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ABSTRACT
The success of supervised learning techniques for automatic speech processing does not
always extend to problems with limited annotated speech. Unsupervised representation
learning aims at utilizing unlabelled data to learn a transformation that makes speech
easily distinguishable for classification tasks, whereby deep auto-encoder variants have
been most successful in finding such representations. This paper proposes a novel
mechanism to incorporate geometric position of speech samples within the global
structure of an unlabelled feature set. Regression to the geometric position is also
added as an additional constraint for the representation learning auto-encoder. The
representation learnt by the proposed model has been evaluated over a supervised
classification task for limited vocabulary keyword spotting, with the proposed rep-
resentation outperforming the commonly used cepstral features by about 9% in terms
of classification accuracy, despite using a limited amount of labels during supervision.
Furthermore, a small keyword dataset has been collected for Kadazan, an indigenous,
low-resourced Southeast Asian language. Analysis for the Kadazan dataset also confirms
the superiority of the proposed representation for limited annotation. The results are
significant as they confirm that the proposed method can learn unsupervised speech
representations effectively for classification tasks with scarce labelled data.

Subjects Artificial Intelligence, Natural Language and Speech
Keywords Low resource speech, Representation learning, Multitasking, Geometric constraint

INTRODUCTION
Despite the impressive performance of supervised deep learning models for Automatic
Speech Recognition (ASR), these models require a huge amount of manually labelled
data for training (Chiu et al., 2018). This dependency on annotated labelled data reduces
the effectiveness of supervised models for low resource languages. Languages with a
limited amount of annotated speech are considered to be low resource languages. Limited
availability of annotated speech may be due to a lack of linguistic expertise and resources
required to label and maintain large transcribed datasets. Recently, unsupervised learning
for speech processing tasks has received growing interest from researchers and industries.
Unsupervised techniques are capable of learning useful patterns from speech without
annotations, which are relatively easier to obtain as compared to annotated and labelled
speech. Generally, unsupervised speech processing can be categorized into two main
directions, as presented by the zero resource speech challenges (Dunbar et al., 2018;Dunbar
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et al., 2019). One of the research directions is to find similar segments of repeating patterns
in speech for the clustering of relevant phones or words, whilst the other more popular
approach is of learning a transformation from speech, into a more useful representation.
Traditionally, speech is transformed into spectral or cepstral features and fed as input to
classification models. On the other hand, unsupervised representation learning models
use statistics of the dataset to find a compact representation with minimum correlation
among the dimensions whilst retaining only critical information to be fed as input to the
classification models. Naturally, unsupervised representations commonly outperform the
traditional features for low-resourced annotation settings (Ravanelli et al., 2020).

One of the most popular approaches for projecting unlabelled data to an embedding
in lower dimensions is via an auto-encoder (Bengio, Courville & Vincent, 2013). Auto-
encoders are specialized unsupervised neural network architectures that learn to transform
data into a lower-dimensional representation. A typical auto-encoder is composed of similar
input and output layers that are connected via a low-capacity bottleneck layer within the
intermediate layers to capture a low dimensional representation. This architecture allows
the network to produce a lower-dimensional representation that has minimum correlation
while discarding redundant information. Apart from the lower capacity of the intermediate
layers, additional constraints during training can also be added to allow the network to
learn more complex features from the data.

Some of the recent studies such as (Kamper, 2019) and (Bastiaan Kleijn et al., 2019) have
proposed incorporating the geometric structure of a dataset as an additional constraint
during network training. There are two popular approaches that have been applied for
utilizing the geometric structure of data. The first approach relies on utilizing geometrically
adjacent data points as input–output pairs for auto-encoder training (Kamper, 2019), whilst
the second approach works by forcing the transformed representations from the cloned
networks to reflect the original distance between the points sampled randomly as inputs for
the cloned networks (Bastiaan Kleijn et al., 2019). The former approach requires distance
matrix computation over the complete dataset to find the most similar data points.
However, distance computation for all possible combinations in a huge dataset is naturally
a resource-intensive exercise. On the other hand, the latter relies on random sampling
from input space for distance projection in the representation, which may not guarantee
complete description for data.

