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ABSTRACT
Digital disruptions have led to the integration of applications, platforms, and infras-
tructure. They assist in business operations, promoting open digital collaborations, and
perhaps even the integration of the Internet of Things (IoTs), Big Data Analytics, and
Cloud Computing to support data sourcing, data analytics, and storage synchronously
on a single platform. Notwithstanding the benefits derived from digital technology
integration (including IoTs, Big Data Analytics, and Cloud Computing), digital
vulnerabilities and threats have become a more significant concern for users. We
addressed these challenges from an information systems perspective and have noted
that more research is needed identifying potential vulnerabilities and threats affecting
the integration of IoTs, BDA and CC for data management. We conducted a step-
by-step analysis of the potential vulnerabilities and threats affecting the integration of
IoTs, Big Data Analytics, and Cloud Computing for data management. We combined
multi-dimensional analysis, Failure Mode Effect Analysis, and Fuzzy Technique for
Order of Preference by Similarity for Ideal Solution to evaluate and rank the potential
vulnerabilities and threats. We surveyed 234 security experts from the banking industry
with adequate knowledge in IoTs, Big Data Analytics, and Cloud Computing. Based
on the closeness of the coefficients, we determined that insufficient use of backup
electric generators, firewall protection failures, and no information security audits
are high-ranking vulnerabilities and threats affecting integration. This study is an
extension of discussions on the integration of digital applications and platforms for data
management and the pervasive vulnerabilities and threats arising from that. A detailed
review and classification of these threats and vulnerabilities are vital for sustaining
businesses’ digital integration.
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INTRODUCTION
Emerging and ubiquitous digital applications have created opportunities for industries
to combine technologies to improve operations through open digital interoperability,
scalability, and interdependence for digital platforms and applications collaboration
(Kebande, Karie & Venter, 2017). Digital open collaboration has made it possible for
applications, tools, and platforms to merge or synchronize successfully with other
applications. Recent studies have identified that emerging digital applications such as
the Internet of Things (IoTs), Big Data Analytics (BDA), and Cloud Computing (CC)
can synchronize to support data sourcing, data analytics, and storage on a single platform
(Stergiou et al., 2018). For example, IoT applications such as radio-frequency identification
devices (RFID) and other actuators are primarily used to source data from different fields
to support BDA for data processing and insights (Yang et al., 2017). CC provides access to
shared resources which enable IoTs data collection for real-time data analysis (Atlam et al.,
2018). The concept of digital disruptions has led firms to integrate digital applications and
platforms capabilities to promote business values.

Accordingly, financial service operations have been largely influenced by digital
applications and platforms to build innovative services and ultimately to increase revenue.
For most banks, the need to improve data sourcing and insight creation from data plus
their ability to store large volumes of customer data has led to the adoption of IoTs, BDA
and CC for financial service operations. Feher & Varga (2017) posited that ‘‘the changing
role of branches, mobile and phone-based services and products and services’’ have also
contributed to the drive towards ubiquitous platforms and applications. Specifically,
adopting the IoTs as the ‘‘Bank of Things’’ has helped commercial banks use automated
teller machine kiosks to directly interact with customers’ mobile phones to easily withdraw
money without using a debit or credit card. IoTs connected devices are valuable for
transmitting customers’ financial transactions. This in turn allows financial institutions to
collect, exchange, and create insight from each transatction. According to the Cybersecurity
Observatory Finder (2020), ‘‘Bank of Things (BoTs) is the material infrastructure that
facilitates the billions of data transfers that take place every day’’. Most banks have also
acknowledged that the amount of data being generated has increased enormously due to
different sources of collecting data. As such, data have become the most vital asset for
banks to effect changes for financial services operations. The focus for banks is the ability
to create value, insight and leverage from data assets. Most banks have therefore construed
big data into ’’a greater scope of information, new kinds of data and analysis, real-time
information, data influx from new technologies, modern media, large volumes of data, the
latest buss word and data from social media’’ (Forest et al., 2014). New digital technologies
have further classified data into volumes, variety, velocity, veracity and value. Personal data
and data from daily financial transactions have been optimized using big data analytical
tools to create new financial business models, collaborations among employees, fraud
detection, optimizing financial operations and customer-focused services. Commercial
and retail banks use big data analytics tools such as data mining, query and reporting, data
visualization tools, and streaming analytics, to analyze data for specific business models and
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operational improvements. Cloud computing infrastructures are used by approximately
89% of banks globally as of 2015 (Hon & Millard, 2018). Although most banks were
initially hesitant to transfer core data to the cloud, the deployment of cloud services is now
accepted by commercial banks to support operations. The use of cloud computing services
can provide continuous banking services across branches and integrate customer data or
information in all branches. Virtual cloud computing services have been used to support
the IoTs and BDA, allowing them to have digital scalability, collaborations, interoperability,
interdependence, and data management processes within a digital ecosystem.

Despite the benefits of integrating digital applications for collaboration, scalability
and cost-efficiency, these applications are complex (Yang et al., 2017; Heavin & Power,
2018). Studies have indicated that insufficient standardization, heterogeneity, Internet
availability, and infrastructure limit the success of digital integration for data management
(Kache & Seuring, 2015). At the heart of these complexities are digital security risks and
vulnerabilities. Digital ecosystem interactivities are perpetually affected by threats and
vulnerabilities as a result of network connectivity for data transmission and storage via
the Internet (Manogaran et al., 2018). Consequently, firms relying on Internet accessibility
for digital platforms, and applications interactivity for data management constantly deal
with digital security threats and vulnerabilities. The dependence on emerging digital
innovations leaves businesses prone to more digital security attacks. These risks stem from
the combination of threats within the digital environment. Studies have suggested that
digital security risks and vulnerabilities are a result of threats from digital platform usage,
the physical environment, people, and an organization’s digital ecosystem (OECD, 2015).
These dangers affect data integrity, confidentiality, and availability, preventing them from
integrating successfully into emerging digital platforms.

Attemptsmade by IoTs, BDA, andCC to address digital security attacks, digital resources,
and the environment have minimized these effects in a number of ways (Yan et al., 2020;
Xu et al., 2020; Xu et al., 2019). A cursory review of these approaches in information system
(IS) research leads to either technical or managerial perspectives of related security attacks
and vulnerabilities (Flores, Antonsen & Ekstedt, 2014; Singh, Gupta & Ojha, 2014; Joshi
& Singh, 2017). Again, attempts to address digital security vulnerabilities presented by
these applications have been treated independently specific to platforms or application
deployment (Sicari et al., 2015;Chang, Kuo & Ramachandran, 2016). There is little research
on the implications of potential vulnerabilities and threats for digital technology integration
of IoTs, BDA, and CC in data management (Cherdantseva et al., 2016). There is also an
insufficient understanding of how to address risk when integrating these three applications
(Choo et al., 2018). We sought to understand the potential vulnerabilities and threats
arising from integrating IoTs, BDA, and CC applications to provide security managers with
a better awareness of threats against digital interdependence on a single platform.

