at slow and fast speeds can also be generalized
by a simple ANN with supervised learning via backpropagation (Heller et al., 1993).
Furthermore, the mapping can be done not only between the locomotor activation
patterns, but also with the muscle forces; albeit, the accurate predictions within trials have
not been demonstrated (Liu, Herzog & Savelberg, 1999). Yet, similar type of statistical
mapping, admittedly, can be expressed with standard dimensionality reduction techniques
with high precision and low computational cost, e.g., principal component analysis (PCA)
(Patla, 1985). Multiple methodological variations have been since developed and
applied to solve musculoskeletal problems. Notably recurrent ANNs were used to predict
elbow torques from EMGs and showed the benefit of taking into account kinematic
inputs, joint angle and velocity (Song & Tong, 2005). A combination of convolutional
and recurrent ANNs can accurately and robustly map from the time-frequency frames of
multi-channel EMG to limb movement (Xia, Hu & Peng, 2018). Purely statistical
learning of the musculoskeletal transformation from posture to the control inputs has
been also demonstrated with multiple hybrid ANN methods for a 7 DOF robotic arm
with artificial muscles (Hartmann et al., 2013). Similar to our approach the
musculoskeletal transformation was learnt from an input-output dataset. While the
tracking of a two DOF arm was achieved, the control of both robot and its simulation
resulted in large tracking errors. The high-dimensional control remains a challenge.

While data-driven mapping with ANNs or using PCA and other statistical classification
alternatives are robust, these methods do not generally capture the mechanistic
relationships. Intrinsic muscle properties and musculoskeletal organization contribute to
the muscle force generation, and these mechanistic details may assist in the reconstruction
of relationships between neural commands and generated movement. In this study, the
problem of learning the musculoskeletal dynamics (MSD) will be addressed with several
ML techniques that may generate a computationally efficient solution. MSD requires
high-dimensional transformations of posture into muscle moment arms and length, which
are the essential variables in the calculation of generated muscle forces. The Hill-type
muscle model can then allow us to define the posture-dependent force-length-velocity
dependency (Fig. 1, Muscle Model) (Zajac, 1989) and next to compute muscle and joint
torques (Buchanan et al., 2004). The remaining step for the generation of movement is
the simulation of equations of motion by using a physics engine or its approximation.
The critical constraint for the accuracy of these computations is the loop latency that limits
the computational stability of integration (Todorov, Erez & Tassa, 2012). The trade-off
between accuracy and latency can be achieved using methods similar to least-squared
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approximation, for example, used for the inverse dynamics computations (Kuo, 1998).
Thus, the goal for real-time biomechanics is to implement a method with high accuracy
and low computational cost (low latency) of musculoskeletal transformations.

In this study, we solve the problem of estimating muscle moment arms and their muscle
lengths from joint angles with two ML approaches. We used an arm and hand model to
generate input-output kinematic datasets, where joint angles were the input and the
muscle length and moment arms were the output, and presented the comparative
validation and performance metrics for the two solutions. The results of this study develop
the potential for mechanistic ML approaches that utilize the musculoskeletal
transformation for online control problems.

MATERIALS & METHODS
Musculoskeletal polynomial model for generation of training and
testing datasets
We have previously developed the method of autogenerated polynomial models (Sobinov
et al., 2020). In these polynomials, the composition of terms was expanded using objective
information measurements, i.e., the corrected Akaike Information Criterion. In brief,
the posture-dependent musculotendon actuator length and joint moment arms for each
muscle in the upper-limb model (Gritsenko et al., 2016) were accurately approximated
using the selection of up to 5th power polynomial terms, where muscle length and moment
arms were connected through a partial derivative of the muscle length in local coordinates
corresponding to limb posture. Overall, the 18 DOF model of the human arm and
hand is actuated by 33 muscles, each spanning about 3 DOFs and up to 6 DOFs for thumb
muscles. Thus, each actuator is represented by a set of one length- and about 3
moment arm-posture polynomials. The goal of this development was to bypass costly
calculations of geometrical transformations with high-quality approximations. Previously,
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Figure 1 General concept of motor intent decoding frommuscle activity. The schematic illustrates the
transformation of EMG inputs through signal processing and musculoskeletal relationships (muscle
model) into estimated torques that actuate limbs to generate movement by solving the equations of
motion (physics). Limb posture modifies nonlinear muscle force-length-velocity relationship and tor-
ques. Full-size DOI: 10.7717/peerj-cs.663/fig-1
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we have demonstrated high-fidelity of these approximations with kinematic errors
below 1% (Sobinov et al., 2020). In biomechanics, the errors of 1–5° in joint angles are
expected from flaws in the observations in motion capture, and errors of 2° and less are not
meaningful in the clinical context (McGinley et al., 2009). Thus, the errors below 1% of joint
range of motion are negligible. These polynomial models of muscle posture-dependent
state were used to develop an ANN-based approximation method for the musculoskeletal
dynamics in this study.