This paper proposes a novel unsupervised representation learning technique, by
considering the geometric structure of the data. In contrast to other metric-learning
methods, the technique proposed in this paper does not require random sampling or
complete distance matrix computation. Instead, the proposed architecture uses regression
to the geometric position for each data point as a constraint, where the position of each
point is estimated by its cosine distance from an arbitrary reference. It has been shown
that the auto-encoder model with the proposed constraint achieves improved performance
as compared to the benchmark handcrafted speech features for speech classification.
Automatic Key-Word-Spotting (KWS) has been used as the classification task to evaluate
the proposed method. KWS refers to the recognition of small vocabulary, isolated words
by a lightweight classifier, capable of being run locally on handheld devices. Existing
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models have mostly considered KWS as a supervised task, which limits their application to
high-resource languages. Consequently, this study has analyzedKWS for limited annotation
settings relevant for low-resource languages. The proposed model has been tested using
different languages for unsupervised training and supervised evaluation. This includes
the English language as the zero-resource challenge proposals have mostly used English
datasets, with and without labels, for its supervised evaluation as well as unsupervised
learning (CoML_Team, 2021). For the evaluation of generalization across languages, a
new dataset has been collected for spoken digits in ‘Kadazan’. Kadazan is an indigenous
Southeast Asian language considered as an endangered language due to its limited linguistic
resources.

The research questions can be summarized as follows:

• Can the proposed geometry-based auto-encoder, trained on unlabeled speech, learn to
extract speech features which are useful for the keyword spotting task?
• How is the performance of the proposed method as compared to the traditional speech
cepstral features?
• Is the proposed method applicable for a low-resource language, such as the Kadazan
language?

The rest of the paper is organized as follows: ‘Literature Review’ highlights recent
trends in unsupervised deep representation learning as well as models particularly focused
on speech. The ‘Method’ section describes the proposed multi-task model with positional
constraint, with the section also listing the parameters used for the proposed neural network
architecture. ‘Experiments and Results’ provides the experimental setup and evaluation
results for the proposed model, and finally, ‘Conclusions’ concludes the paper.

LITERATURE REVIEW
This section reviews recent literature related to unsupervised representation learning.
The ‘Unsupervised representation learning’ section presents a survey on unsupervised
representation learning in general and ‘Representation learning for speech’ summarizes
representation learning models that have been proposed specifically for speech. Finally,
‘Geometric distance in speech representation learning’ focuses on geometric structure-
based representation learning models for speech that are most relevant to the model
proposed in this paper.

Unsupervised representation learning
Some of the traditional techniques for transformation of data to lower dimensions are
Principal Component Analysis (PCA), factor analysis, sparse coding, random projection,
multidimensional scaling, etc. (Tipping & Bishop, 1999). These transformations decompose
data into components based on fixed statistical or geometric criteria. PCAand factor analysis
aim to find a projection that maximizes variance across data points and among the target
dimensions, respectively (Ramashini et al., 2019). On the other hand, sparse coding utilizes
and learns a dictionary, such that input data can be decomposed into a linear combination
of a sparse code and the learned dictionary themselves (Lee et al., 2007). When projecting
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to a lower number of dimensions, random projection and multidimensional scaling aim
at preserving geometric structure within data points (Dasgupta & Freund, 2008).

All of these transformations may easily be achieved by using specialized auto-encoders
(Ghahramani & Roweis, 1999). Auto-encoders have an encoder that maps the input to
the representation and a decoder that reconstructs the input from the representation.
Restrictions or constraints, imposed on the representation layer of the auto-encoder, help
to extract components of interest from the input data, with the size of the representation
layer being the most common restriction. The number of units in the representation layer is
usually lower than the number of input andoutput layer units to capture salient components
of data, which are critical for reconstruction. Representation layer weights and outputs can
also be penalized by adding a term for their norms to the training objective function to keep
the values in a lower range or to encourage sparse activations. Another popular approach
used to retain salient information in the representation is de-noising. With de-noising,
input data is augmented during training with manually corrupted data whilst keeping
the target output clean so that the representation learned is invariant to noise. A similar
effect can also be achieved by penalizing the representation layer outputs for variation in
input, which is referred to as the contractive loss penalty (Rifai et al., 2011). Furthermore,
self-supervised training has been applied effectively for representation learning (Raina et
al., 2007). In a self-supervised setting, the auto-encoder is trained to map input data to
its transformed version at the output, with the transformed output computed through
manual processing techniques over the input data. Another unsupervised technique is
multitask learning, i.e., sharing the representation across multiple tasks such that the
model is trained to simultaneously reconstruct multiple outputs whilst sharing a common
bottleneck representation (Maurer, Pontil & Romera-Paredes, 2016). Multitask-learning
forces the representation to capture key information relevant to all outputs.