Assessing digital security threats and vulnerabilities requires continuous efforts
to identify, analyze, and measure the attacks with appropriate security management
techniques. Bojanc & Jerman-blaz (2008) suggested that the attempt to assess the impact
of digital security risks and vulnerabilities should include identifying and assessing loss
caused by successful attacks. It should also include decisions to mitigate or reduce the
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operational risk. Similarly, Chen & Zhao (2013) advocated that security risk assessment
must broadly identify the security environment and the accompanying risks issues.
Steps must be taken to ensure comprehensive analysis, measurement, and control of
the potential risk failures for digital technology resources. Implementing these steps
incorporates the probability of identifying risks to the digital systems, detecting the extent
of the impact, the severity of potential incidents, procedures for minimizing security
controls, and monitoring approved controls’ efficacy (Silva et al., 2014; Munodawafa &
Awad, 2018). We examined the literature and identified twenty-seven vulnerabilities and
threats that may affect IoTs, BDA, and CC integration. Vulnerabilities and threats were
further grouped under access control vulnerabilities, network security attacks, data and
information management, infrastructure attacks, security management failures, identity
management, and communication security (Li & Tang, 2013; Kebande, Karie & Venter,
2017; Ouaddah et al., 2017; Kumar, Raj & Jelciana, 2018; Chang, Kuo & Ramachandran,
2016). We sought to provide a step-by-step analysis of potential vulnerabilities and threats
using multi-dimensional analysis such as Failure Mode Effect Analysis (FMEA) and Fuzzy
Technique for Order of Preference by Similarity for Ideal Solution (FTOPSIS). FMEA and
FTOPSSIS were used to categorize and prioritize the potential vulnerabilities and threats
in IoTs, BDA, and CC integration. Our objectives were to:
1. Investigate potential vulnerabilities and threats affecting the integration of IoTs, BDA,

and CC for data management;
2. Evaluate the potential threats and vulnerabilities using FMEA and Fuzzy TOPSIS;
3. Assess the most prevailing threats and vulnerabilities through risk prioritization

ranking.
Our study is structured into six main sections. ‘Related Work’’ reviews potential digital

security threats and vulnerability dimensions for IoTs, BDA, and CC integration. ‘FMEA
and Fuzzy theory application’ presents risk management assessment tools, FMEA, and
Fuzzy TOPSIS. ‘Methodology’ introduces the methodology. ‘Analysis and results’ presents
the analysis of our results, and ‘Discussion’ and ‘Conclusions’ are a discussion of the results
and the conclusion of the study, respectively.

RELATED WORK
Digital security consideration in IoTs, CC and BD integration
Studies have attempted to classify digital security threats and vulnerabilities for IoTs, CC,
and BDA into security risk dimensions. A cursory review of the literature found that the
risks influenced the overall benefits of deploying IoTs, CC, and BDA for data management.
According to Li & Tang (2013), the identification and prioritization of critical threats and
vulnerabilities should find security dimensions to be potential threats to digital platforms
and the use of applications. Our study considered these threats when classifying the
vulnerabilities and risks for the deployment and use of IoTs, CC and BDA.

Infrastructure (INF) vulnerabilities and attacks
Digital infrastructure disruptions affect built-in systems in the digital environment.
Infrastructure vulnerabilities and risks cause disruption or impact occurrences; they
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affect hardware and network resources for digital platform interactivity (Li & Tang, 2013).
Vulnerabilities in the infrastructure include IT automated systems failure through hardware
malfunctions, natural disasters, or loss of electric power (Xu &Masys, 2016). Integrating
IoTs, BDA, and CC infrastructures support complex data structures; however, they are
targets for hackers (Kebande, Karie & Venter, 2017).

Reliance on such digital platform interactivity depends on the security of a pool of
shared physical-digital resources. Failures eventually disrupt the interdependence of
software platforms that facilitate interoperability connectivity among IoTs, CC, and
BDA (Chatzipoulidis, Michalopoulos & Mavridis, 2015). Studies have shown that the
heterogeneity of digital devices or resources result in a higher likelihood of digital
infrastructure failures on a platform that supports interoperability (Ullah et al., 2017).
Digital infrastructure failures are further attributed to disruption due to a lack of back-up
power, poor patch updates, and the use of infrastructure (Cobb et al., 2018).

Security management (SM) failures
Security management failures occur due to the inadequate use of digital security safety
measures, insufficient security audits, and poor maintenance of hardware and software
assets (Soomro, Shah & Ahmed, 2016). Failing to adopt a holistic approach to the daily
management of security occurrences often disrupts security with digital resources. Poor
security measures towards cloud services such as infrastructure as a service (IaaS) in the
layers may affect the delivery of services to either a third party or an organization using
IoTs and BDA for data management (Jouini & Rabai, 2017). Security management failures
are also attributed to a lack of system security audits, security policy review, and hardware
and digital resource maintenance (Le, Hartog den & Zannone, 2018).

Communication security (CS) failures
A review by Bays et al. (2015) suggested that communication security failures and
threats with a lack of security encryption protocols primarily affected digital platform
communication. Lack of communication security requirements on IoTs, CC and BDA
platforms affected data and information integrity, confidentiality and authentication
(Martin et al., 2017). The interaction of communication platforms through data
and information sharing were compromised, affecting data privacy, integrity and
confidentiality. Communication channels were further compromised on a wireless network
or interface facilitating the integration of IoTs, CC and BDA (Shu et al., 2016).

Identity management (IDM) failures
Identity management secures the identification and notification of users’ activities on
digital platforms and resources. Identity management ensures unique and standardized
identification that virtually authenticates users on a secure platform to ensure their
safety and security (Ferreira & Alonso, 2013). Identity management security is affected by
the reliability and applicability of IDM systems that control CC platform and provide
scalability for BDA, and remote access to IoTs actuators for varied connectivity and
usage (Habiba et al., 2014). Habiba et al. (2014) found that identity management security
challenges include identity theft, least privileges, elevated privileges, and trust management.
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Indu, Anand & Bhaskar (2018) suggested that due to outsourcing and third-party
management of digital platform interactivity, identity management security failures or
vulnerabilities that arise through IoTs, CC, and BDA must be controlled.

