
Hybrid rule-based botnet detection
approach using machine learning for
analysing DNS traffic
Saif Al-mashhadi1,2, Mohammed Anbar1, Iznan Hasbullah1 and
Taief Alaa Alamiedy1,3

1 National Advanced IPv6 Centre, Universiti Sains Malaysia, Penang, Malaysia
2 Electrical Engineering, University of Baghdad, Baghdad, Baghdad, Iraq
3 ECE Department- Faculty of Engineering, University of Kufa, Kufa, Najaf, Iraq

ABSTRACT
Botnets can simultaneously control millions of Internet-connected devices to launch
damaging cyber-attacks that pose significant threats to the Internet. In a botnet, bot-
masters communicate with the command and control server using various
communication protocols. One of the widely used communication protocols is the
‘Domain Name System’ (DNS) service, an essential Internet service. Bot-masters
utilise Domain Generation Algorithms (DGA) and fast-flux techniques to avoid
static blacklists and reverse engineering while remaining flexible. However, botnet’s
DNS communication generates anomalous DNS traffic throughout the botnet life
cycle, and such anomaly is considered an indicator of DNS-based botnets presence in
the network. Despite several approaches proposed to detect botnets based on DNS
traffic analysis; however, the problem still exists and is challenging due to several
reasons, such as not considering significant features and rules that contribute to the
detection of DNS-based botnet. Therefore, this paper examines the abnormality of
DNS traffic during the botnet lifecycle to extract significant enriched features. These
features are further analysed using two machine learning algorithms. The union of
the output of two algorithms proposes a novel hybrid rule detection model approach.
Two benchmark datasets are used to evaluate the performance of the proposed
approach in terms of detection accuracy and false-positive rate. The experimental
results show that the proposed approach has a 99.96% accuracy and a 1.6% false-
positive rate, outperforming other state-of-the-art DNS-based botnet detection
approaches.

Subjects Data Mining and Machine Learning, Security and Privacy
Keywords Botnet detection, DNS analysis, Rule-based technique, Machine learning, Network
security

INTRODUCTION
Nowadays, especially during the global COVID-19 pandemic, there is no longer a debate
that the Internet has become a core element of our daily life. Today’s Internet is about
online presence, e-learning, social media, e-banking, work from home, online shopping,
Internet of Things, and cloud computing (Stevanovic et al., 2012; Nozomi Networks Labs,
2020; Lallie et al., 2020). Unfortunately, Internet resources are continuously under
threat by malicious actors, whether individual or organised entities. The botnet is now one
of the most preferred tools by malicious actors for sophisticated cyber attacks. As a result,

How to cite this article Al-mashhadi S, Anbar M, Hasbullah I, Alamiedy TA. 2021. Hybrid rule-based botnet detection approach using
machine learning for analysing DNS traffic. PeerJ Comput. Sci. 7:e640 DOI 10.7717/peerj-cs.640

Submitted 11 January 2021
Accepted 22 June 2021
Published 13 August 2021

Corresponding authors
Saif Al-mashhadi,
saifjawad@student.usm.my
Mohammed Anbar, anbar@usm.my

Academic editor
Muhammad Tariq

Additional Information and
Declarations can be found on
page 28

DOI 10.7717/peerj-cs.640

Copyright
2021 Al-mashhadi et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.640
mailto:saifjawad@�student.�usm.�my
mailto:anbar@�usm.�my
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.640
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

it is considered one of the critical threats to Internet users’ security and privacy (Nozomi
Networks Labs, 2020).

There are two main motives for building and operating botnets: financial gain by
offering botnets for hire for attacks and crypto mining and politics for hacktivism or
nation-states. The services provided by the botnets vary from the crypto-mining campaign
and intelligence gathering to anonymised large-scale cyber attacks (Almutairi et al., 2020).

A botnet comprises a network of malware-infected computing devices (Abu Rajab et al.,
2006). A malware transforms compromised computing devices into robots (bots)
controlled remotely by the attacker, known as a botmaster, without end-users knowledge
(Asadi et al., 2020). Botmasters hide their location and avoid detection of law enforcement
entities by controlling and initiating botnet attacks via the Internet through command and
control (C&C) servers using various communication techniques (Almutairi et al., 2020).
Figure 1 shows the botnet communication architecture.

Some of the botnet attacks include Distributed Denial of Service (DDoS), sending spam
email, ransomware (Gu et al., 2013; Alomari et al., 2016), or phishing emails (Karim et al.,
2014), and stealing sensitive data that could be used for further attacks. Even though
there are different approaches to mitigate botnet attacks, since its first appearance in 1993
(Silva et al., 2013), the number of botnet attacks has been growing steadily. The 10-year
trend of the size of botnet-based DDoS attacks (Morales, 2018) in Fig. 2 clearly shows
that there is a marked increase from 2007 (24 Gbps) to 2018 (1.7 Tbps). Similarly, the
Symantec Internet Security Threat Report (Symantec, 2018) reported a 62% increase in
botnet activities in 2018 compared to the previous year.

Initiating and coordinating attacks require all members (bots) to be connected with each
other and the C&C servers. This interconnectedness is fundamental for the botnet lifecycle

Figure 1 Botnet communication architecture. Full-size DOI: 10.7717/peerj-cs.640/fig-1

Al-mashhadi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.640 2/34

http://dx.doi.org/10.7717/peerj-cs.640/fig-1
http://dx.doi.org/10.7717/peerj-cs.640
https://peerj.com/computer-science/

(Khattak et al., 2014), which allows the botnet members to receive new commands and
synchronise their actions.

There are three types of botnet communication architectures according to their
communication topology: centralised (client-server), decentralised (peer-to-peer), and
hybrid (Silva et al., 2013;Negash & Che, 2015). The bots in the centralised category connect
to the C&C using IRC, HTTP, or DNS protocols to obtain instruction and update their
status (Silva et al., 2013; Negash & Che, 2015). Table 1 provides a detailed comparison
between the three botnet communication architectures.

The bots connect with the C&C server using pre-programmed static IP addresses of the
C&C server within the malware codes or algorithm-generated domain names (Cantón,
2015).

It is possible to detect different types of botnet architecture by analysing DNS
communication traffic, regardless of the communication architecture used (centralised,
decentralised, or hybrid).

DNS is all about resolving queries to map a domain name hierarchically to its
corresponding IP address, similar to a phone book that catalogues human-readable

Figure 2 Size of Botnet DDoS attacks over 10 years (Morales, 2018).
Full-size DOI: 10.7717/peerj-cs.640/fig-2

Al-mashhadi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.640 3/34

http://dx.doi.org/10.7717/peerj-cs.640/fig-2
http://dx.doi.org/10.7717/peerj-cs.640
https://peerj.com/computer-science/

domain names (URLs) and their related computer-readable IP address formats (numeric).
Figure 3 illustrates the operation of domain name resolution.

DNS is an essential Internet service that cannot be disabled or blocked using firewalls
without incapacitating the network functionality. For this reason, some botmasters rely on
the DNS protocol for botnet communication (Mockapetris, 1987). Botmasters avoid
detection by using dynamic DNS strategies that constantly and rapidly change domain
names and their associative IP addresses. Two popular dynamic DNS techniques are fast-
flux (Holz et al., 2008) and domain-flux (Yadav & Reddy, 2012).

As shown in Fig. 4, fast-flux is a technique that regularly assigns several IP addresses to
the same domain name. The fast-flux approach is often used for legit purposes, such as
load balancing by content delivery network operators (Yadav & Reddy, 2012). On the other
hand, the domain-flux method is carried out by dynamically generating pseudo-random
domains using the Domain Generation Algorithm (DGA).

The DGA has several specific characteristics, as shown in Fig. 5. Firstly, there is no
hardcoded domain name on the C&C server, making it unpredictable (Zago, Gil Pérez &
Martínez Pérez, 2019). Secondly, the botmaster could use DGA as a fail-safe or backup
channel when the primary communication channel fails (Stone-Gross et al., 2011). The
Zeus worm (Luo et al., 2017) is one of the worms that employs DGA.

Table 1 Comparison of botnet communication architectures.

Architecture Description Pro Cons

Centralised Bots are connected, get instruction and
centrally update their status with the C&C
using IRC, HTTP or DNS protocols (Silva
et al., 2013)

Easy to construct and manage by attackers A single failure point

Peer to Peer
(P2P)

It is similar in technique to the P2P file-
sharing system, where the bot has dual
behaviour; it can act as a botmaster of
C&C server to send commands and act
like a typical bot when receiving the
command from other bots (Al-Mashhadi
et al., 2019). P2P is constructed so that
each bot communicates with nearby bots
in its system to organise a cluster.
Example P2P botnets include GameOver
Zeus, Sality

Immune to shut down (Singh, Singh &
Kaur, 2019)

Managing difficulties due to the required
routing protocols (Acarali et al., 2016)

Hybrid It is a combination of P2P and centralised
architecture, taking advantage of both
(Khattak et al., 2014; Khan et al., 2019). In
this architecture, the C&C server is central
and consists of many P2P organised bots
that forward the command to the server
bots in a hierarchical manner. Besides, the
botmaster uses proxy bots between their
machine and the botnet, with each bot act
as a servant transmitting commands to the
bots that they compromised (Wang,
Sparks & Zou, 2010)

More resistant to taking down this
structure than the previous ones. It also
provides profit for botmasters by allowing
renting part of their botnet to provide
different attack services

This architecture faces higher latencies in
commands and control propagation than
P2P, but they are very immune to
downstream efforts since only a minor
portion of the botnet will be affected if the
C&C server has been shut down (Khattak
et al., 2014)

Al-mashhadi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.640 4/34

http://dx.doi.org/10.7717/peerj-cs.640
https://peerj.com/computer-science/

request to visit http://example.org

Root Name Server

.org Top Level Domain Name Server
Recursive DNS

1 4
3

7

8 5

2

6

Authoritative Name Server for example.org

7

example.org

A = 93.184.216.34

A
=

93
.1

84
.2

16
.3

4
.o

rg
 n

s
=

19
9.

19
.5

6.
1

example.org
ns =94.184.88.10

Figure 3 DNS resolving process. Full-size DOI: 10.7717/peerj-cs.640/fig-3

Figure 4 Typical fast-flux domain resolution. Full-size DOI: 10.7717/peerj-cs.640/fig-4

Al-mashhadi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.640 5/34

http://dx.doi.org/10.7717/peerj-cs.640/fig-3
http://dx.doi.org/10.7717/peerj-cs.640/fig-4
http://dx.doi.org/10.7717/peerj-cs.640
https://peerj.com/computer-science/

Combining fast-flux and DGA techniques allows constant modification of the C&C’s IP
address and domain name to avoid detection (Zhou et al., 2013).

Although such techniques are complex, they are popular because they maintain the
communication channel open and undetected by using dynamic but somewhat secret
domain names. Examples of botnets that use the DGA technique to avoid detection are
Necurs and Conficker. A Conficker bot generates up to fifty thousand new unique domain
names daily but only using 500 of them for communication purposes. On the other hand,
the Necurs bot systematically generates 2,048 new domains through an algorithm
(Antonakakis & Perdisci, 2012).

