
Submitted 4 February 2021
Accepted 19 June 2021
Published 9 July 2021

Corresponding author
Gangman Yi, gang-
man@mme.dongguk.edu

Academic editor
Alexander Bolshoy

Additional Information and
Declarations can be found on
page 24

DOI 10.7717/peerj-cs.636

Copyright
2021 Dida and Yi

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Empirical evaluation of methods for de
novo genome assembly
Firaol Dida and Gangman Yi
Department of Multimedia Engineering, Dongguk University, Seoul, South Korea

ABSTRACT
Technologies for next-generation sequencing (NGS) have stimulated an exponential
rise in high-throughput sequencing projects and resulted in the development of new
read-assembly algorithms. A drastic reduction in the costs of generating short reads on
the genomes of new organisms is attributable to recent advances in NGS technologies
such as Ion Torrent, Illumina, and PacBio. Genome research has led to the creation
of high-quality reference genomes for several organisms, and de novo assembly is a
key initiative that has facilitated gene discovery and other studies. More powerful
analytical algorithms are needed to work on the increasing amount of sequence data.
We make a thorough comparison of the de novo assembly algorithms to allow new
users to clearly understand the assembly algorithms: overlap-layout-consensus and de-
Bruijn-graph, string-graph based assembly, and hybrid approach. We also address the
computational efficacy of each algorithm’s performance, challenges faced by the assem-
bly tools used, and the impact of repeats. Our results compare the relative performance
of the different assemblers and other related assembly differences with and without the
reference genome. We hope that this analysis will contribute to further the application
of de novo sequences and help the future growth of assembly algorithms.

Subjects Bioinformatics, Computational Biology
Keywords DNA sequences, De novo assembly, De-Bruijn-Graph, Overlap-Layout-Consensus,
String-Graph based assembly

INTRODUCTION
Analyzing DNA sequences has become a critical aspect of basic biological research in a
variety of applied fields, such asmedical diagnosis, biotechnology, forensic biology, virology,
and biological systematics. The identification of diseases like various cancers is possible
via comparisons of stable, mutated DNA sequences (Chmielecki & Meyerson, 2014) and
can be used as a guideline for patient treatment (Pekin et al., 2011). Personalized medical
attention can be provided via a swift approach to DNA sequencing and by recognizing and
listing more organisms (Abate et al., 2013).

De novo assembly (Miller, Koren & Sutton, 2010; Nagarajan & Pop, 2013; Denton et
al., 2014) refers to the sequencing of a novel genome where no reference sequence for
alignment is available. Sequence reads are assembled as contigs, and data coverage quality
of De novo assembly depends on the size and continuity of the contigs (Park, 2017;
Nagarajan & Pop, 2013). Precise genome reconstruction is imperative, as the consistency
and the base accuracy of the assembly will influence the outcomes of all downstream
analyses (Denton et al., 2014). The assembly problem becomes more complicated and

How to cite this article Dida F, Yi G. 2021. Empirical evaluation of methods for de novo genome assembly. PeerJ Comput. Sci. 7:e636
http://doi.org/10.7717/peerj-cs.636

https://peerj.com/computer-science
mailto:gangman@mme.dongguk.edu
mailto:gangman@mme.dongguk.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.636
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.636

computationally intensive (Head et al., 2014) with increasing efforts to sequence and
assemble the genomes of more species, particularly with short, inaccurate sequence reads
and genomic repeats (Liao et al., 2019; El-Metwally, Zakaria & Hamza, 2016). Compared
to conventional approaches, such as Sanger sequencing (Beck, Mullikin & lesb@ mail. nih.
gov NISC Comparative Sequencing Pro-gram Biesecker Leslie G, 2016; Grada & Weinbrecht,
2013), next-generation sequencing(NGS) enables quicker (Khodakov, Wang & Zhang,
2016;Metzker, 2010), more precise characterization of any species (Mestan et al., 2011).

The expeditious sequencing achieved using modern DNA sequencing technology was
instrumental at sequencing a complete DNA sequence or genomes of different types and
species, including humans, organisms, plants, and microbes (Vega, 2019). Obtaining
genome sequences is now much simpler and cheaper than it was during the Human
Genome Project (Collins, Morgan & Patrinos, 2003; Mardis, 2011), thanks to modern
methods that have been developed over the last two decades.

In genome research, de novo genome assembly is a fundamental endeavor that has
led to the creation of high-quality reference genomes (Goffeau et al., 1996; Myers et al.,
2000; Bonfield, Smith & Staden, 1995) for many haploid or highly inbred species and has
facilitated gene discovery, comparative genomics, and other studies (Chin et al., 2016).
Increasingly powerful analysis algorithms are needed to keep pace with the rising availability
of sequence data. This is of particular significance as large genomes are assembled, where
datasets can be up to hundreds of gigabytes in size (Simpson & Durbin, 2012). As de novo
assembly usually allows queries to be performed over the entire set of sequence reads,
vast datasets present a practical problem for assembly software developers and users. At
present, a single computer with a large memory, usually hundreds of gigabytes (Li et al.,
2010; Gnerre et al., 2011) or a large distributed cluster of connected computers (Simpson
et al., 2009; Boisvert, Laviolette & Corbeil, 2010) is required for an assembler (Simpson &
Durbin, 2012).

Among the advantages of de novo assembly is that it can produce precise reference
sequences even for sophisticated or polyploid generations, provide valuable information
for mapping novel organism genomes or completing genomes of known organisms, resolve
immensely similar or repetitive regions for accurate de novo assembly (Nguyen et al., 2018),
and recognize structural variants and complex rearrangements.

Sequencing the entire genome remains a challenging task. One of the most critical and
challenging problems in bioinformatics is the sequence assembly problem. The purpose
of genome assembly is to recreate a full genome from several relatively short sequences.
Overlaps can be joined to form contigs in reads from the same area of the genome, but
genomic repeats longer than overlaps cause obscure reconstruction and fragmentation
of the assembly (Phillippy, Schatz & Pop, 2008; Nagarajan & Pop, 2009). Most genomes,
particularly eukaryotic genomes, are highly repetitive and complicate the assembly by
obscuring the reads’ interrelationships with many false options. There are two strategies
to tackle this fundamental constraint: increasing the effective read length and separating
non-exact repeats based on copy-specific variants (Koren et al., 2017).

In repetitive genome regions, it is difficult to accurately assemble short reads, so imprecise
or unsolved assemblies may be generated. The repetition of the genome regions has been

Dida and Yi (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.636 2/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.636

enhanced using long-read single molecule sequences (SMS) technologies such as Pacific
Biosciences and Oxford Nanopore (Reuter, Spacek & Snyder, 2015). However, several long
stretches of repetitive DNA do not yield to these approaches.

With the recent development of long-read technology, having near-finished assemblies
became possible. However, extracting information in long reads is still susceptible to errors,
as repeats must be consistently overcome (Myers Jr, 2016). Attempts to overcome repeats
that are essentially unresolvable from the readings at hand will lead to incorrect assemblies
and eventually affect downstream scientific analysis: a procedure that can be motivated by
the promise of a higher N50 score. However, given the data, a conservative approach that
breaks the assembly at points of evident uncertainty may not yield the longest contigs that
can be constructed (Kamath et al., 2017). In this sense, an assembler capable of recognizing
and resolving all, and only those repeat patterns that are resolvable provided the read data
available, should be an optimal assembler.

Genome assembly has attracted increased interest with the advent of NGS
technologies (Kim, Ji & Yi, 2020; Oxford Nanopore, 2020; PacBio, 2020; Illumina, 2020;
DeciBio, 2020; Biosciences, 2020; DNALink, 2020). While several genome assemblers are
presented, de novo genome assembly using next- generation reads still faces four key
challenges. The first challenge is sequencing errors, which contribute to to artifacts
being included in the results of the assembly. Sequencing errors typically lead to a
complex de Bruijn graph. The final results from a complex de Bruijn graph are generally
unsatisfactory (Liao et al., 2019). The second challenge is the sequencing bias (Rodrigue et
al., 2009). For instance, the base composition bias (favoring GC-balanced regions) of the
Illumina sequencing platform typically results in an unequal depth of sequencing across the
genome (Sims et al., 2014). The third challenge is the topological complexity of repetitive
regions in the genome (Liao et al., 2019).Most genomes, particularlymammalian genomes,
have some repetitions, which represent around 25–50% of the entire genome (Kazazian,
2004). The repeats create not only misconceptions or discrepancies in the results of the
assembly but also irreconcilable sequence data depth. The fourth challenge is the use of
large amounts of computing resources. Despite taking just a few minutes to assemble small
genomes, such as bacterial genomes, it usually takes several days or even weeks to assemble
large genomes, such as mammalian genomes.

This research aims to evaluate de novo assembly programs as a whole, to examine various
aspects of assemblies thoroughly. It aims to see how the most recent genome assemblers
performed on a sample of large-scale next-generation sequencing projects. The study is
designed in response to the increasing use of NGS for de novo assembly and a number of
genome assemblers. It aims to address questions like: How much do read types influence
assembler performance? Which assembler is the most efficient?

The answer to these questions, as demonstrated below, de novo assembly depends very
critically on the features of the genome, the nature of the sequencing experiments and the
assemblers. Our results specify the complete technique that we used with each assembler
for assembling each genome. All procedures and parameters are defined and the complete
datasets used for each assembly are given in this paper. This should allow the replication

Dida and Yi (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.636 3/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.636

of some of our results along with the use of open-source assemblers. All data used in our
assessments are also real sequence data from high-performance sequencing machines.

DE NOVO ASSEMBLY METHOD
The rapid progress speed in sequencing technology has laid a solid foundation for the
entire method of genome shotgun assembly (He et al., 2013; Li et al., 2010; Ansorge, 2009;
Fox, Filichkin & Mockler, 2009; MacLean, Jones & Studholme, 2009; Hall, 2007; Mardis,
2008;Metzker, 2010;Morozova & Marra, 2008; Shendure et al., 2004). Some assemblers use
methods that mainly deal with the sequence from the perspective of graphs. They can then
use graph theory and algorithms to solve the assembly problem (He et al., 2013; Wajid
& Serpedin, 2012). Other assemblers have been designed to follow Seed Extension (SE)
methods (Ahmed, Bertels & Al-Ars, 2016; Dohm et al., 2007; Jeck et al., 2007; Warren et al.,
2007; Chu et al., 2013). These types of methods primarily take advantage of knowledge
on various insert sizes of Paired-end (PE) readings (Batzoglou et al., 2002; Li et al., 2010;
Boetzer et al., 2011;Huson, Reinert & Myers, 2002;Zerbino et al., 2009;Dayarian, Michael &
Sengupta, 2010). To some degree, these two types of approaches are capable of overcoming
the difficulties associated with genomic repetition and non-uniform coverage. We will only
incorporate graph-based approaches for this survey study.

Overlap Layout Consensus (OLC) method
The OLC approach is based on graph overlaps. Fundamentally, this approach operates in
three stages. First, overlaps (O) are found between all the reads. The OLC method then
creates the layout (L) of all reads and overlaps the details in the graph. The consensus
sequence (C) is then concluded from the multiple sequence alignments(MSA) (Wang &
Jiang, 1994; Idury & Waterman, 1995).

