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ABSTRACT
Digital fraud has immensely affected ordinary consumers and the finance industry. Our
dependence on internet banking hasmade digital fraud a substantial problem. Financial
institutions across the globe are trying to improve their digital fraud detection and
deterrence capabilities. Fraud detection is a reactive process, and it usually incurs a cost
to save the system from an ongoingmalicious activity. Fraud deterrence is the capability
of a system to withstand any fraudulent attempts. Fraud deterrence is a challenging task
and researchers across the globe are proposing new solutions to improve deterrence
capabilities. In this work, we focus on the very important problem of fraud deterrence.
Our proposed work uses an Intimation Rule Based (IRB) alert generation algorithm.
These IRB alerts are classified based on severity levels. Our proposed solution uses a
richer domain knowledge base and rule-based reasoning. In this work, we propose an
ontology-based financial fraud detection and deterrence model.

Subjects Security and Privacy, World Wide Web and Web Science
Keywords Digital fraud, Semantic web, Knowledge base, Alert model, Database

INTRODUCTION
Money laundering is the process of turning illegal currency into legal. Economies across
the globe have taken strict actions to curb money laundering schemes. Various methods
are being used to record and report suspicious financial activities. Customers’ financial
behaviors are being monitored based on their transactional trends. Abnormal foreign
and domestic transactions of sizeable amounts often point towards money laundering.
Recently, researchers have proposed different approaches to resolve this problem (Dal et
al., 2018). Despite the existence of anti-money laundering techniques, fraudulent entities
often have their ways. For example, fraudsters often break the amount into smaller units to
avoid suspicion. Various financial frauds have surfaced over the years. For example, credit
card scams, fraudulent insurance claims, etc.

User’s behavioral, statistical, and social analyses are being done to detect financial frauds.
Researchers have also analyzed abnormal financial activities using data mining. Abdallah,
Maarof & Zainal (2016) have explored various fraud detection techniques in their research.
Abdallah et al. focused on telecommunication, health care, and insurance frauds. A system
is required to address the threat of financial fraud. A solution that could generate alerts
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on suspicious transactions is the need of the hour. To further this cause, we present an
ontological fraud detection mechanism. The proposed model generates fraud alerts on
suspicious transactions. It also tags each alert with a severity level as discussed in ‘System
Model and Problem Formulation’.

Ontologies vs. database models
Currently, ontologies are the best way to represent knowledge in a dynamic environment.
It makes knowledge shareable and reusable. Additionally, ontologies can describe the terms
and vocabularies of a domain. Ontologies allow knowledge bases and logic to be combined
and turned into inferred knowledge via an inference engine. By using ontologies, we can
reduce the modeling cost. One can extend and reuse ontologies for different applications
and domains. The two basic data representational models are databases and ontologies.
The relational databases have been in use for quite some time for storing and querying data.
On the other side, ontologies with context have appeared as an alternative to databases
with more enriched meaning. Ontologies make knowledge shareable and reusable (Dadjoo
& Kheirkhah, 2015). The reasoning capabilities of ontologies make it possible to derive
implicit facts from the knowledge base.

A database is usually designed for a specific application. For every application, one must
create a new database. However, ontologies can be reused in different applications and
domains as per need. Ontologies also help us in expressing the semantics in a better way
as compared to databases. Since databases are schema-oriented, strict schema rules must
be followed to create new records. The reasoning/inferring capability of ontologies makes
it possible to produce new knowledge. Ontological classes, properties, and axioms can be
mapped to a database’s tables, attributes, and constraints, respectively (Martinez-Cruz,
Blanco & Vila, 2012).

Motivation
A hybrid solution based on data mining and a complex network classification algorithm
is presented by Zanin et al. (2018). The authors proposed a solution to detect credit card
fraud. Our proposed solution has fraud detection and deterrence capabilities. Our work
derives facts from the given knowledge base based on logical reasoning. These facts are not
described explicitly and are referred to as inferred knowledge. Our solution also generates
alerts on suspicious transactions along with their severity level.

