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ABSTRACT
In this paper we propose two novel deep convolutional network architectures,
CovidResNet and CovidDenseNet, to diagnose COVID-19 based on CT images.
The models enable transfer learning between different architectures, which might
significantly boost the diagnostic performance. Whereas novel architectures usually
suffer from the lack of pretrained weights, our proposedmodels can be partly initialized
with larger baseline models like ResNet50 and DenseNet121, which is attractive
because of the abundance of public repositories. The architectures are utilized in a
first experimental study on the SARS-CoV-2 CT-scan dataset, which contains 4173 CT
images for 210 subjects structured in a subject-wise manner into three different classes.
The models differentiate between COVID-19, non-COVID-19 viral pneumonia, and
healthy samples.We also investigate their performance under three binary classification
scenarios where we distinguish COVID-19 from healthy, COVID-19 from non-
COVID-19 viral pneumonia, and non-COVID-19 from healthy, respectively. Our
proposed models achieve up to 93.87% accuracy, 99.13% precision, 92.49% sensitivity,
97.73% specificity, 95.70% F1-score, and 96.80% AUC score for binary classification,
and up to 83.89% accuracy, 80.36% precision, 82.04% sensitivity, 92.07% specificity,
81.05% F1-score, and 94.20% AUC score for the three-class classification tasks. We
also validated our models on the COVID19-CT dataset to differentiate COVID-19 and
other non-COVID-19 viral infections, and our CovidDenseNet model achieved the
best performance with 81.77% accuracy, 79.05% precision, 84.69% sensitivity, 79.05%
specificity, 81.77% F1-score, and 87.50% AUC score. The experimental results reveal
the effectiveness of the proposed networks in automated COVID-19 detection where
they outperform standardmodels on the considered datasets while beingmore efficient.

Subjects Bioinformatics, Artificial Intelligence, Computer Vision, Data Mining and Machine
Learning
Keywords COVID-19 detection, SARS-CoV-2, Computed tomography, Deep learning,
Multi-class classification, Automated diagnosis

INTRODUCTION
Coronavirus disease 2019 (COVID-19), a highly infectious disease that affects primarily
the respiratory system, is caused by the severe acute respiratory syndrome coronavirus-2
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(SARS-CoV-2). The disease has presented massive public health crises and has been
declared by the World Health Organization (WHO) as a global pandemic (Cucinotta &
Vanelli, 2020). By June 13, 2021, there have been 175,306,598 confirmed COVID-19 cases
including 3,792,777 deaths, reported to the WHO, and a total of 2,156,550,767 vaccine
doses have been administered (WHO, 2021).

The virus is still spreading widely at the time and the number of cases is increasing per
day in several countries even with the extensive and accelerated pace of vaccinations.
The appearance of worrisome new variants that are much more contagious causes
several countries to struggle in reducing the number of new cases and necessitates urgent
vaccinations. Epidemiologists define the current stage of the pandemic as a race between
vaccinations and newly reported cases, particularly the infections caused bymore infectious
variants. The main challenges in controlling the pandemic severity are the rapid and
wide person-to-person transmission of the virus and the spreading of new viral variants
across all countries (Pachetti et al., 2020). The standard approach to detect SARS-CoV-2
is performed through a virus-specific real-time reverse transcription polymerase chain
reaction (RT-PCR) testing. However, RT-PCR testing has several shortcomings, including
a low sensitivity rate in the range of 60%–70%, long turnaround times, variabilities in
testing techniques, high expenses, and a limited testing capacity in many countries (Fang
et al., 2020; Long et al., 2020). Therefore, the development of other effective and scalable
diagnostic tools with higher sensitivity to COVID-19 are of crucial importance and urgently
required.

Recent studies have reported that medical imaging of the lungs can be exploited as
a suitable alternative testing method for COVID-19. The most widely used imaging
modalities for the lungs are the chest radiography (X-ray) and computed tomography(CT).
Beside their wide availability in hospitals worldwide, their usage has improved the
diagnostic performance and sensitivity for COVID-19 detection (Kim, Hong & Yoo,
2020). Nevertheless, comparing the diagnostic accuracy of X-ray and CT in detecting
COVID-19, it has been reported that the sensitivity of X-ray is poor, whereas CT scanning
has demonstrated higher sensitivity (Borakati et al., 2020). Moreover, CT screening has
shown to be more sensitive even than RT-PCR testing while being significantly faster
and cheaper (Fang et al., 2020; Ai et al., 2020). According to a study conducted on 1014
COVID-19 patients (Ai et al., 2020), RT-PCR could only detect 601/1014 (59%) patients
as positives, while the CT-Scan detected 888/1014 (88%) patients as positives. The initial
testing for some patients had negative RT-PCR results, whereas the confirmation was
inferred based on their CT findings. Furthermore, chest CT screening has been strongly
recommended for patients with specific symptoms compatible with viral infections, and
their PCR test results are negative (Kanne, 2020).

While it might be easy to differentiate patients with COVID-19 from healthy individuals
based on CT, it is very challenging to differentiate COVID-19 from non-COVID-19 viral
lung infections such as the community acquired pneumonia (CAP) due to two main
reasons. First, COVID-19 and other viral infections share similar common patterns and
features (Xu et al., 2021). Patients with COVID-19 usually manifest several CT radiological
features at different locations and distribution patterns such as ground glass opacities
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(GGO), consolidation, bilateral infiltration and crazy paving (Ye et al., 2020; Hani et
al., 2020). Second, the CT images may present appearance differences for patients with
COVID-19 across different severity (Yilmaz et al., 2020). For these reasons, COVID-19
diagnosis from CTs requires interpretation of the CT images by expert physicians and is
a labor-intensive, time-consuming, and often subjective. The CTs are first annotated by a
practicing radiologist to report the radiographic findings. Then, the findings are analyzed
against specific clinical factors to obtain the final diagnosis. During the current pandemic,
checking every CT image is not a feasible option as the frontline physicians are faced with
a lack of time and massive workload, which increases the physical burden on the staff and
might affect the diagnostic quality and efficiency.

Artificial intelligence (AI) techniques and deep convolutional neural networks (CNNs)
have the potential to automate COVID-19 detection in patients and assist in the rapid
evaluation of CT scans (Chowdhury et al., 2020). The powerful representational capability
of the deep CNNs can be exploited to differentiate patients with COVID-19 from healthy
subjects or others with non-COVID-19 viral infections. Therefore, our study introduces
two deep CNN architectures that operate end-to-end to enable automated detection and
effective diagnosis of COVID-19 patients based on CT images. The proposed networks have
been tailored and validated to differentiate patients with COVID-19, patients with other
viral infections, and healthy individuals from the SARS-CoV-2 CT-scan dataset (Soares
et al., 2020). We also investigated the networks effectiveness in binary classification with
all possible class combinations from the considered dataset. Moreover, we validated
our models on the COVID19-CT dataset (Zhao et al., 2020), and our models provided
promising results outperforming state-of-the-art models.

One common issue when using new, non-canonical network architectures is the lack
of models that have been pretrained on large-scale datasets like ImageNet (Deng et al.,
2009). Using pretrained models in transfer learning approaches is attractive when having
only small amounts of data to train the model and training a model from scratch would
suffer from poor generalization. This is the case especially for image classification tasks for
emerging or rare diseases and CNNs with millions of parameters. Starting to train with
pretrained models offers initial filters, which are already adapted for visual recognition
and only some modifications have to be made to solve the new task. This promotes the
eagerness to benefit from transfer learning for COVID-19 detection. Novel architectures,
which might be better suited for a specific task, have to compete with the pretrained
canonical architectures (i.e., ResNet or DenseNet) and might show inferior performance
because of the lack of pretrained weights. Nevertheless, in order to benefit from transfer
learning, we designed CovidResNet and CovidDenseNet with parameter compatibility as
a key design feature. The idea is to make some network weights compatible with those
of pretrained models, which can be found in public repositories. The inter-usability of
the weights is realized by sharing some parts of the standard’s architecture and adding
appropriate adapter layers at certain key positions. As a result, weights from the well known
ResNet50 (He et al., 2016) or DenseNet121 (Huang et al., 2017) architectures can be used to
partly initialize CovidResNet and CovidDenseNet, which leads to a boost in performance.
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Since the CT images in the considered datasets have different sizes, scaling them to
match a fixed input size will probably distort them. We opted for a different preprocessing
procedure and experimentally investigated an approach to preserve the aspect ratios of the
CT images. This procedure has proved to be very effective and results in an improved overall
performance (Alshazly et al., 2020). Extensive experiments and analysis on the diagnostic
accuracy using standard evaluation metrics were conducted against five standard CNN
models. The experimental results show the superior performance for the proposed models
over the standard models and are computationally more efficient.