An overlap graph represents the sequencing reads and their overlaps are used in the
OLC process (Miller, Koren & Sutton, 2010; Koren et al., 2012). Overlaps must be pre-
computed, and overlap detection between each pair is explicit, usually by all-against-
all pairwise alignment (Altschul et al., 1990; Haque, Aravind & Reddy, 2009; Giegerich &
Wheeler, 1996). The overlap graph indicates overlaps between reads with nodes and edges
(Myers, 1995). As a result, the OLC method constructs a read graph that places reads as
nodes and assigns a relationship between two nodes when these two reads overlap longer
than the cutoff length. Paths through the graph are regarded as candidate contigs, and these
paths can be translated into a series of genome sequences (He et al., 2013) as illustrated in
Fig. 1. This process is further described in the next three steps.
1. The overlap of each pair of reads is identified using all-against-all pairwise read

alignment. K -mers pre-calculation for all reads would improve performance
considerably. It selects candidates that share K -mers and measures alignment by
using K -mers as alignment seeds. The detection of overlaps is overly sensitive to
limited overlap length and the size of the K -mer. The selection of these parameters can
therefore significantly influence the assembler’s efficiency. There would be too many
candidates for small parameter values, while large values, in comparison, can lead to

Dida and Yi (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.636 4/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.636

Hamiltonian
path

Overlaps

Consensus
sequence

Layout

Reads

R2R1 R3

R4 R6R5

R8

R7

R10R9

R1 R9

R11

R7
R3 R2

R4

R8

R5

R12

R12

R13 R13

R'1,3

R'9,1

R'1,7 R'9,7

R'9,3 R'3,2

R'4,2

R'12,2

R'12,8

R'7,3

R'12,4

R'5,8

R'13,5

R'3,4

R'8,13

R''1,3 R''3,4 R''4,8

Figure 1 The general workflow of OLCmethod.
Full-size DOI: 10.7717/peerjcs.636/fig-1

accurate contiguities that are shorter. Consequently, finding a good balance requires a
considerable amount of time.

2. Based on the overlap information, the OLC constructs an overlap graph. Within this
step, the OLC finds a special form of path, i.e., a simple path where every node is
distinct. This path is a Hamiltonian path as the nodes will be visited exactly once.
However, finding a Hamiltonian path is an NP-hard problem. This problem is solved
in practice using a greedy strategy or heuristic algorithms.

3. Finally, the OLC performs multiple sequence alignment (MSA). MSA is intended to
decide the exact layout and voting strategies. Alternatively, itmay use statisticalmethods
to define the best consensus sequence. However, no method efficiently resolves the
optimal MSA problem. Therefore, the consensus stage uses pairwise alignments driven
by the approximate read layout.

Assemblers using OLC
Canu is a modern long read sequence assembler that strengthens and replaces the Celera
Assembler (Myers et al., 2000; Miller et al., 2008). By integrating the MinHash Alignment
Method (MHAP) with the PBcR (Koren, 2012) and Celera Assembler, the computational
bottlenecks of overlapping noisy, single-molecule sequencing reads can be addressed
(Berlin et al., 2015). Furthermore, Canu integrates these methods into one comprehensive
assembler, which supports PacBio and Oxford Nanopore data, reduces the runtime
and coverage needs, and improves the separation of repeats and haplotypes. It, therefore,

Dida and Yi (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.636 5/31

https://peerj.com
https://doi.org/10.7717/peerjcs.636/fig-1
http://dx.doi.org/10.7717/peerj-cs.636

improves themammalian genomes’ efficiency by some degree and exceeds hybrid processes
with as little as 20×single molecule coverage (Koren et al., 2017).

Canu (Koren et al., 2017) introduces several additional features to improve usability and
efficiency with single-molecule sequence data, including computational resource discovery,
adaptive k-mer weighting, automated error rate estimation, sparse graph construction, and
graphical fragment assembly (Li, 2016) outputs. The Canu pipeline comprises three stages,
each of which can be corrected, trimmed, and assembled in series or separately (Koren et
al., 2017). Canu automatically senses available resources and configures itself to optimize
the usage of resources when operating in parallel environments.

FASTA (Lipman & Pearson, 1985) or FASTQ (Cock et al., 2010) data is the primary data
exchange,but for consistency, the input stores reads for each stage in an indexable database
that no longer needs theoriginal input. Each of the three stages starts with the identification
of overlaps between all input pairs. Although each stage has a different overlapping strategy,
each one has an indexed store of these overlapsobtained by counting k-mers in the reads.

From the input reads, corrected reads are generated from the correction stage,
unsupported bases and other anomalies are trimmed in the trimming stage, and assembly
graphs and contigs in the assembly stage are finally built.

HINGE is another OLC assembler that aims to achieve an optimal resolution by
differentiating between repeats that can be resolved and those that cannot (Kamath et
al., 2017). To do this, hinges are applied to the reads for creating a graph where only
unresolvable repeats are combined. Consequently, HINGE blends the error resilience of
overlapping graphical methods, the elegant graph structure, and optimal repeat resolution
of graphs by de Bruijn.

HINGE is a long read assembler that follows the paradigm of the overlap layout. Its key
algorithmic advancement lies in how it uses the alignments achieved in the overlapping
process to recognize resolvable repeats and build the structure of the graph repetitively
(Pevzner & Tang, 2001; Mulyukov & Pevzner, 2002). To equip some of the reads with
hinges, HINGE uses the alignment information collected during the overlap phase. The
Contagion algorithm is utilized to disperse the information of how it bridges repeats to
other reads (Kamath et al., 2017).

The Contagion algorithm allows HINGE to position precisely one in-and-out hinge on
reads that have emerged from an unbridged repeat. Then, with a hinge-assisted greedy
graph, HINGE can construct a sparse overlap graph. Given that our reads are hinged, as
long as the match starts on the hinge, we also allow a read successor or predecessor to be
within another read. Incidentally, the graph forms a bifurcation that corresponds to an
unbridged repeat’s beginning or end.

This hinge-aided approach helps us, within the OLC substructure, to achieve the
attractive features of a de Bruijn graph.

De Bruijn Graph (DBG) method
The De Bruijn Graph (Flicek & Birney, 2009; Schatz, Delcher & Salzberg, 2010; Miller,
Koren & Sutton, 2010; Compeau, Pevzner & Tesler, 2011) method builds the whole-genome
sequence of short reads. It utilizes k-mer graphs, suitable for large numbers of short reads.

Dida and Yi (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.636 6/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.636

Figure 2 The general workflow of DBGmethod.
Full-size DOI: 10.7717/peerjcs.636/fig-2

For the k-mer graph, it is no longer practical to consider all-against-all overlap. Each node
represents a k-mer if an overlap of k-1 bases occurs and appears continuously in a read, and
a directed arc will occur between the two nodes. There is also no need for individual reads
and their overlap data to be saved (He et al., 2013). The overlap between adjacent k-mers
is implicitly determined by cutting the reads into k-mers and recording their adjacent
relationships. To summarize, the DBG approach generates a k-mer graph that considers
k-mers to be nodes and assigns an edge to two nodes in the genome sequence where they
are neighbors as illustrated in Fig. 2.
Assembly methods based on de Bruijn graphs begin with the replacement of each read

with the set of all overlaps of a shorter fixed length (Liao et al., 2019; Chaisson, Wilson &
Eichler, 2015). Usually, k denotes the length of the k-mers sequences.

The value of k is significant for constructing the de Bruijn graph (Luo et al., 2015). Some
short redundant areas will be removed by a large value of k, thus reducing the number
of nodes in the de Bruijn graph (Benoit et al., 2014), but this will induce disconnected
subgraphs. A small value of k will minimize those gap areas, thus increasing the connectivity

Dida and Yi (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.636 7/31

https://peerj.com
https://doi.org/10.7717/peerjcs.636/fig-2
http://dx.doi.org/10.7717/peerj-cs.636

of the de Bruijn graph and adding additional nodes and increasing short recurring regions.
The value of k cannot, therefore, be too big or too small.

Adjacent to the reads, which cease at k-mers from repeat borders, are used to sculpt
contigs. This requires very precise reads, which initially reduces the potential for reads to
solve repeats longer than k-bases. It has the advantage that it does not require pairwise
overlap storage and a graph structure that represents the genome’s repeat structure. The
following are the steps to be performed:

• Select a value for k
• Make k-mers
• Count the k-mers
• Make the DBG
• Categorize the de Bruijn graph based on the expressions of nodes and edges in two
forms, i.e., Hamiltonian and Eulerian graph approach. The k-mers are the nodes in the
Hamiltonian approach, while they are the edges in the Eulerian approach. The graph
method in the Hamiltonian approach resembles the OLC method. The sequences are
constructed in this approach to find Hamiltonian paths that pass through all nodes and
are only visited once. This is an NP-complete problem when the number of nodes is not
negligible. Consequently, this makes assembly problems a simpler issue in the theory of
algorithms, which is the most crucial advantage of DBG.

• Revise contigs from the simplified graph.

Assemblers using DBG
SOAPdenovo (Li et al., 2010) has been used to compile several genomes successfully but its
continuity, accuracy, and coverage, in repeat regions in particular, need to be enhanced.
To overcome this difficulty, SOAPdenovo2 (Luo et al., 2012) has been built to solve more
repeated contiguous areas, increase coverage and length in scaffolding, boost gap closure,
and optimize for the large genome. The current architecture of the SOAPdenovo2 algorithm
reduces the memory consumption for graph construction (Ye et al., 2012).

SOAPdenovo2 substantially improves: (1) the algorithm for error correction, (2)
memory usage in DBG constructions, (3) assembly length and scaffolding coverage, (4)
the closing of gaps, and (5) resolution of longer repeat areas in contig assemblies.

SOAPdenovo2 consists of six modules, like SOAPdenovo. (1) GenomeDNA is randomly
fragmented using paired-end technology and sequenced. Short read with sizes between 150
and 500bp are amplified and sequenced directly, whereas long-range (2–10 kb) paired-end
libraries are constructed by circularizingDNA, fragmentation, and then cleansing fragments
for cluster creation with ranges of 400–600 bp. (2) To represent the overlap between the
reads, the raw or corrected reads are then loaded into computer memory, and de Bruijn
graph data structure is used (Li et al., 2010). (3) By eliminating erroneous ties and resolving
small repeats by read paths, the graph is simplified as follows: (a) Cut-off of short tips,
(b) Deletion of links with low coverage, (c) Resolution of tiny repeats with a read path,
and (d) fusion of bubbles formed by repeats or heterozygotes of diploid chromosomes.
(4) The links at repeat boundaries are broken on the simplified graph, and unambiguous
sequence fragments are output as contigs. (5) By using paired-end information, reads are

Dida and Yi (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.636 8/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.636

realigned to contigs, and scaffolds are generated from unique contigs. (6) Finally, using the
paired-end extracted reads, intra-scaffold gaps are filled.

SPAdes (Bankevich et al., 2012) is a universal A-Bruijn assembler (Pevzner, Tang &
Tesler, 2004) for single and multi-cell assembly. It performs an operation that does not
directly affect the sequences; rather, it performs graph topology, coverage, and length of
the sequence. It uses k-mers for the sole purpose of constructing the de Bruijn graph. It
performs graph-theoretical operations on the subsequent stages exclusively in graphs that
need not be labeled by k-mers (Bankevich et al., 2012). The consensus sequence of DNA is
restored at the last stage.

During reconstruction, a string from the set of its k-mer is often abstracted in fragment
assembly. The de Bruijn approach to assembly leads to this abstraction, which underlies
several algorithms for assemblies. However, a more progressive abstraction of NGS data
takes into account the problemof reforming a string from a set of pairs of k-mers (k-bimers)
at a distance approximately d in a string (Bankevich et al., 2012). The study of the latter
abstraction has chiefly been associated with heuristic post-processing, even though there
are simple algorithms available for the former abstraction in the de Bruijn graph (Pevzner,
Tang & Waterman, 2001; Zerbino & Birney, 2008; Butler et al., 2008).

By adding k-bimermodification, which concedes the exact distances for the vastmajority
of the adjusted K-bimers (Bankevich et al., 2012), SPAdes solves the impracticality due to
differences in the biread1 (and thus k-bimer) distances and adding PDBG-inspired paired
assembly graph (Medvedev et al., 2011). SPAdes may use read-pairs; in particular, E+V-SC
(Chitsaz et al., 2011) has been using the reads but has skipped the read-pairs pairing to
prevent misassemblies because of a high level of chimeric read-pairs.