Auto-encoders can also be adapted for manifold learning by adding a compulsion on
the representation to preserve geometric distance between data points from the input
space. Neural networks incorporating spatial structure from the input data by considering
geometric distance metrics are also called deep metric learning networks. Multiple cloned
neural networks, named Siamese or Triamese networks (Sohn, 2016), have been used to
preserve the distance between data points selected from the input space. The geometric
distance between output representations of the cloned networks fed with sampled data
points is trained to be proportionate to the original distance from the input space.

Representation learning for speech
Variants of auto-encoder based architectures have been employed to capture a
representation for speech that makes spoken words easily distinguishable for classification.
Amongst manually extracted speech features, Mel Frequency Cepstral Coefficients (MFCC)
have remained the most effective for speech classification tasks. Filter banks are applied
to the Mel-scaled spectra from short quasi-stationary time windows, with coefficients of
the Discrete Cosine Transform (DCT) for the sequence of logarithmic filter bank energies,
forming the MFCC vectors for each time window (Sahidullah & Saha, 2012). MFCC
coefficients have little correlation, which make them suitable as input for classification
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models. Representation learning models attempt to find a transformation for speech that
is better than MFCC.

Auto-encoder based architectures trained on speech features are focused on extracting a
representation that retains critical information, whilst discarding unimportant information
such as speaker and environmental characteristics. After training, the encoder may be used
to transform unseen speech into its suitable representation (Renshaw et al., 2015). Some
specialized representation learning frameworks that have been proposed for speech are
based on Variational Auto-Encoder (VAE), adversarial networks, self-supervised learning,
autoregressive prediction, and self-supervision (Goodfellow et al., 2020; Gregor et al., 2014;
Kingma &Welling, 2019). Different variants of VAE are designed to learn stochastic,
quantized, or factorized representation for the segregation of phonetic information
(Chorowski etal, 2019; Feng & Lee, 2019; Kingma &Welling, 2019). Adversarial learning
based models are designed to deceive a classifier for features in speech irrelevant for ASR
(Ganin et al., 2017; Meng et al., 2018), whilst autoregressive models are trained to predict
speech features ahead in time as output targets (Chung et al., 2019; Oord etal , 2018).
On the other hand, models based on self-supervision generally attempt to reconstruct
pre-computed speech features using raw speech as input (Pascual et al., 2019; Ravanelli et
al., 2020).

Geometric distance in speech representation learning
Multiple variants of auto-encoder have incorporated the geometric structure of speech
samples for finding a suitable representation. Similarly, this paper also focuses on geometric
structure as an additional constraint for the Auto-encoders. Models proposed in recent
literature, which utilize the dataset geometry, are mostly based on either cloned networks
or the Correspondence Auto-Encoder (CAE) (Bastiaan Kleijn et al., 2019; Kamper, 2019).
CAE refers to an auto-encoder model that utilizes similar data points as corresponding
input–output pairs, with these points grouped as pairs based on geometric distances
within the input dataset (Jansen & Van Durme, 2011; Kamper, 2019). On the other hand,
cloned neural network models such as Siamese or Triamese networks, process pairs or
triplets of input data points in parallel by considering their distance (Bastiaan Kleijn et
al., 2019; Riad et al., 2018). In the Siamese networks, two data points are sampled and
are fed to two different neural networks with tied weights. The training objective for both
networks is to minimize the geometric distance between representations for close-by points
while maximizing the distance for faraway points. In contrast to the Siamese networks, the
Triamese networks sample three points simultaneously tominimize the triplet loss, with one
data point selected as an anchor along with one adjacent and one distant point. The anchor
and two references are then fed to the three cloned networks. Distance between output
representations for the anchor and its nearby point is trained to be minimized whilst the
distance between representations for the anchor and the distant point is maximized. Both
CAE and Triamese networks have also been proposed to complement one another as a joint
model, referred to as Correspondence Triamese Auto-Encoder (CTAE) (Last, Engelbrecht
& Kamper, 2020). CTAE learns to minimize triplet loss in the representation layer whilst
using the two similar points from the triplet as input–output pair for reconstruction. The
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combination of correspondence and triplet loss i.e., the CTAE, has been shown to be better
than both CAE and Triamese networks individually, confirming that both capture different
complementary information, which results in improved performance for CTAE.

However, all these techniques either compute the distance matrix for the complete
dataset, which can be computationally complex, or rely on random sampling to estimate
geometric distances. CAE relies on distance measure approximation for all possible
combinations from the input dataset, which may require a substantial amount of resources,
especially for a large dataset. On the other hand, cloned networks sample associated points
for each input to reflect the distance in the representations (Kamper, 2019; Sohn, 2016) and
as such, the performance of the model is significantly influenced by sampling strategies
employed for selecting associated points.

