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ABSTRACT
This paper presents a novel method for attitude estimation of an object in 3D space by
incremental learning of the Long-Short Term Memory (LSTM) network. Gyroscope,
accelerometer, and magnetometer are few widely used sensors in attitude estimation
applications. Traditionally, multi-sensor fusion methods such as the Extended Kalman
Filter and Complementary Filter are employed to fuse the measurements from these
sensors. However, these methods exhibit limitations in accounting for the uncertainty,
unpredictability, and dynamic nature of the motion in real-world situations. In this
paper, the inertial sensors data are fed to the LSTM network which are then updated
incrementally to incorporate the dynamic changes in motion occurring in the run
time. The robustness and efficiency of the proposed framework is demonstrated on
the dataset collected from a commercially available inertial measurement unit. The
proposed framework offers a significant improvement in the results compared to the
traditional method, even in the case of a highly dynamic environment. The LSTM
framework-based attitude estimation approach can be deployed on a standard AI-
supported processing module for real-time applications.

Subjects Artificial Intelligence, Autonomous Systems, Robotics
Keywords Attitude estimation, Inertial sensors, Incremental learning, Long-Short Term Memory,
Sensor fusion

INTRODUCTION
Sensor fusion is the process of combining information frommultiple sensors to provide an
improved version of the output compared to that from an individual sensor (White, 1991).
It provides the advantage of improved accuracy, increased precision and robustness. One
of the relevant and important sensor fusion applications is attitude estimation, which plays
a vital role in detecting the position and orientation of the moving body in 3D space. The
devices consisting of gyroscope, accelerometer, and magnetometer sensors are together
responsible for predicting the state of the system. The attitude estimation has proven to be
an essential base for robotic guidance and control applications. The object’s orientation in
the 3-dimensional space is termed as the attitude of the object (Titterton, Weston & Weston,
2004) and is represented as the rotation about the three orthogonal axes as Roll, Pitch, and
Yaw.
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In order to compute the necessary attitude angles, the attitude estimator should be
accurate and handle uncertainties and disturbances such as sudden accelerations, strong
vibrations, sudden external forces, magnetic disturbances, etc. Such external and irregular
disturbances affect the performance of the sensor, and as such, a reliable and robust
computational system is essential for accurate predictions. A system such as an Unmanned
Aerial Vehicle (UAV) or Automated Guided Vehicle (AGV) needs to act instantly even
when the Global Positioning System (GPS) fails to provide the necessary positioning
and attitude signals. In all such situations, a computationally efficient and easy to deploy
attitude estimation system is extremely crucial.

To this end, the tri-axial inertial sensors (gyroscope and accelerometer) along with the
magnetic sensor are employed in the attitude estimating system. This combined sensors unit
is termed as an Inertial Measurement Unit (IMU). IMU is an integral part of any modern-
day Attitude Heading and Reference System (AHRS). Algebraic integration of angular
velocity (obtained by the gyroscope) is used to compute the attitude of the moving object.
However, due to continuous integration over time, the estimations start drifting from their
true values. Inherently, the gyroscope possesses a time-varying bias characteristics. These
limitations hamper the use of gyroscope as a standalone device for attitude estimation
application. To overcome the drawbacks of the individual gyroscope, the measurements
from the accelerometer and magnetometer are fused with gyroscope (Fourati & Belkhiat,
2016; Gebre-Egziabher, Hayward & Powell, 2004). The accelerometer is a sensor that
measures the linear acceleration along its sensitive axis, and the magnetometer measures
the magnetic field strength present in the sensor’s vicinity. With the advancement in Micro
Electrical Mechanical System (MEMS) technology, these sensors are now available in tiny
sizes with equivalent or improved performance than mechanical sensors. Although MEMS
sensors offer high performance, they suffer from several errors such as sensormisalignment,
bias instability, linearity, etc. (Aydemir & Saranlı, 2012). The gyroscope measurements are
robust to high-frequency noise whereas the accelerometer, andmagnetometer, performwell
in the low-frequency motions dynamics (Tseng et al., 2011). Such complementary behavior
of these sensors makes them appropriate for the sensor fusion application (Poddar et al.,
2017; Narkhede et al., 2019).