The four stages of SPAdes that resolve problems that are especially problematic in SCS
are sequencing errors; non-uniform coverage; disparities in insert size; and chimeric reads
and bireads.

• The accurate distance estimation performed in this stage (k-bimer adaptation) between
k-mers is based upon the joint distance histogram and assembly graph analysis.

• Inspired by the PDBG (Medvedev et al., 2011) method, the paired assembly graph is
constructed in this stage (contig construction).

• The DBG is constructed.
• By backtracking graph simplifications, the last stage (contig construction) is completed.
SPAdes generates DNA sequences of contigs and maps reads to contigs.

String graph-based method
The string graph is a simplified version of a classic overlap graph with sequenced reads
and a suffix to prefix overlaps with the non-transitive edges (Liao et al., 2019). The string
graph is an essential data representation used by OLC assemblers. Indeed, the vertices in a
string graph are the input reads, and the arcs correspond to the overlapping reads, which
are contigs in the string graph. For long-read assembly, an overlap-based approach is a
forthright approach because it assembles the long reads without being translated to k-mers.

The formulation of the string graph assembly is similar to a de Bruijn graph in principle.
However, it has the advantage of not decomposing sequences into k-mers, but taking the

Dida and Yi (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.636 9/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.636

complete length of a read sequence (Liao et al., 2019). From the overlap graph, the string
graph can be extracted by first removing duplicate reads and contained reads, and then
discarding transitive edges from the graph.

For long sequences and single-molecule sequencing reads with a high error rate, the
overlap-based approaches are more acceptable than the de Bruijn graph-based methods.

Assemblers using string graph
SGA is an assembler based on FM-index (Ferragina & Manzini, 2005) derived from the
compressed Burrows–Wheeler transform (Burrows & Wheeler, 1994), memory-efficient
data structures, and assembly algorithms (Simpson & Durbin, 2012). In comparison to
most de novo assemblers, which depend on de Bruijn graphs, the SGA model uses the
overlap string graph, which can easily be paralleled.

As de novo assembly usually demands queries over the entire sequence, extensive datasets
tend to be a practical problem for assembly software developers and users. The redundancy
contained in a sequence is exploited using compressed data structures to reduce the
memory needed to perform de novo assemblies.

The SGA algorithm is based on an FM-index query developed from a set of sequence
reads. The SGA pipeline starts with various low-quality or ambiguous base calls by
preprocessing the sequence reads to filter or trim reads (Simpson & Durbin, 2012). From
the filtered set of reads, the FM-index is constructed and base-calling errors are detected
and corrected using k-mer frequencies. Corrected reads are re-indexed and duplicate
sequences are discarded, filtering out the remaining low-quality sequences and generating
a string graph. Contigs, if paired-end or mate-pair data is available, are assembled from
the string graph and built into scaffolds.

SGA provides the first functional assembler, to the best of our knowledge, of a
mammalian-sized genome on a low-end computing cluster, given its low memory
requirements and parallelization without requiring inter-process communication.

FALCON, a long-read assembler with perceptive analysis of diploid genomes, is designed
to assemble haplotype contigs that represent the diploid genome with correctly phased
homologous chromosomes (Chin et al., 2016). It also preserves ambiguity in the assembly
graph and outputs the longest path through the graph along with alternate paths (Liao et
al., 2019; Koren & Phillippy, 2015).

The FALCON assembler follows the hierarchical genome assembly process(HGAP)
(Chin et al., 2013) design but uses components that are more computationally optimized.
To create a string graph containing sets of ‘haplotype-fused’ contigs and bubbles
representing divergent regions between homologous sequences, it begins by using reads.
Next, using phase data from heterozygous positions that it identifies, FALCON-Unzip
identifies read haplotypes. Phased reads are then used with phased single-nucleotide
polymorphisms and structural variants to assemble haplotype contigs and primary contigs
that form the final diploid assembly.

As compared to alternative short or long-read approaches, the FALCON-based
assemblies are significantly more contiguous and complete. The phased diploid assembly
capacitated the analysis of the structure of the haplotype and heterozygosities between

Dida and Yi (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.636 10/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.636

homologous chromosomes, including the identification within coding sequences of
widespread heterozygous structural variation.

Hifiasm, a modern de novo assembler that faithfully represents haplotype information
in a phased assembly graph by using long high-fidelity sequence reads (Cheng et al., 2021).
Hifiasm aims to maintain the contiguity of all haplotypes, unlike other graph-based
assemblers that only seek to maintain the contiguity of one haplotype. This function allows
for the development of a graph trio binning algorithm that is superior to regular trio
binning.

Hifiasm corrects sequence errorswhilemaintaining heterozygous alleles using haplotype-
aware error correction and then builds phased assembly graphs using locally corrected reads
for phasing information. In the phased assembly graph, only reads from the same haplotype
are linked. hifiasm produces a fully phased assembly for each haplotype from the graph
using complementary data that provides global phasing information. Only HiFi reads can
be used by Hifiasm to produce an unphased primary assembly. This unphased primary
assembly constitutes the phase blocks (regions), which can be solved with HiFi reads but
cannot maintain phase information between two-phase blocks.

Hifiasm’s first few steps are relatively similar to the workflow of early long-read
assemblers. Hifiasm performs an overlap alignment of all-vs-all and then corrects
sequencing errors. hifiasm inspects the alignment of reads overlapping with the target
read when given a target read to correct. An informative position on the target read is said
to be provided if at the alignment two types of A/C/G/T bases are in place and if at least
three reads support each type. If there are informative positions in the overlap and the read
is not identical to the target read in all of these positions, the read is inconsistent with the
target. Only clear reads are used by Hifiasm to correct the target read.

By default, Hifiasm performs three rounds of error correction. It then performs overlap
alignment once more and constructs a string graph with a vertex representing an oriented
read and an edge representing a consistent overlap. A pair of heterozygous alleles in the
string graph will be represented by a bubble after transitive reduction. There is no data
loss. If no additional data is available, hifiasm chooses one side of each bubble at random
and produces a primary assembly, similar to Falcon-Unzip (Chin et al., 2016) and HiCanu
(Nurk et al., 2020).

Hybrid method
Assemblers using hybrid methods
The chemistry of Illumina has improved dramatically since the release of A5-MiSeq
instruments are now able to generate reads above 400nt in length, which is four times
longer than what was previously possible on the HiSeq 2000. The initial A5 was unable to
process reads longer than 150 nt. The longer reads make it possible to assemble genomes
from fewer data in general, but significant revisions to the data processing algorithms in
A5 were needed to do so (Coil, Jospin & Darling, 2015).

A revised A5-MiSeq pipeline, which substitutes new software modules for many
components of the original A5 pipeline, produces dramatically improved assemblies.
The A5-MiSeq pipeline comprises five steps (Coil, Jospin & Darling, 2015): read cleaning,

Dida and Yi (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.636 11/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.636

contig assembly, crude scaffolding, misassembly correction, and final scaffolding. The
details are as follows: (i) Trimmomatic (Lohse et al., 2012) eliminates sequence adapters
and low-quality regions. The SGA k-mer-based error correction algorithm (Simpson &
Durbin, 2012) then corrects errors in the reads. (ii) The IDBA-UD algorithm (Peng et al.,
2012) is used to assemble paired and unpaired reads.(iii) Contigs are scaffolded using
permissive parameters by any large insert library available. (iv) Misassemblies are detected
by read pairs not mapped within the intended distance. Contigs and scaffolds that include
misassemblies are broken. (v) A final round of scaffolding repairs any previously broken
contiguity with strict parameters.

A5-MiSeq revises steps I and II considerably compared to A5. All the modifications lead
to dramatically enhanced assemblies that recover a more complete set of reference genes
than previous methods.

Flye (Kolmogorov et al., 2019) is a long-read assembly algorithm that constructs an
accurate repeat graph from the arbitrary paths it produces called disjointigs. Flye constructs
the repeat graph from error-riddled disjointigs.

Initially, Flye produces disjointigs representing several disjointed genome segment
concatenations. All error-prone disjointigs are joined into a single string. The resulting
string is used to construct an accurate assembly graph. Then reads are used to untangle the
graph and resolve bridged repeats. Later, the repeat graph uses minor variations between
repeat copies to address unbridged repeats (which are not bridged by any reads) and then
outputs precise contigs formed by paths in this graph (Kolmogorov et al., 2019).

Assembly graphs are a special case of breakpoint graphs (Chin et al., 2016) and hence
are well suited to examine structural variations (Koren & Phillippy, 2015; Coil, Jospin &
Darling, 2015) and segmental duplications (Phillippy, Schatz & Pop, 2008; Nagarajan &
Pop, 2009). Flye assembly graphs provide a valuable framework for segmental duplications
to be reconstructed and additional genome completion experiments to be planned.

EXPERIMENTS
The same set of datasets was given to all assemblers in our evaluation. The experiments
were all carried out on the same server (two Intel Xeon Processor E5-2695 v4) with a
limitation of 128GBmemory. We begin with a description of the dataset. Before presenting
the results of various evaluations, we outline the assemblies.

Dataset
In six projects covering three bacteria, a mammal, a plant, and a fungus, we have chosen
whole-genome shotgun data ofArabidopsis thaliana, Bacillus cereus,Caenorhabditis elegans,
Escherichia coli, Saccharomyces cerevisiae, and Staphylococcus aureus. We have also included
a human genome to see how versatile assemblers are with big genomes. All the species have
previously been sequenced and completed using one of the above assemblies to a very high
level. With the previously sequenced genome, the correctness of each assembler has been
stringently evaluated and compared.

A wide range of genome sizes is also expressed by the seven genomes, from bacteria to
human genome. This smaller sample was selected because some of the assemblers would

Dida and Yi (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.636 12/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.636

Table 1 Dataset information.

Dataset Read
type

Technology Accession
number

Refseq # of bases Coverage

Short Illumina ERR3485043 304.3M 2.3
Arabidopsis thaliana

Long PacBio ERR3415827
GCF_000001735.4

1.9G 8.7
Short Illumina ERR3338758 443.6M 3.0

Bacillus cereus
Long PacBio SRR9641613

GCF_000007825.1
1.2G 25.6

Short Illumina SRR12431876 373.8M N/A
Caenorhabditis elegans

Long PacBio ERR3489110
GCF_000002985.6

1.5G N/A
Short Illumina SRR12573761 326.7M 62.9

Escherichia coli
Long PacBio SRR10538960

GCF_000005845.2
3.3G 488.9

Short Illumina SRR005721 860.9M N/A
Human

Long PacBio SRR13684281
GCF_000001405.39

6.8G 2.3
Short Illumina SRR12596359 3.0G 225.0Saccharomyces cere-

visiae Long PacBio ERR4467305
GCF_000146045.2

5.3G 288.7
Short Illumina SRR12560295 480.7M 167.8

Staphylococcus aureus
Long PacBio SRR10807892

GCF_000013425.1
2.5G 715.5

Notes.
All the reads are taken from NCBI.

take several weeks to assemble the whole genome, and others would ultimately fail. Table 1
summarizes the details of reads used for experiment.

Assemblies
To allow comparisons between assemblies of different assemblers, we run the assembler
under the default parameters except for assembling the human genome. Default parameters
were not adequate to let the assemblers run on the human genome; therefore, we fine-tuned
the parameters of each assembler. To decide the best assembly for each assembler, without
consideration of assembly errors, we used the contig (N50, NG50, and genome fraction)
sizes as the primary metric. This method is similar to what typically happens between
groups that assemble a new genome: assembly with the largest contigs and scaffolds is
generally favored.