Our contribution
In this work, we have proposed an ontology-based alertmodel for Financial FraudDetection
and Deterrence (FFD). The main contributions of this research work are:
i. We have created a comprehensive FFD ontology with 40 classes and sub-classes. The
FFD ontology identifies suspicious transactions based on customers’ bank transactions.
It also relates transactions with each other to find out any malicious behavior.

ii. We have also developed rules using the Apache Jena framework, for our fraud alert
systems.

iii. The proposed ontology-based alert model has extra features for money laundering
detection and deterrence.
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Figure 1 Taxonomy of literature review.
Full-size DOI: 10.7717/peerjcs.649/fig-1

iv. The proposed IRB alert generation algorithm stops fraud before it occurs.
v. Our work also adds a taxonomy of literature review to facilitate a bird’s eye view.
The rest of the paper is structured as follows: ‘Related Work’ presents related work.

In ‘Types of Fraud’, types of fraud are explored. Furthermore, an explanation of our
proposed system is discussed in ‘System Model and Problem Formulation’. In addition,
ontology constructionmethodology is presented in ‘Ontology ConstructionMethodology’.
Moreover, formal representation of FFD ontology is discussed in the subsection of
‘Ontology Construction Methodology’. ‘FFD Ontology Implementation’ and ‘Ontology
Validation’ present the ontology implementation and its validation, respectively. The
evaluation setup, results, and discussion are presented in ‘Simulation Setup and Results’.
Finally, ‘Conclusions and Future Work’ presents the conclusion.

RELATED WORK
Technological advancements have come a long way. With technology being everywhere,
the number of fraudulent activities has increased substantially. Researchers have analyzed
a lot of fraud detection techniques over the years: Chen et al. (2005); Gaur et al. (2017);
Jadvani et al. (2018); Nipane et al. (2016); Omar, Johari & Smith (2017); Pouramirarsalani,
Khalilian & Nikravanshalmani (2017); Wang et al. (2018). Figure 1 shows the detailed
taxonomy of fraud detection techniques reviewed in this work.
There are two aspects of digital fraud: prevention anddetection. Prevention is the first wall of
defense and usually allows systems to deter any threat. Detection is ameans of identifying an
ongoing or already occurred attack (Abdallah, Maarof & Zainal, 2016). Fraud prevention
and fraud detection are two different aspects of a financial system. Prevention is the
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first layer, whereas detection is the next layer of protection to secure the system against
fraud (Abdallah, Maarof & Zainal, 2016). The authors ofWest & Bhattacharya (2016) have
explored detection techniques for many fraud types, i.e., credit cards, financial statements,
insurance, securities, and commodities frauds, etc.

Metadata provides basic public information about an object. Sen & Dash (2013)
addressed the issue of misclassification and correct classification of fraudulent activities.
The authors used meta-learning and various other classifier techniques in their research.
In Delamaire, Abdou & Pointon (2009), the authors described various types of fraud e.g.,
behavioral, application, bankruptcy, and theft frauds. Lata, Koushika & Hasan (2015)
described the various financial practices to detect frauds. Frauds can be detected by
supervisedmethods (classification) or unsupervisedmethods (behavior changes or unusual
transactions). These types of financial practices are discussed by authors in the paper Lata,
Koushika & Hasan (2015).

The use of different data mining techniques individually or in combination may return
better results.Nami & Shajari (2018) proposed a two-stagemethod based on random forest
and K-Nearest Neighbor (KNN) for payment card fraud detection. An algorithm based
on reverse KNN (classification method) is proposed in Ganji & Mannem (2012) for credit
card fraud detection.