The main contributions of this work are summarized as follows:

• We propose two novel deep CNN architectures (CovidResNet and CovidDenseNet) for
automated COVID-19 detection based on chest CT images. The models enable transfer
learning between different architectures and they can be partly initialized with larger
pretrainedmodels like ResNet50 andDenseNet121, to boost the diagnostic performance.
The models have been tailored and validated for the multi-class and binary classification
tasks to differentiate COVID-19 patients from non-COVID-19 viral infections as well as
healthy subjects.
• The networks are trained and tested on CT images from two benchmark datasets. First,
the SARS-CoV-2 CT-scan dataset, which contains 4173 CT images for 210 subjects
distributed into three different classes. To the best of our knowledge, this is the first
experimental study to be conducted on the SARS-COV-2 CT-scan dataset with a
subject-wise data split. Therefore, our models and the reported results may serve as
a baseline to benchmark and compare any future work on this dataset. Second, the
COVID19-CT dataset, which shares similar visual characteristics and is available in a
subject-wise data split.
• In contrast to most of the developed systems that were trained and tested on CT images
where the same individuals appear in the training and test splits, which is definitely not
appropriate. We followed a subject-wise splitting approach, where we choose 60% of the
subjects for training and 40% for testing.
• We conduct extensive experiments and a comprehensive analysis to evaluate the
performance of the proposed models for the multi-class and binary classification tasks
using various evaluation metrics including accuracy, precision, sensitivity, specificity,
F1-score, confusion matrix, ROC curve, and area under the ROC curve (AUC).
• Our experimental results reveal the validity of the proposed networks to achieve very
promising results with average accuracies of 93% and 82% for the binary and multi-class
classification tasks, respectively. Our CovidResNet and CovidDenseNet models have
shown to be effective in differentiating COVID-19 patients from other non-COVID-19
and healthy individuals. Moreover, constructing an ensemble of the proposed networks
boosts the performance of the single models and achieves the best results.

The remainder of the paper is structured as follows. ‘Related Work’ highlights the
related work. Our proposed CovidResNet and CovidDenseNet architectures are described
in ‘COVID-Nets Architectures’. The datasets, data splitting and preprocessing, performance
evaluation metrics, and the training methodology are detailed in ‘Methodology’. ‘Results
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and Discussion’ provides the experimental results. Finally, the paper is concluded in
‘Conclusion’.

RELATED WORK
This section explores the extensive work on constructing computer-aided diagnostic
(CAD) systems for COVID-19 detection based on AI techniques and more specifically
deep convolutional networks. Many effective approaches have been proposed to diagnose
COVID-19 using chest radiography images including X-rays and CT scans. We hereafter
discuss the most relevant work and highlight their success and achieved results.

A considerable number of CAD systems utilise X-ray images to diagnose COVID-
19 (Abraham & Nair, 2020; Ibrahim et al., 2021; Brunese et al., 2020; Aslan et al., 2020;
Pham, 2021). For instance, COVID-Net (Wang, Lin & Wong, 2020) is a deep CNN model
designed specifically for detecting COVID-19 cases from chest X-ray images. COVID-Net
was trained and tested on the CVOIDx dataset with a total of 13,975 X-ray images gathered
from five different sources of chest radiography images. The network achieved 91.0%
sensitivity rate for COVID-19 cases. DeepCoroNet (Demir, 2021) is another deep network
approach proposed for automated detection of COVID-19 cases from X-ray images. The
experimental analysis was performed on a combined dataset of COVID-19, pneumonia,
and healthy X-ray images. The model provided a high success rate for the three-class
classification problem exceeding other competitive models. CoVNet-19 (Kedia, Anjum
& Katarya, 2021) is a stacked ensemble model for detecting COVID-19 patients from
X-ray images. The model combined two pretrained deep CNNs (VGGNet (Simonyan &
Zisserman, 2015) and DenseNet (Huang et al., 2017)) for feature extraction, and support
vectormachines (SVMs) for the final classification. Themodel achieved accuracy of 98.28%
and a sensitivity rate above 95% for the COVID-19 class outperforming any of the single
models. Coronavirus recognition network (CVR-Net) (Hasan et al., 2020) is a multi-scale
CNN-based model proposed to recognize COVID-19 from radiography images including
both CT and X-ray images. The model was trained and evaluated for the multi-class and
two-class classification tasks. The model achieved promising results with average accuracy
ranging from of 82% and 99% for the multi-class and binary classification using X-ray
images and 78% for CT images. COVID-ResNet (Farooq & Hafeez, 2020) is a deep learning
approach to differentiate COVID19 cases from other pneumonia cases based on X-ray
images. The model was trained and validated on the COVIDx dataset and achieved an
accuracy of 96.23%. In Toraman, Alakus & Turkoglu (2020), an artificial neural network
approach based on capsule networks was introduced to detect COVID-19 from X-ray
images. The proposed model was investigated to differentiate COVID-19 cases in the
two-class (COVID-19 and no-findings) as well as multi-class (COVID-19, Pneumonia,
and normal) classification tasks. The model achieved average accuracy of 97.24%, and
84.22% for the two-class, and multi-class tasks, respectively.

Similar AI-based systems have been developed for automatically analyzing CT images
for detecting COVID-19 pneumonia (Wu et al., 2021; Xu et al., 2020; Wang et al., 2021a;
Li et al., 2020; Hasan et al., 2021). These systems were constructed through a combination
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of segmentation and classification models. In the first stage, the lung region or the
lesion region are first segmented from the CT scans using segmentation models such as
U-Net (Ronneberger, Fischer & Brox, 2015) or V-Net (Milletari, Navab & Ahmadi, 2016).
While in the second stage deep CNNmodels such as ResNet (He et al., 2016) and Attention
ResNet (Wang et al., 2017) were adopted to perform the diagnosis of COVID-19. For
instance, an AI-based system for diagnosing COVID-19 based on CT scans was proposed
in Jin et al. (2020). The system was trained and tested on CT-scan dataset consisting of
CT scans of different classes including COVID-19, influenza, non-viral pneumonia, and
non-pneumonia subjects. A comprehensive analysis was performed on a test cohort to
evaluate the performance of the system in the multi-class and binary classification tasks.
The model achieved an AUC score of 97.81% and a sensitivity of 91.51% for the multi-class
classification task.

At the same time, new deep CNN architectures were designed and adopted to diagnose
COVID-19. Wang, Liu & Dou (2020) redesigned the COVID-Net architecture and its
learning methodology to be applied to CT images, and to improve the prediction accuracy
and computational complexity. Besides, a joint learning approach was proposed to improve
the diagnostic performance of COVID-19 cases and to tackle the data heterogeneity in
the used CT scan datasets. Experiments on two CT image datasets show the success of
the proposed joint learning approach with 90.83% accuracy and 85.89% sensitivity on
the largest dataset. COVIDNet-CT (Gunraj, Wang & Wong, 2020), is deep CNN tailored
specifically for the detection COVID-19 cases from chest CT images. The network was
designed with a high architectural diversity and lightweight design patterns to achieve
high representational capacity and computational efficiency. Training and testing were
conducted on a collected CT image dataset named COVIDx-CT, which had CT images
for three different classes, including: COVID-19 pneumonia, non-COVID-19 infections,
and normal controls. The network achieved high sensitivity and specificity scores for the
COVID-19 class reaching up to 97.3% and 99.9%, respectively.

Covid CT-Net (Swapnarekha et al., 2021), is a simple deep CNN developed for
differentiating COVID-19 CTs from non-COVID-19 CT images. The network was trained
and validated on the SARS-CoV-2 CT-scan dataset, which consists of 2492 CT scans for
two class: COVID-19 and non-COVID-19 (Soares et al., 2020). The experimental results
confessed an improved accuracy, specificity, and sensitivity of 95.78%, 95.56%, and 96%,
respectively. An attentional convolutional network(COVID CT-Net) to predict COVID-
19 from CT images was proposed in Yazdani et al. (2020). The network represented a
combination of stacked residualmodules empoweredwith attention-aware units to perform
a more accurate prediction. The model was trained and validated on the SARS-CoV-2
CT-scan dataset (Soares et al., 2020) and achieved sensitivity and specificity rates of 85%
and 96.2% respectively. Singh, Kumar & Kaur (2020) proposed a classification model for
COVID-19 patients using chest CT images. The model adopted multi-objective differential
evolution-based convolutional neural networks to differentiate positive COVID-19 cases
from others. Experimental results showed that the proposed model was able to classify
the CT images with an acceptable accuracy rate. Zhang et al. proposed a residual learning
diagnosis detection network to differentiate COVID-19 cases from other heterogeneous
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CT images (Zhang et al., 2021). The network was trained and test on the COVID-CT
dataset (Zhao et al., 2020), and achieved accuracy, precision, and sensitivity of 91.33%,
91.30%, and 90%, respectively. InOuyang et al. (2020), an attention network was proposed
to diagnose COVID-19 from community acquired pneumonia based on CT images. The
network was trained and validated on a large-scale CT image dataset collected from eight
hospitals. The network testing was performed on an independent CT data, and achieved
an accuracy of 87.5%, a sensitivity of 86.9%, and a specificity of 90.1%.