Several techniques and methods are proposed in the literature for sensor fusion. Kalman
filter (KF) (Kalman, 1960) is one of the most widely adopted sensor fusion methodologies
for engineering systems. Due to the nonlinear relationship between the multiple sensor
measurements, the nonlinear version of KF (Julier & Uhlmann, 2004), i.e., Extended
Kalman Filter (EKF) andUnscented Kalman Filter (UKF) are popular in attitude estimation
application (Crassidis, Markley & Cheng, 2007). A simple structured complementary filter
is also used for sensor fusion in low-cost attitude estimation systems (Mahony, Hamel &
Pflimlin, 2008). However, these filters require appropriate tuning of the parameters (α or
KP and KI for CF whereas matricesQ and R for EKF). KF is a complex process and requires
appropriate mathematical modeling of the systems and noise characteristics (Higgins,
1975). Artificial intelligence and machine learning-based fusion methods are also proposed
for multiple engineering and non-engineering applications in the last few years. Recurrent
Neural Network (RNN) (Rumelhart, Hinton & Williams, 1986) and Long Short-Term
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Memory (LSTM) (Hochreiter & Schmidhuber, 1997) are widely adopted sequence models
when the data is in sequential form. These sequence models are particularly effective than
the vanilla neural networks since they can handle the underlying sequential relationship
in the time series data. In engineering applications, significant performance improvement
can be observed in consumer devices, industrial devices, healthcare technologies, robotic
applications, etc with the use of these learning architectures. It is also observed that the
performance of sequence models is enhanced by incorporating the EKF frameworks with
them (Wang & Huang, 2011;Vural & Kozat, 2019;Bao et al., 2020).With the advancements
in UAV technologies, deep learning methods are widely adopted in UAV operations like
object detection and classification, maintaining UAV Internet of Things (IoT) Networks,
traffic flow monitoring (Maimaitijiang et al., 2020; Zhu, Qi & Feng, 2020; Al-Sharman et
al., 2019), etc.

In general, when the deep learning frameworks are implemented for a specific
application; the networks are trained offline using the available training data. In most
of the applications considered in this paper, the data is highly dynamic due to the uncertain
and unpredictable dynamic movements of the system in the air. The traditional offline
training based models fail to provide accurate predictions in such changing scenarios.
There is a need for online training of the network to incorporate the newly available
unseen data and update the deep learning model. This enables learning and understanding
of the dynamic motion, which is an important aspect considered while designing any
navigation system. This particular challenge can be mitigated by the use of an incremental
learning approach. This paper proposes the incremental learning of the LSTM network to
yield attitude angles. The main contributions of this paper are two fold; firstly, we have
demonstrated the use of the LSTM network for attitude estimation and compared its
performance with the traditional approach, specifically EKF. Secondly, we have developed
and demonstrated the incremental learning technique for attitude estimation while training
the LSTM network intermittently during the run. This ensures that the model is robust
against sudden changes and handles the unseen data common in such dynamic problems
convincingly. The results are compared with the EKF and traditional LSTM technique to
prove the efficacy of the proposed approach.

The remaining part of the paper is organized as follows: ‘Theoretical background’
provides the details on theoretical background relevant to understanding of the paper
and relevant literature while ‘Proposed methodology’ presents the details of LSTM and
incremental LSTM (LSTM–inc) framework for attitude estimation. ‘Results and discussion’
analyses the proposed LSTM–inc framework in comparison to the other techniques, and
‘Conclusion’ concludes the paper.

THEORETICAL BACKGROUND
Attitude estimation is the process of estimating the orientation of an object in the three-
dimensional space. Inertial sensors viz gyroscope, accelerometer, and magnetometer are
widely used in attitude estimation systems. The measurements from these sensors are
combined using the sensor fusion techniques for accurate estimation of the attitude angles.
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Review of literature
Kalman filter (KF) and its nonlinear versions EKF and UKF are some of the widely
popular sensor fusion frameworks used in engineering applications. These frameworks
follow the two-step process consisting of prediction and correction (Kalman, 1960).
Even though the KF and its different versions are very popular, they involve complex
mathematical operations and are not suitable for resource constrained small systems. Also,
the performance of these KF frameworks are highly dependent on the noise parameter
values fed to the system model (Euston et al., 2008).