The data cleaning procedure is one of the most critical phases in any assembly and
often takes considerably longer than the assembly. Genome data is never flawless, and
the various types of errors will cause various assembly problems. We did not want to
differentiate the efficacy of error correction and the assembly algorithms themselves; some
of the assemblers that we ran have their own built-in error correction routines. Therefore,
if the assembler comprises one, the first step we ran for each of the datasets was an error
correction procedure. When using their error correction routines, most of the assemblers
were the most effective. If a dataset does not run on an assembler, the results will not be
included for the assembler.

We used a few metrics to present snapshots of each assembly: number of contigs, largest
contig, size of N50, NA50, NG50, and GC content of contigs are some of the metrics. The
N50 value is the contig length such that half (50%) of the assembly bases are generated by
using longer or equal length contigs (Gurevich et al., 2013). There is typically no value that

Dida and Yi (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.636 13/31

https://peerj.com
https://www.ncbi.nlm.nih.gov/sra?term=ERR3485043
https://www.ncbi.nlm.nih.gov/sra?term=ERR3415827
https://www.ncbi.nlm.nih.gov/sra?term=ERR3338758
https://www.ncbi.nlm.nih.gov/sra?term=SRR9641613
https://www.ncbi.nlm.nih.gov/sra?term=SRR12431876
https://www.ncbi.nlm.nih.gov/sra?term=ERR3489110
https://www.ncbi.nlm.nih.gov/sra?term=SRR12573761
https://www.ncbi.nlm.nih.gov/sra?term=SRR10538960
https://www.ncbi.nlm.nih.gov/sra?term=SRR005721
https://www.ncbi.nlm.nih.gov/sra?term=SRR13684281
https://www.ncbi.nlm.nih.gov/sra?term=SRR12596359
https://www.ncbi.nlm.nih.gov/sra?term=ERR4467305
https://www.ncbi.nlm.nih.gov/sra?term=SRR12560295
https://www.ncbi.nlm.nih.gov/sra?term=SRR10807892
http://dx.doi.org/10.7717/peerj-cs.636

produces precisely 50%, so the technical meaning is the maximum length x to account for
at least 50% of the overall assembly length by using contigs of length x or higher. NG50 is
the length of the contigs, which generates 50% of the bases of the reference genome with
longer or equal length of the contig, whereas NA50 is N50, where aligned block lengths
rather than contigs lengths are counted. In other words, the contig is split into smaller
parts when there is a misassembly with the reference genome. The latter two metrics can
only be determined by providing a reference genome. Determined by the total length of
the assembly, the GC is the total number of g and c nucleotides in the assembly.

Assemblers may also be determined based on how well-known sequences are retrieved
from the respective assembly. By aligning assemblies with a completed reference genome,
we evaluated the correctness of the assemblies.

There are many common assembly issues: several small contigs, missing sequences,
needless duplication of contiguous contigs, and misassembly errors. Some of these errors
are unique to individual assemblies, and some are endemic. An estimate of repeat copy
numbers is one of the more complicated aspects of genome assembly. A duplicated repeat
is one that occurs in more copies in the assembly than required. It is a preventable issue that
many of the assemblers address better than others. In the Staphylococcus aureus dataset, for
instance, Canu and Hinge, Canus N50 is threefolds of that of HINGE. However, depending
on how much of the N50 is correctly compatible (NGA50) with the reference genome,
HINGE is better than Canus. This is owing to the duplication in the Hinge assembly of
contiguous contigs.

The overall length of the majority of the assemblies presented was marginally higher
than the size of the genome, mostly owing to the polymorphic degree. Usually, the
assembly-based N50s are smaller than the NG50s. Such differences are diminutive but not
always negligible: for instance, a 58 kb NG50 longer than N50 is available on the Escherichia
coli assembly.

Indels (insertions and deletions) also differ based on assembler. Based on the objective
of the assembler, the number of indels might differ. However, as we use a reference genome
and read set, the relative number of indels should be a reliable measure of errors between
assemblers.

If an assembler’s objective is to increase contigs lengths, it will be susceptible to producing
more indels. If its objective is to eliminate errors, then the length of the contigs it creates
will be small. For instance, on the Arabidopsis thaliana data, FALCON strives to maximize
its contig length at the expense of indels. FALCON generates more indels than the rest of
the assemblers, while SGA minimizes indels at the expense of contig length. Even though
FALCON produces more indels, its mismatch level is approximately as good as assemblers
that generate small indels.

Structural errors are a harmful type of error; as described in ‘’Introduction’ misassembly
plays a significant role in causing such errors. We used QUAST to overcome the problem.
Misassembly errors are divided into extensive or local as per QUAST’s definition. The
following condition has been described as an extensive misassembled contig: (i) the left
flanking sequence aligns on the reference over 1 kb away from the right flanking sequence;
(ii) overlaps of flanking sequences are more than 1 kb, and (iii) the flank sequence aligns

Dida and Yi (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.636 14/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.636

Table 2 Assembly statistics of assemblers on Arabidopsis thaliana dataset.

Read type Assemblers # Contigs N50 L50 GC(%)

A5-MiSeq 11,739 637 7876 36.65
Canu 162 10,862 48 43.09
Falcon 735 10,115 225 40.95
Flye 1,826 77,106 860 37.24
Hinge 522 29,990 145 41.02

Long

SGA 98 10,612 7 38.14
SPAdes 26,750 722 9,629 36.8

Short
SOAPdenovo2 31 89,813 1 35.94

Notes.
The minimum number of contigs generating 50% of the assembly base is represented by L50.

with different strands or different chromosomes, while the local misassembled contigs
fulfill the following: (i) breakpoint is covered by multiple distinct alignments; and (ii)
the left and right flanking sequences are on the same strand on the same chromosome of
the reference genome, and the gaps between them are less than 1 kb. Misassembly errors
can be mistaken as true genetic modifications because actual biological differences are
similarly manifested. Therefore, it is important to recognize these errors. Three forms of
misassemblies have been cataloged: inversion, relocation, and translocation. In parallel
with the NG50 value, we used the NGA50 so that the misassemblies are considered for
assessing the assemblies. Notice that some NGA50 values are undefined: in Caenorhabditis
elegans, for example, misassemblies occur when all aligned blocks have a total length of less
than 50% of the total assembly length.

RESULTS
The tables below present very significant performance differences between assemblers,
as well as variations in an individual assembler’s performance when applied to different
genomes. The following are some cases of assembler performance.

Arabidopsis thaliana
It can be seen from Table 2 that the short read assemblers produced more contigs and had
a higher N50 value than the long read assemblers for Arabidopsis thaliana. SOAPdenovo2
produces much larger contigs than any other assembler, with an N50 size of 89.8 kb,
while SPAdes produces the largest contig of 26.7 kb. After comparing SOAPdenovo2 to
the reference genome (Table 3), we discovered that it has many assembly errors: its total
number of uncalled bases (N’s) was the highest in the assembly. Analyzing the assembly
at these points yielded no result for the value of NG50. However, at the cost of indels and
mismatches, SPAdes generated the longest contigs.

TheN50 value for Flye was 77 kb, and the breaking of the contigs lowered theNG50 value
less drastically to 68 kb with far fewer uncalled bases, making it the best of the assemblers
on this genome . SPAdes with a lower N50 value than SOAPdenovo2, and their NG50 was
the same (i.e., undefined), but SPAdes appeared to be preferable to SOAPdenovo2 with
around half of the assembly errors (Fig. 3 and Table 4).

Dida and Yi (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.636 15/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.636

Table 3 Assembly statistics of datasets with a reference genome.NGA50 is NG50 in which aligned block lengths are counted rather than contig
lengths. LA75 follows the same analog as NGA50 concerning L70. GF is genome fraction. DR is duplication ratio. LA is largest alignment and TAL is
total aligned length.

Data Assemblers Gf (%) DR LA TAL NG50 NA50 NGA50 LA75 Time

A5-MiSeq 6.496 1.027 55632 7821611 - 618 - 8163 70
Canu 0.5 3.624 103154 1957236 - 8557 - 145 698
Falcon 2.785 1.753 52449 5753720 - 7414 - 605 662
Flye 71.501 1.029 323229 87783639 68321 37683 31223 2014 147
Hinge 0.52 1.748 72349 1082572 - - - - 295
SGA 0.151 1.005 17368 181086 - 10612 - 22 10
SOAPdenovo2 0.119 1.093 84661 143517 - 84661 - 4 0.17

Arabidopsis thaliana

SPAdes 15.989 1.042 31938 19105410 - 606 - 21082 17
A5-MiSeq 5.761 1.014 31356 316547 94223 - - - 70
Canu 18.489 1.096 15861 1099326 1271827 - - - 75
Falcon 17.567 1.486 30007 1415685 34235 - - - 260
Flye 17.877 1.022 63366 991230 3779838 - - - 17
Hinge 21.753 1.544 10569 1823312 2010834 - - - 41
SGA 5.924 1.031 31081 329564 18389 - - - 12
Spades 5.602 1.71 13119 304717 24307 - - - 11

Bacillus cereus

Soapdenovo2 5.632 1.009 31143 307668 94674 - - - 0.73
A5-MiSeq 91.246 1.004 194019 4238262 207510 46684 55105 69 240
Canu 89.572 1.013 146928 4211826 4056254 24795 51958 - 22
Falcon 48.749 2.294 20252 5152719 9582 2499 4511 - 1040
Flye 89.557 1.011 146930 4201449 1349247 28464 51984 - 52
Hinge 89.623 2.012 147472 8360148 3358761 28410 72928 - 565
SGA 91.188 1.004 193965 4237989 196903 52805 55100 62 30
Spades 90.968 1.009 194101 4227658 216146 54887 55987 63 7

Escherichia coli

Soapdenovo2 91.082 1.002 193904 4224949 196831 41435 52593 77 26
A5-MiSeq 2.437 1.015 18785 75924817 - 583 - 86057 1075
Canu 1.383 1.421 108455 59774470 - 10241 - 5608 4320
Falcon 0.874 1.012 64590 27427277 - 12924 - 1409 631
Flye 0.866 1.03 93090 27601994 - 26154 - 762 67
HiFiasm 10.488 1.014 74358 330374434 - 21579 - 10562 17
Hinge 0.207 2.197 60176 13733461 - 1386 - - 35
SGA 0.013 1.039 7137 401793 - 596 - - 506

Human genome

Spades 0.005 1.064 16600 166272 - 827 - 160 35
A5-MiSeq 93.834 1.004 238989 11422884 87302 77574 72006 98 294
Canu 95.269 1.144 546941 13088915 789964 160884 199769 56 229
Falcon 3.176 10.781 17395 4111569 - 3172 - - 2036
Flye 94.704 1.018 546784 11700248 904738 230022 218721 38 65
Hinge 93.224 1.943 532988 22012911 1015480 195155 337524 83 79
Spades 93.195 1.028 538406 11406775 234358 149088 147545 48 39

Saccharomyces cere-
visiae

Soapdenovo2 93.518 1.003 328324 11377122 109730 102238 93828 79 5
(continued on next page)

Dida and Yi (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.636 16/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.636

Table 3 (continued)

Data Assemblers Gf (%) DR LA TAL NG50 NA50 NGA50 LA75 Time

A5-MiSeq 88.836 1.006 171163 2518098 177125 72014 72014 30 71
Canu 92.505 1.032 329791 2692695 2907970 92196 92541 21 61
Falcon 89.225 6.2 24089 15571683 15602 4915 11704 2471 817
Flye 92.502 1.005 329938 2618043 2896520 92541 92541 19 58
Hinge 92.561 2.033 323857 5303669 1311923 91667 151987 44 157
SGA 88.509 1.008 171354 2509007 109236 54884 54884 35 11
Spades 86.544 1.057 259183 2442671 180321 91655 103869 25 35

Staphylococcus au-
reus

Soapdenovo2 88.562 1.003 171154 2504468 174162 72014 72014 30 0.36

Notes.
NGA50 is NG50 in which aligned block lengths are counted rather than contig lengths. LA75 follows the same analog as NGA50 concerning L70. GF is genome fraction. DR is
duplication ratio. LA is largest alignment and TAL is total aligned length. All assemblers except SOAPdenovo2 and SPAdes represents long read assembler.

