
Submitted 5 May 2021
Accepted 18 June 2021
Published 15 July 2021

Corresponding author
Swaraj Dube,
kecy3dsm@nottingham.edu.my

Academic editor
Yilun Shang

Additional Information and
Declarations can be found on
page 22

DOI 10.7717/peerj-cs.633

Copyright
2021 Dube et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Dynamic sampling of images from
various categories for classification
based incremental deep learning in fog
computing
Swaraj Dube, Yee Wan Wong and Hermawan Nugroho
Department of Electrical and Electronic Engineering, University of Nottingham - Malaysia Campus, Semenyih,
Selangor, Malaysia

ABSTRACT
Incremental learning evolves deep neural network knowledge over time by learning
continuously from new data instead of training a model just once with all data present
before the training starts. However, in incremental learning, new samples are always
streaming in whereby the model to be trained needs to continuously adapt to new
samples. Images are considered to be high dimensional data and thus training deep
neural networks on such data is very time-consuming. Fog computing is a paradigm
that uses fog devices to carry out computation near data sources to reduce the
computational load on the server. Fog computing allows democracy in deep learning
by enabling intelligence at the fog devices, however, one of the main challenges is the
high communication costs between fog devices and the centralized servers especially
in incremental learning where data samples are continuously arriving and need to
be transmitted to the server for training. While working with Convolutional Neural
Networks (CNN), we demonstrate a novel data sampling algorithm that discards certain
training images per class before training even starts which reduces the transmission
cost from the fog device to the server and the model training time while maintaining
model learning performance both for static and incremental learning. Results show that
our proposed method can effectively perform data sampling regardless of the model
architecture, dataset, and learning settings.

Subjects Artificial Intelligence, Computer Vision, Distributed and Parallel Computing, Emerging
Technologies
Keywords Data sampling, Fog computing, Deep learning, Artificial neural networks, Incremental
learning, Class incremental learning, Classification, Supervised learning, Transmission costs,
Computer vision

INTRODUCTION
A lot of success in traditional deep learning has been attributed to access to large amounts of
data and high computing power (Lecun, Bengio & Hinton, 2015). Even if large amounts of
data are available, training deep learning models is challenging because powerful hardware
resources are needed to do so, and training such deep models on large amounts of data is a
highly time-consuming process because most of the deep learning training uses stochastic
gradient descent and backpropagation for learning which is highly computationally
expensive (Sze et al., 2017). This is why there is a clear need to develop algorithms that

How to cite this article Dube S, Wong YW, Nugroho H. 2021. Dynamic sampling of images from various categories for classification
based incremental deep learning in fog computing. PeerJ Comput. Sci. 7:e633 http://doi.org/10.7717/peerj-cs.633

https://peerj.com/computer-science
mailto:kecy3dsm@nottingham.edu.my
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.633
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.633


can select only useful sets of data from the training dataset and still maintain the learning
performance of models while reducing the training time.

In deep learning, data sampling can take place at two stages: before training and during
training. In both cases, there are various parameters based on which data sampling takes
place. E.g., when performing data sampling during training, samples are discarded based
on whether or not certain samples are helping to improve the model learning process. In
deep learning, it is often observed that the majority of the learning takes place during the
first few epochs of training (Katharopoulos & Fleuret, 2018) which is why it makes sense
to sample data after this stage that do not contribute to the overall learning of models.
For performing data sampling before training, selected samples are usually chosen that
are able to represent the overall data distributions of all samples before sampling. Model
training can be greatly accelerated by performing data sampling during training; however,
for further acceleration, data sampling must also take place before training begins. It is
highly challenging to perform data sampling before model training because since deep
neural networks are stochastic in nature, it is not possible to predict the learning trajectory
of a deep learning model on a given dataset before training even starts. Once training starts
after data sampling has been performed, the training process cannot be reversed, which is
why it is very important to perform this form of data sampling with great care and detail,
making sure that the data distribution of all the samples has not been greatly affected after
data sampling.