The evasive techniques to control botnets generate abnormal traffic patterns throughout
the botnet lifecycle phases. These patterns can be used to detect botnets. The botnet
lifecycle could be broken down into four phases, as listed and illustrated in Fig. 6.

� Initial infection and propagation phase: In this phase, bot malware aims to infect
Internet-facing devices, such as cell phones, personal computers, smart devices, and
even CCTVs. The attacker has many tools and techniques at his disposal to identify
exploitable vulnerabilities to gain access and control the targeted host. Some strategies
include social engineering, spam, and phishing. Once a vulnerability is found and
successfully exploited, the bot would connect to a remote server (botmaster) to
download and install all required software to control the host device (Al-Mashhadi et al.,
2019).

� Connection and rallying phase: In this phase, the bot tries to find and connect to the
C&C server and other bots. The communication occurs either via the C&C server or
a proxy server. The likelihood of exposure of the bot is the highest in this phase because
this phase is repeated until a connection is established (Silva et al., 2013). Nevertheless,

Figure 5 Typical procedure for DGA DNS resolution. Full-size DOI: 10.7717/peerj-cs.640/fig-5

Ini�al Infec�on
and propaga�on

Connec�on and
rallying

Malicious and
a�acks ac�vi�es

Maintenance
and upgrading

Stage 1 Stage 2 Stage 3 Stage 4

Figure 6 Botnet life—cycle. Full-size DOI: 10.7717/peerj-cs.640/fig-6

Al-mashhadi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.640 6/34

http://dx.doi.org/10.7717/peerj-cs.640/fig-5
http://dx.doi.org/10.7717/peerj-cs.640/fig-6
http://dx.doi.org/10.7717/peerj-cs.640
https://peerj.com/computer-science/

even with the risk of being exposed and discovered, the DNS lookup query is still
widely used in the botnet connection phase since it is the most flexible botnet
communication method (Manasrah et al., 2009).

� The Malicious and attack phase: The botmaster instructs the bots to perform nefarious
activities, such as distributing malicious software or sending spam emails. Bots can also
perform disruptive attacks, such as a DDoS attack (Da Luz, 2014).

� The Maintenance and upgrading phase: Bots remain idle while waiting for new
commands from the botmaster. These commands might include new targets, update
their behaviour, or instruction for new malicious activities. The botmaster will uphold
the bots as long as possible by continuously upgrading them to avoid detection,
enhancing propagation vectors with potential threats and methods or updates, and
patching errors in scripts (Zeidanloo et al., 2010).

Some traits and data trails exist throughout the botnet life cycle or botnet
communication despite employing evasive techniques. Examples of DNS data trails
include domain names, resource code, DNS responses, DNS queries, and timestamps. Such
DNS data trails’ availability provides security researchers with ways to detect botnets and
their C&C servers (Stevanovic et al., 2012; Luo et al., 2017).

Given the discussion above, our research question is as follows: Can we increase botnet
detection accuracy by combining two machine learning algorithms to analyse DNS data
trails and the significant DNS-related features and rules that contribute to botnet
detection?

This study’s goal is to enhance DNS-based botnet detection accuracy. The contributions
of this paper are (i) new features derived from basic DNS features using Shannon entropy
and (ii) a hybrid rule-based model for botnet detection using a union of JRip and
PART machine learning classifiers. Finally, the evaluation of the proposed approach uses
different datasets with various evaluation metrics; and the results are compared with other
existing methods.

The rest of this paper is organised as follows. The related literature and studies section
presents the current related work. The Section “Related Literature and Studies” details the
proposed approach framework. This study’s implementation environment is in Section
“Materials & Methods”, and the Section “Results” is devoted to elaborating the result and
discussion. Finally, the conclusion and future research directions in the Section
“Conclusion” concludes this paper.

RELATED LITERATURE AND STUDIES
Currently, there are two main methods to detect DNS-based botnet: Honeypot and
Intrusion Detection Systems (IDS) (Dornseif, Holz & Klein, 2004; Anbar et al., 2016).
Figure 7 presents the taxonomy of the DNS-based botnet detection approaches.

Honeypots
Honeypots are widely used for identifying and analysing the behaviour of botnet attacks.
Honeypots are purposely designed to be vulnerable to botnet attacks to capture and gather

Al-mashhadi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.640 7/34

http://dx.doi.org/10.7717/peerj-cs.640
https://peerj.com/computer-science/

as much data as possible on the botnet (Freiling, Holz & Wicherski, 2005). Honeypot
also runs specialised software that attempts to match bots’ signatures and discovers the
location of the botnet’s C&C server.

There are at least three types or levels of honeypots depending on the required level of
bots information, the complexity of the study’s data, and the interaction level permitted to
the attacker: low, medium, and high (Koniaris, Papadimitriou & Nicopolitidis, 2013;
Nawrocki et al., 2016). A low-level honeypot or Low Interaction Honeypot (LIH) stores
unauthorised communication with a limited attacker interaction; therefore, it is safer and
easier to maintain than other honeypot types. A Medium Interaction Honeypot (MIH)
provides more meaningful interaction with the attacker but not as open as a High
Interaction Honeypot (HIH). HIH is a computer with a real OS running vulnerable
services to attract intruders to break into to capture their actions for analysis. Table 2
shows the pros and cons of the three types of honeypot.

Honeydns, proposed by Oberheide, Karir & Mao (2007), is a form of LIH that uses
some simple statistics over the captured queries and collects DNS queries targeting unused
(i.e., darknet) address spaces. This method prevents attackers from avoiding it
(Bethencourt, Franklin & Vernon, 2005). However, a honeypot cannot detect all forms of
bots, such as bots that are not using scanning to propagate (Dornseif, Holz & Klein, 2004).

Figure 7 Taxonomy of Botnet detection based on DNS. Full-size DOI: 10.7717/peerj-cs.640/fig-7

Table 2 Honeypots type.

Honeypot
type

Pros Cons

LIH Easy to manage, low risk for network Easy to be noticed by the attackers

MIH meaningful interaction with the attacker and allow the simulation of
a service or operating system where everything is controlled

Need more network configuration to protect the honeypot network.
It may endanger the network if the attacker fully controls it

HIH The only type of Honeypot that provides bot binary information
and execution code

High risk to the network operator requires more advanced
configuration for the network and operations skills

Al-mashhadi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.640 8/34

http://dx.doi.org/10.7717/peerj-cs.640/fig-7
http://dx.doi.org/10.7717/peerj-cs.640
https://peerj.com/computer-science/

Furthermore, attackers could utilise honeypots to target other systems or machines outside
the honeypots (Liu et al., 2009). Figure 8 shows the standard honeypot configuration.

Anirudh, Arul Thileeban & Nallathambi (2017) built a model using MIH as a sensor
to collect attack logs. When coupled with an Intrusion Detection System (IDS) as a
verifier, these logs increase 55–60% in IDS efficiency against DDoS attacks compared to
using IDS alone. However, their research is limited to DDoS attacks only (Anirudh, Arul
Thileeban & Nallathambi, 2017).

Intrusion Detection System (IDS)
Da Luz (2014) and Alomari et al. (2016) categorised IDS into two: anomaly-based and
signature-based (Da Luz, 2014; Alomari et al., 2016). The anomaly-based IDS can be
further classified into host-based IDS and network-based IDS (Dornseif, Holz & Klein,
2004). The subsequent sections provide more details on the different types of IDS.

Signature-based Botnet detection

A signature-based detection method only detects botnets with matching predefined
signatures in the database. DNS-based blacklist (DNSBL) method proposed by
Ramachandran, Feamster & Dagon (2006) tracked DNS traffic and discovered bots’
identities based on the insight that botmasters could perform a “recognition” search to
determine blacklisted bots. The limitations of the DNSBL-based approach are that it can
only detect scouting botmaster and limited to bots propagated through SPAMs traffic
using a heuristic approach.

Anomaly-based Botnet detection

Anomaly-based detection method relies on different DNS anomalies to identify botnets.
Some of the DNS anomalies used for detection include high network latency, Time to Live
(TTL) domain, patterns of domain requested per second, high traffic volumes, and
irregular device behaviour that may expose bots’ existence. In other words, the term

Figure 8 A typical Honeypot configuration. Full-size DOI: 10.7717/peerj-cs.640/fig-8

Al-mashhadi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.640 9/34

http://dx.doi.org/10.7717/peerj-cs.640/fig-8
http://dx.doi.org/10.7717/peerj-cs.640
https://peerj.com/computer-science/

“detection based on anomaly” refers to the act of finding odd habits that differ from the
expected ones. The anomaly-based approaches have two detection methods: host-based and
network-based (Dornseif, Holz & Klein, 2004; Karim et al., 2014; Da Luz, 2014).

Host-based approaches

Host-based technique scans and protects the computing device locally, or in other terms,
‘host-level. Shin, Xu, and Gu proposed the EFFORT framework that combines several
techniques to observe DNS traffic at the host level (Shin, Xu & Gu, 2012). EFFORT has five
specific modules that use a controlled machine learning algorithm to report malicious
domain names regardless of network topology or communication protocol and
performs well with encrypted protocols. However, the EFFORT framework only worked
with botnets that rely on the DNS administration to recognise C&C servers’ addresses.
Host-based IDS is typically an inadaptable approach. Consequently, the observing agents
must be deployed on all devices in the network to be effective against botnet attacks (Da
Luz, 2014).

Network-based approaches

Network-based IDS analyses network traffic, either actively or passively (Dornseif, Holz &
Klein, 2004; Karim et al., 2014; Da Luz, 2014). The active monitoring approach injects test
packets into the network, servers, or applications instead of just monitoring or passively
measuring network traffic activities.

Active Monitoring Approaches

Ma et al. (2015) proposed an active DNS probing approach to extensively determine
unique DNS query properties from DNS cache logs (Ma et al., 2015). This technique could
be used remotely to identify the infected host. However, injecting packets into the network
increased the risk of revealing the existence of the IDS on the network. Furthermore,
active analysis of DNS packets could threaten users’ privacy. Besides, the NXDOMAIN
requests were absent from the DNS cache entry for domain names. The active monitoring
mechanism added additional traffic from test and test packets injected into the network
(Alieyan et al., 2016).

FluXOR (Passerini et al., 2008) is one of the earlier systems to detect and monitor fast-
flux botnet. The detection technique is based on an interpretation of the measurable
characteristics of typical users. It used an active sampling technique to track each suspected
domain to detect the fast-flux domain. Not only can FluXORs recognise fast-flux domains,
but also the number and identity of related proxy servers to prevent their reuse in a
potential fast-flux service network (Monika Wielogorska, 2017). However, FluXOR is
restricted to the fast-flux domains advertised by SPAM traffic (Perdisci, Corona &
Giacinto, 2012).