Zaslavsky & Strizhak (2006) suggested the use of Self Organizing Maps (SOM) for
developing fraud detection systems. By using SOM, changes in the behaviors of individuals
can be detected.HaratiNik et al. (2012) proposed a fuzzy rule-based expert system for credit
card fraud detection. The authors of (Alimolaei, 2015) developed a system for detecting
users’ abnormal behavior on internet banking.

Data mining-based supervised learning methods were used by authors of Save et al.
(2017). The authors developed a system for Credit Card (CC) fraud detection. The system
was based on the decision tree method with the integration of the algorithm. The authors of
Robinson & Aria (2018) used Hidden Markov Model to automatically detect prepaid card
fraud. The proposed system was tested on a real transactional dataset. Several unsupervised
learning techniques were used for detecting frauds in the financial sector (Makki et al.,
2017).

Data mining can help in detecting fraudulent transactions. Patil & Lilhore (2018)
discussed CC fraud detection by using machine learning and data mining. The authors’
solution used real transactional data of credit cards. The authors of (Zanin, 2018) proposed
a hybrid of data mining and complex network classification algorithm. The solution
proposed enabled the authors to detect CC fraud. Quah & Sriganesh (2008) proposed an
innovative approach for real-time fraud detection. A combination of Genetic Algorithm
(GA) and Support Vector Machine (SVM), a fraud detection system was proposed by
Abdulla, Rakendu & Varghese (2015). GA performed feature selection, while SVMwas used
for classification.

Frauds related to insurance claims of automobiles are being reported frequently these
days. Furlan, Vasilecas & Bajec (2011) proposed a method (tool) for improving the fraud
management process in vehicle insurance corporations. Similarly, Artificial Intelligence
(AI) has an established impact on machine learning approaches. Topological data analysis
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could help in financial fraud detection by using case-based reasoning. Where a data
bank is populated with well-known financial practices. A solution to the problem of an
imbalanced dataset was proposed in Zareapoor & Yang (2017). This approach was tested
on the real-time data provided by FICO.

The authors of Li, Sun & Contractor (2017) recommended a graph-mining hybrid
approach based on reputation score for fraud detection. Since reputation score is not
always available, it could be calculated by careful modeling of edge potential and parameter
tuning in the Markov Random Field. Social Network Analysis (SNA) can reveal useful
information about groups, their activities, and interaction among actors. Researchers
are analyzing social networks to detect financial frauds. Zhou et al. (2017) proposed a
ProGuard technique to detect malicious accounts and activities. Using SNA, the authors
proposed a method for fraud detection (Colladon & Remondi, 2017; Hamid, 2017; Shaikh
& Nazir, 2018).

Ontology is the best way to represent knowledge in a dynamic environment. Rajput,
Larik & Haider (2014) proposed an ontology-based system for fraudulent transaction
detection. An ontology graph-based systemwas proposed byRamaki, Asgari & Atani (2012)
for credit card fraud detection. DelMarRoldan-Garci, Garcia-Nieto & Aldana-Montes
(2017) proposed an ontology-driven approach for examining and finding inconsistencies,
mistakes, and contradictions in SemanticWebRule Language (SWRL) for fraud prevention.

Numerous fraud detection techniques have been used by financial institutions.
Researchers have also proposed different approaches for suspicious transaction detection.
Methods like supervised and unsupervised machine learning have been used for the
said purpose. Sánchez, Cerda & Serrano (2009) proposed the Association Rule (AR) based
methodology for CC fraud detection. The authors applied the proposed solution to the data
of retail companies in Chile. A hybrid method using AR and process mining was proposed
in Sarno et al. (2015). The authors aimed to solve the problem of fast fraud detection by
using the itemset of AR learning. Approaches based on KNN, and outlier detection have
been analyzed and implemented by Malini & Pushpa (2017) to optimize solutions for CC
fraud detection.Mishra, Gupta & Singh (2017) presented a performance analysis of various
approaches used for CC fraud detection. The authors also proposed an Artificial Neural
Networks (ANN) model for CC fraud detection.