Jaiswal et al. (2020) proposed a deep transfer learning approach using a variant of the
DenseNet models. The pretrained 201-layer DenseNet model on the IamgeNet dataset
was utilized as a base for feature extraction with three added fully connected layers to
perform the classification task. The experiments were conducted on the SARS-CoV-2
CT-scan dataset (Soares et al., 2020). The model achieved accuracy score of 96.25% and a
sensitivity rate of 96.21%. Alshazly et al. (2021) conducted experimental study by adopting
12 pretrained deep CNN models, which were fine-tuned using CT images, to differentiate
Patients with COVID-19 and non-COVID-19 subjects. Extensive experiments and analysis
were performed on two COVID-19 CT scans datasets. The models were trained using
custom-sized inputs for each deep model and achieved state-of-the-art results on the
considered datasets. Further, visualization techniques were applied to provide visual
explanations and show the ability of the fine-tuned models to accurately localize COVID-
19 associated regions. In Pham (2020), a similar comprehensive study with 16 pretrained
networks was carried out to detect COVID-19 based on CT images. The obtained results
were comparable with those achieved in previous reposts as in Alshazly et al. (2021).

Ensemble learning and deep ensembles were also explored in COVID-19 detection
to improve the performance of single models. Singh, Kumar & Kaur (2021) proposed
an ensemble based on three deep networks including: VGGNet (Simonyan & Zisserman,
2015), ResNet (He et al., 2016), and DenseNet (Huang et al., 2017), which were pretrained
on natural images. The networks were considered for extracting features from the CT
images, and a set of fully connected layers were added on top to perform the classification
task. Experiments were conducted on a dataset with CT scans collected from different
sources for patients with COVID-19, other lung diseases, and healthy subjects. The
proposed ensemble achieved better performance than using any single model from the
ensembled networks. (Zhou et al. (2020) proposed an ensemble of three pretrained deep
CNNmodels, namely AlexNet (Krizhevsky, Sutskever & Hinton, 2012), GoogleNet (Szegedy
et al., 2015), and ResNet (He et al., 2016) to improve the classification accuracy of COVID-
19. Experiments were conducted on a collected CT image dataset organized in three
different classes, including: COVID-19, lung tumors, and normal lungs. The obtained
results showed an improved classification performance for the ensemble compared to
any single individual model. Attallah, Ragab & Sharkas (2020) proposed a CAD system for
distinguishing COVID-19 and non-COVID-19 cases. The system was trained and tested
using CT images, where the CT image features were extracted with four pretrained deep
CNN models, and then were fused for training support vector machine classifiers. The
authors experimented with different fusion strategies to investigate the impact of feature
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fusion on the diagnostic performance. The system achieved accuracy, sensitivity, and
specificity scores of 94.7%, 95.6%, and 93.7%, respectively.

The above-mentioned techniques were trained and tested on chest radiography images
from of the same subjects, and were proposed for differentiating between COVID-19
and healthy individuals. The obtained results need to be validated on datasets that are
structured in a subject-wise level and for differentiating COVID-19 from other non-
COVID-19 findings, which represents a very challenging task. The reasons are the potential
overlap and high visual similarities between the radiographic findings of COVID-19 and
non-COVID-19 viral infections. In our study, we develop and test two deep network
architectures, which can be partly initialized from standard pretrained models to boost the
diagnostic performance. The models are evaluated to differentiate patients with COVID-19
from other non-COVID-19 viral infections as well as healthy individuals. The networks
were developed and tested for the multi-class and binary classification tasks. The obtained
results are promising and validate the effectiveness of our models. Extensive experiments
were conducted on two challenging CT image dataset, which contain images of varying
sizes and visual characteristics. The obtained results indicate the success of our models to
achieve the best perfromance on the considerd datasets.

Table 1 summarizes some of the recently published studies on detecting COVID-19
from chest radiographical images using various techniques.

COVID-NETS ARCHITECTURES
Herewe describe our proposedCovidResNet andCovidDenseNetmodels for the automated
COVID-19 detection. Inspired by the outstanding performance of the well-designed ResNet
(He et al., 2016) and DenseNet (Huang et al., 2017) architectures, we build our networks
by following similar construction patterns to get the benefits of both architectures.

The novelty of CovidResNet and CovidDenseNet lies in the feature-interusability with
their standard counterparts, i.e., ResNet50 and DenseNet121. The idea is to initialize the
models with pretrained weights from the standard models and benefit from the advantages
of transfer learning without the costly step to pre-train models on large-scale datasets
like the ImageNet dataset. Nevertheless, one benefits from the tiny model size, parameter
efficiency and speed of our architectures, which are designed to have much less weights in
total.

Figure 1 illustrates the approach to build and train CovidResNet and CovidDenseNet
and how the feature-interusability is enabled. The diagram shows the architectures as a
sequence of stacks. CovidResNet contains a convolutional layer, four residual blocks and
a fully connected layer. CovidDenseNet also starts with a convolutional layer, followed by
four Denseblocks, which have transition layers, and it ends with a fully connected layer. The
red faces in Fig. 1 indicate the missing weights in comparison to the standard architectures.
As illustrated in the diagram, CovidResNet and CovidDenseNet share subnetworks of their
counterparts. More precisely, the first convolutional layer and the first stack are identical
to ResNet50 and DenseNet121 and the weights are frozen during training. The subsequent
stacks contain much less blocks than the standard models to decrease the total number
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Table 1 A summary of recently published studies on COVID-19 detection.

Literature Modality Dataset Model Results

Wang et al. (2021c) 3,583 X-ray images Open image data + Xi-
angya Hospital

Discrimination-DL Acc. (93.65%)
Sens. (90.92%)
Spec. (92.62%)
AUC (95.5%)

Bahgat et al. (2021) 12,933 X-ray images Several combined datasets Optimized DenseNet121 Acc. (98.47%)
Prec. (98.50%)
Sens. (98.47%)
Spec. (99.50%)
F1-score
(98.49%)
AUC (99.83%)

Öztürk, Özkaya & Barstuğan (2021) 495 X-ray images COVID-19 image data col-
lection (Cohen et al., 2020)

Shrunken features + PCA +
SVM

Acc.(94.2%)
Prec. (96.7%)
Sens. (93.3%)
Spec. (98.5%)
F1-score (93.9%)

Alshazly et al. (2021) 2,482 CT images SARS-CoV-2 CT-scan
dataset (Soares et al., 2020)

ResNet101 Acc. (99.4%)
Prec. (998.6%)
Sens. (99.1%)
Spec. (99.6%)
F1-score (99.4%)

Alshazly et al. (2021) 746 CT images COVID19-CT dataset
(Zhao et al., 2020)

DenseNet201 Acc. (92.9%)
Prec. (91.3%)
Sens. (93.7%)
Spec. (92.2%)
F1-score (92.5%)

Barstugan, Ozkaya & Ozturk (2020) 150 CT images COVID-19 database (Di
Radiologia Medica e Inter-
ventistica, 2021)

DWT + SVM Acc. (97.8%)
Prec. (98.4%)
Sens. (96.8%)
Spec. (98.6%)
F1-score (97.6%)

Özkaya, Öztürk & Barstugan (2020) 150 CT images COVID-19 database (Di
Radiologia Medica e Inter-
ventistica, 2021)

Fusion of CNN features Acc. (95.6%)
Prec. (97.7%)
Sens. (93.3%)
Spec. (97.8%)
F1-score (95.5%)

Özkaya et al. (2020) 2,482 CT images SARS-CoV-2 CT-scan
dataset (Soares et al., 2020)

Conv. Support Vector Ma-
chine (CSVM)