Fog computing is an architecture that uses powerful fog devices to carry out a substantial
amount of computation (Nee & Nugroho, 2020). This in turn eases computational load at
centralized servers (Afrin et al., 2019; Alam et al., 2019; D’Agostino et al., 2019; Martins et
al., 2019; Xu et al., 2019; Zhao et al., 2019). The fog computing layer lies typically between
the centralized server layer and the smart devices layer as shown in Fig. 1. In the context of
fog computing, discarding data before training begins is a much-needed solution because
training neural networks on high dimensional data is a computational process that is
only suitable for centralized servers as they are the ones that possess powerful hardware
and storage capabilities. Therefore, fog devices must offload certain tasks to the server
to meet latency and Quality-of-Service (QoS) requirements (Baek & Kaddoum, 2021).
However, the transmission of high-dimensional data is an expensive process in terms of
communication costs (Eshratifar, Abrishami & Pedram , 2021; Eshratifar & Pedram, 2018;
Liu et al., 2019; Song et al., 2018). Therefore, the challenge in such scenarios is to discard
a number of samples at the fog device which can reduce transmission cost from the fog
device to the server along with accelerating the training time on the server while retaining
the classification accuracies. As for the applications of fog computing for computer vision,
two of the applications are in the domains of security surveillance and autonomous vehicles
whereby in both cases, inferences on incoming images from cameras can be performed
on the fog device such as object detection and classification and further analytics and/or
training takes place on the server.

In the deep learning context, class incremental learning is about learning parameters
for new incoming classes while retaining knowledge of the previously learned classes. The
choice of training a deep learning model statically or incrementally really depends on the

Dube et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.633 2/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.633


Figure 1 Basic architecture of fog computing.
Full-size DOI: 10.7717/peerjcs.633/fig-1

application being dealt with. This has led to state-of-the-art developments in incremental
learning (Choi, Lee & Choi, 2019; Gepperth & Karaoguz, 2016; Hayes et al., 2019; Kemker &
Kanan, 2018; Lesort et al., 2020; Nallaperuma et al., 2019; Parisi et al., 2018; Rebuffi et al.,
2017; Rusu et al., 2016). All of these works focus on using techniques such as regularization,
rehearsal, and dynamic network expansion to minimize catastrophic forgetting. The works
that attempt to alleviate catastrophic forgetting via regularization do so by fixing the weights
belonging to previous classes and/or preventing the weights belonging to old classes by
changing much in an effort to retain old knowledge while learning new tasks. The works
that attempt to alleviate catastrophic forgetting via rehearsal do so by using old samples
to train the model along with the samples belonging to new tasks. The works that attempt
to alleviate catastrophic forgetting via dynamic network expansion do so by increasing
the network capacity (increasing the number of neurons and/or increasing the number of
layers) in an effort to learn patterns of completely new incoming samples. Despite the fact
that lots of data are needed for learning incrementally, the area of data sampling remains
largely untapped in the field of incremental learning. Our data sampling algorithm is
capable of sampling data from image classes before training even starts by automatically
selecting a number of samples per class needed for learning. Our data sampling algorithm
is able to perform data sampling for both static and incremental learning.

Dube et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.633 3/26

https://peerj.com
https://doi.org/10.7717/peerjcs.633/fig-1
http://dx.doi.org/10.7717/peerj-cs.633


Data sampling becomes even more important when dealing with class incremental
learning because, in class incremental learning, models need to be trained continuously at
regular intervals as new data arrives and the computational and communication costs keep
growing which is why data sampling must be performed on new incoming data to reduce
the training and communication costs.

The contribution of this paper is a method for discarding a certain number of samples
from the original training distribution of each class on the fog device (before training
starts on the server) without affecting the model performance irrespective of the dataset,
model, and learning settings. We apply this method in an image classification-based class
incremental learning task to validate the findings.

The remaining of this article is presented in the following order: state-of-the-art research
is discussed in ‘Related Work’. Our system architecture and the algorithm behind our data
sampling method are explained in ‘Materials & Methods’. ‘Experimental Settings’ explains
the software, hyperparameters, and learning settings used. We present and discuss our
findings in ‘Results’ and ‘Discussion’, we then conclude our work in this article in the
‘Conclusion’ section.