Passive Monitoring Approaches

Passive monitoring utilises specific capturing instruments, known as “sensors,” to track
the passing traffic. Subsequently, the traffic on the network under inspection would not

Al-mashhadi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.640 10/34

http://dx.doi.org/10.7717/peerj-cs.640
https://peerj.com/computer-science/

increase. Weimer implemented the first passive detection method in 2005 (Weimer, 2005;
Zdrnja, Brownlee & Wessels, 2007).

NOTOS (Antonakakis et al., 2010) is a comprehensive domain name reputation system
that analyses DNS and secondary data from honeypots and malware detection services.
Reputation process inputs are the characteristics derived from the list of domain names,
such as the resolved IP address, the domain registration date, identified malware samples
accessing a given domain name or IP address, and domain name blacklisted IP addresses.
These features allowed NOTOS to change the domain legitimacy model, clarify how
malicious domains are run, and calculate the perfect reputation score for new domains.
NOTOS has high accuracy and low false-positive rate and can identify newly registered
domains before being released on the public blacklist. However, a reputation score
algorithm needs a domain registration history (whois), which is not available for all
domain names, to award an appropriate reputation score. It is also unusable against
frequently shifting C&C domains, such as a hybrid botnet that uses several C&C server
hubs to execute commands (Kheir et al., 2014).

Contrary to NOTOS, Mentor (Kheir et al., 2014) proposed a machine learning approach
on a statistical set of features. The proposed model sought to exclude all valid domains
from the list of blacklisted C&C botnet domains, which helped to minimise both the
false-positive rate and domain misclassification during the identification process. To do
this, Mentor embedded a crawler to gather data on suspicious domain names, e.g., web
content and domain properties, to create a DNS pruning model. The Mentor method’s
performance is better when measured against public blacklist domains with meagre
false-positive rates.

EXPOSURE is a system proposed by Bilge et al. (2011) that used inactive DNS
information to identify domains vulnerable to malicious behaviour. It held a total of
15 features distributed over four classes: time-based, DNS-based, TTL-based, and
domain-based. It also used these features to improve the training of PART classifiers.

Kopis introduced a new traffic characteristic by analysing DNS traffic at top-level
domain hierarchy root levels (Antonakakis et al., 2011). This method reliably looked at the
malware used domains by going through global DNS query resolution patterns. Unlike
other DNS reputation strategies such as NOTOS and EXPOSURE, Kopis allowed DNS
administrators to freely inspect malware domains without accessing other networks’ data.
In addition, Kopis could search malware domains without access to IP reputation info
(Xu et al., 2017).

Pleiades (Antonakakis & Perdisci, 2012) helped classify recently controlled DGA
domains using non-existent domain responses (NXDOMAIN). However, because its
clustering strategy relied on domain names’ structural and lexical features, it was limited to
DGA-based C&C only. Also, one of the outstanding issues of NXDOMAIN-based
detection was dealing with a compromised host with malware that requested several
queries to DGA domains over an extended time. It might be possible to detect the C&C
addresses of a domain fluxing botnet in the local network by comparing the accurate
domain resolution entropy to the missed one (Yadav et al., 2010). Since the randomness in
the domain name alphanumeric characters is measurable by calculating the entropy

Al-mashhadi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.640 11/34

http://dx.doi.org/10.7717/peerj-cs.640
https://peerj.com/computer-science/

value, in their implementation, the researchers utilised an offline IPv4 dataset from the
Asian region. They achieved a low FP rate of just 0.02%. However, their approach was
limited to non-dictionary IPv4 domain names.

There has been extensive discussion on botnet detection approaches that employ
machine learning detection in the literature. For example, BOTCAP (Gadelrab et al., 2018)
utilises J48 and ‘Support Vector Machine’ (SVM) classifiers for training the extracted DNS
features. The authors showed that the J48 classifier, a Java version of the C4.5 classifier,
performed better than other classifiers. However, a hybrid detection model that combines
the output of the J48 classifier with other classifier models’ output could further improve
the performance.

Li et al. (2019) attempted to find the best classifiers from several classifiers, such as
Decision Tree-J48, ‘Artificial Neural Network’ (ANN), ‘Support Vector Machine’ (SVM),
Logistic Regression, ‘Naive Bayes’ (NB), ‘Gradient Boosting Tree’ (GBT), and ‘Random
Forest’ (RF) (Li et al., 2019). As a result, the authors showed that J48 was the best
classification algorithm to classify the DGA domain (Li et al., 2019). However, their
proposed approach was not using any hybrid rule model.

Haddadi et al. (2014) adopted the C4.5 classifier for botnet classification (Haddadi et al.,
2014). However, the selected subset of features did not contribute to any improvement in
the classification process. The experimental results achieved an 87% detection rate.

Likewise, deep learning, a subset of machine learning, has received significant attention
lately. A deep learning algorithm of recurrent neural networks (RNN), long short-term
memory (LSTM), and the combination of RNN and LSTM have been applied as a botnet
detection method (Shi & Sun, 2020). The RNN and LSTM combination achieved higher
detection results. However, deep learning techniques require massive pre-processing of
data, long process time, and resources with high-speed processors. Besides, to discover new
bots, re-training the whole model with a new dataset is a must. Re-training is a time-
consuming process and not suitable for detecting new botnets.

From the literature above, it is noticeable that there is a lack of significant features and
rules that contribute to detecting DNS-based botnet with high accuracy and low false-
positive rate.

The summary of some existing botnet detection approaches based on DNS traffic
analysis are tabulated in Table 3.

MATERIALS & METHODS
This section thoroughly explains the materials and methods used to implement the
proposed approach. The proposed approached consists of three stages, as shown in Fig. 9.

The following subsections provide complete detail of each stage.

Stage 1: data pre-processing
Data pre-processing stage is critical for the proposed approach. It helps to focus on the
required DNS features to provide a more flexible selection analysis. Also, this process
reduces the analysis time and false-positive results as well.

Al-mashhadi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.640 12/34

http://dx.doi.org/10.7717/peerj-cs.640
https://peerj.com/computer-science/

Table 3 Summary of DNS-based botnet detection techniques.

Author and Year Detection Approach Strengths Weakness

Oberheide, Karir &
Mao (2007)

Honeypot Easy to build; help to discover new
botnet within its network

Limited scalability and interaction
with malicious activities

Ma et al. (2015) Active Network-Based Could identify the infected host in
remote management networks

Restricted to domain names in
cache entry; cannot detect
NXDOMAIN request; high
probability to be detected by
attackers, and introduce privacy
concern

Passerini et al. (2008) Active Network-Based Discover fast-flux domains; also
detect the number and identity of
related proxy servers to prevent
future reuse

Limited to fast-flux domains
advertised through SPAMs traffic

Shin, Xu & Gu (2012) Host-Based Provide real-time protection Limited to host-level; must be
installed in all hosts in networks

Antonakakis et al. (2010) Passive Network-Based Has high accuracy and low false-
positive rate; recognise recently
registered domain names before
being published to public blacklist

Cannot classify new domains;
inaccurate against frequently
changing C&C domains like
hybrid botnet architecture that
utilises many master C&C hubs to
execute a command

Gadelrab et al. (2018) Passive Network-Based Able to detect and identify individual
bots without collecting massive data
from infected machines; based on
statistical features of botnet traffic
(i.e. independent of traffic content)

Low detection rate

Antonakakis &
Perdisci (2012)

Passive Network-Based Able to analyse DGA-based C&C
queries limited to detect C&C
addresses for fast-flux botnet in a
local network

Limited to high entropy domain
names (non-dictionary words)
with IPv4 domain resolving

Bilge et al. (2011) Passive Network-Based Able to identify new botnet through
machine learning classifier

A 15 features detection model
consumes a lot of data processing
and sensors on RDNS servers for
learning model

Kheir et al. (2014) Passive Network-Based It has a low false-positive rate Only identify benign domains;
misclassification for the hijacked
and high reputation domain name;
weak against hybrid botnet

Ramachandran, Feamster
& Dagon (2006)

Signature-based Attempt to recognise botmasters’
address and identify their location

Only detect reconnaissance
botmaster; limited to bot
advertised through SPAMs traffic
using heuristics approach; need to
update DNSBL database

Shi & Sun (2020) Deep learning analysing Used a hybrid deep learning method
to classify DNS-based botnet

it’s required that to train the whole
model once more to discover new
botnet.

Our approach Hybrid rule-based Hybrid machine learning approach
using a united of two machine
learning classifiers that resulted in
high accuracy botnet detection

Not deal with encrypted DNS
traffic that uses DNS via the
Transport Layer Security protocol
(DoT) or DNS via secure hypertext
protocol (DoH)

Al-mashhadi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.640 13/34

http://dx.doi.org/10.7717/peerj-cs.640
https://peerj.com/computer-science/

It consists of two steps, DNS packet filtering and data cleansing. The packet filtering step
ensures that only DNS packets remain in the filtered network traffic. Furthermore, this
research assumes that a third-party security mechanism is deployed in the network to
prevent or detect DNS fragmentation packets. Therefore, the proposed approach
incorporates the third-party mechanism to ensure that the DNS fragmented packet will
not bypass the proposed rules.

DNS packet filtering step
The process of resolving DNS queries occurs nearly instantaneously most of the time.
Since there is no need for a handshaking technique provided by Transmission Control
Protocol (TCP), DNS traffic uses User Datagram Protocol (UDP) at port 53, making the
filtering process easier. Furthermore, this study focuses on the analysis of selected features
of DNS. The filtering step is responsible for the extraction of the required DNS features
from DNS packets. Figure 10 illustrates the process of the data pre-processing stage.

Figure 11 visualises the DNS packet structure. Table 4 tabulates the extracted DNS
traffic fields selected for this study. Finally, Table 5 presents the extracted DNS record types
with their function in the DNS protocol.

Figure 10 Flowchart for data pre-processing stage. Full-size DOI: 10.7717/peerj-cs.640/fig-10

Figure 9 Three stages of the detection method design. Full-size DOI: 10.7717/peerj-cs.640/fig-9

Al-mashhadi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.640 14/34

http://dx.doi.org/10.7717/peerj-cs.640/fig-10
http://dx.doi.org/10.7717/peerj-cs.640/fig-9
http://dx.doi.org/10.7717/peerj-cs.640
https://peerj.com/computer-science/

Data cleansing step
Cleansing the data means removing errors and broken DNS sessions from the datasets.
Thus, the cleaning process helps achieve more accurate results and reduces the processing
time of subsequent stages (Alieyan et al., 2021).

Figure 11 DNS packet structure. Full-size DOI: 10.7717/peerj-cs.640/fig-11

Table 4 Extracted DNS traffic basic features.

Fields Description

TIME Traffic time

Source IP address Sender (host) IP address

Destination IP address Receiver (host) IP address

QR (Query/response) A one-bit field that specifies whether this message is a query (0), or a response (1).