Acc.(94.0%)
Prec. (92.1%)
Sens. (96.0%)
Spec. (92.0%)
F1-score (94.1%)

Ragab & Attallah (2020) 2,482 CT images SARS-CoV-2 CT-scan
dataset (Soares et al., 2020)

Fusion of handcrafted and
CNN features

Acc.(99%)
Prec. (99%)
Sens. (99%)
F1-score (99%)
AUC (100%)

Wang et al. (2021b) 1,065 CT images Private CT images coll.
from 3 hospitals

Modified Inception model Acc. (89.5%)
Sens. (87%)
Spec. (88%)
F1-score (77%)
AUC (93%)

(continued on next page)
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Table 1 (continued)

Literature Modality Dataset Model Results

Song et al. (2021) 1,990 CT images Private CT images coll.
from hospitals

DRE-Net Acc. (86%)
Prec. (79%)
Sens. (96%)
Spec. (77%)
F1-score (87%)
AUC (95%)

Ardakani et al. (2020) 1,020 CT images Private data Xception Acc. (99.02%)
Sens. (98.04%)
Spec. (100%)
F1-score (77%)
AUC (93%)

Shi et al. (2021) 1,658 patients with COVID-19
1,027 patients with CAP

Private CT images collected
from hospitals

Handcrafted features Acc. (89.4%)
Sens. (90.7%)
Spec. (87.2%)
AUC (95.5%)

Notes.
Sens., sensitivity; Spec., specificity; Prec., precision; Acc., accuracy; AUC, area under the curve.

CovidResNet

CovidDenseNet

Frozen

Canonical 

Trainable

Adapter

p1

_
p

p2

Healthy

Covid

Others

Figure 1 A schematic diagram for the ensemble prediction process for the three-class problem. Both
networks accept the same input CT image and each network outputs an independent class probability vec-
tor. The probability vectors are then averaged to obtain the final predicted class with highest probability.

Full-size DOI: 10.7717/peerjcs.655/fig-1

of features and model complexity. The pruning of the layers leads to a problem for the
CovidDenseNet model. A shortening of the dense block is bound to a reduction in the
number of channels of the output. This leads to a misfit at the subsequent transition layer
because more channels are expected. To solve this problem, we insert an adapter layer after
a dense block. The adapter layers consist of a 1×1 convolution to adjust the number of
channels accordingly. More details about our architectures are described in the following
subsections.

CovidResNet
Our CovidResNet architecture is based on the deep residual networks (ResNets) (He
et al., 2016). ResNet is considered a very deep CNN architecture and the winner of the
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2015 ImageNet challenges (Russakovsky et al., 2015). The main problems that have been
addressed by the ResNet models are the vanishing gradients and performance degradation,
which occur during training deep networks. A residual learning framework was proposed,
which promotes the layers to learn residual functions with respect to the layer input. While
conventional network layers are assumed to learn a desired underlying function y = f (x)
by some stacked layers, the residual layers attempt to approximate y via f (x)+ x . The
residual layers start with the input x and evolve to a more complex function as the network
learns. This type of residual learning allows training very deep networks and attains an
improved performance from the increased depth.

The basic building block for CovidResNet is the bottleneck residual module depicted
in Fig. 2. The input signal to the module passes through two branches. The left branch is
a stack of three convolutional layers. The first 1×1 convolution is used for reducing the
depth of the feature maps before the costly 3×3 convolutions, whereas the second 1×1 is
used for increasing the depth tomatch the input dimensions. The convolutions are followed
by batch normalization (BN) (Ioffe & Szegedy, 2015) and rectified linear unit(ReLU) (Nair
& Hinton, 2010) activation. The right branch is a shortcut connection that connects the
module’s input with the output of the stacked layers, which are summed up before applying
a final ReLU activation.

CovidResNet is considered a deep model that consists of 29 layers. The first layer is
made of 7×7 convolutional filters with a stride of 2. Following is a max pooling layer
to downsample the spatial dimensions. The architecture continues with a stack of four
ResNet blocks, where each block has a number between one and three bottleneck residual
modules. When moving from a ResNet block to the next one, the spatial dimension is
reduced by max pooling and the number of the learned filters is doubled. In the first block,
we stack three modules, each having three convolutional layers with 64, 64 and 256 filters,
respectively. After another max pooling layer, we stack three more bottleneck modules
with a configuration of 128, 128 and 512 filters, which forms the second block. The same
procedure is repeated for the third and fourth blocks, where the former has two stacked
modules and the later has only one. The network ends with an adaptive average pooling
step and a fully connected layer. Table 2 summarizes the CovidResNet architecture and
a visualization is given in Fig. 1. As can be seen in the diagram, the first convolutional
layer and the entire first block are frozen during transfer learning. Only the weights of
deeper are frozen during transfer learning. Only the weights of deeper layers are adjusted.
The diagram also indicates the complimentary layers that exist in the canonical ResNet50
model but not in CovidResNet.

CovidDenseNet
Our CovidDenseNet model is based on the densely connected network (DenseNet)
architectures introduced inHuang et al. (2017). DenseNet addressed the notorious problem
of vanishing gradients with a different approach compared to ResNet. Instead of using
skip connections to combine the feature maps through summation before passing them
to the next layer, the feature maps from all preceding layers are considered as the input
to the next layer, and its feature maps are passed to all subsequent layers. The advantages
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Figure 2 The bottleneck residual module used in CovidResNet. The module was first introduced in He
et al. (2016).

Full-size DOI: 10.7717/peerjcs.655/fig-2

of the dense connectivity are the improved flow of information throughout the network,
where each layer has a direct access to the gradients from the input and the loss function.
DenseNets have shown an improved performance for image recognition tasks and are
computationally efficient.

The basic building block for the CovidDenseNet model is the DenseNet block. A
simplistic form of the dense connectivity of a dense block is shown in Fig. 3. The block has
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Table 2 Description of our CovidResNet architecture for COVID-19 detection. The network accepts an
RGB-input of size 253×349 pixels. The residual modules are placed in brackets multiplied by the number
of modules stacked per block.

Layers Output size CovidResNet

Convolution 129×177 7×7, 64, stride 2
Pooling 64×88 3×3 max pooling, stride 2

ResNet Block (1) 64×88

1×1,643×3,64
1×1,256

×3

ResNet Block (2) 32×44

1×1,1283×3,128
1×1,512

×3

ResNet Block (3) 16×22

1×1,2563×3,256
1×1,1024

×2

ResNet Block (4) 8×11

1×1,5123×3,512
1×1,2048

×1
1×1 8×11 Adaptive average poolClassification layer

fully connected, softmax

three layers and each layer performs a series of batch normalization, ReLU activation, and
3×3 convolution operations. The concatenated feature maps from all preceding layers
are the input to the subsequent layer. Each layer generates k feature maps, where k is the
growth rate. So, if k0 is the input to layer x0, then there are 3k+k0 feature maps at the end
of the 3-layer dense block. However, two main issues arise as the network depth increases.
First, as each layer generates k feature maps, the inputs to layer l will be (l−1)k+k0, and
with deep networks this number can grow rapidly and slow down computation. Second,
when the network gets deeper, we need to reduce the feature maps size to increase the
kernel’s receptive field. So, when concatenating feature maps of different sizes we need to
match the dimensions. The first issue is addressed by introducing a bottleneck layer of 1×1
convolution and 4×k filters after every concatenation. The second issue is addressed by
adding a transition layer between the dense blocks. The layer includes batch normalization
and 1×1 convolution followed by an average pooling operation.

To ensure the inter-usability of the weights, CovidDenseNet contains a set of adapter
layers consisting of a 1×1 convolution to increase the number of channels to the size
required by the subsequent layer. The number of channels can be seen in Table 3. The
last adapter layer is optional. The adapters are inserted between a dense block and the
transition layer. Our CovidDenseNet model consists of 43 weighted layers. The first layer
is a convolutional layer with 7×7 filters and uses a stride of 2, followed by a max pooling
operation. Then we stack four dense blocks interspersed by transition layers. After the last
dense block we perform an adaptive average pooling and add a fully connected layer with a
softmax classifier. All details about the CovidDenseNet architecture including the number
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Figure 3 A schematic diagram of a 3-layer dense block used in the DenseNet architecture.
Full-size DOI: 10.7717/peerjcs.655/fig-3

of blocks as well as the input and output volumes are summarized in Table 3. In order
to use CovidDenseNet with transfer learning, we implement the network in a three-step
procedure. It involves downloading a pretrained DenseNet121, removing 2, 22 and 15
layers from the second, third and fourth dense block respectively, adding the adapter layers
and then freezing the first convolutional layer, as well as the first dense block.