RELATED WORK
It is a known fact that not all the data out of a given training distribution is needed
for training deep learning models. A lot of research has been done in this area that
discards training data during training (Alain et al., 2015; Gopal, 2016; Katharopoulos &
Fleuret, 2018; Loshchilov & Hutter, 2015; Needell, Srebro & Ward, 2016) whereby stochastic
gradient descent is performed with importance sampling i.e., after forward propagation,
only the useful samples are selected for backpropagation or by discarding samples whose
loss values do not changemuch after a few epochs of training. However, all these approaches
have one thing in common, these methods perform data sampling only after training has
begun whereas our data sampling algorithm can discard a number of samples from a given
training data distribution before the training even starts.

Recently, the work in Birodkar, Mobahi & Bengio (2019) reported that certain training
samples in a training data distribution are not useful and can be discarded before training.
The goal is achieved by discarding redundant samples from the training data distribution.
This approach has twomain problems. Firstly, the features of every imagemust be compared
with every other feature in the dataset, which is highly computationally expensive especially
for large datasets. Secondly, if in a training dataset, a particular class contains images of just
faces of a single person then technically, most of the images might be deemed redundant
by such algorithms and this would lead to a huge amount of data sampling causing a high
amount of information loss.

There are several uncertainty sampling techniques (Settles, 2009) in active learning that
are able to sample data based on query strategies. E.g., query strategies can select samples
based on least confidence, highest loss, highest expected model change, etc. Though these
query strategies have been very successful, these methods are not capable of counting
how much data can be sampled from a training distribution i.e., sample size selection
mechanism is not included. Therefore, an algorithm is needed that not only has a query

Dube et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.633 4/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.633


strategy but also has a mechanism to automatically discard a number of samples from a
given training data distribution without affecting learning performance. This is exactly
what we propose in this paper.

The approach in Liu et al. (2019) proposes a data sampling algorithm for an incremental
learning image classification application. To do so, this work computes the confidence
(accuracy) of the samples and if the confidence is smaller than a threshold, it indicates that
such samples are hard to understand for the model and thus, such samples are selected
for training the model further. However, the incremental learning model presented in
Liu et al. (2019) can only learn new streaming examples of the same class. We go a step
further and apply data sampling to an incremental learning model that learns completely
new streaming classes. The challenge here is to perform data sampling on novel classes for
which the model has no knowledge because the model has never seen such data before.

The works presented in Liu et al. (2019), Song et al. (2018) carry out data sampling at fog
devices before performing training on the server, however, none of these works carrying
out pre-training data sampling on novel data classes. The works in (López Chau, Li &
Yu, 2013; Shen et al., 2016; Wang et al., 2013) carry out pre-training data sampling and
still manage to retain model performances, however, these works highlight pre-training
data sampling for support vector machines and also do not consider data sampling for
incremental learning. We aim to perform pre-training data sampling for artificial neural
networks.

Instead of achieving state-of-the-art representation learning or improving classification
accuracies, our work strictly focuses on proposing a data sampling algorithm with a
dynamic sample size selection mechanism embedded in it which a lot of data sampling
algorithms and even active learning strategies do not possess. To the best of our knowledge,
what we propose is one of the first attempts of its kind since most of the notable work in
class incremental learning focuses on achieving state-of-the-art classification accuracies
(Castro, Mar & Schmid, 2018; Kemker & Kanan, 2018; Rebuffi et al., 2017; Rusu et al., 2016;
Wu et al., 2019) but do not consider the possibility of carrying out incremental learning
using a subsample of the overall training distribution which can reduce transmission costs
to the server and the training time. However, along with that, our main priority is to
maintain the classification accuracies during incremental learning.

MATERIALS & METHODS
Figure 2 shows our system pipeline. We use a feature extractor of a Convolutional Neural
Network (CNN) pre-trained on ImageNet (Fei-Fei, Deng & Li, 2010) for extracting features
from the new incoming images. We employ transfer learning whereby we set the learning
rate of CNN layers to be 0. This is because layers of CNNs pre-trained on ImageNet (Fei-Fei,
Deng & Li, 2010) already produce features that are highly significant for classification. The
way we implement transfer learning is by using pre-trained CNN feature extractors that are
trained on ImageNet i.e., in incremental learning, new incoming images are passed through
this pre-trained CNN feature extraction after which these ‘transferred features’ are sent to
the server where the classifier (Fully connected layers) is trained from scratch. The reason

Dube et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.633 5/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.633


Figure 2 Overview of the Sample Elimination Algorithm on a fog device.
Full-size DOI: 10.7717/peerjcs.633/fig-2

why we freeze the convolutional layers of the pre-trained CNNs is to avoid performing
backpropagation on the fog device for every mini-batch in the training dataset, this way,
the training can take place only on the server without transmitting the backpropagated
gradients of the classifier on the server back to the fog device for every mini-batch.