RCODE 4-bit field is set as part of responses with these values:
0 No error
1 Format error
2 Server failure
3 Name Error
4 Not Implemented

QNAME Domain name requested

TTL (DNS response) Time to Live (TTL) of Resource Record (RR). A 32-bit integer in seconds, primarily used by resolvers when they cache RRs.
Describes how long to cache RR before discarded.

Al-mashhadi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.640 15/34

http://dx.doi.org/10.7717/peerj-cs.640/fig-11
http://dx.doi.org/10.7717/peerj-cs.640
https://peerj.com/computer-science/

DNS traffic analysis
The DNS traffic analysis stage consists of enriched features calculations (feature
engineering) and building training dataset steps. The following subsection provides a more
detailed explanation for each step.

Enriched features calculations (feature engineering) step
The feature engineering process employs different machine learning domains to solve
various types of problems. Its main task is to select and compute the most significant
features or attributes and eliminate irrelevant and redundant features to improve machine
learning algorithms’ performance. In this study, the feature engineering process derives
enriched DNS features from the basic extracted features in Stage 1.

Based on the review of existing literature and studies, we considered two significant
characteristics of DNS-based botnet in its connection phase. Firstly, DNS-based botnet
generates a massive number of domain names. Secondly, the generated domain names
tend to be random and different from the human-generated ones (Alieyan et al., 2021).

The calculation of randomness of domain names could help to distinguish anomalous
traffic and benign traffic. In information theory, the randomness could be calculated by the
Shannon entropy equation, first introduced by Claude E. Shannon in his paper titled “A
Mathematical Theory of Communication” (1948). Shannon entropy allows estimating “the
average minimum number of bits needed to encode a string of symbols based on the
alphabet size and the frequency of the symbols.”Moreover, Shannon entropy is also being

Table 5 DNS record types.

DNS record
type

Description Function and implication

A IPv4 address
record

A 32-bit IP Host address.
A connection to this IP address by the user will follow

AAAA IPv6 address
record

A 128-bit IP Host address.
A connection to this IPv6 address of the user will follow

CNAME Canonical name
record

Mapping domain name to another domain DNS query with the value of the CNAME from the response as the
QNAME of the query might follow

MX Mail exchange
record

Maps a domain name to mail server agent.
A mail transfer to this server might follow

NS Name server
record

Delegates a DNS zone to name servers.
Implication: DNS queries to these servers might follow.

PTR Pointer record Used in reverse DNS lookups

SIG Signature Signature record

SOA Start of authority
record

Provide valuable information about the domain, including the primary name server, administrator email, the serial
number and TTL

SRV Service Locator Generalised service location record used for newer protocols instead of creating protocol-specific records such as
MX.
Inference: A connection to the A record of the hostname with the specific parameters might follow. Compared to
the A record alone, an observer of a query for an SRV record knows precisely what type of connection to the IP
address of the hostname might follow.

TXT Text record Used to carry text data. Text data could be readable, or machine-generated text.

Al-mashhadi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.640 16/34

http://dx.doi.org/10.7717/peerj-cs.640
https://peerj.com/computer-science/

applied in information and network analysis. Therefore, the proposed approach employs
the Shannon entropy algorithm to calculate the resolved domain name’s entropy, using
Eq. (1).

H xð Þ ¼
Xn
i¼1

p xið ÞI Xið Þ ¼
Xn
i¼1

p xið Þ log 1
p xið Þ ¼ �

Xn
i¼1

p xið Þ log p xið Þ (1)

Since bots repeatedly tried to connect with the botmaster’s C&C server, the number of
domain resolution requests will be high. The proposed methodology for traffic analysis is
to group the requested domain according to source IP. Since the bot or botnet tries to
connect with the botmaster in different predefined periods, the average entropy for the
source IP is essential to distinguish between benign and malicious traffic. Furthermore, we
use the same time value, 5 s, for flow analysis based on a previous study (Alieyan, 2018).
Equation (2) calculates the average domain entropy feature (F1).

H xð Þ ¼
PN

i¼1 H xið Þ
N

(2)

where N denotes the number of domain requests in a predefined time (5 s), and H xð Þ is
as mentioned in Eq. (1). Moreover, as previously mentioned, a botnet in the rallying phase
repeatedly tries to connect with its C&C server. Since the C&C server is usually configured
with a single or only a few domains from the pool of vast numbers of bot-generated
domain names, many failed domain name resolution requests occur before the bot
successfully connects with the registered C&C domains. Such actions will increase the
NXDOMAIN response ratio from the infected network or host, indicating anomalous
behaviour (Wang et al., 2017). Furthermore, regular users usually have different domain
request time patterns, whereas the infected host endeavour to connect with their C&C
server according to a pre-programmed schema. Consequently, the time for domain request
entropy in legitimate hosts diverges from the infected ones (Qi et al., 2018).

Furthermore, the values of legitimate DNS lookup type requests and DNS record types,
as stated in Table 5, will differ from the values in an infected host since that user’s
behaviour in requesting domain resolution is different from the bot-generated request
(Hikaru et al., 2018). Likewise, the attackers exploit fast-flux by combining round-robin IP
addresses with a short TTL for the DNS Resource Record (RR) (William & Danford, 2008),
leading to different TTL settings for the malicious domains.

Based on the characteristics mentioned above, the equations for the calculation of the
enriched feature are as follows:

R is the ratio of the successful DNS response within a predefined time, which is also the
definition of the second feature (F2):

R ¼ Rs

Rn
(3)

where Rs represents the number of successful DNS responses, and Rn represents the
number of DNS requests.

Al-mashhadi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.640 17/34

http://dx.doi.org/10.7717/peerj-cs.640
https://peerj.com/computer-science/

H(q) is the randomness number of DNS queries rate within a predefined time interval. It
is calculated according to the Shannon entropy stated in Eq. (1). Thus, the definition of the
third feature (F3) is calculated by:

H qð Þ ¼ �
XN
x¼1

qxPN
x¼1 qx

log
qxPN
x¼1 qx

 !
(4)

where qx represents the number of DNS queries in an x time interval, and N refers to the
total number of DNS queries type (Qi et al., 2018).

DDt is the number of resolved DNS record types within a predefined time interval. The
definition of the fourth feature (F4) is as follows:

DDt ¼
XN
i¼1

Dið Þ (5)

where Dt represents the predefined time, Di represents the number of the i-th DNS request
type as tabulated in Table 5, and N denotes the total number of DNS requested.

The average of the resolved domain name TTL in a predefined time interval, which is
the definition of the fifth feature (F5), is measured by:

TTLl ¼
PN

i¼1 TTLi
N

(6)

The total number of various values for TTL within a predefined-time (F6).
The total number of different sizes of DNS packets within a predefined-time (F7).
The number of different DNS destinations within a predefined-time (F8).
The total number of unsuccessful (error) DNS response within a predefined-time (F9).
The ratio of successful DNS response in a predefined-time (F10).

Building training dataset step
The objective of this step is to construct a training dataset to train the machine learning
classifiers. The training dataset comprises a set of enriched features computed through
a feature engineering process. As mentioned earlier, the features are calculated based on
5 s running time series of the source IP that resulted in a network traffic flow defined as
unidirectional traffic with certain packet features that represent a flow tuple (Krmicek,
2011). In this study, the features that describe the flow are the source IP, destination IP
(DNS server), and protocol (DNS). Furthermore, the total number of domain requests is
one of the features available in the flow but not in the individual packet (Haddadi &
Zincir-Heywood, 2015). The use of traffic flow helps to reduce both the training time and
the number of process instances. Even though the per-packet analysis is accurate, it
requires extensive resources and cannot efficiently deal with encrypted network traffic
(Zhao et al., 2013).

Al-mashhadi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.640 18/34

http://dx.doi.org/10.7717/peerj-cs.640
https://peerj.com/computer-science/

Additionally, to avoid being misled while building the rule model, the rule extraction
process will remove the source IP address feature used for flow creation since the source IP
address in the actual traffic might differ from data collection traffic.

Furthermore, the dataset is presented as a grouped aggregated flow. For a unified
grouped aggregated flow time during the calculation of the computed features, the
predefined time used for each calculated group is 5 s based on previous studies (Alieyan,
2018; Qi et al., 2018). Additionally, by aggregating the flow in a fixed interval of 5 s, the
dataset size and the processing time are reduced. Table 6 tabulates the extracted set of
basic features with enriched features.

Stage 3: hybrid rule-based detection model
This stage presents a hybrid rule-based detection model to detect botnet attacks in DNS
traffic. The hybrid-rule model is built using the PART and JRip machine learning
algorithms. To properly assess the proposed approach’s performance, a ten-fold cross-
validation method (Kohavi, 1995) is utilised to select the best model for rule detection.

The PART classification algorithm is a Java-based variation of the C4.5 algorithm
(Salzberg, 1994; Thankachan, 2013) and different SVM kernels (Hsu, Chang & Lin, 2003;
Chang & Lin, 2011). C4.5 is a popular decision tree supervised classifier widely used in data
mining. The C4.5 decision tree is generated based on the provided classes and feature
sets (Alazab et al., 2011).

JRip (Repeated Incremental Pruning) is the Weka variant of Repeated Incremental
Pruning to Produce Error Reduction (RIPPER), suggested by William W. Cohen as an
enhanced version of IREP (Hall et al., 2009). JRip offers a range of capabilities that could
improve detection accuracy, such as a technique to revise and replace generated rules,
deal with noisy data, and fix over-the-counter issues. In addition, JRip optimises the rule
set by the re-learning stage, leading to higher accuracy as the rules are regularly revised. Its
classifier performs well even for imbalanced class distribution (Hall & Joshi, 2005; Qazi &
Raza, 2012; Napierala & Stefanowski, 2016).

Table 6 The resulted subset of features in the training dataset.

F# Feature Name Description

1 Avg_domain_ent Average requested domains entropy at a predefined-time.

2 No_suc_resp The total number of successful responses in predefined-time.

3 rand_query The randomness of the number of DNS queries rate in the predefined-time interval.

4 number_of _record type The number of records requested in a predefined-time.

5 Avg_TTL Average Time to Live in a predefined-time, TTL defines how long the response record for a domain should be cached
in the DNS server or the host.

6 No_Distinct_TTL The total number of different values for TTL values in the predefined-time.

7 No_Distinct_Packet The total number of different sizes of packets in predefined-time.

8 No_Distinct_Destination The total number of different destinations in predefined-time.

9 No_error_resp The total number of unsuccessful (error) responses in predefined-time.

10 Ratio_suc_resp The ratio of successful response in a predefined-time.

Al-mashhadi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.640 19/34

http://dx.doi.org/10.7717/peerj-cs.640
https://peerj.com/computer-science/

In this study, we selected PART and JRip machine learning classifiers for several
reasons. Firstly, JRip and PART are sets of non-complex rules and could be integrated
easily with any IDS system. Secondly, even though other classification algorithms are
available, JRip and PART classifiers are used by many researchers in their recent work
(Faizal et al., 2018; Kumar, Viinikainen & Hamalainen, 2018; Adewole et al., 2019).
Thirdly, the proposed approach assumed that the hybridisation of the two classifiers would
improve the output result; thereby, the final detection model rule is a hybrid of extracted
rules from both PART and JRip output. Both JRip and PART classifiers require a
training dataset. The extracted model for each classifier output, including the hybrid set of
rules, is evaluated using 10-fold cross-validation. Figure 12 illustrates the process of the
proposed hybrid rule-based model for the detection of DNS-based botnets.