Bacillus cereus
The largest contigs was generated by Flye (with an N50 size of 3.7 Mb), followed by Hinge
(821 kb) and Canu (858 kb). Falcon was one of the most error-prone assemblers, with 15
misassemblies and 647 indels for Bacillus cereus, and it only had an NG50 value of 34.2
kb after the error correction. Hinge has had almost as many errors and rose even more to
NG50 of 2 Mb. With NG50 the same as their N50 value, Canu, Flye, and SPAdes had fewer
errors.

It can be seen from Table 5 that SOAPdenovo2 has the fewest contigs for Bacillus cereus,
as well as a low N50 value. Even though it produced the fewest contigs, its error rate was
among the best amongst those assemblers, resulting in the fourth highest NG50 value of
94.6 kb. While SPAdes has fewer errors, it has the highest duplication ratio, resulting in a
low NG50 value.

Flye’s contiguity remained high, and its NG50 of 3.7 Mb was the highest after correction,
followed by Hinge with an NG50 of 2 Mb. Although Flye has the highest NG50 value when
compared to the reference genome, it is the third-best assembler for Bacillus cereus genome,
behind Hinge and Canu (Table 3); we noticed that it contained the largest misassembled
contigs length.

Caenorhabditis elegans
With the exception of Flye producing the highest N50 value, Flye, SOAPdenovo2, and
SPAdes has the smallest number of contigs for Caenorhabditis elegans. The performance
of SOAPdenovo2 and SPAdes on this genome was poor. Their largest contigs and N50
values were less than 1kb, making it an unpreferable assembler for Caenorhabditis elegans,
compared to SOAPdenovo2 and SPAdes.

There were other assemblers, however, such as Canu and Flye, with higher N50 values.
We ran this data set without a reference, as mentioned earlier in ‘Experiments’. To
determine the performance of the assemblies, we chose the N50 value as a primary metric.
Canu produced an N50 of 5.8 Mb with these metrics, being next to 5.9 Mb of N50 value of
Flyes, as summarized in Table 6.

Dida and Yi (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.636 17/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.636

0 2000 4000 6000 8000
0.1

1

10

100

Misassemblies
G

en
om

e
co

ve
ra

ge

Arabidopsis thaliana

A5-MiSeq

Canu

Falcon

Flye

Hinge

SGA

SOAPdenovo2

SPAdes

0 100 200 300
0.1

1

10

100

1000

Misassemblies

G
en

om
e

co
ve

ra
ge

Escherichia coli

A5-MiSeq

Canu

Falcon

Flye

Hinge

SGA

SOAPdenovo2

SPAdes

0 50 100 150
0.1

1

10

100

1000

Misassemblies

G
en

om
e

co
ve

ra
ge

Saccharomyces cerevisiae

A5-MiSeq

Canu

Falcon

Flye

Hinge

SOAPdenovo2

SPAdes

0 4 8 12
1

10

100

Misassemblies

G
en

om
e

co
ve

ra
ge

Bacillus cereus

A5-MiSeq

Canu

Falcon

Flye

Hinge

SGA

SOAPdenovo2

SPAdes

0 1000 2000 3000 4000
0.001

0.01

0.1

1

10

100

Misassemblies

G
en

om
e

co
ve

ra
ge

Human genome

A5-MiSeq

Canu

Falcon

Flye

HiFiasm

Hinge

SGA

SPAdes

0 400 800 1200
0.01

0.1

1

10

100

1000

Misassemblies

G
en

om
e

co
ve

ra
ge

Staphylococcus aureus

A5-MiSeq

Canu

Falcon

Flye

Hinge

SGA

SOAPdenovo2

SPAdes

Figure 3 Comparison of misassemblies of datasets with each assemblers. The Y axis is the total number
of aligned bases divided by the reference length, in the contigs having the total number of misassemblies at
most X . All assemblers except SOAPdenovo2 and SPAdes represents long read assembler.

Full-size DOI: 10.7717/peerjcs.636/fig-3

Escherichia coli
Falcon, SPAdes, and A5-MiSeq generated the highest number of contigs for Escherichia coli,
while Canu, Flye, and Hinge generated the longest contig in the assembly. In comparison
to assemblies with the highest number of contigs, assemblies with the largest contigs have
the highest N50 values. Falcon came in last with an N50 of 6.1 kb, followed by SPAdes with
an N50 of 196 kb, and then A5-MiSeq with an N50 of 197 kb, as summarized in Table 7.
Basically, as contig lengths grow longer, the assembler becomes more susceptible to errors

Dida and Yi (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.636 18/31

https://peerj.com
https://doi.org/10.7717/peerjcs.636/fig-3
http://dx.doi.org/10.7717/peerj-cs.636

Table 4 Unaligned andmismatched statistics of each datasets.

Data Assemblers Unaligned Mismatches

fully unaligned
contigs

Fully unaligned
length

mismatches # indels

A5-MiSeq 188 120181 33388 4523
Canu 0 0 49425 8398
Falcon 1 4663 45626 69358
Flye 1 4544 1350240 1438162
Hinge 95 1145948 9363 20687
SGA 0 0 8 2
SOAPdenovo2 0 0 163 12

Arabidopsis
thaliana

SPAdes 232 162162 157325 12794
A5-MiSeq 93 751664 11700 117
Canu 9 146028 37826 282
Falcon 71 820032 49672 674
Flye 4 93567 35165 256
Hinge 5 161003 51871 1693
SGA 519 1724075 11977 108
SOAPdenovo2 359 1477993 11590 99

Bacillus cereus

SPAdes 66 636544 11508 98
A5-MiSeq 96 236146 52596 812
Canu 82 451545 92909 1309
Falcon 375 1870266 110250 3622
Flye 9 165451 92818 1327
Hinge 18 350499 191453 28035
SGA 51 56900 52556 856
SOAPdenovo2 22 117911 52189 794

Escherichia coli

SPAdes 350 432044 52367 782
A5-MiSeq 1519 1327725 176747 25981
Canu 398 4419980 729243 65863
Falcon 1 136597 310378 98715
Flye 42 383749 342934 77101
HiFiasm 20 587213 541861 712152
Hinge 147 2007596 281097 29752
SGA 109 175934 1620 83

Human genome

SPAdes 15 20781 2253 107
A5-MiSeq 39 38622 63755 5780
Canu 1 1782 125881 16218
Falcon 3 48343 73016 15369
Flye 0 0 75321 11172
Hinge 22 150873 193317 491909
SOAPdenovo2 9 10420 64077 6005

Saccharomyces cere-
visiae

SPAdes 58 48546 65866 5594
(continued on next page)

Dida and Yi (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.636 19/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.636

Table 4 (continued)

Data Assemblers Unaligned Mismatches

fully unaligned
contigs

Fully unaligned
length

mismatches # indels

A5-MiSeq 2 3052 34933 1233
Canu 0 0 5337 379
Falcon 23 188293 39852 21850
Flye 0 0 5024 302
Hinge 0 0 15470 29413
SGA 17 24149 34775 1206
SOAPdenovo2 5 9944 30565 1007

Staphylococcus au-
reus

SPAdes 7 7580 34733 1202

Table 5 Assembly statistics of assemblers on Bacillus cereus dataset.

Read type Assemblers # Contigs N50 L50 GC(%)

A5-MiSeq 180 94223 39 35.37
Canu 68 858185 3 35.32
Falcon 444 21016 87 35.45
Flye 16 3779838 2 35.28
Hinge 40 825555 4 35.31

Long

SGA 765 18848 75 35.47
SPAdes 146 86886 17 35.34

Short
SOAPdenovo2 535 24261 55 35.39

Notes.
The minimum number of contigs generating 50% of the assembly base is represented by L50.

Table 6 Assembly statistics of assemblers on Caenorhabditis elegans dataset.

Read type Assemblers # Contigs N50 L50 GC(%)

Canu 102 5867748 1 62.67
Falcon 857 15548 196 62.54
Flye 1 5953794 1 62.71

Long

Hinge 52 3641048 2 62.47
SPAdes 5 538 3 53.38

Short
SOAPdenovo2 5 500 3 52.06

Notes.
The minimum number of contigs generating 50% of the assembly base is represented by L50.

like misassemblies and mismatches. Consequently, in this genome, the assemblies with the
largest contigs created the majority of the errors.

SOAPdenovo2, a short read assembler, generated a moderate N50 value of 216.1 kb
while maintaining a short contig length. SPAdes, on the other hand, has the opposite
problem. Both assemblers ranked first and second in terms of mismatch and indels when
their mismatch statistics was examined. They were ranked fourth and fifth for recovering
the Escherichia coli genome due to their excellent error handling.

Dida and Yi (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.636 20/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.636

Table 7 Assembly statistics of assemblers on Escherichia coli dataset.

Read type Assemblers # Contigs N50 L50 GC(%)

A5-MiSeq 173 197188 8 50.5
Canu 94 4056254 1 50.55
Falcon 1643 6143 431 49.78
Flye 24 1072054 3 50.62
Hinge 36 3356412 2 50.47

Long

SGA 114 196903 7 50.64
SPAdes 413 196647 9 50.19

Short
SOAPdenovo2 79 216146 6 50.68

Notes.
The minimum number of contigs generating 50% of the assembly base is represented by L50.

Table 8 Assembly statistics of assemblers on Human dataset.

Read type Assemblers # Contigs N50 L50 GC(%)

A5-MiSeq 120438 602 47999 40.62
Canu 5365 13580 1908 98.62
Falcon 1961 14011 715 39.72
Flye 1232 28044 381 40.39
HiFiasm 15377 21918 6260 39.59
Hinge 1591 14749 480 39.54

Long

SGA 917 905 140 47.12
Short SPAdes 135 1882 30 50.94

Notes.
The minimum number of contigs generating 50% of the assembly base is represented by L50.

Hinge, with an NGA50 of 72.9 kb, takes first place after the error within the contigs was
corrected. SOAPdenovo2, A5-MiSeq, and SGA were next, with NGA values of 55.9 kb,
55.105 kb, and 55.1 kb, respectively. Hinge was unable to recover the genome as well as
A5-MiSeq due to high structural error.

When the quality of the assemblers is compared to the amount of reference genome
they retrieve, A5-MiSeq comes out on top with a genome fraction of 91.246%, followed by
91.188% by SGA and 91.082% by SPAdes. The genome fractions are listed in Table 3.

Human genome
A5-MiSeq generated the highest contigs for the Human genome assembly, while Flye,
HiFiasm, and Hinge produced the longest contigs. As compared to assemblies with the
highest contigs, A5-MiSeq came in last with an N50 of 0.9 kb, followed by SGA with an
N50 of 1.8 kb, and SPAdes with an N50 of 197 kb (Table 8).

The short-read assemblers were limited in their assembly due to the repetitive nature
of the human genome and its size. When comparing the N50 value with the long-read
assembler, SPAdes performed moderately, but it was shortlisted when comparing the
longest contiguous reads. It has one of the best error management procedures for this
genome.

Dida and Yi (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.636 21/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.636

Table 9 Assembly statistics of assemblers on Saccharomyces cerevisiae dataset.

Read type Assemblers # Contigs N50 L50 GC(%)

A5-MiSeq 369 91325 80 38.12
Canu 193 710827 7 36.20
Falcon 490 13483 309 27.58
Flye 26 904913 8 38.19

Long

Hinge 110 754764 13 37.74
SPAdes 376 93238 40 38.14

Short
SOAPdenovo2 293 234358 17 38.13

Notes.
The minimum number of contigs generating 50% of the assembly base is represented by L50.