METHODOLOGY
Figure 4 illustrates the entire process on how we conduct our experiments. We show
that on the SARS-CoV-2 CT-scan dataset, which has three main classes. The dataset is
split into training and test sets comprising 60% and 40% of the images from each class,
respectively. Suitable preprocessing steps for normalization and data augmentation are
carried out before training the models. The evaluation and testing are performed using
various standard performance evaluation metrics. In order to reduce the variance of deep
neural network models and improve the performance of the single models we consider
the ensemble learning approach. An ensemble is built using several independently trained
deep models and then combining the predictions from these models. At test time, each
CT image is passed to the considered models where each model returns a vector of class
scores known as the posterior probabilities. The resulting vectors of posterior probabilities
from all models are then averaged and the actual prediction is given as the class with the
highest probability. This is a commonly used ensembling approach for neural networks
and is referred to as a committee of networks. More details about each step are described
in the following subsections.

Datasets
In order to evaluate our proposed models we used two benchmark CT image datasets,
which are described below.

Alshazly et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.655 14/40

https://peerj.com
https://doi.org/10.7717/peerjcs.655/fig-3
http://dx.doi.org/10.7717/peerj-cs.655


Table 3 Our CovidDenseNet architecture for COVID-19 detection. The network accepts an RGB-input
of size 253×349 pixels.

Layers Output size CovidDenseNet

Convolution 129×177 7×7, 64, stride 2
Pooling 64×88 3×3 max pooling, stride 2

Dense Block [1] 64×88
[
1×1,conv
3×3,conv

]
×6

64×88 1×1 convTransition Layer [1]
32×44 2×2 average pooling, stride 2

Dense Block [2] 32×44
[
1×1,conv
3×3,conv

]
×10

Adapter Layer [2] 32×44 1×1 conv, 512 channels
32×44 1×1 convTransition Layer [2]
16×22 2×2 average pooling, stride 2

Dense Block [3] 16×22
[
1×1,conv
3×3,conv

]
×2

Adapter Layer [3] 16×22 1×1 conv, 1024 channels
16×22 1×1 convTransition Layer [3]
8×11 2×2 average pooling, stride 2

Dense Block [4] 8×11
[
1×1,conv
3×3,conv

]
×1

Adapter Layer [4] (opt.) 8×11 1×1 conv, 1024 channels
1×1 8×11 adaptive average poolClassification layer

fully connected, softmax

Table 4 Number of subjects and CT scans for each category in the SARS-CoV-2 CT-scan dataset.

Dataset No. COVID-19 Healthy Others Total

subjects 80 50 80 210
SARS-CoV-2 CT-scan

images 2168 758 1247 4173
subjects 216 – 171 337

COVID19-CT
images 349 – 397 746

SARS-CoV-2 CT-scan dataset
The SARS-CoV-2 CT-scan dataset (Soares et al., 2020) is considered one of the largest CT
scan datasets currently available for research that follows a patient-wise structure. The CT
scans have been collected in public hospitals in Sao Paulo, Brazil, with a total of 4173 CT
scans for 210 different subjects. The CT scans are distributed into three classes, namely
COVID-19, Healthy, and Others. The exact number of patients and CT scans for each
category is summarized in Table 4. As the dataset contains patients with other pulmonary
diseases and the CT images have variable sizes, the dataset is challenging. Figure 5 shows
12 CT images from the SARS-CoV-2 CT-scan dataset, where the first row includes 4
COVID-19 images, the second row shows 4 images from the Healthy class, and the third
row illustrates 4 images with other lung diseases from the Others class.
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Figure 4 A flowchart representing the various steps in the process of models evaluation.
Full-size DOI: 10.7717/peerjcs.655/fig-4

COVID19-CT dataset
The COVID19-CT dataset (Zhao et al., 2020) contains a total of 746 CT images. 349
CT images for patients with confirmed COVID-19 and 397 CTs for patients with other
non-COVID-19 viral pneumonia. The CT images for COVID-19 were gathered from
preprints on medRxiv and bioRxiv and they show various manifestations of COVID-19
pneumonia. The CTs for non-COVID19 cases were collected from different open sources.
Due to the heterogeneity of sources, the images have different visual characteristics and
varying sizes between 124×153 and 1485×1853, which make the dataset very challenging.
Figure 6 shows sample CT images from the COVID19-CT dataset.

Data preprocessing and splitting
Wide variations in the CT image sizes in the SARS-CoV-2 CT-scan and COVID19-CT
datasets ask for a strategy to resize the images to a consistent input dimension for the
network. The most frequently used approach to unify images with different aspect rations
involves stretching, which can result in images that look unnatural or distorted. Therefore,
we opt for a different procedure to preserve the aspect ratio by embedding the image into
a fixed-sized canvas. We apply padding with the average color of the ImageNet dataset
(Deng et al., 2009) when necessary to match the target shape. We empirically tried different
input sizes and found that a canvas with a spatial dimension of 253×349 works best for
CT images from the considered datasets and our architectures. Due to the limited amount
of training data and the fact that deep neural networks require large amounts of data to
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Figure 5 Sample CT images from the SARS-CoV-2 CT scan dataset. The CTs represent four images of
COVID-19 (first row), four images of Others class (second row), and four images from the Healthy class
(third row).

Full-size DOI: 10.7717/peerjcs.655/fig-5

Figure 6 Sample CT images from the COVID19-CT dataset. The first row shows four CT images of
COVID-19 and the second row shows four CTs for non-COVID19 viral pneumonia.

Full-size DOI: 10.7717/peerjcs.655/fig-6
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optimize millions of parameters, we recompense the lack of data by implementing different
augmentation steps to improve the network’s ability to generalize. The augmentation
steps include random rescaling, random cropping, Gaussian noise, brightness and contrast
changes and random horizontal flipping. Finally, the images are normalized according to
the mean and standard deviation of the ImageNet dataset.

To conduct our experiments we split the SARS-CoV-2 CT-scan dataset into training
and test sets. We follow the subject-wise structure of the dataset, such that the two sets
of persons in the training and test set are disjunct. Hence, it is assured, that we evaluate
our models on unseen persons. However, the number of CT images per person vary. We
divide the subjects into training and test sets such that the amounts of training and test
images are 60% and 40%, respectively. The same ratio of persons is used for both scenarios
of multi-class and binary classification tasks. Within one scenario we choose the same
split for each architecture for the sake of consistency and comparability. However, for
the COVID19-CT dataset we use the original split provided by Zhao et al. (2020), where
they split the dataset into 60% for training, 15% for validation, and 25% for testing and
reporting results.

The class representations are imbalanced for the SARS-CoV-2-CT-scan and COVID19-
CT datasets. We apply undersampling to make sure that our models are not biased towards
class frequencies. In this procedure a new balanced subset is drawn from the training set
every epoch. The images from this subset are augmented and used to update the model
weights. Thus it is assured that the model was updated with the same amount of images of
every class.

Performance evaluation metrics
In order to evaluate the performance of our models we consider a set of standard
quantitative evaluation metrics including:

Accuracy = (TP+TN)/(TP+TN+FP+FN) (1)

Precision= (TP)/(TP+FP) (2)

Sensitivity = (TP)/(TP+FN) (3)

Specificity = (TN)/(TN+FP) (4)

F1− score= (2×TP)/(2×TP+FP+FN) (5)

where TP and TN refer to the total number of cases that are correctly classified as True
Positives (TP) and True Negatives (TN), while FP and FN are the total number of cases
that are incorrectly classified as False Positives (FP) and False Negatives (FN), respectively.
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Table 5 Confusionmatrix for binary classification.

Predicted values

True positive False negative
Actual values

False positive True negative

We also report the macro average scores for the multi-class experiments to show the overall
performance across the different classes of the dataset.

Models are difficult to compare when the performance assessment is based on a
single evaluation metric only. Hence, we provide multiple evaluation metrics to enable a
profound analysis. We plot the ROC curves to visualize the diagnostic ability of the models
to differentiate between the different classes. We also compute the area under the ROC
curve (AUC) for each model. The ROC curves show the trade-off between the true positive
rate (sensitivity) and the false negative rate (1-specificity) at various threshold values.
The AUC summarizes the ROC curve and measures the ability of a model to distinguish
between the different classes. A high AUC value indicates better performance of the model
at distinguishing between the classes.

We also provide the confusion matrix for detailed class-wise results. The confusion
matrix clearly tells about the exact numbers of correctly detected positive and negative
cases, as well as the type of error a model makes (see Table 5).