Implementation environment
The software used includes Microsoft’s Windows 10 (64-bit) operating system, WEKA
version 3.8, Microolap TCPDUMP for Windows� 4.9.2, Wireshark 3.02, and Python 2.8.

We also utilised theWEKA tool to extract the detection rules using the built-in JRip and
PART algorithms. It is a set of machine learning algorithms for different data-mining
tasks, such as data pre-processing, classification, and clustering.

In addition, Microolap TCPDUMP for Windows�, a network traffic sniffer and
analyser software, was used to extract DNS traffic from the benchmark dataset. Wireshark
is a network protocol analyser tool used for detailed analysis and basic feature extraction of
DNS packets. We used a python script in conjunction with Wireshark to calculate the

Figure 12 Process of a proposed hybrid rule-based model.
Full-size DOI: 10.7717/peerj-cs.640/fig-12

Al-mashhadi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.640 20/34

http://dx.doi.org/10.7717/peerj-cs.640/fig-12
http://dx.doi.org/10.7717/peerj-cs.640
https://peerj.com/computer-science/

new enriched features. The results of feature extraction, tabulated in Table 6, were stored in
a comma-separated values (CSV) file. Furthermore, having the final training file in CSV
file format ensures seamless compatibility since it is fully supported and readable by
WEKA.

Finally, The hardware used in this study consists of a CPU with an Intel� CoreTM

i5-8250u processor, 8 GB of memory, and a 256 GB Solid State Drive (SSD) hard disk.

Benchmark datasets
The experiment of this research is validated using two benchmark datasets: Network
Information Management and Security Group (NIMS) dataset (Haddadi & Zincir-
Heywood, 2016) and CTU13 dataset (Garcia et al., 2014).

The NIMS dataset by the Network Information Management and Security Group of
Dalhousie University in Halifax, Nova Scotia, Canada, contains four distinct traces: a
normal traffic trace based on Alexa domain ranks and three different traces of malicious
traffic from Citadel, Zeus, and Conficker botnets. Table 7 lists the number of domain
names inside the dataset for each trace.

The experiment in this study utilised the regular DNS traffic data within the CTU13
dataset (“Index of/publicDatasets/CTU-Normal-4-only-DNS,” 2016; https://mcfp.felk.
cvut.cz/publicDatasets/CTU-Normal-4-only-DNS/). The CTU13 dataset contains 5,966
normal DNS traffic packets. The dataset comprises traffic collected from music streaming
service 20songstogo.com, Gmail, Twitter, and regular web surfing via the Google Chrome
browser.

Recently, many researchers used the CTU13 dataset in their work (Haddadi, Phan &
Zincir-Heywood, 2016; Chen et al., 2017; Pektaş & Acarman, 2019).

The non-malware traffic used in this experiment is from the normal part of CTU13,
which is CTU4 and CTU6 (“Malware Capture Facility Project: Normal Captures—
Stratosphere IPS”; https://www.stratosphereips.org/datasets-normal). The normal traffic
for CTU4 is from a home computer network and includes only regular DNS traffic for
privacy reasons. Similar to CTU4, the CTU6 comprises regular DNS traffic generated from
a Linux-based notebook in a university network.

Finally, for our static analysis purpose, two enriched datasets were extracted using
feature engineering. The first dataset is a mixed dataset that combines both NIMS and
CTU13 (normal traffic) datasets, and the second dataset is based only on NIMS datasets.

Table 7 NIMS dataset domains count.

Dataset Record count Size (MB)

Alexa (normal traffic) 654 2.2

Citadel 1,331 9

Zeus 707 11

Conficker 98,606 1,800

Al-mashhadi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.640 21/34

https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-4-only-DNS/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-4-only-DNS/
http://20songstogo.com
https://www.stratosphereips.org/datasets-normal
http://dx.doi.org/10.7717/peerj-cs.640
https://peerj.com/computer-science/

The combination of normal traffic is to reduce overfitting resulted from an imbalance class.
Figure 13 shows a sample snapshot of training dataset instances.

It can be noticed that the datasets used for evaluating our proposed approach were from
2014 and 2016. However, using these datasets will not impact the presented result for the
following reasons: (i) in our approach, we analysed botnet’s DNS communication patterns,
which are totally different from human DNS communication. There is no newer dataset
publicly available that fulfils our requirement (DNS-based botnet traffic), and (ii) these
datasets were also used by other researchers in their works (as recent as 2020) that we are
comparing with. Therefore, we also need to benchmark our proposed work using the same
dataset for fair evaluation and comparison.

Furthermore, our proposed work relies on the core DNS features that will always exist in
the DNS-based botnet lifecycle, which remains the same as long as it uses the conventional
DNS protocol. Therefore, the use of these datasets should not render our proposed
approach ineffective in detecting novel or future DNS-based botnets.

Design of the proposed technique
The design of the proposed technique, illustrated in Fig. 9, consists of three stages. This
section describes the design of each stage.

Figure 13 Snapshot of training dataset instances. Full-size DOI: 10.7717/peerj-cs.640/fig-13

Al-mashhadi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.640 22/34

http://dx.doi.org/10.7717/peerj-cs.640/fig-13
http://dx.doi.org/10.7717/peerj-cs.640
https://peerj.com/computer-science/

Design of pre-processing stage
In this stage, first, the TCPDUMP tool selected and filtered DNS traffic from the network
traffic, which reduced network traffic by 68%. This process will reduce the time and
resources needed to analyse the remaining traffic. Then, several Wireshark DNS packet
filters are used to extract several basic features from the DNS traffic.

Table 8 shows the extracted features and the corresponding Wireshark filters used. The
basic extracted DNS features are stored in a CSV file as input for the next stage.

Design of DNS traffic analysis stage
In this stage, the enriched features are calculated based on the basic extracted DNS features
from the previous stage. The datasets had been prepared and normalised to calculate the
features as tabulated in Table 6.

Table 8 List of extracted features using Wireshark filters.

Feature
name

Feature description Type of Wireshark filter

Time The time a packet is captured UTC date, as YYYY-MM-DD and
time

Source IP
address

The IP address for sender machine DNS and ip.src

IP-TTL
(Time To
Live)

The time interval for cache before expiring for IP address ip.ttl

Query ID A 16-bit unique identifier assigned by the program that generates any query; allows the server to
associate the answer with the question (query).

DNS.id

QR (Query/
Response)

A one-bit field that specifies whether this message is a query (0), or a response (1). dns.flags.response == 0 (query) dns.
flags.response == 1 (response)

RCODE This 4-bit field is set as part of responses with these values:

1. No error

2. Format error

3. Server failure

4. Name Error Not Implemented

dns.flags.rcode

QNAME A domain name represented as sequence of labels, where each label consists of a length octet
followed by that number of octets

dns.qry.name

TTL
(DNS
Response)

Time to Live (TTL) of the Resource Record (RR); a 32-bit integer in seconds; primarily used by
resolvers when caching RRs; describes how long to cache RR before discarded.

dns.resp.ttl

QTYPE A two-octet code which specifies type of query; The values include all codes valid for a TYPE
field, together with more general codes which can match more than one type of RR; used in
resource records to distinguish types such as A, AAAA, NS, CNAME.

dns.qry.type
dns.qry.type == 1
A – IPv4 for Host Address
dns.aaaa
AAAA – IPv6 Address
dns.cname
Canonical Name Record type
dns.ns
Name Server Record type
dns.mx.mail_exchange
Mail Exchange Record type

Al-mashhadi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.640 23/34

http://dx.doi.org/10.7717/peerj-cs.640
https://peerj.com/computer-science/

The first feature is the average randomness in queried domain names (F1), calculated
using Shannon entropy, and as described in Section “Materials & Methods”, the queried
domains are aggregated according to the source IP address (src_IP) every 5 s. Then, a
python script is used to compute the enriched features, including the average entropy
(avg_domain_ent) as per Eq. (2).

To calculate the second enriched feature (F2), several Wireshark filters are used in the
process. The successful response (dns.sec.resp) is extracted using (dns.flags.rcode == 0)
filter; the number of DNS requests (dns.req.num) is extracted using the (dns.flags.response
== 0) filter; and both (dns.sec.resp) and (dns.req.num) are aggregated for each 5-second
period using (src_IP). The ratio of successful response is calculated using Eq. (3) where the
aggregated successful response is divided by the aggregated number of requests.

For the third enriched feature (F3), the DNS query packet is extracted using (dns.flags.
response == 0) filter every 5 s. The entropy of the DNS query is calculated using Eq. (4).
For the fourth enriched feature (F4), the resolved DNS records number is extracted using
(dns.qry) filter. The result is calculated every 5 s using Eq. (5).

For the fifth feature (F5), the value of TTL response is extracted using (dns.resp.ttl)
filter; then, the average response TTL is calculated using Eq. (6).

The rest of the features from F6 to F10 are calculated by following the same methods of
using Wireshark filters, as shown in Table 8. The calculated DNS features are prepared as
input for the next stage and stored in a CSV file. It is then considered as a labelled training
dataset with only new DNS features. Table 9 shows the final number of dataset records
after performing the flow aggregation.

Design of rule-based detection stage
In this stage, the Weka tool is used to extract botnet-based DNS detection ruleset using
both PART and JRip classifiers. Initially, the enriched training dataset is the input for both
PART and JRip classifiers. Then, to properly assess the predictive performance and
overcome any bias in this process, the k-fold cross-validation training technique is used
with the value of k set to 10 to build and test the model (Luo et al., 2017). Figure 14
illustrates the rules extraction process in this stage. Appendices A1, A2 and A3, provide in
details the extracted rules for each used classifier.

RESULTS
The three extracted models are evaluated using two different benchmark datasets (NIMS
and CTU13) to measure the detection accuracy and false-positive rate, as shown in Eqs.
(7)–(10). These evaluation metrics are computed by the parameters of the confusion

Table 9 Total number of dataset instances.

Dataset Instances

Attack Normal

NIMS-based dataset 44,577 100

Mixed dataset 44,577 625

Al-mashhadi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.640 24/34

http://dx.doi.org/10.7717/peerj-cs.640/supp-1
http://dx.doi.org/10.7717/peerj-cs.640/supp-2
http://dx.doi.org/10.7717/peerj-cs.640/supp-3
http://dx.doi.org/10.7717/peerj-cs.640
https://peerj.com/computer-science/

matrix, as stated in Fig. 15. Many researchers adopted these evaluation metrics in their
work (Soltanaghaei & Kharrazi, 2015; Kwon et al., 2016; Alieyan, 2018; Shi & Sun, 2020).