Access control (ACC) failures
Lack of control of third-party activities through cloud computing sourcing on a platform
relying on IoTs to transfer data for big data analytics may result in an unsafe transfer of data
(Gharaibeh et al., 2017). Digital trust issues emanating from access to digital platforms may
influence an organization’s security strategy. Failure to provide rigorous control measures
for authenticating and authorizing users’ privileges on a digital platform can complicate
IoTs, CC and BDA integration (Ouaddah et al., 2017). A systematic analysis of digital
security challenges revealed how IoT nodes failed to authenticate authorized access on a
cloud platform (Hossain, Fotouhi & Hasan, 2015), making it vulnerable to attacks.

Network security (NS) vulnerabilities
Vulnerability attacks occur through the Internet and system network may affect IoTs,
CC, and BDA connectivity. These attacks usually affect physical or virtual networks that
facilitate the integration of digital interactivity platforms. Singh, Jeong & Hyuk (2016)
identified denial of services (DoS), spoofing, distributed denial of service (DDoS), and
phishing attacks as network security occurrences affecting access to digital platform
integration. These attacks significantly affected IoTs devices that act as a conduit for
transmitting data or information through the cloud platform for big data prescriptive
analysis (Hossain, Fotouhi & Hasan, 2015).

Data and information management (DINF) vulnerabilities
Key policies must definemeasures to secure and protect data on digital platforms. Examples
of vulnerabilities and threat occurrences affecting data and information management on
integrated platforms include lack of data scalability and failure to secure data transferability,
failure to provide data privacy, lack of data theft prevention, failure to prevent unauthorized
access, and including sensitive information in data storage (Kumar, Raj & Jelciana, 2018;
Chang, Kuo & Ramachandran, 2016). Few studies have explored the benefits obtained
through IoTs, CC, and BDA integration; challenges for managing data on these interactive
platforms are on the rise (Cai et al., 2017).

A summary of security dimensions with accompanying vulnerabilities and threats
is shown in Table 1. For each digital security dimension, specific failure modes were
highlighted as perceived attacks and failures occurringwith IoTs, BDA, andCCdeployment.
Table 1 shows that access control security vulnerabilities are perceived to include external
management failures, failure to manage external and internal media removal, control of
third party privileges, and failure to control access to digital platforms. Network security
issues also occurred due to failed firewalls, unsuccessful prevention of network attacks,
missing intrusion detection and prevention systems and a failure to prevent network
attacks. Table 1 shows the remaining vulnerabilities and threats defined under each
security dimension.
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Table 1 Failure modes.Digital security risk and vulnerabilities.

Dimensions Failure modes

AC1- External management access control
AC2-Management of removable of internal and external
media risk
AC3-Control to third party privileges risk

Access Control (ACC)

AC4-Access to external digital platforms control
NS1- Failure of Firewall protection
NS2- File transfer protocol to authenticate the
communication between devices and networks
NS3- Lack of intrusion detection and prevention system

Network Security (MS)

NS4- Lack of preventing network attacks
DINF1- Digital Platforms compatibility failures
DINF2- Reliability of digital platforms
DINF3- Failure of software functionality on platforms

Data and Information
Management (DINF)

DINF4- Failure of digital configuration with a digital system

INF1- Failure to control the use of infrastructure
INF2- Lack of infrastructure update and patching
INF3- Software origination and defence failures

Infrastructure (INF)

INF4- Lack of back-up electric generator
SM1- Lack of information security audit
SM2-Lack of a policy paper on digital security safety
SM3- Lack of maintenance of hardware and software

Security Management
(SM)

SM4- Lack of security policies reviews
IDM1- Lack of securing users’ true identity
IDM2- Lack of identifying a third-party identity
IDM3- Notification to system administrator on a user’s
identity

Identity Management
(IDM)

IDM4- Lack of detecting outsourced party activity and
identity
CS1- Lack of encryption control management
CS2- Lack of limited content access to internet

Communication Secu-
rity (CS)

CS3- Lack of safety of electronic mail

Risk analysis assessment
Risk analysis is the preliminary step in assessing security risk management procedures
(Hinarejos et al., 2018). Risk analysis is a step-by-step procedure using available information
to classify and evaluate different sources of potential risks for the use of digital resources.
Its success depends on the ability to correctly identify countermeasures to mitigate
risks. According to Bojanc & Jerman-blaz (2008), risk management analysis requires the
verification of the likelihood that a risk will occur, the likelihood of detecting the risk, and
the consequential effect of the risk should it occur. Risk assessment methods must identify
the occurrence of vulnerabilities and threats, evaluate and measure their impact, and detect
present and future attacks. We reviewed this multi-dimensional methodology using FMEA
and Fuzzy TOPSIS. The two techniques informed the basis of this study and helped to
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identify the occurrence of risks and vulnerabilities, the severities of such vulnerabilities
to digital applications, and the detectability of continuous implications of such security
dimensions.

FMEA AND FUZZY THEORY APPLICATION
FMEA has been shown to be a useful analytical tool for evaluating potential risk
identification failures and preventative measures. FMEA is defined by Stamatis (2003)
as ‘‘an analysis technique for defining, identifying and eliminating known or potential
failures, problems, errors and so on from system, design, process and services before they
reach the customer’’. FMEA outlines the process of identifying potential failure modes,
causes, effects, and challenges affecting the overall systems, hardware reliability, software
applications, and the safety of the system (Kim & Zuo, 2018). FMEA identifies the potential
failure modes based on their criticality to the systems (Kangavari et al., 2015). Measuring
the risk priority number (RPN) is determined as the product of Occurrence (Occ), Severity
(Sev), and Detection (Det) of a failure mode defined in Eq. (1). In Eq. (1), Occ is the
frequency of occurrence of the failure mode, Sev is the extent of the effect of the failure
mode, and Det is the probability of detecting the failure before it impacts each system.
Groups of decision-makers evaluate the three risk parameters (Occ, Sev, and Det) by
providing an assessment value with specific scales for each identified failure mode. A high
RPN for any failure mode requires adequate attention to provide corrective measures to
the system.

RPN =Occ×Sev×Det (1)

The use of FMEA has been combined with other techniques to improve its efficacy
(Liu, Liu & Liu, 2013). Zadeh (1965) developed the fuzzy set theory to address phenomena
characterized by uncertainty or complexities under FMEA conditions. The fuzzy set is able
to offer more accurate results with the subjective opinions of FMEA experts. Hadi-Venchec
& Aghajani (2013) proposed a fuzzy analysis to examine expert views using linguistic terms
to evaluate their independent judgment to control failures. Likewise, Carpitella et al. (2018)
proposed a combined multi-criteria approach to support FMEA for a group of experts to
optimize maintenance activities.