Transfer learning
Transfer learning is a method in deep learning, which has become quite popular in the
computer vision community because it might significantly boost recognition performance
(Alshazly et al., 2019b). The idea bases on the transferability of network weights between
related image recognition tasks and relies on the universal validity of the visual filters
learned during training. Usually, transfer learning occurs in a two-step procedure. First, a
model’s weights are trained for one task on a dataset, which is typically large. Subsequently,
a model is initialized with the weights to solve the actual task and often it is also fine-tuned.

As the size of the considered CT image datasets is still limited, we opt for transfer
learning to benefit from the pretrained image filters. We initialize SqueezeNet (Iandola
et al., 2017), VGG-16 (Simonyan & Zisserman, 2015), Inception-V3 (Szegedy et al., 2016),
ResNet50 (He et al., 2016) and DenseNet121 (Huang et al., 2017) with weights, which have
been optimized for the ImageNet dataset (Russakovsky et al., 2015). Parts of our proposed
architectures exhibit compatible weight configurations such that we can initialize many
weights with ResNet50 and DenseNet121 models that have been pretrained on ImageNet.
In CovidResNet all weights are pretrained, but the last layer. In CovidDenseNet the adapter
layers and the last layer are randomly initialized and all other weights are copied from the
DenseNet121 model that was pretrained on ImageNet.

We empirically found that it is not necessary to adjust all weights to the COVID-19
detection problem. We assume that the filters from the first layers in a computer vision
network provide somewhat generic filters that can be used for the SARS-CoV-2 CT-scan
and COVID19-CT datasets. The idea is to reduce the risk of overfitting by lowering the
amount of trained weights. Thus, we freeze the first convolutional layer and the first

Alshazly et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.655 19/40

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.655


Table 6 Characteristics of CovidResNet and CovidDenseNet compared with the standard architec-
tures. The training time is given per epoch for the SARS-CoV-2 CT-scan dataset.

Model Network characteristics

Default
input size

Custom
input size

Layers Total
parameters
(M)

Trainable
parameters
(M)

Training
time (s)

SqueezeNet 227×227 253×349 18 0.72 0.72 11.4
VGG-16 227×227 253×349 16 134.28 134.28 27.4
Inception-V3 299×299 253×349 48 21.79 21.79 16.9
ResNet50 224×224 253×349 50 23.51 23.51 19
DenseNet121 224×224 253×349 121 6.96 6.96 22
CovidResNet 253×349 253×349 29 9.84 9.61 11
CovidDenseNet 253×349 253×349 43 3.13 2.75 12

convolutional block of CovidResNet and only adapt the remaining weights. The first
convolutional layer, the first dense block and the first transition layer of CovidDenseNet
are also frozen. All weights in the models ResNet50 and DenseNet101 are fine-tuned to
enable the comparison between standard models and our novel architectures together
with our specifically designed fine tuning strategy. An overview of the CovidResNet and
CovidDenseNet architectures can be seen in Fig. 1. The layers with frozen weights are
highlighted in orange. The trainable layers are colored in blue. See Table 6 for important
characteristics of the proposed CovidResNet and CovidDenseNet models compared with
the standard architectures.

Model training
All standard models are initialized using pretrained weights that have been optimized for
the ImageNet dataset. The models are trained using the LAMB optimizer (You et al., 2020)
with an initial learning rate of 0.0003 and cross-entropy loss. The standard models are
trained for 100 epochs until convergence. Our proposed architectures and the SqueezeNet
models need more epochs to converge and we stop training after 150 epochs. The reason
for the higher number of epochs is the finding that it takes more iterations to train efficient
networks that have fewer weights. The learning rate is step-wise reduced until a value of
10−6 is reached at the end of training. The batch size is 32. We also apply weight decay to
regularize the training process. Optimization is performed within the PyTorch framework
using an Nvidia GTX 1080 GPU.

RESULTS AND DISCUSSION
This section presents and discusses the experimental results obtained by our proposed
COVID-Nets architectures for COVID-19 detection. We begin our discussion by the
obtained results for the SARS-CoV-2 CT-scan dataset, and then we discuss the obtained
results for the COVID19-CT dataset.
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Results for SARS-CoV-2 CT-scan dataset
Here we report the obtained results on the SARS-CoV-2 CT-scan dataset for the three-class
and the binary classification tasks. We also compare the performance of our models with
state-of-the-art deep networks. First, we evaluate the ability of our models to differentiate
patients with COVID-19, other non-COVID-19 viral lung infections, and non-infected
healthy individuals. Second, we discuss the results obtained for all three possible binary
classification scenarios from the same dataset.

Three-class Classification Results
Table 7 provides the performance metrics, which are computed for each specific class,
and the macro-average scores obtained by each model. Our proposed models achieve
very promising results and outperform all standard fine-tuned models. Among the single
network architectures, our CovidDenseNet model achieves the best overall performance
with an average accuracy of 82.87%. Moreover, the model achieves the highest precision
score of 95.76% for the COVID-19 class. Furthermore, the model achieves the best overall
specificity score of 95.90% for COVID-19 class, which indicates its ability to designate most
of the non-COVID-19 subjects as negative. However, the model obtains a sensitivity rate
of 86.14% for the COVID-19 cases. The model also has a high sensitivity for the Others
class. When considering the macro average scores for all evaluation metrics we observe that
CovidDenseNet provides better performance compared to the other models. Similarly, our
proposed CovidResNet model achieves better performance with respect to macro average
precision, specificity and F1-score compared to all other models.

Based on our experimental results, which indicate superior performances for
CovidResNet and CovidDenseNet, we considered these models for constructing ensembles
for improving the overall diagnostic performance. The idea stems from the stochastic
nature of deep networks where each network learns specific features and patterns. Building
an ensemble of several independently trained networks and taking the unweighted average
of their outputs can generate synergistic effects by exploiting the powerful feature extraction
capability of each network (Alshazly et al., 2019a). Several ensemble combinations have
been tested and we report the results of the best two ensembles in Table 7. We can see
that in both cases, the ensemble models achieve better performance with respect to the
macro average metrics compared to any individual network. Building an ensemble through
a combination of our independently trained CovidResNet and CovidDenseNet models
and their baselines increases the classification accuracy for all classes. When combining
the prediction from CovidResNet and CovidDenseNet models (Ensemble 1) we notice
a slight improvements over any of the single models in almost all evaluation metrics.
Whereas combining CovidDenseNet and DenseNet121 models (Ensemble 2) improved
the detection rate of CovidDenseNet for the COVID-19 class with 3%.

Figure 7 shows the confusion matrix for each of our proposed model and standard
fine-tuned models, as well as the proposed ensembles that achieve the best performance.
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Table 7 Comparison of our models against state-of-the-art models for the multi-class problem. The results are given in percentages and the best
values are written in bold.

Model Class EvaluationMetrics

Accuracy Precision Sensitivity Specificity F1-score

SqueezeNet COVID-19 86.99 87.30 85.95 87.15
Healthy 67.05 75.08 91.62 70.84
Others 68.35 62.83 87.74 65.47
Macro average 77.78 74.13 75.06 88.44 74.49
COVID-19 90.70 87.87 90.30 89.27
Healthy 64.66 79.94 90.08 71.49
Others 76.61 69.49 91.06 72.88

VGG-16

Macro average 80.96 77.33 79.10 90.48 77.88
COVID-19 88.55 90.18 87.44 89.36
Healthy 66.95 76.05 91.48 71.21
Others 77.35 68.28 91.57 72.53

Inception-V3

Macro average 81.08 77.62 78.17 90.16 77.70
COVID-19 87.49 91.22 85.95 89.32
Healthy 66.94 79.94 91.04 72.86
Others 82.16 66.06 93.96 73.24

ResNet50

Macro average 81.68 78.86 79.07 90.31 78.47
COVID-19 89.83 89.72 89.05 89.77
Healthy 68.39 72.82 92.36 70.53
Others 75.21 72.32 89.96 73.74

DenseNet121

Macro average 81.44 77.81 78.29 90.46 78.02
COVID-19 92.85 88.45 92.66 90.60
Healthy 66.67 77.67 91.18 71.75
Others 76.49 74.95 90.30 75.71

Our CovidResNet

Macro average 82.46 78.67 80.36 91.38 79.35
COVID-19 95.76 86.14 95.90 90.70
Healthy 63.41 84.14 88.98 72.32
Others 78.59 76.36 91.23 77.46

Our CovidDenseNet

Macro average 82.87 79.25 82.22 92.04 80.16
COVID-19 94.03 87.30 94.03 90.54
Healthy 66.23 82.52 90.45 73.49
Others 76.36 76.36 91.23 77.46

Proposed Ensemble 1

Macro average 83.17 79.62 82.06 91.90 80.49
COVID-19 93.24 89.15 93.03 91.15
Healthy 68.72 79.61 91.77 73.76
Others 79.13 77.37 91.40 78.24

Proposed Ensemble 2

Macro average 83.89 80.36 82.04 92.07 81.05

By analyzing the confusion matrix we get insights on the class specific results achieved by
each model with respect to the number of correctly classified and misclassified cases.