Detection accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

(7)

False Positives rate ¼ FP
FP þ TN

(8)

Precision ¼ TP
TP þ FN

(9)

F1 score ¼ 2TP
2TP þ FP þ FNð Þ (10)

Precision (proportion of correctly reported anomalies) and Recall (share of correctly
reported anomalies compared to the total number of anomalies), Recall is another option

Figure 15 Evaluation metrics. Full-size DOI: 10.7717/peerj-cs.640/fig-15

Figure 14 Rules extraction process. Full-size DOI: 10.7717/peerj-cs.640/fig-14

Al-mashhadi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.640 25/34

http://dx.doi.org/10.7717/peerj-cs.640/fig-15
http://dx.doi.org/10.7717/peerj-cs.640/fig-14
http://dx.doi.org/10.7717/peerj-cs.640
https://peerj.com/computer-science/

which calculated implicitly using the F-measure. F-measure (F1) is a function that
represents the relationship between Precision and Recall; a higher F-measure indicates a
more accurate classification output.

Furthermore, to select the best detection model for the DNS-based botnet detection
approach, the extracted rules for each classifier are separately evaluated using the cross-
validation technique. The model with the highest detection accuracy was selected. The
cross-validation experiments were conducted using a mixed dataset and (NIMS) dataset.
Table 10 presents the result of the extracted rules and models and model complexity for
each dataset.

Model complexity can be measured using various criteria, including memory
consumption, time, and the number of the detection rules extracted using learning
algorithms. Two complexity criteria are used in this work: (i) the estimated training time,
which depends on the research platform, and (ii) the complexity of the model based on the
number of extracted detection rules.

We can notice from Table 10 that the maximum time required to build the final model
is 6.03 s. This short time results from a flow-based analysis that reduced the traffic to DNS
traffic only where the packets are aggregated every 5 s.

Furthermore, the results for the mixed dataset show that the PART classifier extracted
rule model has a 99.95% accuracy rate and a 3.84% false-positive rate, which outperformed
the JRip classifier. Moreover, the proposed hybrid model achieved even better detection
accuracy at 99.96% with only a 1.6% FP rate, which surpassed the other extracted models.
In contrast, the F1 score and precision were the same in value.

As for the NIMS-based dataset results, the PART-extracted model also outperformed
the JRip-extracted model’s accuracy rate. Similarly, the proposed hybrid model has a
99.97% accuracy rate and a 5% FP rate, which is better than PART and JRip extracted
models.

The FP rate for the NIMS-based dataset was higher compared to the result of the mixed
dataset. As mentioned in the previous section, the NIMS-based dataset contains fewer
records of normal traffic instances, leading to a biased detection rule. Consequently, the
result shows a higher FP rate than the mixed dataset, which contains a higher number of
normal traffic instances. Hence, having a higher percentage of normal instances in a

Table 10 The results of the proposed approach.

Datsaets Algorithms Accuracy% Precision F1 score FP rate% Time Complexity (sec) Rules complexity

MIXED JRip 99.87 99.94 99.931 4.34 5.23 10

PART 99.9 99.95 99.949 3.84 0.8 22

Hybrid (JRip+PART) 99.96 99.97 99.977 1.6 6.03 32

NIMS JRip 99.94 99.97 99.967 13 1.34 5

PART 99.95 99.97 99.974 11 0.66 10

Hybrid (JRip+PART) 99.97 99.98 99.988 5 2 32

Al-mashhadi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.640 26/34

http://dx.doi.org/10.7717/peerj-cs.640
https://peerj.com/computer-science/

training dataset is imperative for machine learning classifier training to develop more
accurate extracted detection rules with a low FP rate.

Furthermore, the high detection accuracy rate is due to the evaluation of the detection
model using a 10-fold cross-validation testing method where the testing data is the same as
in trained data. The detection accuracy rate could be reduced if the detection model
evaluated using a real-world or supplied dataset. In addition, the data pre-processing,
which is the first stage of the proposed approach, has contributed to the enhancing of the
detection accuracy

Since high accuracy and low FP rates are essential for botnet detection, the evaluation
results for both datasets guarantee the suitability of the proposed hybrid rule model to
detect DNS-based botnet with the best accuracy and FP rate of the mixed dataset.

Result comparison
Haddadi et al. (2014) proposed an approach for botnet detection and tested its
performance against NIMS dataset (Haddadi et al., 2014). Later research conducted by the
same researchers (Haddadi et al., 2014) used two methods during the pre-processing stage:
(1) without using hypertext transfer protocol (HTTP) filters; and (2) using HTTP filters.
The first method yielded an 87.5% botnet detection accuracy, while the second method
obtained 91.5% accuracy. However, since our proposed approach was not using HTTP
filters, we only compared our results with the first test case (Haddadi et al., 2014). Table 11
shows the comparison results.

Like our methodology, Deepbot (Shi & Sun, 2020) also used a hybrid model. It utilised
RNN and LSTM algorithms to extract hybrid models for botnet traffic classification.
However, despite extracting only 11 DNS features compared to 35 network traffic features
by Shi & Sun (2020), our study obtained a better result (99.96% vs. 99.36%) with a higher
F1 score of 99.97% vs. 98.4%. Table 12 shows the comparison results.

The proposed new enriched DNS features computed with the aid of information theory
contributed to a higher accuracy rate. However, as discussed earlier, the low number of

Table 11 Comparison of proposed approach with Haddadi el al. (2014).

Dataset Proposed approach Haddadi et al. (2014)

Accuracy FP Rate Accuracy FP Rate

NIMS 99.97% 5% 87.5% 13.25%

MIXED 99.96% 1.6% – –

Table 12 Comparison of proposed approach with deepbot (Shi & Sun, 2020).

Proposed approach Deepbot (Shi & Sun, 2020)

Accuracy F1 Accuracy F1

99.96% 99.97% 99.36% 98.4%

Al-mashhadi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.640 27/34

http://dx.doi.org/10.7717/peerj-cs.640
https://peerj.com/computer-science/

normal instances led to an FP rate of 5% for the NIMS dataset. Thus, to reduce the FP rate,
the study used a mixed dataset that comprised a higher percentage of normal instances and
successfully achieved a lower FP rate (1.6%).

CONCLUSION
Nowadays, botnets are more diverse, resilient, widespread, and utilised in many cyber
attacks. Therefore, there is a pressing need for a better botnet detection method. This study
presents a hybrid rule-based approach for detecting DNS-based botnet. New features are
proposed and used to form new rules. A total of 32 rules extracted using PART and JRip
machine learning algorithms are used to detect DNS-based botnets in the datasets. The
performance of the proposed approach was evaluated using two benchmark datasets
(NIMS and CTU13). The experimental results show that the detection accuracy of the
proposed approach achieved 99.97% and 99.96% for NIMS and mixed datasets,
respectively. Meanwhile, the FP rates are 5% and 1.6% for NIMS and mixed datasets,
respectively. The comparison results show that our proposed approach outperformed
other existing approaches.

Finally, this research opens avenues for future research in the following aspects: (i)
adapting the proposed rules to detect blockchain-based DNS botnets, (ii) hybridising the
resulted rules with other approaches, such as the signature-based approach, could improve
DNS-based botnet detection accuracy further, (iii) investigating and study the impact of
encrypted DNS traffic, such as DoH (DNS-over-HTTPS) and DoT (DNS-over-TLS), on
the proposed DNS-based botnet detection approach, and (iv) scaling behaviour analysis to
better understand the applicability of the proposed approach in the real world.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Saif Al-mashhadi conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables, and
approved the final draft.

� Mohammed Anbar analyzed the data, authored or reviewed drafts of the paper, and
approved the final draft.

� Iznan Hasbullah performed the experiments, analyzed the data, authored or reviewed
drafts of the paper, and approved the final draft.

� Taief Alaa Alamiedy analyzed the data, prepared figures and/or tables, and approved the
final draft.

Al-mashhadi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.640 28/34

http://dx.doi.org/10.7717/peerj-cs.640
https://peerj.com/computer-science/

Data Availability
The following information was supplied regarding data availability:

Python script and the dataset used after cleaning are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.640#supplemental-information.

REFERENCES
Abu Rajab M, Zarfoss J, Monrose F, Terzis A. 2006. A multifaceted approach to understanding

the botnet phenomenon. In: Proceedings of the 6th ACM SIGCOMM on Internet measurement -
IMC ’06.. 41.

Acarali D, Rajarajan M, Komninos N, Herwono I. 2016. Survey of approaches and features for
the identification of HTTP-based botnet traffic. Journal of Network and Computer Applications
76:1–15 DOI 10.1016/j.jnca.2016.10.007.

Adewole KS, Akintola AG, Salihu SA, Faruk N, Jimoh RG. 2019. Hybrid Rule-Based Model for
Phishing URLs Detection. In: Miraz M, Excell P, Ware A, Soomro S, Ali M, eds. Emerging
Technologies in Computing. iCETiC 2019. Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering. Vol. 285. Basel, Switzerland: Springer
DOI 10.1007/978-3-030-23943-5_9.

Al-Mashhadi S, Anbar M, Karuppayah S, Al-Ani AK. 2019. A review of botnet detection
approaches based on DNS traffic analysis. In: Piuri V, Balas VE, Borah S, Syed Ahmad SS, eds.
Intelligent and Interactive Computing. Lecture Notes in Networks and Systems. Singapore:
Springer Singapore, 305–321.

Alazab M, Venkatraman S, Watters P, Alazab M, Stranieri A, Ong K-L, Christen P, Kennedy P.
2011. Zero-day malware detection based on supervised learning algorithms of API call signatures.
Victoria: Australian Computer Society.

Alieyan KIA. 2018. Rule-based approach for detecting botnet based on domain name system. George
Town: Universiti Sains Malaysia.

Alieyan K, Almomani A, Anbar M, AlauthmanM, Abdullah R, Gupta BB. 2021.DNS rule-based
schema to botnet detection. Enterprise Information Systems 15(4):545–564
DOI 10.1080/17517575.2019.1644673.

Alieyan K, Kadhum MM, Anbar M, Rehman SU, Alajmi NKA. 2016. An overview of DDoS
attacks based on DNS. In: 2016 International Conference on Information and Communication
Technology Convergence, ICTC 2016. 276–280.

Almutairi S, Mahfoudh S, Almutairi S, Alowibdi JS. 2020.Hybrid botnet detection based on host
and network analysis. Journal of Computer Networks and Communications 2020(1):1–16
DOI 10.1155/2020/9024726.

Alomari E, Manickam S, Gupta BB, Anbar M, Saad RMA, Alsaleem S. 2016. A survey of botnet-
based DDoS flooding attacks of application layer. In: Gupta B, Agrawal DP, Yamaguchi S, eds.
Handbook of Research on Modern Cryptographic Solutions for Computer and Cyber Security.
Pennsylvania: IGI Global, 52–79.