METHOD
This paper proposes a spatial constraint-based representation learning model that does
not require complete distance matrix computation or random data sampling for training.
Section ‘Spatial position constraint’ explains the proposed method for the calculation of
spatial or geometrical positions for data points as a scalar value. Regression to the position
scalar is used as the secondary task for the auto-encoder. Consequently, ‘Auto-encoder
architecture’ describes the architecture for the auto-encoder with the position used as a
constraint.

Spatial position constraint
The spatial constraint is based on the global position of each point within the input data
space represented by the cosine distance of that point from an anchor. The mean of the
speech feature set is taken as the anchor.

MFCC vectors are taken as input speech features of the multitasking auto-encoder.
These features are then transformed into the representation, which is shared by the
two parallel outputs: the primary and secondary output decoders. The primary output
decoder reconstructs the MFCC features whilst the secondary output decoder learns to
generate the position of each speech sample, with the positions determined fromMel scaled
spectrogram-based features. It is noted that the spectrogram frequencies are mapped to
the human-inspired Mel scale to emphasize the lower frequency range of human speech
(Stevens, Volkmann & Newman, 1937). A mean vector containing arithmetic averages of
components in the feature vectors across the complete sample set serves as an anchor to
compute relative positions of all points. The position of each sample is then taken as the
cosine-distance between its Mel-spectrogram and the mean of all Mel-spectrograms in the
dataset.

For each speech sample i, the Mel-spectrogram based feature vector Fi may be obtained
by ravelling its Mel-spectrogram into a single axis by row-major order. Reference anchor
point vector R for the dataset may be taken as the means of all components in the feature
vectors. Given the presence of m points for speech sample i, the j th component of the
anchor vector R i.e., rj , is given by (1). The spatial position scalar pi for every point i is the
cosine distance of its feature vector Fi from the reference vector R where cosine distance is
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Figure 1 Position for data point i having a feature vector F i.
Full-size DOI: 10.7717/peerjcs.650/fig-1

obtained by normalizing the dot product of both vectors by the product of their L2 norms
as given by (2). The position pi for speech sample i is used as secondary output in the
auto-encoder.

rj =
∑m

i=0 fij
m

(1)

pi=

∑n
j=0rj fij

√
RRT

√
FiFT

i

(2)

During training, the auto-encoder learns to generate both theMFCC vector as well as the
position pi, for every input. Figure 1 depicts the position computation for data point i with
feature vector Fi. Spectrograms for the position calculation are obtained by Fast Fourier
Transform with 2048 linear frequency bins mapped to 128 Mel-scale chunks for each 25
ms time window. Various metrics including cosine, correlation, L1, and L2 distances have
been analysed for position calculation, with cosine distance found to be the best and hence,
has been chosen for the position calculation.

Auto-encoder architecture
Figure 2 illustrates the architecture of the proposed multitasking auto-encoder model.
The encoder maps MFCC features from input to the representation, which is then used
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Figure 2 The proposed auto-encoder model.
Full-size DOI: 10.7717/peerjcs.650/fig-2

to reconstruct both, input MFCC features as well as the geometric position. A common
encoder is shared by the two decoder networks.

The auto-encoder architecture can be divided into three different parts: (1) the encoder,
which learns the representation, (2) the primary decoder, which reconstructs the flattened
MFCC, and (3) the secondary decoder, which predicts the geometric position. Three
hidden layers following the input layer constitute the encoder. The first and second hidden
layers comprise of 300 and 150 fully connected units, respectively, with PRELU activations,
dropout, and batch normalization. The third hidden layer is the representation layer, which
is used to capture the representation. This representation layer consists of 75 units and
batch normalization without any activation function.

The primary decoder has a single hidden layer followed by the output layer for MFCC
reconstruction, with the hidden layer composed of 300 units without any activation
function. This is to keep the decoder simpler so that more information is captured in
the encoder. The secondary decoder also has a single hidden layer but consisting of only
50 units with PRELU activations and batch normalization. Output unit of the secondary
decoder gives prediction of the scalar value representing the geometric position.

Training of the auto-encoder is based on optimizing mean square error for outputs of
both decoders. For the auto-encoder input and primary output, all the speech samples are
transformed to 20 MFCC coefficients, which are then reshaped to linear vectors, with time
axis indices changing faster than the cepstral coefficients.