In literature, KF is found to be a successful data fusion methodology in various
application domains ranging frommedical (Li, Mark & Clifford, 2007), agricultural (Huang
et al., 2007), manufacturing (Jemielniak & Arrazola, 2008), positioning, and navigation (Li
et al., 2011; Kumar et al., 2017), etc. KF was first reported in 1960 as a sophisticated
replacement for the complex instrumentation system of attitude estimation (Kalman,
1960). Numerous versions of KF and EKF are available in the literature for the task
of accurate attitude estimation. However, the KF requires the appropriate modeling
of the noise parameters for its efficient operation. These parameters need to be tuned
appropriately for reliable estimation. Considering this, various adaptive filter-tuning
methodologies are present in the literature. Fuzzy logic-based tuning of the EKF is one
of the most popular methodologies (Shi, Han & Liang, 2009; Sasiadek & Wang, 2003; Jwo
et al., 2013; Yazdkhasti & Sasiadek, 2018). Multiple model adaptive estimation technique
was employed with the EKF for attitude estimation application by Kottath et al. (2016).
An Evolutionary optimization-based EKF tuning framework is presented by Poddar et al.
(2016).

Another framework of sensor fusion, known as Complementary filter (CF), is also very
popular. CF is a simple structure comprising of a low pass and a high pass filter (Higgins,
1975) working in complementary mode. Researchers have also come up with the nonlinear
version of the CF, which uses the Proportional Integral (PI) Controller as a low pass
filter (Mahony, Hamel & Pflimlin, 2008). Both the versions of CF neither require any
consideration of noise characteristics nor the system model. Although complementary
filter is competitive to Kalman filter, it also requires adaptive and appropriate tuning of
the filter parameters. CF based attitude estimation system developed byMahony, Hamel &
Pflimlin (2008) is amongst some of the popular frameworks. Several research has occurred
in the area of complementary filter which aims at adapting the gain parameters of the
complementary filter have been proposed in the literature in the past (Kottath et al., 2017;
Narkhede et al., 2019; H, 2019). A cascaded structure combining linear and non-linear
version of complementary filter is presented by Narkhede et al. (2021).

Although different versions of KF and CF exist in the literature, they still have their own
limitations of tuning and complex mathematical operations. Both these frameworks need
adaptive adjustment of the filter parameters for the efficient performance of the filters,
which requires additional complex subroutine for filter parameter adaptation.

With the advancements in Artificial Intelligence-based techniques and the availability
of complex processing devices, research in the area of deep learning (DL) is increasing. DL
frameworks are also applied in UAVs for detection and classification purposes. Although
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Deep Learning techniques are widely used in UAV applications, they are notmuch explored
in attitude estimation applications. Al-Sharman et al. (2019) proposed a deep learning
methodology for understanding the noise characteristics and tune the noise variance
parameters in the Kalman filter structure. Huang et al. (2007) devised a method of using
Convolutional Neural Networks (CNN) for estimating vehicle attitude based on angular
velocity and acceleration. An unsupervised mechanism of deep auto-encoders for attitude
estimation is proposed byDai et al. (2018). It uses ANN-based encoder and decodermodels
to construct the Auto-encoder structure. Long-Term Short-Term Memory (LSTM) neural
network was proposed for estimating attitude angles in Liu, Zhou & Li (2018). Hussain
et al. (2019) proposed an indoor positioning system that uses LSTM architecture for
activity recognition and prediction. LSTM is also proposed for localization and the motion
estimation applications in Guo & Sung (2020) and Zhang et al. (2021)

All these approaches proposed offline training of the deep learningmodels where models
are trained offline using the available datasets. However, in real-world applications, the
dataset is not static, and due to the changing and dynamic nature of the incoming data
due to unpredictable motions of the aerial vehicle in flight, offline training is bound to
fail. Consider a case where sufficient data for various cases of a maneuver of an aerial
vehicle is collected, and an LSTM model is trained to predict the system state. However,
when the aerial vehicle is operated in real-time, it is subjected to numerous dynamical
changes and motion variations, which may not be present in the training data. Based on
these real-time changes, the model has to still predict the best possible estimate, which
may prove challenging and inaccurate at times. Deep learning models being data-agnostic,
may fail to understand the dynamically changed and unknown sensor inputs. Hence,
these models tend to generate inaccurate predictions of the attitude angles at times. This
creates a need for updating the network based on real-time sensor inputs. An incremental
learning system keeps on predicting the system state while updating the existing knowledge
(weights) of the LSTM framework during the run. In this work, an incremental learning
approach is therefore proposed for estimating attitude for a moving vehicle.