Flye, with an NA50 of 26.1 kb, takes first place after error correction. HiFiasm, Falcon,
and Canu are the next three with NA50 values of 21.5 kb, 12.9 kb, and 10.2 kb, respectively.
Flye was unable to recover the genome as good as HiFiasm due to high structural error.
HiFiasm comes out on top with a 10.4% genome fraction, followed by A5-MiSeq with
2.437% and Canu with 1.383%. The genome fractions are listed in Table 3.

Saccharomyces cerevisiae
Falcon performed the worst for Saccharomyces cerevisiae. Despite producing the highest
contigs, it was only able to generate the longest contig, up to 23.2 kb out of a total length
of 5.9Mb, resulting in the lowest N50, NA50, and genome fraction values.

SPAdes generated one of the longest contigs, with a moderate N50 value. SOAPdenovo2,
on the other hand, produces a modest contig length while producing one of the highest
N50 values. As compared to some of the long-read assemblers, both short-read assemblers
performed well in minimizing mismatch and misassemblies (Table 4).

It can be seen from Table 9 that A5-MiSeq, Canu, and Flye outperformed the other
assemblers in terms of N50 value. A5-MiSeq has the least mismatches and indels (63.7 kb
and 5.7 kb), but its total number of uncalled bases (N’s) was high in the assembly (6.1 kb).

Flye has 0 unaligned contigs according to the unaligned statistics. Since contigs contain
structural errors, this does not always guarantee a 100% genome fraction. In comparison
to A5-MiSeq and Flye, Flye has a high rate of misassembly errors (translocation and
inversion). It does not retrieve the reference genome as good as Canu (Table 3), which has
the largest genome fraction of 95.26%. Flye’s ability to extract the reference genome to its
full capacity is hampered by misassembly errors.

Staphylococcus aureus
For Staphylococcus aureus, the highest number of contigs was achieved by Falcon, while
Canu and Flye produced the largest contig and N50 value in the assembly as presented in
Table 10. Based on statistics without reference, the performance of Canu was the best in
terms of generating the highest N50 and N75 value.

Although SPAdes and SOAPdenovo2 produced modest contiguous reads, they faced
a challenge in producing an N50 values that was above average. This was because they
produced the most mismatches and indels (Table 4).

Dida and Yi (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.636 22/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.636

Table 10 Assembly statistics of assemblers on Staphylococcus aureus dataset.

Read type Assemblers # Contigs N50 L50 GC(%)

A5-MiSeq 36 244991 9 32.69
Canu 9 2907970 1 32.73
Falcon 2035 9071 746 33.21
Flye 1 2896520 1 23.74
Hinge 20 929468 3 32.73

Long

SGA 81 109236 17 32.66
SPAdes 47 127345 8 32.66

Short
SOAPdenovo2 41 180321 5 32.69

Notes.
The minimum number of contigs generating 50% of the assembly base is represented by L50.

Canu encounters a 2.9 Mb of misassembled contigs in misassemblies while using
a reference genome. Alternatively, the same issue exists with Flye’s with a 2.8 Mb of
misassembled contigs. Although it appears to be a significant challenge, they were able
to overcome it by creating longer contigs that enabled them to maintain similar NG50
values to their N50 and higher NGA50 values. With the same defect, however, Hinge
outperformed Canu and Flye, with a higher total aligned length value and an NGA50 value
nearly twice as high as the other assemblers. As listed in Table 3, Hinge is the best assembler
for Staphylococcus aureus, with a genome fraction of 92.5%.

CONCLUSION
Considering the analyses of the seven genomes for which the actual assembly is available,
Flye has consistently demonstrated superior output based on contig size, with the trade-off
between scale and error rate. Hinge and Canu, though they demonstrate more errors
than Flye, both performed reasonably well too. Falcon appears very capable of generating
contigs, but its contigs contain several minor errors. Hinge and Canu, are based on the
OLC method, with extra errors being added by both the assemblers to maximize the length
of the contigs. Flye, by contrast, is a hybrid assembler with modules from other assemblers
for many of its core functions, and its efficiency is not independent in this regard.

The short read assemblers SOAPdenovo2 and SPAdes provided results that were neither
the best nor the worst, but on closer inspection revealed many errors that would not
have been visible if the reference genome had not been present. Despite their average
performances, they excelled at overcoming misassemblies. Except for a higher number
of uncalled bases, a lower value of the largest contig, and a value of N50, SOAPdenovo2
showed an average rate of the number of contigs, replication ratio, indels, and misassembly
for all sequenced genomes. We may conclude that the DBG approach is ideally suited for
the handling of misassembly. Another thing we noticed about the short-read assembly is
their low assembling time compared to the long read assemblies.

In the Human genome dataset, HiFiasm outperformed other assemblers in terms of
genome fraction, total aligned length, and total length of contigs. It does, however, have its
own set of problems with mismatches and misassemblies. On the human genome, it was

Dida and Yi (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.636 23/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.636

the only assembler that came close to Flye. Due to the limitation of PacBio HIFI reads, we
were unable to assemble the rest of the dataset using HiFiasm.

In general, if the assembler’s objective is to generate longer contigs, an assembler will
generate a large N50 value, which would be costly in terms of errors. However, it would
be at the cost of smaller contigs if the objective of an assembler is to minimize the number
of errors. Larger N50 values were often created by Flye, Canu, and Hinge at the cost of
accuracy (especially with Hinge).

Flye tends to be the most reliably performing assembler, in terms of contiguity as well
as correctness, given all metrics.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This research was supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-
2019R1F1A1064019). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Ministry of Education: NRF-2019R1F1A1064019.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Firaol Dida conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

• Gangman Yi conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The data and code are available at GitHub: https://github.com/Firaol1221/Empirical-
Evaluation-of-Methods-forDe-Novo-Genome-Assembly.

REFERENCES
Abate AR, Hung T, Sperling RA, Mary P, Rotem A, Agresti JJ, Weiner MA,Weitz

DA. 2013. DNA sequence analysis with droplet-based microfluidics. Lab on a Chip
13(24):4864–4869 DOI 10.1039/c3lc50905b.

Ahmed N, Bertels K, Al-Ars Z. 2016. A comparison of seed-and-extend techniques in
modern DNA read alignment algorithms. In: 2016 IEEE international conference on
bioinformatics and biomedicine (BIBM). Piscataway: IEEE, 1421–1428.

Dida and Yi (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.636 24/31

https://peerj.com
https://github.com/Firaol1221/Empirical-Evaluation-of-Methods-forDe-Novo-Genome-Assembly
https://github.com/Firaol1221/Empirical-Evaluation-of-Methods-forDe-Novo-Genome-Assembly
http://dx.doi.org/10.1039/c3lc50905b
http://dx.doi.org/10.7717/peerj-cs.636

Altschul SF, GishW,MillerW,Myers EW, Lipman DJ. 1990. Basic local alignment
search tool. Journal of Molecular Biology 215(3):403–410
DOI 10.1016/S0022-2836(05)80360-2.

AnsorgeWJ. 2009. Next-generation DNA sequencing techniques. New Biotechnology
25(4):195–203 DOI 10.1016/j.nbt.2008.12.009.

Bankevich A, Nurk S, Antipov D, Gurevich AA, DvorkinM, Kulikov AS, Lesin VM,
Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV. 2012. SPAdes: a new genome
assembly algorithm and its applications to single-cell sequencing. Journal of Compu-
tational Biology 19(5):455–477 DOI 10.1089/cmb.2012.0021.

Batzoglou S, Jaffe DB, Stanley K, Butler J, Gnerre S, Mauceli E, Berger B, Mesirov JP,
Lander ES. 2002. ARACHNE: a whole-genome shotgun assembler. Genome Research
12(1):177–189 DOI 10.1101/gr.208902.

Beck TF, Mullikin JC, NISC Comparative Sequencing Program. 2016. Systematic
evaluation of Sanger validation of next-generation sequencing variants. Clinical
Chemistry 62(4):647–654 DOI 10.1373/clinchem.2015.249623.

Benoit G, Lemaitre C, Lavenier D, Rizk G. 2014. Compression of high throughput
sequencing data with probabilistic de Bruijn graph. ArXiv preprint. arXiv:1412.5932.

Berlin K, Koren S, Chin C-S, Drake JP, Landolin JM, Phillippy AM. 2015. Assembling
large genomes with single-molecule sequencing and locality-sensitive hashing.
Nature Biotechnology 33(6):623–630 DOI 10.1038/nbt.3238.

Biosciences. 2020. Ion Torrent S5 and S5XL—Biosciences. Available at https://www.
biosciences.ie/ ion-torrent-s5-and-s5xl .

Boetzer M, Henkel CV, Jansen HJ, Butler D, PirovanoW. 2011. Scaffolding pre-
assembled contigs using SSPACE. Bioinformatics 27(4):578–579
DOI 10.1093/bioinformatics/btq683.

Boisvert S, Laviolette F, Corbeil J. 2010. Ray: simultaneous assembly of reads from a
mix of high-throughput sequencing technologies. Journal of Computational Biology
17(11):1519–1533 DOI 10.1089/cmb.2009.0238.

Bonfield JK, Smith KF, Staden R. 1995. A new DNA sequence assembly program. Nucleic
Acids Research 23(24):4992–4999 DOI 10.1093/nar/23.24.4992.

BurrowsM,Wheeler DJ. 1994. A block-sorting lossless data compression algorithm. SRS
Research Report. Palo Alto: Systems Research Center. Available at https://www.hpl.
hp.com/ techreports/Compaq-DEC/SRC-RR-124.pdf .

Butler J, MacCallum I, Kleber M, Shlyakhter IA, Belmonte MK, Lander ES, Nusbaum
C, Jaffe DB. 2008. ALLPATHS: de novo assembly of whole-genome shotgun
microreads. Genome Research 18(5):810–820 DOI 10.1101/gr.7337908.

ChaissonMJP,Wilson RK, Eichler EE. 2015. Genetic variation and the de novo assembly
of human genomes. Nature Reviews Genetics 16(11):627–640 DOI 10.1038/nrg3933.

Cheng H, Concepcion GT, Feng X, Zhang H, Li H. 2021.Haplotype-resolved de novo
assembly using phased assembly graphs with hifiasm. Nature Methods 18(2):170175
DOI 10.1038/s41592-020-01056-5.

Chin CS, Alexander DH,Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland
A, Huddleston J, Eichler EE, Turner SW.. 2013. Nonhybrid, finished microbial

Dida and Yi (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.636 25/31

https://peerj.com
http://dx.doi.org/10.1016/S0022-2836(05)80360-2
http://dx.doi.org/10.1016/j.nbt.2008.12.009
http://dx.doi.org/10.1089/cmb.2012.0021
http://dx.doi.org/10.1101/gr.208902
http://dx.doi.org/10.1373/clinchem.2015.249623
http://arXiv.org/abs/1412.5932
http://dx.doi.org/10.1038/nbt.3238
https://www.biosciences.ie/ion-torrent-s5-and-s5xl
https://www.biosciences.ie/ion-torrent-s5-and-s5xl
http://dx.doi.org/10.1093/bioinformatics/btq683
http://dx.doi.org/10.1089/cmb.2009.0238
http://dx.doi.org/10.1093/nar/23.24.4992
https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
http://dx.doi.org/10.1101/gr.7337908
http://dx.doi.org/10.1038/nrg3933
http://dx.doi.org/10.1038/s41592-020-01056-5
http://dx.doi.org/10.7717/peerj-cs.636

genome assemblies from long-read SMRT sequencing data. Nature Methods
10(6):563–569 DOI 10.1038/nmeth.2474.