A classification model was developed in Sahin & Duman (2011) using ANN and logistic
regression to solve the problem of CC fraud detection. The model was tested on the
real dataset. Xuan et al. (2018) proposed Random Forest (RF) learning method for fraud
detection. Two kinds of RF were used to train the pattern of suspicious and non-suspicious
transactions. Experiments were conducted using data of e-commerce in China. Halvaiee &
Akbari (2014) proposed a nature-inspired based, Artificial Immune System (AIS) technique
for suspicious credit card detection. The system proposed had better accuracy and low
system cost and response time.

Considering prior research, we propose an improved, feature-rich, and comprehensive
ontology-based solution for deterrence and detection of financial fraud. We have created
Jena rules for detecting suspicious transactions. Our work also proposes an intimation
rule-based alert generation algorithm for generating alerts. We have also presented a
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comparison of the results of our work with other ontology and non-ontology-based
methods.

TYPES OF FRAUD
A variety of financial frauds are being committed nowadays. The most common ones are
bank frauds, corporate frauds, and insurance frauds (West & Bhattacharya, 2016). Our
focus in this research is on bank frauds. Bank frauds could be of many types. A brief
description of common bank frauds is listed below.

Credit card fraud
CC fraud is the unauthorized use of a CC to perform illegal transactions. CC frauds are
often committed by using stolen credit or debit cards. The development of an accurate
system for CC fraud detection is a critical problem. Many fraud detection techniques have
been proposed by researchers for CC fraud detection. Behera & Panigrahi (2015) proposed
a three-layered system for CC fraud detection using fuzzy clustering and neural network. In
the first phase, the system performs verification of card details. It then calculates suspicious
scores by using fuzzy clustering. Finally, the solution performs suspicious activity detection.

Money laundering
The process of hiding the source of illegitimate money is known as Money Laundering
(ML). ML fraud is performed by transferring money via shell corporations, bank accounts,
etc. The key reason behind any fraud is to get illegal financial benefits. Detecting ML is a
challenge since fraudsters often find new ways to launder money. A lot of ML detection
systems and techniques have been analyzed and practiced in recent years. A hybrid of
Hash-Based Association (HBA) and Graph-Theoretic (GT) method was used by Suresh,
KT & Sweta (2016) and Pooja et al. (2018) for ML detection, respectively. This method
identified the traversal path of the laundered money using the HBA approach. Moreover,
it detected the agent of ML by using the GT Approach. Carnaz, Nogueira & Antunes (2017)
proposed an ontology-based framework to detect ML.

Online transaction fraud
An online transaction (also known as a PIN-debit transaction) is a process of transferring
money or funds online. Online Transaction (OT) fraud is an illegitimate transaction,
which occurs via the internet. The payment system has five entities, i.e., cardholders,
merchants, card issuers, acquirers, and a payment corporation network. These entities are
involved in financial transactions (El Orche, Bahaj & Alhayat, 2018). The problem of OT
fraud detection continues to grow. An account of ongoing research to detect OT frauds in
financial institutes is present in Fig. 2. The figure also presents the timeline of (CC, ML,
and OT) fraud detection techniques reviewed in this article.