Attitude estimation from inertial sensors
The attitude angle or the orientation of any moving vehicle is defined as the angle that
the body frame of the vehicle makes with the earth’s reference frame (Titterton, Weston
& Weston, 2004; Farrell, 2008). The three different attitude angles of any vehicle about
the x , y , and z-axes are known as Roll (φ), Pitch (θ), and Yaw(ψ), respectively. Euler
angle representation of attitude angles is followed in this paper as it has a direct relation
with the rotation angles making it easy and convenient for understanding. The angular
velocities measured by a gyroscope in the body reference frame about x, y, and z axes are
generally denoted by p, q, and r , respectively. The equivalent reference frame quantities
for the measured body frame angles can be obtained using the standard coordinate
frame transformations taken in sequence. The rotation sequence followed in aerospace
applications is the rotation about the z-axis followed by a rotation about the y-axis and
then rotation about the x-axis (Pedley, 2013). The Greek letters phi (ψ), theta (θ), and psi
(ψ) are traditionally used to represent the Euler angles Roll, Pitch, and Yaw, respectively.
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The time derivative of Euler angles can be computed using Eqs. (1)–(3).

φ̇= p+qsin(φ)tan(θ)+ r cos(φ)tan(θ) (1)

θ̇ = qcos(φ)− r sin(φ) (2)

ψ̇ = qsin(φ)sec(θ)+ r cos(φ)sec(θ) (3)

Further, Euler rates (φ̇,θ̇ ,ψ̇) can be integrated to obtain the attitude estimates from
the gyroscope. As the integration is carried out as successive addition, it leads to the
accumulation of the unwanted component in themeasurements. As time increases, the drift
increases, misleading the gyroscope to be used as a standalone attitude estimating device.
Therefore, the fusion of another sensor’s measurements to the gyroscope measurements is
essential for the accurate attitude estimation.

If ax , ay , and az denote the linear accelerations measured along three orthogonal axes,
respectively. If the disturbance due to the external parameters is ignored, then the roll and
pitch angles using accelerometer can be computed using Eqs. (4) and (5), respectively.

φa= tan−1
(
ay
az

)
(4)

θa= tan−1
(

−ax
ay sinφ+az cosφ

)
(5)

If mx , my , and mz represents the magnetic strengths along x, y, and z-axes measured
using the tri-axial magnetometer, then the heading/yaw angle can be computed using a
magnetometer by the Eq. (6).

ψm= tan−1
(

mz sinφ−my cosφ
mx cosθ+my sinθ sinφ+mz sinθ cosφ

)
(6)

The frequency characteristics of these sensors are complementary, and the inability of
the gyroscope to be used as a stand along with the device for orientation estimation, a
fusion of these sensors is essential for accurate attitude estimations.

Sequence models in deep learning
Sequence models are typically used for handling sequential data such as sensor data, text,
sound data, and specific data with underlying sequential structure. A sequential data can
be used to carry out various applications, including financial time series prediction, text
processing, name entity recognition, sequence value prediction, etc. Sequence models are
used for time series data in either the input or output of which the Recurrent Neural
Network (RNN) is a good example. The traditional neural network model, also called
Artificial Neural Network (ANN), does not exhibit the property of looping and handling
time dependencies between the data (Bengio, Simard & Frasconi, 1994) and is therefore not
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a preferred solution for time-series data. RNN has a loop in them and allow information
to persist. RNN is not altogether different from the traditional ANN, whereas it can be
considered as the multiple ANN models connected in a series and one model passing the
information to its successor.

In RNN, the temporal dynamics are preserved via an internal memory. However, for
longer sequences, RNN proves inadequate and hence a variant called Long-Short Term
Memory (LSTM) is developed by Hochreiter & Schmidhuber (1997). LSTMs are a special
type of RNN having memory elements inside them and having capabilities of maintaining
long-term dependencies between the data. Like RNN, LSTM is also a chain of ANN
structures in which each of the ANN structure has four layers interacting in a specific
manner. The detailed working of the RNN, LSTM, is beyond the scope of this paper.