Anbar M, Abdullah R, Hasbullah IH, Chong YW, Elejla OE. 2016. Comparative performance
analysis of classification algorithms for intrusion detection system. In: 2016 14th Annual
Conference on Privacy, Security and Trust, PST 2016. Piscataway: IEEE, 282–288.

Al-mashhadi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.640 29/34

http://dx.doi.org/10.7717/peerj-cs.640#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.640#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.640#supplemental-information
http://dx.doi.org/10.1016/j.jnca.2016.10.007
http://dx.doi.org/10.1007/978-3-030-23943-5_9
http://dx.doi.org/10.1080/17517575.2019.1644673
http://dx.doi.org/10.1155/2020/9024726
http://dx.doi.org/10.7717/peerj-cs.640
https://peerj.com/computer-science/

Anirudh M, Arul Thileeban S, Nallathambi DJ. 2017. Use of honeypots for mitigating DoS
attacks targeted on IoT networks. In: International Conference on Computer, Communication,
and Signal Processing: Special Focus on IoT, ICCCSP 2017. 8–11.

Antonakakis M, Perdisci R. 2012. From throw-away traffic to bots: detecting the rise of DGA-
based malware. In: Proceedings of the 21st USENIX Security Symposium. Vol. 16.

Antonakakis M, Perdisci R, Dagon D, Lee W, Feamster N. 2010. Building a dynamic reputation
system for DNS. In: USENIX Security’10: Proceedings of the 19th USENIX conference on Security.
1–17.

Antonakakis M, Perdisci R, Lee W, Ii NV, Dagon D. 2011. Detecting malware domains at the
upper DNS hierarchy. USENIX Security Symposium 11:1–16 DOI 10.5555/2028067.2028094.

Asadi M, Jabraeil Jamali MA, Parsa S, Majidnezhad V. 2020. Detecting botnet by using particle
swarm optimization algorithm based on voting system. Future Generation Computer Systems
107(2):95–111 DOI 10.1016/j.future.2020.01.055.

Bethencourt J, Franklin J, Vernon M. 2005. Mapping internet sensors with probe response
attacks. In: 14th USENIX Security Symposium. 193–208.

Bilge L, Kirda E, Kruegel C, Balduzzi M, Antipolis S. 2011. EXPOSURE : finding malicious
domains using passive DNS analysis. ACM Transactions on Information and System Security
16(4):1–17 DOI 10.1145/2584679.

Cantón D. 2015. Botnet detection through DNS-based approaches | CERTSI. Available at https://
www.certsi.es/en/blog/botnet-detection-dns (accessed 24 May 2018).

Chang C-C, Lin C-J. 2011. LIBSVM. ACM Transactions on Intelligent Systems and Technology
2(3):1–27 DOI 10.1145/1961189.1961199.

Chen R, Niu W, Zhang X, Zhuo Z, Lv F. 2017. An effective conversation-based botnet detection
method. Mathematical Problems in Engineering 2017(5):1–10 DOI 10.1155/2017/1964165.

Da Luz PM. 2014. Botnet Detection Using Passive DNS. Radboud University: Nijmegen,
The Netherlands. Available at https://www.ru.nl/publish/pages/769526/z-thesis_pedroluz.pdf.

Dornseif M, Holz T, Klein CN. 2004. Nosebreak-attacking honeynets. In: Proceedings from the
Fifth Annual IEEE SMC Information Assurance Workshop. Piscataway: IEEE, 123–129
DOI 10.1109/IAW.2004.1437807.

Faizal MA, Yassin W, Nur Hidayah MS, Selamat SR, Abdullah RS. 2018. An analysis of system
calls using J48 and JRip for malware detection. Journal of Theoretical and Applied Information
Technology 96:4294–4305.

Freiling FC, Holz T, Wicherski G. 2005. Botnet tracking: exploring a root-cause methodology to
prevent distributed denial-of-service attacks. Lecture Notes in Computer Science 3679:319–335
DOI 10.1007/11555827_19.

Gadelrab MS, Elsheikh M, GhoneimMA, Rashwan M. 2018. BotCap: machine learning approach
for botnet detection based on statistical features. International Journal of Communication
Networks and Information Security (IJCNIS) 10:563–579.

Garcia S, Grill M, Stiborek J, Zunino A. 2014. An empirical comparison of botnet detection
methods. Computers and Security 45:100–123 DOI 10.1016/j.cose.2014.05.011.

Gu G, Porras PA, Yegneswaran V, Fong MW, Lee W. 2007. Bothunter: Detecting malware
infection through ids-driven dialog correlation. In: USENIX Security Symposium. Vol. 7. 1–16.

Haddadi F, Morgan J, Filho EG, Zincir-Heywood AN. 2014. Botnet behaviour analysis using IP
flows: with HTTP filters using classifiers. In: 2014 28th International Conference on Advanced
Information Networking and Applications Workshops. Piscataway: IEEE, 7–12.

Al-mashhadi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.640 30/34

http://dx.doi.org/10.5555/2028067.2028094
http://dx.doi.org/10.1016/j.future.2020.01.055
http://dx.doi.org/10.1145/2584679
https://www.certsi.es/en/blog/botnet-detection-dns
https://www.certsi.es/en/blog/botnet-detection-dns
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1155/2017/1964165
https://www.ru.nl/publish/pages/769526/z-thesis_pedroluz.pdf
http://dx.doi.org/10.1109/IAW.2004.1437807
http://dx.doi.org/10.1007/11555827_19
http://dx.doi.org/10.1016/j.cose.2014.05.011
http://dx.doi.org/10.7717/peerj-cs.640
https://peerj.com/computer-science/

Haddadi F, Phan DT, Zincir-Heywood AN. 2016. How to choose from different botnet detection
systems? In: Proceedings of the NOMS, 2016 - 2016 IEEE/IFIP Network Operations and
Management Symposium. 1079–1084.

Haddadi F, Zincir-Heywood AN. 2015.Data confirmation for botnet traffic analysis. Lecture Notes
in Computer Science 8930:329–336 DOI 10.1007/978-3-319-17040-4_21.

Haddadi F, Zincir-Heywood AN. 2016. Benchmarking the effect of flow exporters and protocol
filters on botnet traffic classification. IEEE Systems Journal 10(4):1390–1401
DOI 10.1109/JSYST.2014.2364743.

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. 2009. The WEKA data
mining software: an update. ACM SIGKDD Explorations Newsletter 11(1):10–18
DOI 10.1145/1656274.1656278.

Hall L, Joshi A. 2005. Building accurate classifiers from imbalanced data sets. In: Borne P, ed.
IMACS 2005, Paris. Villeneuve d’Ascq, France: Ecole Centrale de Lille.

Hikaru I, Yong J, Katsuyoshi I, Yoshiaki T. 2018.Detection and blocking of anomaly DNS Traffic
by analyzing achieved NS record history. In: APSIPA Annual Summit and Conference 2018.
Hawaii, Piscataway: IEEE, 1586–1590.

Holz T, Gorecki C, Rieck K, Freiling FC. 2008. Measuring and detecting fast-flux service
networks. In: Proceedings of the Network and Distributed System Security Symposium, NDSS
2008. San Diego, California, USA, 24–31.

Hsu C-W, Chang C-C, Lin C-J. 2003. A practical guide to support vector classification. 1396–1400
Available at http://www.datascienceassn.org/sites/default/files/Practical%20Guide%20to%
20Support%20Vector%20Classification.pdf.

Karim A, Salleh RB, Shiraz M, Shah SAA, Awan I, Anuar NB. 2014. Botnet detection techniques:
review, future trends, and issues. Journal of Zhejiang University SCIENCE C 15(11):943–983
DOI 10.1631/jzus.C1300242.

Khan RU, Zhang X, Kumar R, Sharif A, Golilarz NA, Alazab M. 2019. An adaptive multi-layer
botnet detection technique using machine learning classifiers. Applied Sciences (Switzerland) 9
DOI 10.3390/app9112375.

Khattak S, Ramay NR, Khan KR, Syed AA, Khayam SA. 2014. A taxonomy of botnet behavior,
detection, and defense. IEEE Communications Surveys and Tutorials 16(2):898–924
DOI 10.1109/SURV.2013.091213.00134.

Kheir N, Tran F, Caron P, Deschamps N. 2014. Mentor: positive DNS reputation to skim-off
benign domains in botnet C&C blacklists. In: Cuppens-Boulahia N, Cuppens F, Jajodia S, Abou
El Kalam A, Sans T, eds. ICT Systems Security and Privacy Protection. Berlin: Springer, 1–14.

Kohavi R. 1995. A study of cross-validation and bootstrap for accuracy estimation and model
selection. In: International Joint Conference of Artificial Intelligence.

Koniaris I, Papadimitriou G, Nicopolitidis P. 2013. Analysis and visualization of SSH attacks
using honeypots. IEEE EuroCon 2013:65–72 DOI 10.1109/EUROCON.2013.6624967.

Krmicek V. 2011. Inspecting DNS flow traffic for purposes of botnet detection. GEANT3 JRA2 T4
Internal Deliverable 1:1–9.

Kumar S, Viinikainen A, Hamalainen T. 2018. Evaluation of ensemble machine learning methods
in mobile threat detection. In: 2017 12th International Conference for Internet Technology and
Secured Transactions, ICITST 2017. 261–268.

Kwon J, Lee J, Lee H, Perrig A. 2016. PsyBoG: a scalable botnet detection method for large-scale
DNS traffic. Computer Networks 97(1):48–73 DOI 10.1016/j.comnet.2015.12.008.

Al-mashhadi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.640 31/34

http://dx.doi.org/10.1007/978-3-319-17040-4_21
http://dx.doi.org/10.1109/JSYST.2014.2364743
http://dx.doi.org/10.1145/1656274.1656278
http://www.datascienceassn.org/sites/default/files/Practical%20Guide%20to%20Support%20Vector%20Classification.pdf
http://www.datascienceassn.org/sites/default/files/Practical%20Guide%20to%20Support%20Vector%20Classification.pdf
http://dx.doi.org/10.1631/jzus.C1300242
http://dx.doi.org/10.3390/app9112375
http://dx.doi.org/10.1109/SURV.2013.091213.00134
http://dx.doi.org/10.1109/EUROCON.2013.6624967
http://dx.doi.org/10.1016/j.comnet.2015.12.008
http://dx.doi.org/10.7717/peerj-cs.640
https://peerj.com/computer-science/

Lallie HS, Shepherd LA, Nurse JRC, Erola A, Epiphaniou G, Maple C, Bellekens X. 2020. Cyber
security in the age of COVID-19: a timeline and analysis of cyber-crime and cyber-attacks
during the pandemic. arXiv DOI 10.1016/j.cose.2021.102248.

Li Y, Xiong K, Chin T, Hu C. 2019. Amachine learning framework for domain generation algorithm
(DGA)-based malware detection. IEEE Access 7:32765–32782 DOI 10.1109/access.2019.2891588.