EXPERIMENTS AND RESULTS
The representations learnt by unsupervised models are commonly evaluated by using
them as input for a supervised classifier and then, comparing the outcomes with the
traditional speech features. Performance of the supervised classification determines the
ability of the unsupervised model to highlight information from the speech which is
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useful for classifications. In this paper, the representation learning model is trained on
unlabelled speech whilst a labelled dataset is used for representation transformation by the
trained encoder for evaluation. The following experiments and results aim to analyze the
extent of accuracy improvement for speech classification by the proposed unsupervised
representation over hand-crafted features in limited annotation settings.

Dataset and experimental setup
The proposed model is evaluated using the Speech Commands dataset by Google Artificial
Intelligence Yourself (AIY) Projects (Warden, 2018). This dataset consists of 64,727 audio
files which are composed of 30 unique English words spoken by crowd-sourced speakers
and is organized with speaker names. This dataset was originally developed for Key-Word-
Spotting (KWS) research with an aim of designing light discriminator models that can run
locally on low resource handheld devices to recognize certain keywords, which have been
reserved to demand certain actions. Three partitions are made from the dataset: training,
validation, and testing partitions. Each partition comprises of different sets of speakers
without overlap. 6,799 and 6,836 speech samples are reserved for validation and testing,
respectively. The dataset is a publicly available dataset (Warden, 2021). Labels for the
dataset in the training partition have been ignored in this work, which allows the original
training set to be considered as unannotated speech.

Retaining only limited labelled data for evaluation by a supervised classifier emulates
the primary limitation of low resource languages, which commonly have a small amount
of labelled training data available. Of course, unsupervised representation learning models
would still need a large amount of unlabelled data. However, obtaining unlabelled data for
unsupervised training is comparatively easier as it only needs recording of spontaneous
speech for long durations rather than the challenging and troublesome task of manually
annotating large datasets of low resource language for the purpose of supervised learning.
Many works in the recent literature have used this technique of using unlabelled datasets
of the English language to mimic low resource language for the purpose of evaluating
the performance of unsupervised representation learning models (Chorowski etal, 2019;
Kamper, 2019; Pascual et al., 2019). Furthermore, using the English language for the
representation learning models has the added advantage of convenient comparisons with
benchmark results (Chorowski etal, 2019; Kamper, 2019; Pascual et al., 2019).

Figure 3 illustrates the experimental setup used to evaluate the effectiveness of the
proposed unsupervisedmodel. Breakdownof the experimental steps has also been presented
as a flowchart in Fig. 4. The large unlabelled dataset amounting to 12,000 unannotated
samples from the training partition is used to train the proposed auto-encoder based
model, with MFCC features of the unlabelled dataset used for the unsupervised training.

After the unsupervised training of the auto-encoder based model, the MFCC features
for a smaller labelled dataset are then transformed to the new representation by using the
trained auto-encoder model. Only 3,000 labelled samples from the validation set, with
new representation for the speech using the auto-encoder model, are then used to train
the supervised feed-forward classifier for Key-Word-Spotting (KWS) evaluation. Using
a relatively small number of labelled samples emulates a low resource language. Another
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Figure 3 Experimental setup.
Full-size DOI: 10.7717/peerjcs.650/fig-3

3,000 samples from the validation partition dataset are reserved for cross-validation based
early-stopping of the supervised classifier. This feed-forward network is henceforth referred
to as the Deep Neural Network (DNN) classifier for the analysis of results. The DNN is
composed of a single hidden layer with PReLU activation functions, batch normalization,
and dropout as well as an output layer based on Softmax.

Consequently, the test partition dataset with over 6,000 samples is also transformed by
the trained unsupervised auto-encoder model to the new feature representation and is used
to compute classification performance of the DNN. Source code for the proposed model is
shared online (Humayun & Abas, 2021b).

Classification metrics by the DNN using the proposed representation as input are
compared over the same dataset with a benchmark CNN for the particular task using the
traditional speech features, i.e., MFCC, as in reference (Choi et al., 2019). The corpus paper
has presented a baseline accuracy of 88.2% as a benchmark using 2D CNN architecture
over spectrogram, designed specifically for low footprint KWS tasks (Sainath & Parada,
2015). Cho et al. (Choi et al., 2019) have also used the same dataset and reported up to
96.6% accuracy using temporal convolution over MFCC, however, the complete dataset
has been used in the study, i.e., 80% of the total words which is 51,781 training samples.
In contrast, this work has used only 3,000 annotated samples for training and 6,000 for the
evaluation, in order to emulate low resource language with a limited amount of labelled
data for training of supervised classifiers. Hence, for comparative analysis with the proposed
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Figure 4 Experimental flow chart.
Full-size DOI: 10.7717/peerjcs.650/fig-4

model, a similar CNN architecture is used but with a limited labelled dataset retained for
evaluation using supervised classification.