Incremental modelling
Incremental learning is the method in computer science where the input data is
continuously used to update the existing knowledge of the system. Incremental learning
refers to the learning of the model in real-time for any dynamic changes in the system state.
This method aims to adopt the new data without affecting the existing understanding and
knowledge of the system. Figure 1 shows the incremental learning methodology. As shown
in the figure, the input is applied to the learning algorithm, and the prediction model is
updated with the newly obtained parameter values. When the new type of input appears,
the model is updated using the new inputs as well as previous predictions of the model.
This reduces the learning time of the algorithm and only updates the already learned model
as and when the new data is made available.

The following section provides detailed information regarding the proposed incremental
learning methodology for the problem of attitude estimation.

PROPOSED METHODOLOGY
In the work presented in this paper, it is proposed to use the LSTM framework as a sensor
fusion tool for the fusion of measurements from inertial sensors for accurate attitude angle
estimation.
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In this application of AHRS under consideration, data from the gyroscope,
accelerometer, and magnetometer are considered for fusion. All these sensory data have an
underlying sequential/ temporal dependency. Traditional ANN does not have a mechanism
to handle these sequential dependencies, and hence they are insufficient for such tasks
(Bengio, Simard & Frasconi, 1994). In RNN, the temporal dynamics are preserved via an
internal memory. However, for longer sequences, RNN proves inadequate, and hence a
variant called Long-Short TermMemory is usually used (Hochreiter & Schmidhuber, 1997).
In this work, an LSTM based network is proposed, which can be applied to inertial sensor
data for estimating the roll, pitch, and yaw angles. It is also proposed here to train themodel
during run-time in batches to become robust for the new real-time data. Figure 2 shows
the proposed incrementally trained LSTM (hereafter referred as LSTM-inc) structure of
sensor fusion for attitude estimation. The output of all three tri-axial sensors are applied as
an input to the LSTM framework. All these nine measurements are concatenated together
to form an array of input. Measurements from current step and previous step are used as
input for estimating attitude angles of current step. This indicates the use of time-step as 2
while giving input to the LSTM layer. The implementedmodel consists of two hidden layers
of LSTM units. The prediction is made using the neuron’s layer with a linear activation
function. The supervised mechanism of LSTM is used to learn the features from inputs
and produce the desired output. The learning model is trained offline using a part of the
available dataset. In the prediction phase, attitude angles are estimated based on the trained
model and sensor measurements. After a specific time-interval, the weights of the trained
model are again updated to learn the new features from the inputs, and attitude angles
are predicted further. In this work, the interval of 30 s (3000 samples) is considered for
weights updation and is carried out for the whole sequence. The step by step procedure
for the proposed methodology is presented in the flowchart shown in Figs. 3 and 4. Phase
1, where the offline training of the network is carried out, is shown in Fig. 3; whereas the
attitude estimation and incremental learning phase is presented in Fig. 4. The proposed
attitude estimating framework usesmeasurements from the tri-axial accelerometer, tri-axial
gyroscope, tri-axial magnetometer as its inputs and yields Roll, Pitch, Yaw angles as output.

In this proposed framework, the sensors’ measurements are applied as an input
to the LSTM structure. However, in the traditional attitude estimation structures,
the attitude angles are computed using individual sensors initially (using Eqs. (1)–
(6)), and then combined together to yield estimated output. The direct application of
sensor measurements as an input to the proposed framework avoids angle computation
requirement using individual sensors thereby avoiding complex mathematical operations
on raw sensor measurements. The online/ incremental learning of the LSTM neural
network assures incorporation of newly arrived dynamic changes in the inputs and makes
the estimation system robust.