Training, validation and testing datasets
Training, validation and testing datasets for the assessment of model performance were
generated by the musculoskeletal polynomial model, which was used as a reference in this
study. Input-output relationships were extracted randomly with uniform distribution
where inputs were 18 DOF vectors of joint angles and the outputs were 33 length vectors
and 99 moment arm vectors. An average muscle crosses 3 DOFs and has, consequently,
3 moment arm relationships on average. We used the supervised learning approach for
training ML models. The training dataset was used for two tasks, tuning the model
hyper-parameters and model training, to maximize the model performance in replicating
the desired outputs with given inputs. The testing dataset contained ~5% of all data
(5 × 104 samples). The remaining ~95% were divided into the training dataset (80%,
8 × 105 samples) and the validation dataset (20%, 2 × 105 samples). The validation dataset
was used to prevent overfitting, i.e., higher performance on the training data as compared
to that on the validation data. These datasets were similarly used for training ANN and
LGB models, described below. Overall, the training time was about 15 times longer for
ANN then for LGB models. The training of all ANN and LGB models on the standard
hardware took about 3.5 days.

Metrics
The performance of the trained models was further evaluated with the testing dataset,
which was not used during the training procedure. We expected to reach the same error
tolerances as in our previous polynomial fitting method study (Sobinov et al., 2020).
Consequently, we used the same normalization of lengths and moment arms as in our
previous work. The RMSE values were calculated as the absolute difference between
reference and predicted muscle length values. To normalize the results, we divided each
reference and predicted length value by the muscle length range respectively:

RMSEL ¼ 1
m

Xm
l¼1

1
n

Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xr;l;i � xp;l;i

Lmaxl � Lminl

� �2
s

where m is the number of muscles (m = 33), n is the number of test samples, xr;l;i and
xp;l;i are reference and predicted length values, respectively, Lmaxl and Lminl are the

maximum and minimum values over the full range of lth muscle length.
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Similarly, the RMSE of moment arms was calculated as the absolute difference between
reference and predicted values, which were normalized to the moment arm maximum
(Mmaxl):

RMSEMA ¼ 1
m

Xm
l¼1

1
n

Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xr;l;i � xp;l;i
Mmaxl

� �2
s

where xr;l;i and xp;l;i are reference and predicted values, m is the number of moment arms
(m = 99), and n is the number of test samples.

Machine learning models
Two types of MLmodels were used to map the musculoskeletal input-output relationships.
We used the light gradient boosting machine (LGB) models and artificial neural network
(ANN) with two hidden layers. The models were trained and tested according to the
workflow in Fig. 2A. Validation accompanied the training process to prevent overfitting.

Light gradient boosting machine (LGB)
LGB algorithms belong to the group of gradient boosting methods based on choosing
iteratively simple learner functions that point to the global minimum in the cost function.
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Figure 2 Training and testing of ML models. (A) The polynomial generator created reference datasets,
which were then iteratively used for training and testing. (B) LGB model with decision binary trees using
gradient boosting. The transformation from input postures to output scalar values corresponding to
either muscle length or moment arm values was performed in boosting stages to improve accuracy.
(C) ANN with two hidden layers performed transformation for all lengths and moment arms in the
model. Full-size DOI: 10.7717/peerj-cs.663/fig-2
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Gradient boosting is a technique to assemble weak prediction models, in our case
regression trees, as processing stages that reduce performance errors. Here, the regression
trees use binary recursive decisions to follow a path along hierarchically organized
nodes that terminate with the final branches, called leaves. The training process was the
search for the optimal routing of inputs so that similar outputs were grouped together
(Dantas et al., 2019; Microsoft Corporation, 2020). The boosting method assembles the
sequences of multiple regression trees to process errors in stages and gradually improve
output accuracy (Fig. 2B). We used gradient-based one-side sampling in LGB to select a
set of inputs where previous weak learner models have the largest output errors. The
structure of the decision trees adapted to the required error tolerance by expanding the
number of nodes (leaves) up to the maximal preset value determined empirically. We used
Microsoft open source implementation of LGB (lightgbm v.2.2.3, Microsoft Corporation).
The implementation of LGB requires multiple parameters for training the model that
improves the transformation by adding nodes to trees (leaf-wise tree growth). We kept a
set of parameters constant across all models:

import lightgbm
params = {‘seed’: 2523252, ‘tree_learner’: ‘serial’, ‘pre_partition’: True, ‘is_unbalance’:
False, ‘early_stopping_rounds’: 200, ‘metric’: ‘mse’}
lightgbm.LGBMRegressor(**params)

The additional training parameters were added as inputs to params statement and
varied across models. The following is the example implementation for one of the models:

params = {‘seed’: 2523252, ‘tree_learner’: ‘serial’, ‘pre_partition’: True, ‘is_unbalance’:
False, ‘early_stopping_rounds’: 200, ‘metric’: ‘mse’, “num_iterations”: 358,
“num_leaves”: 41, “learning_rate”: 0.040600000000000004, “max_depth”: 18,
“min_data_in_leaf”: 67, “max_drop”: 23, “bagging_fraction”: 0.8, “feature_fraction”: 0.8 }

The full list of all training parameters is provided in the Supplemental Materials.
Each muscle length and moment arm relationship with posture was fitted with one LGB

model. The full arm and hand model was simulated by 33 length and 99 moment arm
transformations of 18 dimensional posture input. Three types of hyper-parameters were
iteratively optimized prior to training: (1) the number of leaves in a single decision tree
(range: 20–100); (2) the minimal number of samples in one leaf (range: 10–100); (3) the
maximum tree depth as the number of split levels (range: 1–100). Values for each LGB
model were determined iteratively using the Bayesian optimization (Snoek, Larochelle &
Adams, 2012) on training and validation datasets selected as 70% and 30% of all data,
respectively. Other hyper-parameters within LGB models, e.g. the number of weak
estimators in boosting (100), were chosen as defaults of Microsoft implementation v.2.2.3
(Ke et al., 2017).

Artificial neural network (ANN)
We developed two ANN models to evaluate posture-dependent muscle lengths and
moment arms. We selected fully connected feed-forward layers with one input, one output,
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and two hidden layers (Fig. 2C) (Sazli, 2006) with rectifying linear units as the outputs of
every layer. This standard model provides robust gradient propagation with efficient
computation (Glorot, Bordes & Bengio, 2011). Using TensorFlow (Abadi et al., 2016), we
composed our networks consisting of the following number of nodes in input, two hidden,
and output layers: (18, 1,024, 512, 33) for the approximation of 33 muscle lengths, and
(18, 2,048, 1,024, 99) for the approximation of 99 moment arms.

Xavier initialization method was used to select the initial weights for each layer from the
normal distribution with zero mean and its variance as 2/(nin+nout), where nin and nout
were the number of inputs and outputs in this layer (Glorot & Bengio, 2010). The network
was trained with the batches of sample data (256 samples) using a gradient based stochastic
optimization method minimizing a custom cost function (Kingma & Ba, 2017). We
developed the cost function that focused on the performance of the worst approximations
evaluated as RMSE of the worst 5% of input-output pairs from each muscle. The scalar cost
was evaluated as the mean of all errors within the upper 30% range.

The variable learning rate was used to improve the learning dynamics. The initial rate
of 0.001 was reduced by 20% if the measured metric stopped improving after two full
training dataset evaluations, or epochs. We have tested additional two manipulations to
improve learning. We tested the variation of processing structure to improve the
generalization of solutions distributed across multiple nodes in the ANN. The model was
trained with 50% of the nodes skipped in each evaluation and temporarily and randomly
assigned to the dropout layer. In addition, we have also tested the normalization of
input samples. However, the improvements due to the additional structure variation and
the normalization were marginal, and we chose to exclude these manipulations from the
processing pipeline.