Results and analysis
Classification accuracies are recorded over the proposed Auto-Encoder (AE) representation
as well as traditional MFCC features for 10 iterations using different subsets of the labelled
testing data. The proposed AE representation significantly outperforms theMFCC classifier
with an average accuracy of 54.97% as compared to 45.71%. Additionally, Friedman’s test
(Demšar, 2006) has also been used to analyse the statistical significance of the classification
performance across at least 10 iterations, with the test suggesting that the results are
significantly different with p and q values of 0.001565402 and 10, respectively. The non-
parametric Friedman’s test is useful for comparison of classifier performance across input
representations (Demšar, 2006).

For the 10 iterations, average precision and recall have also been recorded for both the
proposed AE representation and traditional MFCC features. Precision refers to the ratio
of true positives to the sum of true and false positives for each class whereas recall is a
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Table 1 Average precision, recall, and accuracy across 10 iterations.

Average MFCC AE-P

Precision score 0.50 0.55
Recall score 0.45 0.54
Accuracy % 45.71 54.97

measure of true predictions divided by the sum of true positives and false negatives for
that class. Table 1 lists averages for accuracy, recall, and precision across 10 iterations for
the proposed AE representation and the traditional MFCC features, with ‘AE-P’ denoting
the proposed positional constrained AE representation. Precision and recall are weighted
averages of themetric scores across classes whilst accuracy is the percentage of totally correct
predictions for each train and test iteration. It can be clearly seen that the averages of all
three performance measures are significantly higher for the proposed AE representation.

Table 2 indicates the number of utterances for each keyword in the dataset along with
keyword IDs, which have been assigned for convenient visualization on the axis labels in
Figs. 5–8. Figures 5 and 6 illustrate precision and recall for individual keywords by the
proposed AE representation and the traditional MFCC features. The category-wise analysis
shows higher precision by the proposed AE representation than the MFCC features for
all the keywords. In the case of recall, the score for the proposed AE representation is
generally higher than traditional MFCC features with the exception of a few keywords.
Figures 7 and 8 depict the differences in precision and recall scores between the proposed
AE representation and the traditional MFCC features for all keywords along with the
number of samples for each keyword. The number of samples is scaled to the range of
precision–recall scores for visualization. As can be seen from Fig. 7, the proposed AE
representation has considerably higher precision than the MFCC features for keywords:
‘eight’, ‘nine’, and ‘up’, whilst from Fig. 8, keywords: ‘six’ and ‘yes’, give higher recall
score. On the other hand, the recall score for ‘bird’ is higher by the traditional MFCC
features as compared to the proposed AE representation. Improvement in scores for the
AE representation is generally higher for keywords with a higher number of utterances in
the dataset, i.e., with more samples for the unsupervised training. Certain keywords have
lower performance for both inputs due to their confusing sounds with other keywords.
Keywords ‘Shiela’ and ‘six’ have both higher precision and recall for both the proposed
AE representation and the MFCC features, whereas keyword ‘dog’ has low precision and
recall for both. Precision and recall values for the keywords using MFCC and the AE-P
representations have been tabulated in Table 3.

To visualize the segregation of words, both the AE representation and the traditional
MFCC features are transformed into 2 dimensions (2D) using PCA projection. Scatter
charts are plotted for the compressed 2D PCA projections for the proposed AE
representation and the traditional MFCC features in Figs. 9 and 10, respectively. PCA is
computed after normalization of both input features for comparison with the normalized
representation. The 2 PCA components are displayed on the horizontal × and vertical y
axes, with scales of both axes, fixed to 1 for visualization. Due to large amount of data, only
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Table 2 ID and number of utterances for each keyword in the dataset.

Keyword Keyword ID Utterances

bed 0 2014
bird 1 2064
cat 2 2031
dog 3 2128
down 4 3917
eight 5 3787
five 6 4052
four 7 3728
go 8 3880
happy 9 2054
house 10 2113
left 11 3801
marvin 12 2100
nine 13 3934
no 14 3941
off 15 3745
on 16 3845
one 17 3890
right 18 3778
seven 19 3998
sheila 20 2022
six 21 3860
stop 22 3872
three 23 3727
tree 24 1759
two 25 3880
up 26 3723
wow 27 2123
yes 28 4044
zero 29 4052

the sample means of each keyword are plotted to highlight their separation; with the mean
points labelled with the relevant keywords. Comparing Figs. 9 and 10, it can be seen that
keywords are more separated in space with the proposed AE representation as compared
to the traditional MFCC features.