Fuzzy sets are expressed in linguistic terms through fuzzy triangular or trapezoidal
numbers (Ramzali, Reza & Ghodousi, 2015). Linguistic variables represent triangular or
trapezoidal fuzzy numbers quantitatively to reflect the responses given by experts (Zadeh,
1965). The linguistic variables are expressed to show the fuzzy ratings for failure modes
to determine the weighted criteria of risk factors. The linguistic terms and fuzzy numbers
for Occ indicate the probability of a failure mode occurring. Severity explains the level of
impact of the failure mode affecting the system. The Det scale also shows the extent to
which the system could identify failures modes within a specified period.

Crisp RPN values have been criticized due to the subjectivity of quantifying the linguistic
scale although FMEA risk analysis has yielded several results. Focus on fuzzy number
aggregation to determine the ranking of RPN for risk factors has been criticized because
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it does not reflect a fair representation of FMEA group assessments. In response to these
limitations, approaches such as a technique for ordering preference by similarity to ideal
solution (TOPSIS), analytic hierarchy process (AHP), and data envelopment analysis
(DEA) have been proposed in the literature. The TOPSIS and AHP techniques seek
to support decision-makers with alternatives under certain conditions (Sun, Wu & Liu,
2006). In line with the above, we adopted the FTOPSIS multi-criteria decision method to
support FMEA in estimating potential vulnerabilities and threats. The FTOPSIS extends
traditional TOPSIS to improve the application of linguistic variables for rating criteria for
failure modes under FMEA and fuzzy environment (Chen, 2000).

METHODOLOGY
We present the research design, the sampling method, questionnaire design, data collection
and analysis in the following sections to provide holistic insight into the prevailing threats
and vulnerabilities in IoTs, BDA, and CC integration for data management.

Research design
We adopted a mixed methodology approach combining qualitative and quantitative
methodologies (Creswell, 2014). A qualitative method was used to identify and explore
the relevant literature detailing different security threats and vulnerabilities affecting
the integration of IoTs, CC, and BDA. The survey method was used to administer the
questionnaire for data collection. We used FMEA and Fuzzy TOPSIS techniques as the
overarching methodology to evaluate, measure, and prioritize vulnerabilities and risk to
achieve the objectives of the research. The application of these techniques bridged the
qualitative and quantitative analysis.

Sample and sampling technique
Security vulnerabilities and threat occurrences requires respondents to have the technical
abilities to manage digital risks and an understanding of their impact on emerging digital
platforms and applications. We used the purposive non-probability sampling technique
to select experts and collect data. The purposive sampling technique was chosen because
of its ability to support the responses from individual respondents. Experts were selected
for their knowledge of IoTs, CC, and BDA use in Ghanaian financial institutions. The
institutions represented international and domestic financial banks. Digital technologies
have supported the financial sector over the past five years and the central bank has
been instrumental in supporting the financial sectors with the digitization of banking
operations due to legislation (Opoku-Afari, 2019). Therefore, commercial banks in Ghana
are using different digital platforms and applications to tailor financial services to improve
processes and customer satisfaction. Ghanaian banks were used to investigate digital
security vulnerabilities and threats for digital platforms and application deployment within
the financial sector.

Questionnaire design and data collection
Our questionnaire was developed based on Goodman’s (1996) and the empirical
applications of FMEA made by Lin et al. (2014) and Liu et al. (2012). We used a 1–10
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linguistic scale (absolutely little influence = 1–2-points and very high influence = 9–10
points) to evaluate, measure, and prioritize security vulnerabilities affecting IoTs, BDA,
and CC using Occ, Sev, and Det risk parameters. The parameters represent a group decision
matrix corresponding to trapezoidal fuzzy numbers constructed to aggregate expert ratings.
The linguistic scales were further converted into trapezoidal fuzzy numbers for Occ, Sev,
and Det for each decision maker’s response. The trapezoidal fuzzy numbers for each
decision maker’s rating were set within the [0,1] range were 1–2 = 0; 0; 0.15; 0.2, 3–4 =
0.15; 0.2; 0.35; 0.4, 5–6 = 0.35; 0.4; 0.55; 0.6, 7–8 = 0.55; 0.6; 0.75; 0.8 and 9–10 = 0.75;
0.8; 0.9;1.

The questionnaires were administered to digital security experts within the financial
sector in Ghana, a middle-income Sub-Saharan African country. Data were collected after
an initial assessment of security experts to ascertain their knowledge of IoTs, CC, and
BDA deployment and usage. A total of 315 questionnaires were distributed to 23 financial
institutions. A total of 255 responses were obtained, of which 234 were considered suitable
for the analysis. The remaining 21 questionnaires were eliminated from our analysis due
to incomplete responses.

Implementation of data analysis
The FMEA and Fuzzy TOPSIS analysis involved data aggregation for a fuzzy group and
weight matrix, a fuzzy normalized matrix, a fuzzy ideal solution, and calculation of
coefficient scores closeness. We used FMEA to categorize threats and vulnerabilities by
the probability of occurrence, the severity of occurrence, and the extent to which the
vulnerabilities were detected. Fuzzy TOPSIS further defined the fuzzy set functions. This
enabled us to aggregate experts’ responses regarding the occurrence, severity, and detection
of digital threats and vulnerabilities. This in turn allowed us to determine the group
decision matrix. Considering the subjective nature of expert opinions, the Fuzzy TOPSIS
also provided a systematic step to normalize the aggregated responses before determining
the criticality of values to rank and prioritize the failure modes under investigation.

The experimental design for the methodology is presented in Fig. 1, detailing a step-by-
step procedure used to achieve the research objectives. The experimental design provided a
statistical procedure for data collection and analysis to yield valid and objective conclusions
for this study (Montgomery, 2017). Our experimental design began by identifying experts
and collecting data. Experts were identified based on their understanding of the terms
and specific data for each digital security criterion. Once this stage was satisfied, the
questionnaires were distributed to the appropriate experts within the IT security units. The
data reflected the extent to which risks and vulnerabilities occurred and their severity and
detectability of the use of IoTs, BDA, and CCs. The second stage of our study transformed
the linguistic scales of expert rankings into associated fuzzy trapezoidal numbers using
Excel Visual Basic to ensure the reliability of the data set for mathematical modelling.
Thus, for the fuzzification of stages 3 to 6 we used Fuzzy TOPSIS mathematical modelling
to derive the aggregated fuzzy group matrix, the weighted fuzzy matrix, the normalized
fuzzy matrix, the distance for ideal solutions, and the closeness of coefficient scores. We
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Figure 1 Flow chart of the digital security assessment through FMEA and FTOPSIS.
Full-size DOI: 10.7717/peerjcs.658/fig-1

used the closeness of coefficient scores to prioritize and rank the vulnerabilities and threats
identified in the context of digital security risks.