Chin CS, Peluso P, Sedlazeck FJ, NattestadM, Concepcion GT, Clum A, Dunn C,
O’Malley R, Figueroa-Balderas R, Morales-Cruz A, Cramer GR. 2016. Phased
diploid genome assembly with single-molecule real-time sequencing. Nature Methods
13(12):1050–1054 DOI 10.1038/nmeth.4035.

Chitsaz H, Yee-Greenbaum JL, Tesler G, LombardoMJ, Dupont CL, Badger JH,
NovotnyM, Rusch DB, Fraser LJ, Gormley NA, Schulz-Trieglaff O. 2011. Efficient
de novo assembly of single-cell bacterial genomes from short-read data sets. Nature
Biotechnology 29(10):915–921 DOI 10.1038/nbt.1966.

Chmielecki Juliann, MeyersonMatthew. 2014. DNA sequencing of cancer: what have we
learned? Annual Review of Medicine 65:63–79
DOI 10.1146/annurev-med-060712-200152.

Chu T-C, Lu C-H, Liu T, Lee GC, LiWH, Shih AC-C. 2013. Assembler for de novo
assembly of large genomes. Proceedings of the National Academy of Sciences of the
United States of America 110(36):E3417–E3424 DOI 10.1073/pnas.1314090110.

Cock JA, Fields CJ, Goto N, Heuer ML, Rice PM. 2010. The Sanger FASTQ file format
for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic
Acids Research 38(6):1767–1771 DOI 10.1093/nar/gkp1137.

Coil D, Jospin G, Darling AE. 2015. A5-miseq: an updated pipeline to assemble
microbial genomes from Illumina MiSeq data. Bioinformatics 31(4):587–589
DOI 10.1093/bioinformatics/btu661.

Collins FS, MorganM, Patrinos A. 2003. The Human Genome Project: lessons from
large-scale biology. Science 300(5617):286–290 DOI 10.1126/science.1084564.

Compeau PEC, Pevzner PA, Tesler G. 2011.How to apply de Bruijn graphs to genome
assembly. Nature Biotechnology 29(11):987–991 DOI 10.1038/nbt.2023.

Dayarian A, Michael TP, Sengupta AM. 2010. SOPRA: scaffolding algorithm
for paired reads via statistical optimization. BMC Bioinformatics 11(1):345
DOI 10.1186/1471-2105-11-345.

DeciBio. 2020. 10X Genomics Launches GemCode - DeciBio. https://www.decibio.com/2015/02/25/10x-
genomics-launches-gemcode/.

Denton JF, Lugo-Martinez J, Tucker AE, Schrider DR,WarrenWC, HahnMW. 2014.
Extensive error in the number of genes inferred from draft genome assemblies. PLOS
Computational Biology 10(12):e1003998 DOI 10.1371/journal.pcbi.1003998.

DNALink. 2020. DNALink. https://www.dnalink.com/ngs-overview.htmlhttps://www.dnalink.com/ngs-
overview.html.

Dohm JC, Lottaz C, Borodina T, Himmelbauer H. 2007. SHARCGS, a fast and highly
accurate short-read assembly algorithm for de novo genomic sequencing. Genome
Research 17(11):1697–1706 DOI 10.1101/gr.6435207.

El-Metwally S, Zakaria M, Hamza T. 2016. LightAssembler: fast and memory-
efficient assembly algorithm for high-throughput sequencing reads. Bioinformatics
32(21):3215–3223 DOI 10.1093/bioinformatics/btw470.

Dida and Yi (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.636 26/31

https://peerj.com
http://dx.doi.org/10.1038/nmeth.2474
http://dx.doi.org/10.1038/nmeth.4035
http://dx.doi.org/10.1038/nbt.1966
http://dx.doi.org/10.1146/annurev-med-060712-200152
http://dx.doi.org/10.1073/pnas.1314090110
http://dx.doi.org/10.1093/nar/gkp1137
http://dx.doi.org/10.1093/bioinformatics/btu661
http://dx.doi.org/10.1126/science.1084564
http://dx.doi.org/10.1038/nbt.2023
http://dx.doi.org/10.1186/1471-2105-11-345
https://www.decibio.com/2015/02/25/10x-genomics-launches-gemcode/
https://www.decibio.com/2015/02/25/10x-genomics-launches-gemcode/
http://dx.doi.org/10.1371/journal.pcbi.1003998
http://dx.doi.org/10.1101/gr.6435207
http://dx.doi.org/10.1093/bioinformatics/btw470
http://dx.doi.org/10.7717/peerj-cs.636

Ferragina P, Manzini G. 2005. Indexing compressed text. Journal of the ACM (JACM)
52(4):552–581 DOI 10.1145/1082036.1082039.

Flicek P, Birney E. 2009. Sense from sequence reads: methods for alignment and
assembly. Nature Methods 6(11):S6–S12 DOI 10.1038/nmeth.1376.

Fox S, Filichkin S, Mockler TC. 2009. Applications of ultra-high-throughput se-
quencing. In: Belostotsky D, ed. Plant Systems Biology. Methods in Molec-
ular BiologyTM (Methods and Protocols). vol. 553. Totawa: Humana Press
DOI 10.1007/978-1-60327-563-7_5.

Giegerich R,Wheeler D. 1996. Pairwise sequence alignment. BioComputing Hypertext
Coursebook 2:1–6.

Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton JN,Walker BJ, Sharpe
T, Hall G, Shea TP, Sykes S, Berlin AM. 2011.High-quality draft assemblies of
mammalian genomes from massively parallel sequence data. Proceedings of the
National Academy of Sciences of the United States of America 108(4):1513–1518
DOI 10.1073/pnas.1017351108.

Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F,
Hoheisel JD, Jacq C, JohnstonM, Louis EJ. 1996. Life with 6000 genes. Science
274(5287):546–567 DOI 10.1126/science.274.5287.546.

Grada A,Weinbrecht K. 2013. Next-generation sequencing: methodology and applica-
tion. The Journal of Investigative Dermatology 133(8):e11
DOI 10.1038/skinbio.2013.178.

Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for
genome assemblies. Bioinformatics 29(8):1072–1075
DOI 10.1093/bioinformatics/btt086.

Hall N. 2007. Advanced sequencing technologies and their wider impact in microbiology.
Journal of Experimental Biology 210(9):1518–1525 DOI 10.1242/jeb.001370.

HaqueW, Aravind A, Reddy B. 2009. Pairwise sequence alignment algorithms: a
survey. In: Proceedings of the 2009 conference on information science, technology and
applications. 96–103.

He Y, Zhang Z, Peng X,Wu F,Wang J. 2013. de novo assembly methods for next
generation sequencing data. Tsinghua Science and Technology 18(5):500–514
DOI 10.1109/TST.2013.6616523.

Head SR, Komori HK, LaMere SA,Whisenant T, Van Nieuwerburgh F, Salomon DR,
Ordoukhanian P. 2014. Library construction for next-generation sequencing:
overviews and challenges. Biotechniques 56(2):61–77.

Huson DH, Reinert K, Myers EW. 2002. The greedy path-merging algorithm for contig
scaffolding. Journal of the ACM 49(5):603–615 DOI 10.1145/585265.585267.

Idury RM,WatermanMS. 1995. A new algorithm for DNA sequence assembly. Journal
of Computational Biology 2(2):291–306 DOI 10.1089/cmb.1995.2.291.

Illumina. 2020. NextSeq 1000 and NextSeq 2000 Sequencing Systems—Mid-
throughput benchtop sequencing. https://www.illumina.com/systems/sequencing-
platforms/nextseq-1000-2000.html.

Dida and Yi (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.636 27/31

https://peerj.com
http://dx.doi.org/10.1145/1082036.1082039
http://dx.doi.org/10.1038/nmeth.1376
http://dx.doi.org/10.1007/978-1-60327-563-7_5
http://dx.doi.org/10.1073/pnas.1017351108
http://dx.doi.org/10.1126/science.274.5287.546
http://dx.doi.org/10.1038/skinbio.2013.178
http://dx.doi.org/10.1093/bioinformatics/btt086
http://dx.doi.org/10.1242/jeb.001370
http://dx.doi.org/10.1109/TST.2013.6616523
http://dx.doi.org/10.1145/585265.585267
http://dx.doi.org/10.1089/cmb.1995.2.291
https://www.illumina.com/systems/sequencing-platforms/nextseq-1000-2000.html
https://www.illumina.com/systems/sequencing-platforms/nextseq-1000-2000.html
http://dx.doi.org/10.7717/peerj-cs.636

JeckWR, Reinhardt JA, Baltrus DA, HickenbothamMT,Magrini V, Mardis ER, Dangl
JL, Jones CD. 2007. Extending assembly of short DNA sequences to handle error.
Bioinformatics 23(21):2942–2944 DOI 10.1093/bioinformatics/btm451.

Kamath GM, Shomorony I, Xia F, Courtade TA, David NT. 2017.HINGE: long-read
assembly achieves optimal repeat resolution. Genome Research 27(5):747–756
DOI 10.1101/gr.216465.116.

Kazazian HH. 2004.Mobile elements: drivers of genome evolution. Science 303(5664):
1626–1632 DOI 10.1126/science.1089670.

Khodakov D,Wang C, Zhang DY. 2016. Diagnostics based on nucleic acid sequence
variant profiling: PCR, hybridization, and NGS approaches. Advanced Drug Delivery
Reviews 105:3–19 DOI 10.1016/j.addr.2016.04.005.

Kim J, Ji M, Yi G. 2020. A review on sequence alignment algorithms for short
reads based on next-generation sequencing. IEEE Access 8:189811–189822
DOI 10.1109/ACCESS.2020.3031159.

KolmogorovM, Yuan J, Lin Y, Pevzner Pavel A. 2019. Assembly of long, error-prone
reads using repeat graphs. Nature Biotechnology 37(5):540–546
DOI 10.1038/s41587-019-0072-8.

Koren S. 2012. Genome assembly: novel applications by harnessing emerging sequencing
technologies and graph algorithms. PhD thesis, University of Maryland.

Koren S, Phillippy AM. 2015. One chromosome, one contig: complete microbial
genomes from long-read sequencing and assembly. Current Opinion in Microbiology
23:110–120 DOI 10.1016/j.mib.2014.11.014.

Koren S, Schatz MC,Walenz BP, Martin J, Howard JT, Ganapathy G,Wang Z, Rasko
DA, McCombieWR, Jarvis ED, Phillippy AM. 2012.Hybrid error correction
and de novo assembly of single-molecule sequencing reads. Nature Biotechnology
30(7):693–700 DOI 10.1038/nbt.2280.

Koren S,Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu:
scalable and accurate long-read assembly via adaptive k-mer weighting and repeat
separation. Genome Research 27(5):722–736 DOI 10.1101/gr.215087.116.

Li H. 2016.Minimap and miniasm: fast mapping and de novo assembly for noisy long
sequences. Bioinformatics 32(14):2103–2110 DOI 10.1093/bioinformatics/btw152.

Li R, Zhu H, Ruan J, QianW, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S. 2010.
de novo assembly of human genomes with massively parallel short read sequencing.
Genome Research 20(2):265–272 DOI 10.1101/gr.097261.109.

Liao X, Li M, Zou Y,Wu FX,Wang J. 2019. Current challenges and solutions of de novo
assembly. Quantitative Biology 7(2):90–109.

Lipman DJ, PearsonWR. 1985. Rapid and sensitive protein similarity searches. Science
227(4693):1435–1441 DOI 10.1126/science.2983426.

Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M, Usadel B. 2012. R obi NA:
A user-friendly, integrated software solution for RNA-Seq-based transcriptomics.
Nucleic Acids Research 40(W1):W622–W627 DOI 10.1093/nar/gks540.