We also plot the ROC curves and compute the AUC to investigate the diagnostic
accuracy of the proposed models for the multi-class problem in Fig. 8. Our CovidResNet
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(A) SqueezeNet (B) VGG-16 (C) Inception-V3

(D) ResNet50 (E) DenseNet121 (F) CovidResNet

(G) CovidDenseNet (H) Ensemble 1 (I) Ensemble 2
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Figure 7 Confusionmatrices (A-I) generated by the different models for the three-class classification
task.

Full-size DOI: 10.7717/peerjcs.655/fig-7

and CovidDenseNet models show superior performance and achieve higher AUC scores
for the classes COVID-19 and Others, which indicates that our models detect COVID-19
and the other lung infections better than the deeper models of ResNet50 and DenseNet121.
The AUC scores for the class Healthy is quite low as it has fewer number of subjects and
CT images, which could be insufficient to learn discriminative features for separating this
class from the other two classes. The superiority of the ensembles over single models is
also reflected in the ROC curves and their corresponding AUC scores. When combining
CovidDenseNet and CovidResNet, Ensemble 1, we notice an improvement in the AUC
score for the all three classes within 2%. Similar results are achieved when we combine the
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(A) SqueezeNet (B) VGG-16 (C) Inception-V3

(D) ResNet50 (E) DenseNet121 (F) CovidResNet

(G) CovidDenseNet (H) Ensemble 1 (I) Ensemble 2

Figure 8 The ROC curves and their AUC scores for the different models (A-I) showing their ability to
differentiate between the three classes.

Full-size DOI: 10.7717/peerjcs.655/fig-8

CovidDenseNet and DenseNet121, Ensemble 2, even though the models were trained on
the same training split of the used dataset.

Two-class classification results
We tested our proposed architectures on binary classification tasks to validate their ability
to distinguish between CT images of all possible classes, as well as to investigate the
difficulty of these subtasks from the considered dataset. We investigate three experimental
scenarios. First, we tested our models to differentiate patients with COVID-19 from healthy
individuals (COVID-19 vs. Healthy). Then, we tested the models to distinguish COVID-19
cases from non-COVID-19 patients infected by other lung diseases (COVID-19 vs. Others).
Finally, we tested our models to differentiate non-COVID-19 patients infected by other
pulmonary diseases from healthy subjects (Others vs. Healthy). Table 8 presents the results
obtained by each model under each of these scenarios.

In the first scenario (COVID-19 vs. Healthy) we used 866 CT images of COVID-19
and 309 CT images from the healthy class for testing. As we can see from Table 8 and
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Table 8 The obtained results under three binary classification scenarios.

Task Model EvaluationMetrics

Accuracy Precision Sensitivity Specificity F1-score

COVID-19 vs. Healthy SqueezeNet 92.85 95.78 94.46 88.35 95.12
VGG-16 93.96 97.95 93.76 94.50 95.81
Inception-V3 93.19 96.90 93.76 91.59 95.30
ResNet50 93.96 98.18 93.53 95.15 95.80
DenseNet121 93.53 97.14 94.00 92.23 95.54
CovidResNet 93.87 99.13 92.49 97.73 95.70
CovidDenseNet 93.11 97.01 93.53 91.91 95.24

COVID-19 vs. Others SqueezeNet 81.25 86.88 83.372 77.43 85.09
VGG-16 85.24 88.38 88.68 79.09 88.53
InceptionV3 81.76 84.68 87.41 71.63 86.02
ResNet50 83.77 85.59 89.84 72.88 87.66
DenseNet121 83.10 85.21 89.15 72.26 87.13
CovidResNet 85.10 90.80 85.45 84.47 88.04
CovidDenseNet 86.88 91.76 87.41 85.92 89.53

Others vs. Healthy SqueezeNet 86.15 91.04 86.44 85.67 88.68
VGG-16 85.13 87.78 88.66 79.18 88.22
Inception-V3 85.13 86.32 90.69 75.77 88.45
ResNet50 85.64 90.97 85.63 85.67 88.22
DenseNet121 83.35 85.52 88.46 74.74 86.97
CovidResNet 86.40 88.32 90.28 79.86 89.29
CovidDenseNet 83.61 84.89 89.88 73.04 87.32

Note.
The results are given in percentages and the best values are written in bold.

under this scenario, the seven models achieve very competitive performance with accuracy
above 93% and F1-score above 95%. The models also achieve high precision values above
96%, where our proposed CovidResNet model achieves the highest precision score of
99.13%, indicating that almost all the predicted subjects as COVID-19 are correct and
only 7 out of 309 healthy CT images were incorrectly classified as COVID-19 positive.
CovidResNet also attains the highest specificity score of 97.73%, which indicates its ability
to correctly identify 302 out of 309 normal CT images as COVID-19 negative. However,
CovidResNet has a lower sensitivity rate compared to other models. The model is able
to correctly detect 92.49% of COVID-19 cases and 65 COVID-19 CTs were incorrectly
detected as non-COVID-19 (false negatives). Nevertheless, this high false negative rate is a
common problem among all the tested models and can be attributed to two main reasons.
First, in some cases, patients with COVID-19 may show normal chest CT findings at the
early days of infection, and therefore it is hard to exclude all COVID-19 cases based only
on the chest CT predictive results. Second, the findings on CTs can be very tiny and can
barely be detected by the models, as the CT images of COVID-19 patients may manifest
different imaging characteristics such as specific patterns progressively with time based on
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(A) SqueezeNet (B) VGG-16 (C) Inception-V3 (D) ResNet50

(E) DenseNet121 (F) CovidResNet (G) CovidDenseNet

Figure 9 Confusionmatrices (A-G) generated by all models for COVID-19 vs. healthy classification.
Full-size DOI: 10.7717/peerjcs.655/fig-9

the severity of the infection. For a detailed class-wise results, the confusion matrix for each
specific model under the considered scenario is presented in Fig. 9.

Figure 10 shows the ROC curves for all evaluated models. Looking at the ROC curves
and the AUC scores we can see that all tested models perform on a similar level. The ROC
curves look identical and the AUC scores vary within a range less than 1%, with ResNet50
achieving a slightly higher AUC sore of 97.2%.

In the second scenario (COVID-19 vs. Others) we investigated the effectiveness of our
models in differentiating the CTs of COVID-19 from others with viral lung infections. It
is worth mentioning that this is a challenging task due to the potential overlap of findings
on CT images between COVID-19 and the other non-COVID-19 viral infections. The
obtained results in Table 8 clearly show lower performance with respect to all evaluation
metrics compared to the obtained results in the first scenario. Nevertheless, our proposed
CovidResNet and CovidDenseNet models achieve higher accuracy values compared with
the standard models, where our CovidDenseNet model attains an accuracy of 86.88%. Our
proposed models also achieve much better results with respect to precision, specificity,
and F1-score values. Our CovidDenseNet model achieves the highest precision score of
91.76% indicating its ability to correctly identify CTs with COVID-19. Only 68 out of 483
CT images from the Others class are incorrectly classified as COVID-19 (false positives).
It is also worth noting that our CovidResNet and CovidDenseNet models achieve much
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Figure 10 Comparison of the predictive performance for CovidResNet and CovidDenseNet and the
standard models for COVID-19 vs. healthy classification. The ROC curves and AUC scores show the
competitive performance for all models.

Full-size DOI: 10.7717/peerjcs.655/fig-10

higher specificity rates above 85% outperforming the standard models with 12%. The
lower specificity of the standard models may stem from the difficulty to distinguish the
CT findings of COVID-19 from findings of other non-COVID-19 viral diseases. On the
contrary, our CovidDenseNet model correctly detected 415 out of 483 CT images as other
lung diseases. However, our models show slightly lower sensitivity rates compared to
the other models due to more false negatives. Nevertheless, a high false negative rate is a
common issue for all the tested models due to the potential overlap of the imaging findings.
By investigating the confusion matrix we get a detailed class-wise analysis. Figure 11 shows
the confusion matrix for each model and what type of error each specific model makes.