The presence of overfitting in training was assessed by tracking the divergence in the
error rates for training (observed) and testing (unobserved) samples. The difference in
errors was less than 0.4% for all muscles without the divergence. For example, for as little
as 1,000 samples, the RMSE of the trained model for Pronator Teres length was 78.69%
for the training set and 79.02% for the testing set, which indicated the absence of
overfitting in the early stage of fitting. The difference between training and testing
evaluations remained below 0.1% until the terminal level was achieved.

RESULTS
Two types of ML models were trained to approximate the musculoskeletal relationships.
Our findings detail the training outcome and the training dynamics for learning the
transformation from joint posture to muscle lengths and moment arms.

Estimation of the training dataset size
The selection of the training dataset size for ANN and LGB models is a non-trivial step in
the model development. Our source of data was expressed functionally allowing unlimited
source of training data. However, the selection of an optimal dataset that captures the
relationships without the tendency for overfitting was the initial goal of our development.
We used RMSE metric for both length and moment arm models trained with several
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datasets of incremental size. The relationship between the metric and the dataset size are
shown in Fig. 3. As the size of the dataset increased logarithmically (from 103 to 106

samples), the training accuracy also increased, with minor improvement in the range
above 105 samples. The improvements with the dataset size were not as pronounced
showing 1.45% and 1.94% errors with the smallest datasets (103 samples). The
improvement curve of LGB is flat, showing no further improvement, after 105 sample size.
The performance of the relatively simple (Biceps Brachii Long Head) and complex
(Extensor Pollicis Longus) muscles is illustrated in Figs. 3C and 3D. These two muscles are
on the opposite extremes of complexity expressed as the number of terms required for
accurate polynomial fit (Sobinov et al., 2020). The improvements are qualitatively similar
for both of these muscles indicating no strong dependency on muscle path complexity with
both types of models. We used the largest dataset size for all further model development
described below.

Model accuracy
High accuracy was achieved with both LGB and ANN model types. The distribution of
errors is shown in Fig. 4 with the histograms of RMSE values for the testing dataset
(5 × 104 samples). The highest achieved performance of ANN models was with 107 with
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absolute errors at 0.08 ± 0.05% for muscle lengths and 0.53 ± 0.29% for moment arms.
Similarly, LGB models generated accurate predictions with large training datasets,
0.18 ± 0.06% and 0.13 ± 0.07% errors, respectively. This is the expected error rate based on
our previous analysis (Sobinov et al., 2020).

Overall, the error span did not exceed 0.6% for muscle lengths and 2% for muscle
moment arms, shown in Figs. 4 and 5. We found no relationship between length and
moment arm errors (p = 0.746, R2 = 0.003). The level of errors was comparable for both
simple and complex muscles (spanning more than 3 DOF), e.g., the errors of ECR_BR
(a two DOF muscle) were comparable to those of EDM. The accuracy of LGB and ANN
models was comparable. The interquartile ranges (IQR), corresponding to the distance
between 25% and 75% level for the distribution of all length error values were 0.075%
(ANN) and 0.216% (LGB). The 25-75% IQRs for moment arm errors in Fig. 4B were
0.464% (ANN) and 0.0782% (LGB). Median RMSE values for all models were less than
0.01%. To check if accuracy declines in the extreme postures (1st and 4th quartiles), we
repeated testing and found a similar rate of errors, 0.144% and 0.587% for lengths and
moment arms.
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The distribution of absolute errors is shown for each muscle in Fig. 5. The muscles are
sorted according to the number of DOFs they actuate with relatively simple muscles on the
left and complex (thumb) muscles on the right. Overall, the majority of distributions
were below 0.2% for 75% of all vales, as indicated by the top value of the interquartile
range in the box plots. The largest length errors were observed in OP, which was also one
of the most difficult muscles to design structurally (Boots et al., 2020). In this muscle
the top value (Q3) of the interquartile range was about 0.3%, which corresponds to the
error of 0.018 mm. In Fig. 5A, the normalized errors of muscle length are presented for
each muscle. For all muscles, the most errors (up to 75% of the distributions) are
below 0.2%. The prominent exception is OP with the highest normalized errors, which is
explained by the minimal full physiological range of only 6 mm. The error of 0.3% in
OP length corresponds to the absolute error of 0.018 mm. The errors did not increase
with muscle structural complexity. The evaluation errors in muscle length where
generally larger in the group of muscles spanning 2 DOF (blue, see Extensor Carpi
Radialis, ERC_LO) and were comparable to the errors in complex muscles (e.g., Abductor
Pollicis Brevis, APB).
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Training and evaluation time
The execution times were compared for ANN and LGB models (1.4 GHz Quad-Core
8th-generation Intel Core i5) by measuring the duration of 1000 evaluations (using
method time from the standard time library in Python 3.7). For a given posture, ANN
models evaluated both muscle length and moment arms with the combined latency of 1.1
± 0.6 ms, as compared to 43.1 ± 8.3 ms for LGB models, which were about 39 times slower.