Dida and Yi (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.636 28/31

https://peerj.com
http://dx.doi.org/10.1093/bioinformatics/btm451
http://dx.doi.org/10.1101/gr.216465.116
http://dx.doi.org/10.1126/science.1089670
http://dx.doi.org/10.1016/j.addr.2016.04.005
http://dx.doi.org/10.1109/ACCESS.2020.3031159
http://dx.doi.org/10.1038/s41587-019-0072-8
http://dx.doi.org/10.1016/j.mib.2014.11.014
http://dx.doi.org/10.1038/nbt.2280
http://dx.doi.org/10.1101/gr.215087.116
http://dx.doi.org/10.1093/bioinformatics/btw152
http://dx.doi.org/10.1101/gr.097261.109
http://dx.doi.org/10.1126/science.2983426
http://dx.doi.org/10.1093/nar/gks540
http://dx.doi.org/10.7717/peerj-cs.636

Luo R, Liu B, Xie Y, Li Z, HuangW, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J. 2012.
SOAPdenovo2: an empirically improved memory-efficient short-read de novo
assembler. Gigascience 1(1):2047–217X.

Luo J, Wang J, Li W, Zhang Z,Wu F-X, Li M, Pan Y. 2015. EPGA2: memory-efficient de
novo assembler. Bioinformatics 31(24):3988–3990.

MacLean D, Jones JDG, Studholme DJ. 2009. Application of’next-generation’sequencing
technologies to microbial genetics. Nature Reviews Microbiology 7(4):96–97.

Mardis ER. 2008. Next-generation DNA sequencing methods. Annual Review of Ge-
nomics and Human Genetics 9:387–402 DOI 10.1146/annurev.genom.9.081307.164359.

Mardis ER. 2011. A decades perspective on DNA sequencing technology. Nature
470(7333):198–203 DOI 10.1038/nature09796.

Medvedev P, Pham S, ChaissonM, Tesler G, Pevzner P. 2011. Paired de bruijn graphs:
a novel approach for incorporating mate pair information into genome assemblers.
Journal of Computational Biology 18(11):1625–1634 DOI 10.1089/cmb.2011.0151.

Mestan KK, Ilkhanoff L, Mouli S, Lin S. 2011. Genomic sequencing in clinical trials.
Journal of Translational Medicine 9(1):222 DOI 10.1186/1479-5876-9-222.

Metzker ML. 2010. Sequencing technologiesthe next generation. Nature Reviews Genetics
11(1):31–46 DOI 10.1038/nrg2626.

Miller JR, Delcher AL, Koren S, Venter E, Walenz BP, Brownley A, Johnson J, Li K,
Mobarry C, Sutton G. 2008. Aggressive assembly of pyrosequencing reads with
mates. Bioinformatics 24(24):2818–2824 DOI 10.1093/bioinformatics/btn548.

Miller JR, Koren S, Sutton G. 2010. Assembly algorithms for next-generation sequencing
data. Genomics 95(6):315–327 DOI 10.1016/j.ygeno.2010.03.001.

Morozova O, Marra MA. 2008. Applications of next-generation sequencing technologies
in functional genomics. Genomics 92(5):255–264 DOI 10.1016/j.ygeno.2008.07.001.

Mulyukov Z, Pevzner PA. 2002. EULER-PCR: finishing experiments for repeat reso-
lution. In: Pacific Symposium on Biocomputing 2002. Singapore: World Scientific,
199–210.

Myers EW. 1995. Toward simplifying and accurately formulating fragment assembly.
Journal of Computational Biology 2(2):275–290 DOI 10.1089/cmb.1995.2.275.

Myers Jr EW. 2016. A history of DNA sequence assembly. It-Information Technology
58(3):126–132 DOI 10.1515/itit-2015-0047.

Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, FlaniganMJ, Kravitz SA, Mo-
barry CM, Reinert KH, Remington KA, Anson EL. 2000. A whole-genome assembly
of Drosophila. Science 287(5461):2196–2204 DOI 10.1126/science.287.5461.2196.

Nagarajan N, PopM. 2009. Parametric complexity of sequence assembly: theory and
applications to next generation sequencing. Journal of Computational Biology
16(7):897–908 DOI 10.1089/cmb.2009.0005.

Nagarajan N, PopM. 2013. Sequence assembly demystified. Nature Reviews Genetics
14(3):157–167.

Nguyen TK, Yu J, Choi H-W, In B-C, Lim J-H. 2018. Optimization of genotyping-
by-sequencing (GBS) in chrysanthemums: selecting proper restriction enzymes

Dida and Yi (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.636 29/31

https://peerj.com
http://dx.doi.org/10.1146/annurev.genom.9.081307.164359
http://dx.doi.org/10.1038/nature09796
http://dx.doi.org/10.1089/cmb.2011.0151
http://dx.doi.org/10.1186/1479-5876-9-222
http://dx.doi.org/10.1038/nrg2626
http://dx.doi.org/10.1093/bioinformatics/btn548
http://dx.doi.org/10.1016/j.ygeno.2010.03.001
http://dx.doi.org/10.1016/j.ygeno.2008.07.001
http://dx.doi.org/10.1089/cmb.1995.2.275
http://dx.doi.org/10.1515/itit-2015-0047
http://dx.doi.org/10.1126/science.287.5461.2196
http://dx.doi.org/10.1089/cmb.2009.0005
http://dx.doi.org/10.7717/peerj-cs.636

for GBS library construction. Horticultural Science and Technology Impact Factor
36(1):108–114.

Nurk S,Walenz BP, Rhie A, Vollger MR, Logsdon GA, Grothe R, Miga KH, Eichler EE,
Phillippy AM, Koren S. 2020.HiCanu: accurate assembly of segmental duplications,
satellites, and allelic variants from high-fidelity long reads. Genome Research
30(9):12911305 DOI 10.1101/gr.263566.120.

Oxford Nanopore. 2020. Company history. Available at https://nanoporetech.com/about-
us/history .

PacBio. 2020. Sequel IIe System - Sequencing evolved - PacBio. Available at https://www.
pacb.com/products-and-services/ sequel-system/ latest-system-release/ .

ParkW. 2017. RNA-seq based Transcriptome analysis on domestic animals under
various experimental design. PhD thesis, Seoul National University.

Pekin D, Skhiri Y, Baret JC, Le Corre D, Mazutis L, Salem CB, Millot F, El Harrak A,
Hutchison JB, Larson JW, Link DR. 2011. Quantitative and sensitive detection of
rare mutations using droplet-based microfluidics. Lab on a Chip 11(13):2156–2166
DOI 10.1039/c1lc20128j.

Peng Y, Leung HCM, Yiu S-M, Chin FYL. 2012. IDBA-UD: a de novo assembler for
single-cell and metagenomic sequencing data with highly uneven depth. Bioinfor-
matics 28(11):1420–1428 DOI 10.1093/bioinformatics/bts174.

Pevzner PA, Tang H. 2001. Fragment assembly with double-barreled data. Bioinformatics
17(suppl_1):S225–S233 DOI 10.1093/bioinformatics/17.suppl_1.S225.

Pevzner PA, Tang H, Tesler G. 2004. de novo repeat classification and fragment assembly.
Genome Research 14(9):1786–1796 DOI 10.1101/gr.2395204.

Pevzner PA, Tang H,WatermanMS. 2001. An Eulerian path approach to DNA fragment
assembly. Proceedings of the National Academy of Sciences of the United States of
America 98(17):9748–9753 DOI 10.1073/pnas.171285098.

Phillippy AM, Schatz MC, PopM. 2008. Genome assembly forensics: finding the elusive
mis-assembly. Genome Biology 9(3):R55 DOI 10.1186/gb-2008-9-3-r55.

Reuter JA, Spacek DV, Snyder MP. 2015.High-throughput sequencing technologies.
Molecular Cell 58(4):586–597 DOI 10.1016/j.molcel.2015.05.004.

Rodrigue S, Malmstrom RR, Berlin AM, Birren BW, HennMR, Chisholm SW. 2009.
Whole genome amplification and de novo assembly of single bacterial cells. PLOS
ONE 4(9):e6864 DOI 10.1371/journal.pone.0006864.

Schatz MC, Delcher AL, Salzberg SL. 2010. Assembly of large genomes using second-
generation sequencing. Genome Research 20(9):1165–1173
DOI 10.1101/gr.101360.109.

Shendure J, Mitra RD, Varma C, Church GM. 2004. Advanced sequencing technologies:
methods and goals. Nature Reviews Genetics 5(5):335–344.

Simpson JT, Durbin R. 2012. Efficient de novo assembly of large genomes using com-
pressed data structures. Genome Research 22(3):549–556 DOI 10.1101/gr.126953.111.

Simpson JT,Wong K, Jackman SD, Schein JE, Jones SJM, Birol I. 2009. ABySS: a
parallel assembler for short read sequence data. Genome Research 19(6):1117–1123
DOI 10.1101/gr.089532.108.

Dida and Yi (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.636 30/31

https://peerj.com
http://dx.doi.org/10.1101/gr.263566.120
https://nanoporetech.com/about-us/history
https://nanoporetech.com/about-us/history
https://www.pacb.com/products-and-services/sequel-system/latest-system-release/
https://www.pacb.com/products-and-services/sequel-system/latest-system-release/
http://dx.doi.org/10.1039/c1lc20128j
http://dx.doi.org/10.1093/bioinformatics/bts174
http://dx.doi.org/10.1093/bioinformatics/17.suppl_1.S225
http://dx.doi.org/10.1101/gr.2395204
http://dx.doi.org/10.1073/pnas.171285098
http://dx.doi.org/10.1186/gb-2008-9-3-r55
http://dx.doi.org/10.1016/j.molcel.2015.05.004
http://dx.doi.org/10.1371/journal.pone.0006864
http://dx.doi.org/10.1101/gr.101360.109
http://dx.doi.org/10.1101/gr.126953.111
http://dx.doi.org/10.1101/gr.089532.108
http://dx.doi.org/10.7717/peerj-cs.636

Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP. 2014. Sequencing depth and cover-
age: key considerations in genomic analyses. Nature Reviews Genetics 15(2):121–132
DOI 10.1038/nrg3642.

Vega L. 2019. Fundamentals of genetics. Waltham Abbey, Essex: Scientific e-Resources.
Wajid B, Serpedin E. 2012. Review of general algorithmic features for genome assemblers

for next generation sequencers. Genomics, Proteomics & Bioinformatics 10(2):58–73
DOI 10.1016/j.gpb.2012.05.006.

Wang L, Jiang T. 1994. On the complexity of multiple sequence alignment. Journal of
Computational Biology 1(4):337–348 DOI 10.1089/cmb.1994.1.337.

Warren RL, Sutton GG, Jones SJM, Holt RA. 2007. Assembling millions of short DNA
sequences using SSAKE. Bioinformatics 23(4):500–501
DOI 10.1093/bioinformatics/btl629.

Ye C, Ma ZS, Cannon CH, PopM, DouglasWY. 2012. Exploiting sparseness in de novo
genome assembly. BMC bioinformatics 13(Suppl):S1 DOI 10.1186/1471-2105-13-S6-S1.

Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using de
Bruijn graphs. Genome Research 18(5):821–829 DOI 10.1101/gr.074492.107.

Zerbino DaR, McEwen GK, Margulies EH, Birney E. 2009. Pebble and rock band:
heuristic resolution of repeats and scaffolding in the velvet short-read de novo
assembler. PLOS ONE 4(12):e8407 DOI 10.1371/journal.pone.0008407.

Dida and Yi (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.636 31/31

https://peerj.com
http://dx.doi.org/10.1038/nrg3642
http://dx.doi.org/10.1016/j.gpb.2012.05.006
http://dx.doi.org/10.1089/cmb.1994.1.337
http://dx.doi.org/10.1093/bioinformatics/btl629
http://dx.doi.org/10.1186/1471-2105-13-S6-S1
http://dx.doi.org/10.1101/gr.074492.107
http://dx.doi.org/10.1371/journal.pone.0008407
http://dx.doi.org/10.7717/peerj-cs.636