ANALYSIS AND RESULTS
Step 1
Fuzzy set A is defined as the membership function that includes elements of the universe
X to the unit interval [0,1] (Zadeh, 1965). Accordingly, fuzzy set A in X is characterized by
membership function fA(x), the corresponding points for each X must be real numbers in
the interval [0,1] representing x with set A (Zadeh, 1965). The value of fA(x) is assumed
to be more significant to the membership of X to set A if it is closer to 1. We adapted the
trapezoidal fuzzy number Ã which is represented as (a1,a2,a3,a4) as shown by Ramzali,
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Reza & Ghodousi (2015) in Eq. (2).

fA(x)=



0, if x < a1
x−a1
a2−a1

, if a1≤ x ≤ a2

1, if a2≤ x ≤ a3
x−a4
a3−a4

, if a3≤ x ≤ a4

0, if x < a4

(2)

For any given two positive trapezoidal numbers, Ã= (a1,a2,a3,a4) and B̃= (b1,b2,b3,b4)
with positive real numbers, the basic operations for fuzzy set theory are defined in Eqs. (3)
to (6) (Zadeh, 1965; Bojadziev & Bojadziev, 2007).

Ã⊕ B̃= [a1+b1,a2+b2,a3+b3,a4+b4] (3)

Ã	 B̃= [a1−b1,a2−b2,a3−b3,a4−b4] (4)

Ã⊗ B̃= [a1b1,a2b2,a3b3,a4b4] (5)

Ã⊗ r = [a1r,a2r,a3r,a4r] (6)

Again, given m as cross-functional decision makers DMk (,2,...,m)k = 1 in a FMEA
team is responsible for evaluating a set of n failure modes FM i (i= 1,2, . . . , n) with respect
to Occurrence, Severity, and Detection risk factors. Therefore, akij1,b

k
ij2,c

k
ij3,d

k
ij4 are the

fuzzy ratings provided by each DMk to evaluate FM i for Occ, Sev, and Det expressed in
Eqs. (7), (8) and (9).

Occ =
(
akij1,b

k
ij2,c

k
ij3,d

k
ij4

)
(7)

Sev =
(
akij1,b

k
ij2,c

k
ij3,d

k
ij4

)
(8)

Det =
(
akij1,b

k
ij2,c

k
ij3,d

k
ij4

)
(9)

The aggregated fuzzy group decision matrix was derived from Ghoushchi, Yousefi &
Khazaeili (2019) as formulated in Eq. (10). Given that F̃MI = DM assessment of F̃MI (i =
1, 2, . . . , m) with respect to Occ, Sev, and Det risk factors. The trapezoidal values for Occ,
Sev, and Det are calculated for each failure mode under their respective dimensions.

F̃M i=

(
Ãij =

1
k
∗

l∑
k

akij1,B̃ij =
1
k
∗

l∑
k

bkij2,C̃ij =
1
k
∗

l∑
k

ckij3,D̃ij =
1
k
∗

l∑
k

dkij4

)
. (10)

Similarly, each aggregated fuzzy weight denoted as w̃j was derived using Eq. (11) with
respect to Occ, Sev, and Det factors for each failure mode by each DMk .

w̃j = (wj1,wj2,wj3,wj4)=
(
w̃1=

wj1

k
,w̃2=

wj2

k
,w̃3=

wj3

k
,w̃4

wj4

k

)
(11)
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Step 2
The cost attributes procedure was used to compute the R̃ij in Eq. (12) to determine the
normalized decision matrix since vulnerabilities and risk are used for this study. The cost
attribute in Eq. (13) represents the minimum value for a−j for each vulnerability respective
to Occ, Sev, and Det. Therefore, the normalized fuzzy weights (z̃ij) were computed using
Eq. (16) for the group decision matrix for each vulnerability and risk failure mode for Occ,
Sev, and Det; the result is in Table 2.

N =


r11 r12 ··· r1j
r21 r22 ... r2j
... ...

. . .
...

ri1 ri2 ··· rij

 (12)

r̃ij =



(
aij
d+

,
bij
d+

,
cij
d+

,
dij
d+

)
if j is a benefit attribute

(
a−j
dij

,
a−j
cij

,
a−j
bij

,
a−j
aij

)
if j is a cost attribute

(13)

d+j =max of dij if j is a benefit attribute (14)

a−j =min of aij if j is a cost attribute (15)

z̃ij =wj .r̃ij (16)

Where r̃ij =
(

a−j
dij

,
a−j
cij

,
a−j
bij

,
a−j
aij

)
as described in Eq. (13).

Step 3
In the next stage we computed the fuzzy ideal positive and negative solution in Eqs. (17) to
(23) (Carpitella et al., 2018). The Fuzzy Positive Ideal Solution (FPIS) and Fuzzy Negative
Ideal Solution (FNIS) are further defined in Eqs. (17) and (18), respectively (Chen, 2000).

V ∗= (z̃∗i1,z̃
∗

i2,...z̃
∗

ij ) (17)

V−= (z̃−i1 ,z̃
−

i2 ,...z̃
−

ij ) (18)

Where

z̃∗ij =max ṽij(max aij,max bij,max cij,maxdij) (19)

z̃−ij =min ṽij(min aij,min bij,mincij,min dij) (20)

The distance for two generic Trapezoidal Fuzzy Numbers (TrFNs) is calculated in
Eq. (21). For the crisp value for each failure mode, this was done after determining minṽij
and maxṽij for Occ, Sev, and Det (Khalili-damghani & Sadi-nezhad, 2013). Therefore,
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Table 2 Normalized group fuzzy weighted matrix.Group weighted matrix.