It can be seen from Fig. 3 that the feature extractor (CNN layers of the pre-trained CNN)
is run on the fog device and an Artificial Neural Network (ANN) based classifier is run on
the server. The pre-trained feature extractors are used to extract meaningful features from
input images and the classifier on the server is a neural network that is trained on incoming
data samples. We freeze the feature extractor which means that the CNN layers will not be
trained because, once backpropagation has taken place on the server, the gradients of the
classifier must then be sent back to the fog device after which backpropagation of the CNN
layers of the feature extractor must be carried out on the fog device if the CNN layers are
not frozen. This leads to a huge communication cost between the fog device and the server
along with a very expensive computation cost associated with performing backpropagation
on the feature extractor at the fog device.

We perform data sampling for each class.When samples from novel classes start arriving,
they are forward propagated through the convolutional layers of a CNN pre-trained on
ImageNet (Fei-Fei, Deng & Li, 2010). Our proposed Sample Elimination Algorithm (SEA)
takes place after this whereby the features of the images are forward propagated through
an ANN which is a single layer artificial neural network having β output neurons where
β is the total classes per incremental training round that will be learned, we let this ANN
be denoted as ANNfog . The weights of ANNfog are always randomly initialized for the new
β classes to be learned. By using ANNfog , we obtain the entropies of images. We then use
the entropy distribution of each class and compute the sample size to be discarded from
each class. ANNfog is never trained and is only used for computing entropies of images for

Dube et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.633 6/26

https://peerj.com
https://doi.org/10.7717/peerjcs.633/fig-2
http://dx.doi.org/10.7717/peerj-cs.633


Figure 3 Incremental learning system split between a fog device and a centralized server. Red block:
our contribution. Gray block: Input data. Blue block: In-built software communication modules.

Full-size DOI: 10.7717/peerjcs.633/fig-3

data sampling. The reason why the weights of ANNfog are always randomly initialized is
because of new β neurons being added to the classifier on the server after every incremental
training round for learning new tasks hence, the weights of ANNfog must also be initialized
in a randomized manner.

Once data sampling has taken place for each class, the features of the selected samples
are transmitted to the server. In class incremental learning, it is possible to learn a few
classes at a time which is why a particular incremental training round can have a few classes
being trained together. E.g., if we wish to train our neural network after every 10 classes

Dube et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.633 7/26

https://peerj.com
https://doi.org/10.7717/peerjcs.633/fig-3
http://dx.doi.org/10.7717/peerj-cs.633


have arrived, then each incremental training round will contain 10 classes. Therefore, once
all samples from all classes in an incremental training round have been forward propagated
through the CNN feature extractor and ANNfog , we finally start the main incremental
learning process on the server.

Certain datasets are imbalanced in nature and after SEA is applied to every class, the
number of samples in each class may vary as well which is why we balance the number
of samples in each class by applying the Synthetic Minority Over-sampling Technique
(SMOTE) (Chawla et al., 2002). As we have alreadymentioned that we are not contributing
any novel core incremental learning algorithm, we simply carry out incremental learning
by performing joint training which is one of the most common incremental learning
techniques that combines both the new samples with the old samples and trains the neural
network as the incremental learning progresses.

Once ANNserver has finished learning from an incremental training round, the SoftMax
classification layer of ANNserver is modified i.e., β new neurons are added to this layer.
Each neuron is responsible for classifying one of the total classes that have been learned
so far and since we are incrementally learning β classes at a time, we add β neurons to
the SoftMax classification layer, and only the weights associated with these neurons are
initialized in a random manner for learning from new classes.