Given that some speech representation learning models based on geometric distance
rely on distance matrix computation which can be resource-intensive, it is appropriate to
highlight the simplicity of the proposed AE representation. The complexity of distance
matrix computation for N samples is given by O(Cosine)*N*(N-1)/2, where O(Cosine)
is the complexity for cosine distance computation between a single pair of data points.
For the proposed AE representation, the complexity is given by O(Cosine)*N. Given that
N = 12,000 unlabelled samples are used for the unsupervised training, the complexity of
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Figure 5 Precision for keywords.MFCC (blue), AE-P (orange).
Full-size DOI: 10.7717/peerjcs.650/fig-5

computing the spatial positions for 12,000 unlabelled samples is simply 12,000*O(Cosine),
which is significantly less than the complexity for calculating the complete distance matrix,
i.e., (12000C2)*O(Cosine)= (7.2*10 7)*O(Cosine) for an equal number of samples. Figure 11
highlights the stark differences in complexities between the two computations.

Kadazan Language analysis
In order to analyse the model for a real low-resource language, a small dataset of spoken
digits as keywords has been collected for the Kadazan Language. Kadazan language is an
indigenous language spoken by the Kadazan people, a tribe living on the Western coast
of the northern part of Borneo Island, which is the largest island in Asia. The language is
included in the group of languages known as Dusun languages spoken in the Borneo Island.
Whilst the Dusun languages have similarities with each other, they are significantly different
from the Malay language, the official language in the region. The Kadazan language along
with the other Dusun languages is facing extinction due to the fast declining linguistic
experts and resources (Reid, 1997). The dataset collected for this research consists of the
ten Kadazan digits spoken by 50 speakers, with the speech samples recorded using mobile
handset microphones in noisy recording conditions. The ten digits for the Kadazan dialect
are ‘Iso’, ’Duvo’, ’Tohu’, ’Apat’, ’Himo’, ’Onom’, ’Tuu’, ’Vahu’, ’Sizam’, and ’Opod’
(Humayun & Abas, 2021a).

Single channels have been selected and rescaled to a fixed duration of one second with
a sampling rate of 16 kHz for processing. The pre-trained unsupervised model, trained
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Figure 6 Recall for keywords.MFCC (blue), AE (orange).
Full-size DOI: 10.7717/peerjcs.650/fig-6

Figure 7 Precision difference between the proposed AE representation andMFCC.MFCC (blue), AE
(orange).

Full-size DOI: 10.7717/peerjcs.650/fig-7
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Table 3 Precision and Recall for each keyword.

Keyword
Name

Keyword
ID

Precision
MFCC

Recall
MFCC

Precision
AE-P

Recall
AE-P

bed 0 4.46 4.27 5.09 4.38
bird 1 5.24 6.9 5.85 5.81
cat 2 3.3 4.7 3.82 5.02
dog 3 2.76 3.11 3.11 3.89
down 4 3.02 4.86 4.28 4.82
eight 5 4.91 4.89 6.78 5.57
five 6 3.91 3.88 4.59 4.64
four 7 5.52 5.39 5.61 6.22
go 8 4.24 3.2 4.38 3.7
happy 9 5.95 5.1 6.49 5.6
house 10 7.02 5.94 7.39 6.09
left 11 3.87 5.05 4.79 5.4
marvin 12 4.05 4.6 4.5 4.69
nine 13 3.17 4.23 5.18 4.91
no 14 2.83 3.79 3.83 4.84
off 15 5.54 5.89 5.87 6.25
on 16 4.04 4.36 5.43 5.45
one 17 3.54 3.92 4.93 4.99
right 18 5.07 4.89 5.4 5.7
seven 19 6.23 5.69 6.96 6.79
sheila 20 7.36 7.38 7.77 7.33
six 21 6.15 6.38 7.02 7.76
stop 22 4.97 6.85 6.03 7.29
three 23 4.06 4.07 4.86 4.65
tree 24 3.54 4.71 4.86 4.8
two 25 4.55 5.26 5.3 5.63
up 26 3.27 3.66 5.12 4.47
wow 27 4.37 4.78 5.62 5.27
yes 28 5.83 6.04 7.33 7.28
zero 29 5.75 6.31 7.07 6.79

with the unlabelled English dataset has been used to transform the rescaled Kadazan
samples to their corresponding representations. The proposed representations as well as
the flat MFCC vectors for the speech samples are then fed to similar supervised feed-
forward KWS classifiers for comparative analysis on classification accuracies, with the tests
performed by randomly selecting speakers for training and testing without overlapping.
KWS classification accuracy has been recorded for both inputs across the number of
speakers used for supervised training.