DISCUSSION
In this study, we solved the musculoskeletal kinematics problem over the full physiological
range of limb postures using ML approaches. We tested two standard types of
models—LGB and ANN—that both accomplished the mapping from limb posture to
muscle kinematic state described by multidimensional muscle length and moment arms.
LGB and ANN approaches (Natekin & Knoll, 2013; McGovern et al., 2019) were chosen
as the ML equivalents to the phenomenological model previously developed to approximate
posture dependent muscle parameters with polynomial structures (Sobinov et al., 2020).
BothMLmethods produced close approximations with the best results achieved by the ANN
approach (RMSE = 0.08%) as compared to the LGB approach (RMSE = 0.12%) for moment
arms. LGB and ANN methods have not been previously demonstrated for the solution
of the musculoskeletal kinematics.

Motor intent decoding
Estimating limb posture from EMG in real-time applications remains to be a challenge in
human-machine interfaces due to: (1) the difficulty in the theoretical description and
(2) the lack of experimental data to validate these models (Alber et al., 2019). In general,
a statistical mapping between posture and recorded activity from descending pathways,
nerves, and muscles has been used as the transformation to predict motor intent (Wang &
Buchanan, 2002; Ting et al., 2019; Dantas et al., 2019), to investigate interplay of
mechanical and neural components in pathologies (Sartori et al., 2017) or to control
powered prosthetic limbs or exoskeletal devices (Kiguchi & Hayashi, 2012; Collinger et al.,
2013; Zhang et al., 2017; Furui et al., 2019; George et al., 2020). However, the accuracy of
decoding realistic movements remains to be a challenge especially for movements that
require dexterous object manipulation (Downey et al., 2017). Many current decoding
methods in brain-computer interfaces assume that neural activity is related to limb
end-point position and/or velocity and lack the description of movement kinetics
generated by muscle forces. The resulting movements of prosthetics are typically slower
and less robust than natural movements. Up to five (Wendelken et al., 2017) to six (George
et al., 2020) arm and hand DOFs can be simultaneously controlled using nerve signals
recorded with penetrating electrodes. Accurate but slow movements can be generated
for high-dimensional artificial hands with wrist and digits; however, the accuracy is
challenged by changing limb posture and orientation. One potential solution is the use of
closed-loop control systems that provide not only the forward control of prosthetic, but
also incorporate the sensory feedback within neuroprosthetics (Hughes et al., 2020;
Ganzer et al., 2020; Charkhkar, Christie & Triolo, 2020). The closed-loop control system
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that takes into account muscle forces would critically depend on the accurate
representation of musculoskeletal actions that we describe with our novel approach.

The generalizable control solutions based on the biomechanical transformations have
potential advantages over the nontransparent statistical approaches. Mechanistic
musculoskeletal models of legs (Sartori et al., 2017) and arms (Crouch & Huang, 2016;
Boots et al., 2017; Mansouri et al., 2017; Sartori et al., 2018) have been previously used for
motor intent decoding. The major advantage of biomechanical modeling over statistical
methods is in the explicit representation of kinematic and kinetic dependencies in the
generated motor command signals during multisegmented limb movements. Thus, the
transformation from the recorded biological signals to the proportional control of limbs
should be intuitive, given that the underlying computations are sufficiently accurate and
without extensive processing delays.

Together, these possible solutions motivated our exploration and rationale for
developing accurate ML methods of approximating the musculoskeletal transformations
with physics-informed neural networks. We used model driven training and testing of ML
algorithms to approximate posture-dependent changes in muscle lengths and moment
arms of distal arm and hand muscles. The previously developed polynomial model
provided a functional representation of data across all possible limb postures. Since any
volume of data could be generated, we tested the extent of data required to train ANN and
LGB models. Figure 3 shows the expected inverse relationship between the approximation
errors and the training dataset size. Using only 106 samples for training ANN and LGB
models resulted in kinematic errors that were less than 0.5%. This number of samples is
about one order of magnitude lower than the number of samples required for our previous
implementation using an information theory-based algorithm for approximating the
same kinematic variables. This may indicate that ANN and LGB methods may further
generalize the polynomial relationships that required a larger volume of samples to
generate functional muscle-posture representations limited to polynomial power terms.