We also compare the performance of the different models under this scenario by plotting
the ROC curve and computing the AUC score for each model. Figure 12 shows the ROC
curves, where we clearly see that our CovidResNet and CovidDenseNet model are superior
to the other models as their ROC curves are closer to the top-left corner and they achieve
higher AUC values. The highest AUC score of 92.4% is achieved by our CovidDenseNet
model exceeding its deeper counterpart DenseNet121 model with more than 5%.

In our third scenario (Others vs. Healthy) we tested the ability of our architectures
to differentiate patients infected with other pulmonary diseases and non-infected healthy
individuals.While ourmain objective in this work is to develop architectures to differentiate
patients with COVID-19 from other non-COVID-19 viral infections as well as healthy
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(A) SqueezeNet (B) VGG-16 (C) Inception-V3 (D) ResNet50

(E) DenseNet121 (F) CovidResNet (G) CovidDenseNet

Figure 11 Confusionmatrices (A-G) for COVID-19 vs. others classification for all tested models.
Full-size DOI: 10.7717/peerjcs.655/fig-11

subjects, we report our results under this scenario for the sake of completeness. In our
experiments we treat people infected by other viral infections as the positive class and
the healthy individuals as the negative class. Under this scenario, our CovidResNet model
achieves the best overall performance with 86.40% accuracy. The model also achieves the
highest F1-score of 89.29%. With a sensitivity score of 90.28% CovidResNet indicates its
ability to detect above 90% of the infected cases. Figure 13 shows the confusion matrix for
each of the tested models. We can observe that all the models have high false positive rates
under this scenario compared with the first scenario (COVID-19 vs. Healthy). A possible
reason is that we have more CT images in the COVID-19 class to learn fairly discriminative
features, whereas the limited amount of CT scans for the Others class makes it difficult to
distinguish them from non-infected or normal CT images. Therefore, we need to collect
more CT images for both classes to reduce the false positive as well as the false negative
rates.

Figure 14 presents the ROC curves and their corresponding AUC scores for all tested
models. Again, our proposed models show superior performance compared with other
deeper models. Our CovidResNet model achieves a high AUC score of 92.8% comparable
to the best model (SqueezeNet) and its ROC curve appears closer to the top-left corner.
Our CovidDenseNet model also has a comparable performance to the standard models
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Figure 12 Predictive performance of our proposed CovidResNet and CovidDenseNet models against
the standard models for COVID-19 vs. others classification. The ROC curves show powerful a predic-
tive power for the CovidDenseNet model.

Full-size DOI: 10.7717/peerjcs.655/fig-12

with AUC score of 89.8%, which indicates approximately 2% improvement compared to
its deeper DenseNet121 model.
Results for the COVID19-CT dataset
To validate the effectiveness of our proposed architectures we use the COVID19-CT dataset,
which shares similar visual characteristics with the SARS-CoV-2 CT-scan dataset and is
also available in a subject-wise structure. We consider the binary classification scenario of
differentiating COVID-19 cases from other non-COVID viral pneumonia. We report our
results based on the test split provided in Zhao et al. (2020) where 98 COVID-19 and 105
non-COVID CT images are used. Table 9 shows the performance of our CovidResNet and
CovidDenseNet models compared with the standard models.

From the table, we observe the competitive performance of our proposed models in
terms of accuracy, sensitivity, and F1-score. Moreover, our models achieved much better
results compared with the reported results from the literature. Looking closely to the results
in Table 9 we can see a similarity with the second scenario in Table 8 when differentiating
COVID-19 and other non-COVID CT images. Under both scenarios our CovidDenseNet
model achieved the best performance, which indicates the effectiveness of our models to
work on different datasets and to differentiate COVID-19 from other non-COVID cases.

In order to give a holistic view on how well our proposed models perform on the
COVID19-CT dataset and to show what types of errors they are making, we present the
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(A) SqueezeNet (B) VGG-16 (C) Inception-V3 (D) ResNet50

(E) DenseNet121 (F) CovidResNet (G) CovidDenseNet

Figure 13 Confusionmatrices (A-G) generated by all tested models for Others vs. healthy classification.
Full-size DOI: 10.7717/peerjcs.655/fig-13

confusion matrices for each model in Fig. 15. We also validate the ability of our models to
distinguish between classes by plotting the ROC curves and computing the corresponding
AUC for each model. Figure 16 depicts the ROC curves for the different models. We can
see that our proposed models have the superior performance over the standard models.
Our CovidDenseNet achieved the highest AUC score of 87.5% and its ROC curve is higher
than the ROC curves for other models. Therefore, we can say that our CovidDenseNet
model performed better than all models in detecting the positive class (i.e., COVID-19) in
the COVID19-CT dataset.
CONCLUSION
We proposed two deep CNN architectures (CovidResNet and CovidDenseNet) for the
automated detection of COVID-19 using chest CT scans. The models were developed and
validated on two benchmark CT image datasets. We also presented the first experimental
study on the large-scale multi-class SARS-CoV-2 CT-scan dataset, which has more than
4000 CT scans. Extensive experiments have been conducted to evaluate our models in the
multi-class and binary classification tasks from the SARS-CoV-2 CT-scan dataset. First, we
trained our models to differentiate COVID-19 cases from other non-COVID-19 infections
as well as from healthy subjects. Experimental results show the effectiveness of the proposed
architectures to achieve better results compared with the standard architectures, while
being more computationally efficient. Second, we conducted three binary classification
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Figure 14 Comparison of CovidResNet and CovidDenseNet against the standard models using the
ROC curves and AUC scores for the Others vs. healthy classification task.

Full-size DOI: 10.7717/peerjcs.655/fig-14

Table 9 Performance comparison of our proposed networks against all standard models and previous work on the COVID19-CT dataset.

Task Model Evaluationmetrics

Accuracy Precision Sensitivity Specificity F1-score

COVID vs. Non-COVID SqueezeNet 73.89 79.22 62.24 84.76 69.70
VGG-16 80.79 81.05 78.57 82.85 79.79
Inception-V3 79.80 78.21 80.61 79.05 79.40
ResNet50 81.77 83.52 77.55 85.71 80.42
DenseNet121 81.28 84.09 75.51 86.67 79.57
CovidResNet 81.28 79.41 82.65 80.00 81.00
CovidDenseNet 81.77 79.05 84.69 79.05 81.77

Previous Work ResNet50 (He et al., 2020) 69.0 – – – 72.0
DenseNet121 (He et al., 2020) 76.0 – – – 77.0
CRNet (He et al., 2020) 72.0 – – – 76.0
Redesigned COVID-Net (Wang, Liu & Dou, 2020) 79.0 – – – 79.0
M-Inception (Wang et al., 2021b) 81.0 – – – 82.0
Evidential Covid-Net (Huang, Ruan & Denoeux, 2021) 81.0 – – – 81.0

Note.
The results are given in percentages and the best values are written in bold.

scenarios to differentiate COVID-19 from healthy individuals, COVID-19 from other
non-COVID-19 patients, and non-COVID-19 viral infections from non-infected healthy
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(A) SqueezeNet (B) VGG-16 (C) Inception-V3 (D) ResNet50

(E) DenseNet121 (F) CovidResNet (G) CovidDenseNet

Figure 15 Confusionmatrices (A-G) obtained by the different models for COVID vs. non-COVID classification from the COVID19-CT
dataset.

Full-size DOI: 10.7717/peerjcs.655/fig-15

subjects. The obtained results revealed the superior performance of our proposed models
over the baseline models. Finally, we tested our models on the COVID19-CT dataset to
differentiate COVID-19 patients from others with non-COVID-19 viral infection. Our
CovidDenseNet model achieved the best overall detection performance exceeding the
state-of-the-art models.

To the best of our knowledge, this is the first experimental study on the SARS-CoV-2
CT-scan dataset that considers subject-wise splits for training and testing. Therefore,
our models and results can be used as a baseline benchmark for any future experiments
conducted on this dataset. Although our experimental results are promising, there is still
room for improvement. We assume that experiments conducted on even larger datasets of
CT scans will improve the diagnostic accuracy and provide a more reliable estimation of the
models’ performance. Collecting more CT scans and subjects for all classes and particularly
the Healthy and Others categories can further improve the diagnostic performance of the
proposed models.
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Figure 16 Comparison of the diagnostic ability of our CovidResNet and CovidDenseNet with the stan-
dard models to distinguish COVID-19 and non-COVID class in the COVID19-CT dataset.
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