Dimensions Failure
mode

Occurrence Severity Detection

AC1 0.3025 0.3665 0.5945 0.7150 0.3385 0.4094 0.6327 0.7550 0.2126 0.2649 0.4863 0.5970
AC2 0.3027 0.3667 0.5946 0.7150 0.3385 0.4082 0.6327 0.7550 0.2086 0.2606 0.4828 0.5970
AC3 0.3036 0.3676 0.5951 0.7150 0.3353 0.4018 0.6330 0.7550 0.2100 0.2607 0.4837 0.5970

Access Control

AC4 0.3010 0.3639 0.5937 0.7150 0.3389 0.4078 0.6348 0.7550 0.2109 0.2621 0.4843 0.5970
NS1 0.3059 0.3730 0.6089 0.7150 0.3424 0.4139 0.6389 0.7550 0.2129 0.2658 0.4870 0.5970
NS2 0.2978 0.3597 0.5930 0.7150 0.3378 0.4083 0.6333 0.7550 0.2086 0.2603 0.4822 0.5970
NS3 0.3070 0.3733 0.5968 0.7150 0.3353 0.4035 0.6321 0.7550 0.2057 0.2566 0.4816 0.5970

Network Security

NS4 0.3059 0.3699 0.5962 0.7150 0.3398 0.4104 0.6352 0.7550 0.2097 0.2613 0.4844 0.5970
DINF1 0.3090 0.3752 0.5978 0.7150 0.3341 0.4026 0.6334 0.7550 0.2086 0.2594 0.4848 0.5970
DINF2 0.3031 0.3661 0.5958 0.7150 0.3283 0.3963 0.6305 0.7550 0.1980 0.2480 0.4779 0.5970
DINF3 0.2971 0.3594 0.5916 0.7150 0.3364 0.4054 0.6336 0.7550 0.2040 0.2545 0.4818 0.5970

Data and Informa-
tion Management

DINF4 0.3031 0.3673 0.5958 0.7150 0.3313 0.3986 0.6320 0.7550 0.2068 0.2579 0.4826 0.5970
INF1 0.3049 0.3687 0.5977 0.7150 0.3371 0.4063 0.6321 0.7550 0.2094 0.2609 0.4824 0.5970
INF2 0.3048 0.3682 0.5957 0.7150 0.3387 0.4074 0.6338 0.7550 0.2100 0.2611 0.4837 0.5970
INF3 0.3017 0.3641 0.5950 0.7150 0.3389 0.4070 0.6339 0.7550 0.2090 0.2595 0.4821 0.5970

Infrastructure

INF4 0.3158 0.3816 0.6104 0.7150 0.3376 0.4057 0.6332 0.7550 0.2143 0.2656 0.4855 0.5970
SM1 0.3140 0.3801 0.6003 0.7150 0.3409 0.4113 0.6348 0.7550 0.2097 0.2613 0.4844 0.5970
SM2 0.3107 0.3746 0.5987 0.7150 0.3360 0.4042 0.6324 0.7550 0.2109 0.2619 0.4824 0.5970
SM3 0.3015 0.3632 0.5940 0.7150 0.3360 0.4043 0.6334 0.7550 0.2078 0.2584 0.4833 0.5970

Security Manage-
ment

SM4 0.3066 0.3687 0.5957 0.7150 0.3380 0.4063 0.6344 0.7550 0.2093 0.2599 0.4833 0.5970
IDM1 0.3077 0.3733 0.5972 0.7150 0.3419 0.4129 0.6354 0.7550 0.2114 0.2630 0.4846 0.5970
IDM2 0.3036 0.3677 0.5960 0.7150 0.3413 0.4119 0.6360 0.7550 0.2142 0.2665 0.4863 0.5970
IDM3 0.2998 0.3644 0.5931 0.7150 0.3353 0.4048 0.6330 0.7550 0.2118 0.2635 0.4848 0.5970

Identity Manage-
ment

IDM4 0.2959 0.3581 0.5900 0.7150 0.3374 0.4072 0.6360 0.7550 0.2101 0.2618 0.4847 0.5970
CS1 0.3072 0.3712 0.5969 0.7150 0.3402 0.4095 0.6345 0.7550 0.2152 0.2672 0.4879 0.5970
CS2 0.3004 0.3620 0.5924 0.7150 0.3353 0.4035 0.6321 0.7550 0.2139 0.2654 0.4871 0.5970

Communication
Security

CS3 0.3030 0.3656 0.5928 0.7150 0.3346 0.4028 0.6317 0.7550 0.2133 0.2651 0.4858 0.5970
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Table 3 Fuzzy positive and negative ideal solution.Distance for FPIS and FNIS.

Fuzzy Positive Ideal Solution (FPIS) Fuzzy Negative Ideal Solution (FNIS)

Dimensions Failure
mode

Occ Sev Det d∗
i Occ Sev Det d−

i

AC1 0.0129 0.0043 0.0019 0.0190 0.0046 0.0084 0.0119 0.0249
AC2 0.0127 0.0046 0.0053 0.0226 0.0048 0.0079 0.0086 0.0213
AC3 0.0120 0.0076 0.0046 0.0242 0.0055 0.0046 0.0092 0.0193

Access
Control

AC4 0.0142 0.0041 0.0038 0.0221 0.0032 0.0081 0.0101 0.0213
NS1 0.0066 0.0000 0.0014 0.0080 0.0118 0.0120 0.0124 0.0362
NS2 0.0166 0.0046 0.0055 0.0267 0.0008 0.0078 0.0084 0.0169
NS3 0.0091 0.0071 0.0078 0.0240 0.0089 0.0051 0.0060 0.0200

Network
Security

NS4 0.0104 0.0028 0.0044 0.0176 0.0072 0.0094 0.0094 0.0260
DINF1 0.0078 0.0075 0.0053 0.0206 0.0103 0.0045 0.0085 0.0234
DINF2 0.0124 0.0120 0.0138 0.0382 0.0050 0.0000 0.0000 0.0050
DINF3 0.0173 0.0058 0.0090 0.0321 0.0000 0.0063 0.0048 0.0111

Data
and
Information
Management

DINF4 0.0120 0.0100 0.0068 0.0289 0.0054 0.0020 0.0070 0.0144
INF1 0.0106 0.0057 0.0051 0.0214 0.0068 0.0067 0.0089 0.0224
INF2 0.0114 0.0045 0.0045 0.0204 0.0062 0.0078 0.0093 0.0233
INF3 0.0136 0.0046 0.0057 0.0239 0.0037 0.0077 0.0082 0.0196

Infrastructure

INF4 0.0000 0.0055 0.0015 0.0070 0.0173 0.0067 0.0125 0.0366
SM1 0.0052 0.0025 0.0044 0.0121 0.0140 0.0100 0.0094 0.0335
SM2 0.0073 0.0067 0.0044 0.0183 0.0108 0.0056 0.0097 0.0261
SM3 0.0142 0.0064 0.0062 0.0268 0.0031 0.0057 0.0076 0.0165