The next section provides a detailed analysis and experimental proof for the proposed
LSTM based sensor fusion framework of attitude estimation. The section also compares
the proposed architecture with the traditional attitude estimation techniques.
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RESULTS AND DISCUSSION
The proposed deep learning-based LSTM neural network structure for attitude estimation
is applied to the different datasets collected from the commercially available AHRS
module. EKF-based Xsens MTI-G module is considerably accurate and commercially
available inertial measurement system (Xsens, 2020). It provides information about the raw
sensor measurements from the tri-axial accelerometer, tri-axial gyroscope, and tri-axial
magnetometer, as well as the reference orientation angles for the motion provided. The
data is logged at the rate of 100 samples per second from the Xsens module. Random
motions are given to this module, and the data is recorded for offline simulations and
analysis. As the datasets are logged using the actual IMU, the generated data is considered
as real-world data. These logged attitude angles from the Xsens module are considered
as ground truth in the supervised learning framework. The raw sensor measurements are
applied to the proposed LSTM-inc framework to yield attitude angles. Root Mean Square
Error (RMSE) is considered for quantitatively verifying the feasibility and accuracy of
the proposed structure with respect to the considered reference. For N samples under
considerations, if x is the ground truth and x̂ being the predictions, then the RMSE can be
calculated using the Eq. (7).

RMSE =

√∑N
i=1(xi− x̂i)

2

N
(7)
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Table 1 RMSE comparison for the LSTM trained incrementally (LSTM-inc), LSTM trained offline (LSTM), and EKF (all values in radians).

Dataset Roll RMSE Pitch RMSE Yaw RMSE Average RMSE

LSTM_inc LSTM EKF LSTM_inc LSTM EKF LSTM_inc LSTM EKF LSTM_inc LSTM EKF

D1 0.05 0.09 0.02 0.03 0.05 0.02 0.12 0.22 0.18 0.07 0.12 0.07
D2 0.04 0.05 0.02 0.03 0.05 0.02 0.07 0.07 0.08 0.04 0.06 0.04
D3 0.05 0.06 0.02 0.03 0.03 0.03 0.11 0.16 0.13 0.06 0.09 0.06
D4 0.33 0.35 0.74 0.06 0.04 0.04 0.31 0.35 0.94 0.23 0.24 0.58
D5 1.26 1.33 1.14 0.05 0.08 0.05 0.35 0.34 0.87 0.55 0.58 0.68
D6 1.52 1.76 2.46 0.45 1.10 0.49 1.17 1.40 2.53 1.05 1.42 1.83

Table 2 Variance of data.

Dataset Roll Pitch Yaw

D1 0.173 0.079 0.049
D2 0.144 0.064 0.054
D3 0.140 0.081 0.042
D4 0.051 0.002 0.052
D5 1.341 0.003 0.139
D6 4.215 0.954 1.834

In the first phase of experimentation, the LSTM model is trained offline using the
available data and tested on the testing dataset. Since the vehicular motion data is dynamic
and indeterministic, it is required to incorporate the run time changes to train & update the
LSTMmodel in an incremental fashion. Table 1 shows the comparison between the offline
trained LSTM model (where incremental training is not involved) with the incrementally
trained LSTM model. The comparison with the EKF is also presented for reference.

In the Table 1, D1–D6 are the datasets collected from the Xsens module. The datasets
D1-D4 are datasets with less dynamic motion, and D5-D6 are datasets involving higher
dynamic motions. Roll RMSE columns indicate the RMSEs obtained for incrementally
trained LSTM, offline LSTM and EKF; similarly, RMSEs for Pitch and Yaw are indicated.
Average RMSE is the mean of RMSEs in Roll, Pitch, and Yaw angles. Improvement in the
RMSEs is observable in the incrementally trained LSTM model. In case of less dynamic
motions, even though the incrementally trained LSTM is not outperforming EKF estimates,
the difference is not significant. However, substantial improvements is observable in the
majority of the high dynamic motion cases. Table 2 indicates the variance of the Roll, Pitch
and Yaw data for various data sets.

In the second phase of experimentation, the proposed incrementally trained LSTM
framework is compared with the traditionally available and widely used Extended Kalman
Filter and is shown in Figs. 5 and 6. Figure 5 shows the RMSE comparison of the proposed
incrementally trained LSTM model with the EKF having the datasets involving fewer
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Figure 5 RMSE comparison of proposed incrementally trained LSTMmodel with EKF (less dynamic
motion datasets): (A) RMSE in Roll, (B) RMSE in Pitch, (C) RMSE in Yaw, (D) Average RMSE.
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dynamic motions. Figure 6 indicates a similar comparison; however, the datasets involve
higher dynamic motions characteristics.