Liu J, Xiao Y, Ghaboosi K, Deng H, Zhang J. 2009. Botnet: classification, attacks, detection,
tracing, and preventive measures. EURASIP Journal on Wireless Communications and
Networking 2009:692654 DOI 10.1155/2009/692654.

Luo X, Wang L, Xu Z, Yang J, Sun M, Wang J. 2017. DGASensor: rast detection for DGA-based
malwares. ACM International Conference Proceeding Series Part F 1280:47–53
DOI 10.1145/3057109.3057112.

Ma X, Zhang J, Li Z, Li J, Tao J, Guan X, Lui JCS, Towsley D. 2015. Accurate DNS query
characteristics estimation via active probing. Journal of Network and Computer Applications
47(4):72–84 DOI 10.1016/j.jnca.2014.09.016.

Manasrah AM, Hasan A, Abouabdalla OA, Ramadass S. 2009. Detecting botnet activities based
on abnormal DNS traffic. International Journal of Computer Science and Information Security
6(1):97–104.

Mockapetris PV. 1987. Domain names - implementation and specification. United States: RFC
Editor.

MonikaWielogorska DO. 2017.DNS analysis for botnet detection. In: Proceedings of the 25th Irish
Conference on Artificial Intelligence and Cognitive Science, CEUR-WS. 1–8.

Morales C. 2018. NETSCOUT arbor confirms 1.7 Tbps DDoS attack; the terabit attack era is upon
us. Available at https://asert.arbornetworks.com/netscout-arbor-confirms-1-7-tbps-ddos-attack-
terabit-attack-era-upon-us/.

Napierala K, Stefanowski J. 2016. Types of minority class examples and their influence on learning
classifiers from imbalanced data. Journal of Intelligent Information Systems 46(3):563–597
DOI 10.1007/s10844-015-0368-1.

Nawrocki M, Wählisch M, Schmidt TC, Keil C, Schönfelder J. 2016. A survey on honeypot
software and data analysis. arXiv preprint arXiv:1608.06249. .

Negash N, Che X. 2015. An overview of modern botnets. Information Security Journal: A Global
Perspective 24(4–6):127–132 DOI 10.1080/19393555.2015.1075629.

Oberheide J, Karir M, Mao ZM. 2007. Characterizing dark DNS behavior. In: Hämmerli B,
Sommer R, eds. Detection of Intrusions and Malware, and Vulnerability Assessment. Vol. 4579.
Berlin: Springer, 140–156.

Nozomi Networks Labs. 2020. OT/IoT security report 2020: Rising IoT botnets and shifting
ransomware escalate enterprise risk. San Francisco: Nozomi Networks.

Passerini E, Paleari R, Martignoni L, Bruschi D. 2008. FluXOR: detecting and monitoring fast-
flux service networks. In: Zamboni D, ed. Detection of Intrusions and Malware, and
Vulnerability Assessment. Vol. 5137. Berlin: Springer, 186–206.

Pektaş A, Acarman T. 2019. Deep learning to detect botnet via network flow summaries. Neural
Computing and Applications 31(11):8021–8033 DOI 10.1007/s00521-018-3595-x.

Perdisci R, Corona I, Giacinto G. 2012. Early detection of malicious flux networks via large-scale
passive DNS traffic analysis. IEEE Transactions on Dependable and Secure Computing 9:714–726
DOI 10.1109/TDSC.2012.35.

Al-mashhadi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.640 32/34

http://dx.doi.org/10.1016/j.cose.2021.102248
http://dx.doi.org/10.1109/access.2019.2891588
http://dx.doi.org/10.1155/2009/692654
http://dx.doi.org/10.1145/3057109.3057112
http://dx.doi.org/10.1016/j.jnca.2014.09.016
https://asert.arbornetworks.com/netscout-arbor-confirms-1-7-tbps-ddos-attack-terabit-attack-era-upon-us/
https://asert.arbornetworks.com/netscout-arbor-confirms-1-7-tbps-ddos-attack-terabit-attack-era-upon-us/
http://dx.doi.org/10.1007/s10844-015-0368-1
http://dx.doi.org/10.1080/19393555.2015.1075629
http://dx.doi.org/10.1007/s00521-018-3595-x
http://dx.doi.org/10.1109/TDSC.2012.35
http://dx.doi.org/10.7717/peerj-cs.640
https://peerj.com/computer-science/

Qazi N, Raza K. 2012. Effect of feature selection, Synthetic Minority Over-sampling (SMOTE) and
under-sampling on class imbalance classification. In: Proceedings - 2012 14th International
Conference on Modelling and Simulation, UKSim 2012. 145–150.

Qi B, Jiang J, Shi Z, Mao R, Wang Q. 2018. BotCensor: detecting DGA-based botnet using two-
stage anomaly detection. In: Proceedings - 17th IEEE International Conference on Trust, Security
and Privacy in Computing and Communications and 12th IEEE International Conference on Big
Data Science and Engineering, Trustcom/BigDataSE 2018. 754–762.

Ramachandran A, Feamster N, Dagon D. 2006. Revealing botnet membership using DNSBL
counter-intelligence. In: Proceedings of the 2nd Conference on Steps to Reducing Unwanted
Traffic on the Internet. 2:8.

Salzberg SL. 1994. C4.5: programs for machine learning by J. Ross Quinlan. Morgan Kaufmann
Publishers, Inc., 1993. Machine Learning 16:235–240 DOI 10.1007/BF00993309.

Shi WC, Sun HM. 2020. DeepBot: a time-based botnet detection with deep learning. Soft
Computing 24(21):16605–16616 DOI 10.1007/s00500-020-04963-z.

Shin S, Xu Z, Gu G. 2012. EFFORT: efficient and effective bot malware detection. In: Proceedings -
IEEE INFOCOM. Piscataway: IEEE, 2846–2850.

Silva SSC, Silva RMP, Pinto RCG, Salles RM. 2013. Botnets: a survey. Computer Networks
57(2):378–403 DOI 10.1016/j.comnet.2012.07.021.

Singh M, Singh M, Kaur S. 2019. Issues and challenges in DNS based botnet detection: A survey.
Computers and Security 86:28–52 DOI 10.1016/j.cose.2019.05.019.

Soltanaghaei E, Kharrazi M. 2015. Detection of fast-flux botnets through DNS traffic analysis.
Scientia Iranica 22:2389–2401.

Stevanovic M, Revsbech K, Pedersen JM, Sharp R, Jensen CD. 2012. A collaborative approach to
botnet protection. In: Quirchmayr G, Basl J, You I, Xu L, Weippl E, eds. Multidisciplinary
Research and Practice for Information Systems. Vol. 7465. Berlin: Springer, 624–638.

Stone-Gross B, Cova M, Gilbert B, Kemmerer R, Kruegel C, Vigna G. 2011. Analysis of a botnet
takeover. IEEE Security and Privacy 9(1):64–72 DOI 10.1109/MSP.2010.144.

Symantec. 2018. Internet security threat report. Available at https://www.symantec.com/content/
dam/symantec/docs/reports/istr-23-executive-summary-en.pdf.

Thankachan TA. 2013. A survey on classification and rule extraction techniques for datamining.
IOSR Journal of Computer Engineering 8(5):75–78 DOI 10.9790/0661-0857578.

Wang P, Sparks S, Zou CC. 2010. An advanced hybrid peer-to-peer botnet. IEEE Transactions on
Dependable and Secure Computing 7:113–127 DOI 10.1109/TDSC.2008.35.

Wang TS, Lin HT, Cheng WT, Chen CY. 2017. DBod: clustering and detecting DGA-based
botnets using DNS traffic analysis. Computers and Security 64(2):1–15
DOI 10.1016/j.cose.2016.10.001.

Weimer F. 2005. Passive DNS replication. Analysis 1–13.

William S, Danford R. 2008. The honeynet project, know your enemy: fast-flux service networks.
Available at https://www.honeynet.org/papers/ff (accessed 21 May 2018).

Xu S, Li S, Meng K, Wu L, Ding M. 2017. An adaptive malicious domain detection mechanism
with DNS traffic. In: Proceedings of the 2017 VI International Conference on Network,
Communication and Computing - ICNCC. 86–91.

Yadav S, Reddy ALN. 2012. Winning with DNS failures: strategies for faster botnet detection. In:
Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering 96 LNICST. 446–459.

Al-mashhadi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.640 33/34

http://dx.doi.org/10.1007/BF00993309
http://dx.doi.org/10.1007/s00500-020-04963-z
http://dx.doi.org/10.1016/j.comnet.2012.07.021
http://dx.doi.org/10.1016/j.cose.2019.05.019
http://dx.doi.org/10.1109/MSP.2010.144
https://www.symantec.com/content/dam/symantec/docs/reports/istr-23-executive-summary-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-23-executive-summary-en.pdf
http://dx.doi.org/10.9790/0661-0857578
http://dx.doi.org/10.1109/TDSC.2008.35
http://dx.doi.org/10.1016/j.cose.2016.10.001
https://www.honeynet.org/papers/ff
http://dx.doi.org/10.7717/peerj-cs.640
https://peerj.com/computer-science/

Yadav S, Reddy AKK, Reddy ALN, Ranjan S. 2010. Detecting algorithmically generated malicious
domain names. In: Proceedings of the 10th Annual Conference on Internet Measurement -
IMC’10. New York: ACM Press, 48.

Zago M, Gil Pérez M, Martínez Pérez G. 2019. Scalable detection of botnets based on DGA:
efficient feature discovery process in machine learning techniques. Soft Computing
24(8):5517–5537 DOI 10.1007/s00500-018-03703-8.

Zdrnja B, Brownlee N, Wessels D. 2007. Passive monitoring of DNS anomalies. In: Hämmerli B,
Sommer R, eds. Detection of Intrusions and Malware, and Vulnerability Assessment. Vol. 4579.
Berlin: Springer, 129–139.

Zeidanloo HR, Zadeh MJ, Shooshtari APV, Safari M, Zamani M. 2010. A taxonomy of Botnet
detection techniques. In: Proceedings - 2010 3rd IEEE International Conference on Computer
Science and Information Technology, ICCSIT 2010. 2:158–162.

Zhao D, Traore I, Sayed B, Lu W, Saad S, Ghorbani A, Garant D. 2013. Botnet detection based
on traffic behavior analysis and flow intervals. Computers and Security 39(3):2–16
DOI 10.1016/j.cose.2013.04.007.

Zhou Y-L, Li Q-S, Miao Q, Yim K. 2013. DGA-based botnet detection using DNS traffic. Journal
of Internet Services and Information 3:116–123.

Al-mashhadi et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.640 34/34

http://dx.doi.org/10.1007/s00500-018-03703-8
http://dx.doi.org/10.1016/j.cose.2013.04.007
http://dx.doi.org/10.7717/peerj-cs.640
https://peerj.com/computer-science/

	Hybrid rule-based botnet detection approach using machine learning for analysing DNS traffic
	Introduction
	Related literature and studies
	Materials & methods
	Results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