Security
Management

SM4 0.0108 0.0049 0.0052 0.0209 0.0069 0.0072 0.0086 0.0228
IDM1 0.0088 0.0019 0.0033 0.0139 0.0092 0.0110 0.0106 0.0307
IDM2 0.0117 0.0019 0.0010 0.0145 0.0057 0.0105 0.0130 0.0292
IDM3 0.0146 0.0064 0.0029 0.0239 0.0029 0.0057 0.0109 0.0195

Identity
Management

IDM4 0.0185 0.0044 0.0040 0.0269 0.0012 0.0076 0.0098 0.0186
CS1 0.0095 0.0033 0.0000 0.0128 0.0082 0.0091 0.0138 0.0311
CS2 0.0154 0.0071 0.0012 0.0237 0.0021 0.0051 0.0126 0.0198

Communication
Security

CS3 0.0135 0.0076 0.0017 0.0229 0.0043 0.0046 0.0121 0.0210

Ã= (a1,a2,a3,a4) and B̃= (b1,b2,b3,b4) represents the TrFNs for each F̃M i for Occ, Sev,
and Det factor.

d
(
Ã,B̃

)√1
4
[
(a1−b1)2+ (a2−b2)2+ (a3−b3)2+ (a4−b4)2

]
(21)

Furthermore, the fuzzy ideal solution for each alternative d i is then aggregated for the
whole set of failure modes for related distances d∗ and d− by Eqs. (22) and (23). Table 3
shows the result of a fuzzy ideal solution for each failure mode.
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FPIS
(
d∗
)
=

n∑
j=1

d
(
z̃ij
)
i= 1,...,n (22)

FNIS
(
d−
)
=

n∑
j=1

d
(
z̃ij
)
i= 1,...,n (23)

Step 4
Failure mode rankings are finally computed using the closeness of coefficient (CC) in
Eq. (24). The final results are shown in Table 4 and indicates the closeness of coefficient
score rankings for all vulnerabilities under each dimension (Javadian et al., 2009).

CCi=
FNIS

FNIS+FPIS
. (24)

DISCUSSION
The corresponding fuzzy numbers were calculated using the aggregated group matrix for
Occ, Sev, andDet for each vulnerability and threat identified by the experts. The normalized
decision matrix was calculated (Table 2) before the final ranking of the vulnerabilities and
threats. The results for the final steps are shown in Table 4 and delineate the risk priority
ranking for all vulnerabilities and threats using the closeness of coefficient scores. We
found:
1. Twenty-seven perceived failure modes constituting threats and vulnerabilities affecting

the integration of IoTs, BDA, and CC (Table 1).
2. Using the closeness of coefficient scores, we identified 13 of the 27 vulnerabilities

affecting the success of IoTs, BDA, and CC integration (Table 4). The closeness of
coefficient scores for these vulnerabilities were all above 0.5. This included failure to
control infrastructure (0.511092), lack of security policy review (0.521654), digital
platforms compatibility failures (0.531005), lack of infrastructure update and patching
(0.532621), external management access control (0.566476), lack of policy paper
on digital security safety (0.587907), unsuccessful prevention of network attacks
(0.596003), no identification of third-party identity (0.667483), no verification of users’
true identity (0.688226), lack of encryption control management (0.70801), failure of
firewall protection (0.818448), and lack of backup electric generator (0.838898).
The closeness of coefficient score is indicated by a score closer to or farther from one and

implies that vulnerabilities and risk failure modes are ranked from highest to lowest impact.
A risk with a high closeness of coefficient is a potential failure significantly affecting the IoTs,
BDA, and CCs integration. All vulnerabilities with a closeness of coefficient scores closer
to one require more attention during corrective actions to the system. Table 4 and Fig. 2
show ‘‘lack of backup electric generator (INF4) under infrastructure risk dimension’’ with
the highest closeness coefficient score of 0.8388 followed by ‘‘failure of firewall protection
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Table 4 Failure modes ranking. Ranking.

Dimensions Failure Mode d ∗ d − CC i Rank

AC1- External management access control 0.0190 0.0249 0.566476 9th
AC2-Management of removable of internal and external
media risk

0.0226 0.0213 0.485012 15th

AC3-Control to third party privileges risk 0.0242 0.0193 0.443452 21st
Access
Control

AC4-Access to external digital platforms control 0.0221 0.0213 0.491215 14th
NS1- Failure of Firewall protection 0.0080 0.0362 0.818448 2nd
NS2- File transfer protocol to authenticate the
communication between devices and networks

0.0267 0.0169 0.387668 23rd

NS3- Lack of intrusion detection and prevention system 0.0240 0.0200 0.454627 17th

Network
Security

NS4- Lack of preventing network attacks 0.0176 0.0260 0.596003 7th
DINF1- Digital Platforms compatibility failures 0.0206 0.0234 0.531005 11th
DINF2- Reliability of digital platforms 0.0382 0.0050 0.114851 27th
DINF3- Failure of software functionality on platforms 0.0321 0.0111 0.257042 26th

Data
and
Information
Management

DINF4- Failure of digital configuration with a digital system 0.0289 0.0144 0.332897 25th

INF1- Failure to control the use of infrastructure 0.0214 0.0224 0.511092 13th
INF2- Lack of infrastructure update and patching 0.0204 0.0233 0.532621 10th
INF3- Software origination and defence failures 0.0239 0.0196 0.450525 19th

Infrastructure

INF4- Lack of back-up electric generator 0.0070 0.0366 0.838898 1st
SM1- Lack of information security audit 0.0121 0.0335 0.735124 3rd
SM2-Lack of a policy paper on digital security safety 0.0183 0.0261 0.587907 8th
SM3- Lack of maintenance of hardware and software 0.0268 0.0165 0.380825 24th

Security
Management

SM4- Lack of security policies reviews 0.0209 0.0228 0.521654 12th
IDM1- Lack of securing users’ true identity 0.0139 0.0307 0.688226 5th
IDM2- Lack of identifying a third-party identity 0.0145 0.0292 0.667483 6th
IDM3- Notification to system administrator on a user’s
identity

0.0239 0.0195 0.449422 20thIdentity
Management

IDM4- Lack of detecting outsourced party activity and
identity

0.0269 0.0186 0.408363 22nd

CS1- Lack of encryption control management 0.0128 0.0311 0.70801 4th
CS2- Lack of limited content access to internet 0.0237 0.0198 0.454612 18th