Computational delays
The transformation of EMG signals into movement rarely accounts for the
musculoskeletal anatomy and physiology. This is partly due to the extreme complexity of
muscle organization (Gritsenko et al., 2016; Murphy et al., 2018) and nonlinear intrinsic
muscle properties that include independent force-length and force-velocity relationships
(Zajac, 1989) and less popular in modeling, short-range stiffness, which is a hysteretic
force-length property (Cui et al., 2008). The task of simulating muscle force generation
requires adequate structural information about muscle paths and posture-dependent
changes in moment arms. The development of complex musculoskeletal models has been
recently simplified by the dedicated simulation tools for editing and simulating segmental
dynamics—OpenSim (Seth et al., 2018), MuJoCo (Todorov, Erez & Tassa, 2012), Simscape
(MathWorks, Inc.). The challenge remains in collating sufficient datasets of
musculoskeletal measurements for creating complex musculoskeletal models and then in
testing and validating these models across the full-range of motion to ensure their use in a
wide range of applications.
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The computational delays of solving the equations of motion governing limb dynamics
have previously impeded the application of model-based prosthetic controllers. In
particular, the evaluation of muscle force-velocity characteristic may require sub-
millisecond latencies to decode accurately rapid movements computed by a physical
engine, which requires additional time to execute (~1 ms in Mansouri et al., 2017). Our
implementations demonstrated a clear speed advantage of the ANN over the LGB model
(about 39× faster) and required about 1 ms on standard hardware. This performance was
still about 15 times slower than our polynomial approximation (about 60 µs); yet, it
provides a milestone for the future improvements due to the rapid development of both
software and hardware solutions for ANNs. Further improvements in the performance of
the ANN may be possible approaching the latencies appropriate not only for the
feedforward computations, but also for predictive inverse computations inspired by
theoretical neural transformations (Wolpert & Ghahramani, 2000). Another biomimetic
feature of the ANN model is its potential solution for the necessity to increase
computational complexity to accommodate the increase in the size of described structure,
typically termed as “the curse of dimensionality”. Sobinov et al. (2020) demonstrated
that the typical exponential increase could be replaced with the linear increase in the
required number of terms within the polynomial approximations. Here, the same structure
of the ANN model accommodated accurate calculations for a subset and for the full set
of 33 muscles. We hypothesize that as long as the additional simulated muscles are
relatively similar in anatomical complexity to the muscles represented in our current
model, the same structure of the ANN will be able to embed their dynamics without the
increase in the number of nodes in each layer.

Limitations
Our approach described the kinematic transformations only and improves the calculation
of instantaneous muscle forces, yet, it lacks the description of equations of motion. The full
transformation to the intended joint and segment kinematics requires the forward
simulation of segmental dynamics by a physics engine, for example, MuJoCo (Todorov,
Erez & Tassa, 2012). Another minor limitation is the use of prior simplified model of
muscle kinematics to supervise the training in our ML models. Small errors of about
1% are expected to propagate to this implementation. Given that models of this
complexity often include hundreds of poorly validated or guessed parameters, the expected
performance is within the “good enough” qualitative range for this model (McGinley
et al., 2009). For example, in our development of biomechanical models with validated
moment arm kinematics, we have discovered large discrepancies between models and
experimental data (Boots et al., 2020). It is also expected that the individual morphological
differences may exceed the numerical errors in our model. In the future work, we will
examine the use of ML models in the description of subject-specific musculoskeletal
transformations, where the current generic model can be used as the starting pre-trained
model. Another current limitation is the demanding training dataset and also the slow
execution of the ANN implementation, which is appropriate for real-time applications but
is still slower than our previous polynomial approximation.
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CONCLUSIONS
We demonstrate in this study the use of two ML methods for solving the posture-
dependent changes in the musculoskeletal properties essential for the description of limb
kinetics. The achieved execution accuracy was adequate with both ANN and LGB models
and similar to the original polynomial model. ANN model was 39 times faster than
LGB model computing muscle variables in 1.1 ms, which is appropriate for real-time
control solutions.
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