Figure 12 illustrates average classification accuracy with the range of speakers selected
as training set for 10 iterations. The rest of the speakers from the total of 50 speakers in the
dataset represent the test set for each iteration. It can be seen that MFCC vectors achieve
better accuracy for a larger proportion of training speakers. On the other hand, accuracy
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Figure 8 Recall difference between the proposed AE representation andMFCC. Sampels scaled (blue),
score difference (orange).

Full-size DOI: 10.7717/peerjcs.650/fig-8

Figure 9 2D PCA projections for the proposed AE representation.
Full-size DOI: 10.7717/peerjcs.650/fig-9
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Figure 10 2D PCA projections for MFCC.
Full-size DOI: 10.7717/peerjcs.650/fig-10

Figure 11 Computational complexities for complete distance matrix and the proposed position esti-
mate.

Full-size DOI: 10.7717/peerjcs.650/fig-11
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Figure 12 KWS accuracy for Kadazan digits across number of training speakers.MFCC (blue), AE (or-
ange).

Full-size DOI: 10.7717/peerjcs.650/fig-12

using the proposed representation improves with decreasing number of training speakers,
surpassing MFCC with 35 training speakers or less. The representation achieves around
5% better average accuracy for the range of 34 to 25 training speakers. Better accuracy by
the proposed representation for a smaller proportion of training speakers substantiates its
relevance for limited annotation settings. The result further shows that the unsupervised
model trained with the English dataset performs well for extracting features from the
Kadazan speech, which confirms the ability of the proposed model to learn cross-lingual
features.

CONCLUSIONS
The paper proposes a geometric position basedmultitasking auto-encoder for unsupervised
speech representation learning with geometric position of points described by cosine
distance from a common reference. This geometric position is then added as a secondary
regression task for the auto-encoder. Unlike other speech representation learnings,
the proposed model does not require random sampling nor complete distance matrix
computation for the preservation of the spatial structure from the input feature space.
Subsequently, the proposed model has been evaluated by using its learnt representation for
KWS, where it has been shown that the proposed AE representation achieves significantly
higher accuracy (around 9%) as compared to the traditional MFCC features with limited
labelled data. Visual inspection has also confirmed that the proposed representation
is able to separate selected keywords in space. Significant improvement in accuracy
by the unsupervised representation confirms the usefulness of the proposed model
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for classification problems with limited labelled data. Similar experiments have been
conducted for a small dataset of keywords in Kadazan language for evaluation using actual
low-resource language. KWS results for Kadazan dataset with varying size of labelled
training set confirms that the proposed representation gives better performance than
MFCC as the labelled set size gets smaller.

Comparison of classification scores by similar supervised classifiers using the MFCC
vectors and the proposed unsupervised representation illustrates the ability of the proposed
representation to learn critical information from unlabelled data. Furthermore, the
monotonically increasing improvement in accuracy by the proposed representation in
comparison to MFCC with decreasing labelled set establishes its utility for low-resource
settings. Finally, the effectiveness of the unsupervised model trained and tested with
different languages confirms its capability of extracting useful features irrespective of the
spoken language. This generalization of the model across languages makes it pertinent for
low-resource languages.

The obtained results have answered the posed research questions in this paper. It is
evident from the results that the proposed geometry-based auto-encoder can learn to
effectively extract speech features which are useful for the keyword spotting task, by
training the model using unlabeled speech. Better performance in accuracy is achievable by
using the proposed method to extract features, as compared to using the traditional MFFC
features. Further, the applicability of the proposed method has been illustrated on a real
low-resource Kadazan language.

However, it is worthy to note that the evaluation has been performed on a small
footprint KWS task for low vocabulary isolated words and as such, the performance of
the representation needs to be further evaluated for Large Vocabulary Continuous Speech
Recognition (LVCSR). Size of the Kadazan dataset is also small in terms of spoken keywords
as well as the speakers. Moreover, the number of reference anchors and their locations
need to be further explored for the computation of spatial positions, on top of testing the
model on paralinguistic speech processing tasks. Finally, input data augmentation can be
employed in the auto-encoder training for learning the representation to make it more
invariant to irrelevant speech and environmental characteristics.
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