SYSTEM MODEL AND PROBLEM FORMULATION
In this section, we discuss our proposed system model and the problem formulation.
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System description
In this section, we present an enhanced financial fraud detection system. Our ontology-
based alert model has added features, i.e., severity levels of alerts based on intimation rules.
As a result, our proposed solution performs better. A high-level system architecture is
shown in Fig. 3, and the proposed IRB alert generation algorithm is shown in Algorithm 1.
Furthermore, the step-by-step execution of the proposed system are described below:
• The first step will be to extract data from external data source(s), e.g., relational
database(s). This data will then be preprocessed and saved in the ontological database.
After that, each account’s transaction threshold will be calculated. This threshold will
then be utilized by the inference engine during rules evaluation against each account’s
transaction. The use of dynamic threshold will allow the system to be more effective as
it will give a view of the transactional behavior of the customer. Moreover, with the help
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of a dynamic threshold, the system will adapt to the changing behavior of the customer
with time.
• The rules used by the inference engine will define the criteria of setting the severity level
of a suspicious alert. If an alert was previously generated for a customer’s account, then,
the system might increase the hit count in the alert. The solution will also set the alert-id
of the previous alert as the parent-id of the current alert and will increase the severity
level. This will allow the system to detect recurring suspicious transactions. Chaining
alerts together will also result in a trace of similar alerts which could later be used for
inspection & audit.
• Asmentioned earlier, the alerts will be generated based on intimation-rules with a certain
severity level. The system can generate three different levels of alerts as described below.

Level 1: Suspected alert, when the first occurrence is identified (Severity Level: Low).
Level 2: Investigation Required (Severity Level: Medium).
Level 3: Fraud Detected (Severity Level: High).

The severity levels can be used by the fraud notification module to generate emails or
SMS etc.

Algorithm 1 IRB Alert Generation Algorithm
1: Input Data:- Original data, Inferred data, Alert rules, Alert generation rules
2: Output:- Alert notifications, Transaction IRI, Transaction ID, Severity level
3: Data entry in the ontological database
4: Data preprocessing and saving
5: for All data from relational a database to resource description framework store do
6: Calculate account transaction thresholds
7: Apply rules (executed by inference engine)
8: if Indicate risks then
9: Apply intimation rule
10: if Severity level ≥ high then
11: Pass through severity levels
12: If fraud detected!!
13: Generate alert notifications
14: end if
15: Return Transaction IRI, ID, Severity level
16: end if
17: end for

Problem formulation
We formulate the problem of financial fraud detection as a single-objective optimization
problem. Suppose, there are two transactions Tcml and Tcnr.

Tcml,={Tcml,1,Tcml,2,Tcml,3,..,Tcml,m} (1)
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Tcnr,={Tcnr,1,Tcnr,2,Tcnr,3,..,Tcnr,n} (2)

Where, Tcml are transactions from commercial account and Tcnr are transactions from
consumer account.

T =Tcml∪Tcnr (3)

In transactions T, fraudulent F and legitimate L transactions are the subset of transaction
T, (F ⊂ T ,L⊂ T ). Whereas, F and L contains the number of fraudulent and legitimate
transactions, respectively.

F ={F1,F2,F3,..,Fm} (4)

L={L1,L2,L3,..,Ln} (5)

T = F ∪L (6)

Transaction is either legitimate or fraudulent, as states shown in Eq. (7)

αij =

{
1, is fraudulent,
0, is legitimate.

(7)

The objective is to minimize fall-out and miss rate as shown in the following equation.

Minimize
n∑

i=1

m∑
j=1

FNij+FPij ∗αij (8)

Where False Negative (FN) is the number of objects of set F, which were expected as an
object of L incorrectly. False Positive (FP) is the number of objects of set L, which were
expected as an object of F incorrectly. FP is also known as the fall-out rate.

ONTOLOGY CONSTRUCTION METHODOLOGY
In this work, METHONTOLOGY (Corcho et al., 2005) is used to illustrate the construction
of an ontology. This framework allows ontologies to be modelled using graphical
representation. With a graphical representation, a specialist in one domain can perceive the
ontology from another domain. METHONTOLOGY has several phases. It also identifies
management, support and development activities. Management activities include control,
quality assurance, and schedule. Support activities involve configuration management,
documentation, evaluation, integration and knowledge acquisition. Development activities
include specification, conceptualization, formalization, implementation, andmaintenance.
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Formal representation of FFD ontology
An ontology represents knowledge in an easily shareable and reusable manner. It describes
the terms and their relationships within the given domain. An ontology consists of concept,
relation, and attribute identifiers along with data types (Cimiano, 2006). Moreover, the
structure of ontology can be represented as formal logic as shown below:

O=Ontology = (C,≤t ,S,P) (9)

where C is the set of classes, ≤t on C is called concept hierarchy. S stands for subclasses, P
represents predicate (relationships). Moreover, they can be represented as follows:

C =
( n∏
i=1

Ci,≤t

)
(10)

where i = (1,2,3, . . . ,n) and ≤ fulfills the conditions as shown below.