The sample estimation results are shown in Figs. 7 and 8. These figures indicate the
reference attitude angles (Legend: Reference) as well as the estimated attitude angles using
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Figure 7 Sample attitude angle estimates (less dynamic motion): (A) Roll estimates, (B) Pitch esti-
mates, (C) Yaw estimates.
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Figure 8 Sample attitude angle estimates (high dynamic motion): (A) Roll estimates, (B) Pitch esti-
mates, (C) Yaw estimates.

Full-size DOI: 10.7717/peerjcs.662/fig-8

an incrementally trained LSTM framework (Legend: LSTM-inc). The estimates of offline
trained LSTM framework (Legend: LSTM) are also represented for comparison. The
estimated output through EKF is also indicated in figures (Legend: EKF). Figure 7 shows
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the attitude estimates for the less dynamic motion dataset, whereas high dynamic changes
in the attitude estimates are observable in Fig. 8.

From these figures, it can be observed that when there is a slow motion that does
not have dynamic changes, the estimates of offline trained LSTM are almost equal to
the incrementally trained LSTM. Whereas, in the case where motion involves dynamic
changes, the offline trained LSTM fails to predict accurate estimations due to the lack of
prior knowledge of the framework. However, in such cases, incrementally trained LSTM
accommodates the changes that happened recently and provides accurate attitude angles.
In the incremental training of the model, the LSTM model gets updated with the new type
of inputs. The updation of the model weights helps in predicting the accurate attitude
angles. The comparative analysis carried out with the traditional EKF based frameworks
also shows that the proposed incrementally trained LSTM framework is able to predict
a relatively accurate estimation as compared to the offline LSTM. The results for the
presented EKF can be improved by incorporating adaptive tuning mechanism with it.
However, this will again add to the computational complexity of the EKF. For comparison,
the EKF parameters are tuned manually using trial and error method, and the analysis
is carried out. The proposed methodology updates the LSTM model at regular interval,
adding robustness to the estimation architecture. These analysis have helped in proving the
feasibility of using the LSTM model for performing sensor fusion in attitude estimation
applications, even in applications where motions are unpredictable and involve dynamic
changes.

In the current work, the time interval of 30 s is considered for model weight update.
However, in specific applications where a fixed type of motion is involved, the time interval
can be increased to reduce the computational load. Due to the availability of dedicated
AI processing hardware platforms, the weight update time interval can be reduced to
incorporate every small change in the motions instantly. Accurate attitude estimation is
security essential aspect. Due to automated feature extraction and learning in the LSTM
framework, it may be difficult to understand the situations where the consideredmodel will
fail to predict accurate estimates. The issue can be resolved by considering the explainability
of themodels as explained in Le et al. (2019) andDang et al. (2020). This will help to predict
accurate angles and accordingly suggest the corrective actions making model more robust
and will be studied in future.

CONCLUSION
The LSTMbased incremental learning framework for performing sensor fusion is presented
in this work. The data from inertial sensors is fed to the LSTM architecture for reliable
attitude estimation in the navigational framework. While the navigation system undergoes
dynamic motions, the traditional attitude estimation techniques is not very accurate in
following the trajectory and hence an incremental learning framework for the LSTM
network is developed and demonstrated here in this paper. The proposed approach is
evaluated with the help of real-world data sets collected from commercially available
AHRS modules. These results are also compared with the traditional EKF framework and
it is observed that the LSTM-inc method outperforms the EKF method specifically in the
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situations where dynamic motion changes are involved. Additionally, these results are
compared with the offline trained LSTM and the comparison results demonstrate that
the offline trained LSTM network fails to provide accurate estimation when a system
undergoes an unknown type of motion. The nature of motion is generally dynamic, and it
is not practically possible to obtain datasets involving all types of motions to train the LSTM
network model in an offline mode. Hence, an incrementally trained framework is suitable
for such applications. In future work, the relation between the multiple tri-axial sensors
can be analyzed so that the redundant features (measurements) can be discarded while
training the network. Along with the optimal feature selection, features can be weighted,
and the results can be analyzed for improvement in estimation accuracy.
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