Communication
Security

CS3- Lack of safety of electronic mail 0.0229 0.0210 0.478928 16th

(NS1) under network security dimension’’ with a score of 0.818 and ‘‘lack of information
security audit (SM1) under security management practices’’ with a score of 0.735. These
vulnerabilities and risks potentially disrupt interconnectivity and safety and impact of IoTs,
BDA, and CC. The future of digital platforms, applications interactivity, and collaborations
depend on addressing associated vulnerabilities such as information security audits and
firewall protections (Mahmoud et al., 2016). According to Chatzipoulidis, Michalopoulos
& Mavridis (2015), digital platforms sustainability depends on the level at which general
digital infrastructure is exposed to vulnerabilities. In that regard, Silva et al. (2014) reported
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Figure 2 Closeness of coefficient score and ranking chart.
Full-size DOI: 10.7717/peerjcs.658/fig-2

that not having a backup electric generator creates vulnerability in an otherwise sustainable
digital infrastructure.

Our results suggested that no encryption control management (CS1), not securing
a user’s true identity (IDM1), and not identifying third parties (IDM2) are the next
potential threats associated with communication security and identity management.
Notably, the risks associated with communication security was viewed as a challenge to
digital platform collaborations (Soomro, Shah & Ahmed, 2016; Silva et al., 2014). Bays et
al. (2015) confirmed that failing to ensure security encryption protocols affected digital
platform communication. Identity theft and elevated privileges for digital platform use
jeopardize the security of identity management. The sustainability of cloud supporting
services for BDA and IoTs depends on the effectiveness of identity management security
systems within digital platforms interactions (Habiba et al., 2014).

Table 4 and Fig. 2 illustrate the remaining vulnerabilities and risks failures with three
failure modes under data and information management dimensions; these represent the
least ranked threats. Failures of digital configuration with digital systems (DINF4), failures
related to software functionality on platforms (DINF3), and reliability of digital platforms
(DINF2) were ranked 25th, 26th, and 27th with coefficient scores of 0.332896, 0.257042,
and 0.114851, respectively. These were identified as vulnerabilities or failures to digital
integration that did not affect IoTs, BDA, and CC deployment. This also suggests an
improvement in the integration of IoTs, BDA, and CC to support the use of data and
information for decision making (Ardolino et al., 2018). In contrast, Stergiou et al. (2018)
observed an increasing gap in privacy and security issues with data management as a result
of integrating IoTs and CC technologies. Applying results above suggests that specific
attention should focus on vulnerabilities and risks with the closeness of coefficients scores
from 0.8 to 0.5.
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CONCLUSIONS
We sought to provide a comprehensive view of the implications of digital technology
integration for both research and practice. We also sought to identify potential digital
security threats and vulnerabilities with IoTs, BDA, and CC platform integration to
support data management.

Most IS studies have not investigated digital security consequences in IoTs, BDA,
and CC using FMEA and FTOPSIS techniques. We provided a review of identifying
vulnerabilities and threats likely to affect IoTs, BDA, and CC integration. We also proposed
a multi-criteria approach to evaluate the effect of integration holistically. As recognized
in this study, research on the vulnerabilities and risks of emerging technologies have
been focused on a single platform or application and have independently assessed specific
IoTs, BDA, or CC issues (Sicari et al., 2015; Choo et al., 2018; Bhathal & Singh, 2019). Our
study provides a holistic theoretical approach towards digital technology integration and
its potential impact on digital risk management governance. We offer insight into the
various potential vulnerabilities and threats to data management when integrating IoTs
applications, BDA, and CC platforms.

The integration of IoTs, BDA and CC capabilities support data source, insight, storage,
and knowledge sharing; however, vulnerabilities and threats significantly influence their
success. Hence, controlling their vulnerabilities is more critical than focusing only on how
they benefit businesses. The results of our study should be used by IT risk managers to
assist in identifying vulnerabilities for IoTs, BDA, and CC deployment. The use of FMEA
and FTOPSIS alongside other robust digital risk management approaches can be adopted
by IT risk managers to support decision-making criteria on the criticality of ranking
vulnerabilities to improve information security analysis. IT risk managers should pay
greater attention to firewall protection, reliable power and security audit management to
reduce recurring attacks on data due to the complexities of IoT, BDA, and CC integration.
Our results suggest that internal and external security measures must adequately protect
IoT, BDA and CC infrastructure from curtailing frequent attacks from internal and
third-party users.

Continuous improvement within the digital ecosystems allows emerging technologies
to integrate and promote digital interdependence, interoperability, scalability, and
collaboration (Edu, Agoyi & Agozie, 2020). It is essential to identify potential complexities
accompanying the integration of digital technology applications and platforms. We sought
to understand the digital security risks facing the integration of IoTs, BDA, and CC
deployment. We identified twenty-seven potential vulnerabilities and threats affecting this
process. We used closeness of coefficient scores and found that lack of backup electric
generator, firewall protection failure, lack of information security audit, lack of encryption
control management, and not securing users’ true identity were critical.

Prioritizing vulnerabilities helps with reducing or managing potential digital security
risks emanating from digital technology integration. Accordingly, the use of multi-criteria
risk management approaches also allows firms and IT security managers to holistically
provide corrective actions when digital security fails.
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Our findings highlight digital security risk management implications for IoTs, BDA,
and CC integration.

Our study is limited by its reliance on security experts from financial institutions as
their views may not reflect the views of experts from different industries using IoTs, BDA,
and CC deployment. Secondly, IoTs, BDA, and CC integration is still an emerging area
and generalizing these findings may lead to insufficient conclusions. Additional studies
should increase the sample size with IT security experts from different institutions whose
responses to the digital security dimensions can be generalized. The findings of this study
are limited to vulnerabilities and threats identified in the literature, hence responses from
experts reflect the analysis of the results.

The integration of these digital technologies are still developing so future research
should investigate and empirically validate the relationship and commonalities among
the vulnerabilities and identified threats. Future studies should consider exploring other
potential vulnerabilities and threats not mentioned in this study since digital security risks
are multi-faceted. The data used for this study included perceptual views from security
experts to generate research findings. Although perceptual data is encouraged in survey
research, the use of operational data detailing vulnerabilities and threats from system logs,
audit trails, and daily transactions or operational activities could further provide validity
with digital security risk management. A combination of operational and perceptual
data from audit trails or records from system logs could enhance future findings. Lastly,
future research can look at other emerging vulnerabilities and threats emanating from the
integration of BDA, blockchain technologies, and cloud computing.
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