∀a, (a≤ a) (11)

∀a ∀b, (a≤ b∧b≤ aH⇒ a= b) (12)

∀a ∀b ∀c, (a≤ b∧b≤ c H⇒ a≤ c) (13)

∀a (a≤ top element ) (14)

FFD ONTOLOGY IMPLEMENTATION
In this section, we introduce our ontology based FFD Model and its rules for detecting
suspicious transactions. Our system is made of three main components:

• Ontology Development
• Ontology Reasoning
• Results by Querying on Inferred Ontology

Ontology development
The first step of ontology development is to perform data preprocessing. The data items
from this step are selected and transformed into an ontology. All the irrelevant and
redundant information is filtered out to make the data more meaningful. This process
of filtering out data is often referred to as dataset normalization. Our proposed system
models, domain knowledge into ontology and defines rules on top to support reasoning.
The inference engine uses these rules to infer new knowledge to aid in the identification
of suspicious transactions. The knowledge base used by our proposed system consists of
customer transaction data. The ontology model consists of classes, subclasses, objects,
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datatype properties, and instances. The transactional data contains the amount and their
frequency in each interval. We have designed a three-layered ontology as described below.

i. Conceptualization of the Domain Layer:
In the domain layer customer’s transactions are modeled in various forms. Classes,

subclasses, properties (object/datatype), and instances are created in this layer. The key
classes of our proposed ontology are account, person, purposes, suspicious alerts, and
transaction types.

ii. Ontology Layer:
This layer defines restriction on classes via Ontology Web Language (OWL) to facilitate

logic. A graphical representation of the proposed FFD ontology with its classes and
subclasses is shown in Fig. 4.

iii. Rule Layer:To infer new knowledge from the existing knowledge, rules are developed
on top of the ontology OWL layer. In this study, the rules are created in Jena. Jena is a
semantic web toolkit (Carroll et al., 2004). It is a Java framework for the creation of
applications for the Semantic Web. Three levels of rules are executed by the inference
engine. We have created rules based on the Anti Money Laundering (AML) guidelines
shared by the financial regulatory authority. The values of the Threshold Amount (TA)
can vary depending on the financial institution. The threshold values also depend on the
AML guidelines of different countries. For the purposes of this work, we have suggested a
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Table 1 Description of Meta Properties.

Meta property Description

+R (Rigid) All object must be objects of this concept in every possible
world.

-R (Non-Rigid) Objects will stop being objects of the concept.
∼R (Anti-Rigid) objects will not any longer be the object of that concept.
+I (Identity) Objects carry unique identification criteria from any parent

class.
-I (Non-Identity) There are no identification criteria.
+O (Supply Identity) Objects themselves provide a unique identification criteria.
+U (Unity) Objects are ‘‘whole’’ and have a single unit criteria.
-U (Non-Unity) Objects are ‘‘whole’’ and do not have a single unit criteria.
∼U (Anti-Unity) Objects are not ‘‘whole’’.
+D (Dependence) Dependency exists.
-D (Non-Dependence) No dependency.

few threshold values to aid our proof of concept. Our suggested four TA values are: TA1 is
equal to 10000 USD, TA2 is 8000 USD, TA3 is 5000 USD and TA4 is equal to 3000 USD.

Ontology reasoning
Once the knowledge base is developed, it is populated with transaction records and
appropriate rules. The reasoner then infers logical information from the set of asserted
facts. The inference rules are commonly specified through anontology language. Traditional
reasoning engines (Pellet, HermiT, FaCT++, etc.) can be used for reasoning (Khamparia
& Pandey, 2017). We have used the FaCT++ 1.6.5 reasoning engine in this work.

Results by querying on inferred ontology
Once the inference engine infers knowledge based on the given rules, the information
(asserted or inferred) can be queried. SPARQL is a query language that is often used to get
the required information (Sirin & Parsia, 2007). In our work, we have also used SPARQL
to query the FFD ontology.

ONTOLOGY VALIDATION
In this section, we discuss our proposed methodology in detail. We also discuss constraints
and our assumptions for FFD ontology’s validation.

OntoClean methodology
In this work, we have used OntoClean (Guarino & Welty, 2004) for ontology verification.
It is a formal method for evaluating the ontological sufficiency of taxonomic relationships.
The property of a property is known asmeta-property. Unity, identity, rigidity, dependency,
and essence are meta properties (formal notions) of OntoClean. Meta property can be
further classified into three main labels (+, -, ∼). The description of each label is shown in
Table 1.
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OntoClean has devised amethod to characterize properties and classes and their relations
in an ontology. OntoClean attaches the meta properties to each concept and removes false
relationships. It further checks the consistency, conciseness, and completeness of ontology.
In this work, we have used the OntoClean method for the validation of FFD ontology.
The proposed ontology is validated by using meta-properties i.e., unity, identity, rigidity,
dependency as depicted in Fig. 4. The validation criteria of the OntoClean method are
shown below.

Constraints and assumptions
For validating and ensuring the accuracy of ontology, conditions are applied to classes and
properties (Guarino, 2004). Assume, there are two properties, X and Y, when Y subsumes
X, so their resulting restrictions hold as follows:

1) If Y has anti-rigid (∼R), then X must have anti-rigid (∼R).
2) An ∼R property cannot subsume a +R property.
3) If Y is rigid (+R), then X must be rigid (+R).
4) An +R property cannot subsume a ∼R property.
5) If Y has identity (+I), then X must have identity (+I).
6) If Y is unity (+U), then X must be unity (+U).
7) If Y is anti-unity (∼U), then X must be anti-unity (∼U).
8) An ∼U property cannot subsume a +U property.
9) If Y has dependence, then X must have dependence (+D).

SIMULATION SETUP AND RESULTS
In this section, we discuss the dataset and simulation tools. We also discuss the evaluation
measures and performance comparison of the proposed system.

Dataset
For experiments, we have used a real dataset. The dataset contained 1048576 individual
transactions. In the dataset, transactions are classified on the basis of days, weeks, and
months. The key values from our dataset are the total deposit and withdrawal amount. The
frequency of deposits and withdrawals based on days, weeks, and months is also present in
the dataset. The transaction records are separated by deposits and withdrawal to capture
the flow of money.

Simulation tools
The experiments were conducted on a Haier Laptop 7G-5 h with 1.70 GHz Intel Core i3
and 4Gb RAM runningWindows 10. In this work, we have used simple tools for compiling
results. The tools used are listed below:
1. Eclipse IDE 2018-09 (4.9.0)
2. Java 1.8.0_151
3. Protege 5.2.0 Ontology Editor
4. SPARQL query language
5. Apache Jena 3.9.0 Semantic Web Framework
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6. FaCT++ 1.6.5 Reasoner
For writing and compiling code, we have used the Eclipse IDE. We used Java for writing

our logic along with a Java-based Apache framework: Jena. With Jena, we manipulated
ontologies and rules whilst FaCT++ 1.6.5 was used to infer knowledge from the knowledge
base.We used Protege 5.2.0 to develop FFD ontology and SPARQL query language to query
the financial fraud detection ontology. In the next subsection, we discuss the experimental
results of FFD in detail.

Evaluation measures
Before we describe the experimental results, we first introduce the metrics. In this work, the
metrics we used for performance comparison of the FFD system are accuracy, precision,
recall, F-measure, and Matthews Correlation Coefficient (MCC). Furthermore, the
formulas of the aforementioned measures are presented below:

Accuracy =
TP+TN

TP+FP+TN +FN
(15)

Precision=
TP

(TP+FP)
(16)

Recall =
TP

(TP+FN )
(17)

F−measure=
2∗Precision∗Recall
Precision+Recall

(18)

MCC =
TP ∗TN −FP ∗FN

√
(TP+FP)(TP+FN )(TN +FP)(TN +FN )

(19)

Where,

• True Positive (TP) = Number of Legitimate Transactions (LTs) which were identified
correctly.
• False Negative (FN) = Number of LTs which were expected as Fraudulent Transactions
(FTs) incorrectly.
• True Negative (TN) = Number of FTs which were identified correctly.
• False Positive (FP) = Number of FTs which were expected as LTs incorrectly.

Results and performance comparison
Our proposed solution generates alerts at the onset of suspicious activity. Alerts can be
generated with either of the three severity levels discussed in ‘System Model and Problem
Formulation’. Alert notifications generated by the FFD system are shown in Fig. 5. We
have compared our proposed solution with ontological and non-ontological solutions.
For ontological solutions, our comparison is based on the number of classes, subclasses,
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Figure 5 Alerts generated by FFD system.
Full-size DOI: 10.7717/peerjcs.649/fig-5

Table 2 Comparison with Ontology-Based Systems.

Reference Classes + SubClasses Properties

El Orche & Bahaj (2020) 9 7
Sahri, Shuhidan & Sanusi (2018) 9 2
Rajput, Larik & Haider (2014) 19 10
Attigeri et al. (2018) 8 2
El Orche, Bahaj & Alhayat (2018) 5 6
Our proposed FFD 40 22

and properties i.e., data and object. The ontological solutions in comparison have a small
number of classes and properties. This means that a narrower domain was considered to
solve the issue of financial fraud. Since our solution covers a wider area of the financial
fraud domain with a greater number of classes and properties. We believe that our solution
is better at detecting and deterring the threat of financial fraud. Table 2 shows a comparative
analysis of FFD and other ontologies on the basis of classes, subclasses, and properties.
We have also compared our solution with other non-ontological solutions on the basis of
various benchmarks.

We are using metrics, i.e., accuracy, precision, recall, and F-measure. The said
comparison between FFD and non-ontological solutions e.g., RF-I and RF-II, (Xuan,
2018) are shown in Fig. 6. Before we do the comparison, we need to calculate the accuracy,
precision, recall, and F-measure using Eqs. (15)–(18). The results show that the accuracy
and precision of the FFD system increases, while the F-measure decreases when compared
to RF-II. The recall achieves the greatest value when compared to RF-I. It is evident from
Fig. 6 that our solution achieves the highest precision and accuracy among all benchmarks.

CONCLUSIONS AND FUTURE WORK
This article introduces fraud trends in financial institutions. We describe data
representational models and the advantages of using ontologies over databases. Later,
we propose an enhanced ontology-based FFD system for fraud detection and deterrence.
Our work also presents an IRB alert generation algorithm for alert generation. We have
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Figure 6 Comparison with non-ontology based techniques.
Full-size DOI: 10.7717/peerjcs.649/fig-6

also developed a taxonomy of literature review. The strength of our ontology-based alert
model is its ability to reason. Reasoning capability in ontologies makes it possible to derive
inexplicit facts. Our proposed solution generates alerts with appropriate severity levels. It
also excludes dead alerts which makes our solution reliable, quicker, and efficient. In the
future, we aim to investigate the efficacy of the FFD system in other fraud-prone domains.
We believe that domains, i.e., telecommunication, internet marketing, and insurance fraud
are also a good place to test our solution.
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