We now describe the details of SEA. SEA attempts to discard a certain number of samples
per class. Let c be the index number of a class in a dataset and nc be the total samples in
class c . Let Ec be a set that holds all the entropies/losses for all samples in class c such that
Ec
∈ ec0,e

c
1,e

c
2,...,e

c
nc where E

c is sorted in ascending order. Entropies in Ec are obtained
via the cross-entropy cost objective as shown in Eq. (1).

ecj =

∣∣∣∣∣
−−−→(
lcj
)T
·

−−−−−−−−−−−−−−−−→

log eϕ
(
(W

′

fog ·x
c
j )+b

′

fog

)∣∣∣∣∣ (1)

In Eq. (1), the formula for cross-entropy loss is shown. The notation (·) represents the
dot product, xcj is the output of the convolutional layers of a pre-trained CNN for sample j

from class c ,
E(
lcj
)T

is the label (one-hot label vector) corresponding to xcj .W
′

fog and b
′

fog are
the weights and biases of the new β neurons ofANNfog . Since there is no precise mechanism
to predict how the images from novel classes will affect the training of ANNserver or any
other neural network for that matter, thereforeW

′

fog and b
′

fog are randomly initialized. ϕ(·)
is the SoftMax function. ecj represents the entropy of sample j of set Ec .

σ c
E =

(∑nc
j=1(e

c
j −µ

c
E)

2

nc

) 1
2

(2)

In Eq. (2), the standard deviation of Ec is computed where σ c
E is the standard deviation

of the set Ec and µc
E is the median of the set Ec . The reason why we choose the median

instead of the mean is to avoid the problem of entropy skewness in Ec , e.g., if the mean is
used and if one of the samples in Ec has a very high entropy value, the mean of the entire
list can increase greatly and can cause unstable data sampling which can greatly affect the

Dube et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.633 8/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.633


incremental learning process. However, choosing the median of Ec will not be affected by
such skewed entropies.

ωc
= arg max
∀ecj ∈Ec

(ecj ·I
(
µc
E−e

c
j <σ

c
E

)
) (3)

In Eq. (3), the notation (·) represents the scalar product. I(·) is the indicator function
whose output is one if the condition

(
ec0 ≤ ecj <ω

c
)
is satisfied, if this condition is not

satisfied then the output of I(·) is zero. The term ωc represents the cut-off loss and its role
is to count all samples with entropies smaller than ωc .

ρc =

nc∑
j=1

I
(
ec0 ≤ ecj <ω

c
)

(4)

In Eq. (4), ρc denotes the total number of samples that can be discarded from class c
before the remaining nc −ρc samples are transmitted to the server. In Eq. (4), we keep
counting the number of samples as long as the condition inside the indicator function is
being satisfied.

To summarize our proposed SEA, the training samples in each class are sorted with
respect to their loss values in ascending order. This loss distribution of each class is used to
perform data sampling. We then compute the standard deviation of this loss distribution
as we want to know by how much loss values differ from the median of this distribution.
We compute the difference between loss values of Ec and µc

E and compare the difference
with σ c

E , we start computing the difference starting from the lowest loss value in Ec . We
then take the maximum loss value in Ec that satisfies (3). We call this loss value the cut-off
loss that is denoted by ωc . We then arrive at the final stage of our proposed SEA i.e., to
determine the sample size to be discarded per class. We count all samples that have entropy
values that lie between ec0 (minimum loss value) and ωc (cut-off loss value) in Ec .

The intuition behind SEA is to select samples with entropies that vary highly from the
median of the loss distribution of the samples per class. This is because samples with high
entropies are the ones that a deep learning model does not understand thus, these samples
must be trained further since such samples are considered hard samples. This is why we
compute the standard deviation of the loss distribution, and since the standard deviation
of a list represents by how much all the samples in the list deviate from the median, we
compute the difference of low loss samples from the median and count how many such
samples have a difference which is even smaller than the standard deviation, this indicates
that such samples have a very low deviation from the median of the entropy distribution
of the class and will not contribute greatly to the ANN parameter learning at the server.
Hence, these are the total number of samples that are not needed for training and are
discarded at the fog device. If the loss value of the very first sample in a batch of nc images
does not satisfy (3), this implies that σ c

E has a very low value meaning that there is not
much deviation in the data distribution of nc images and hence ωc is set to the minimum
loss value (ec0) which means that no data sampling takes place for class c . However, if ρc

is greater than zero, then the total samples to be eliminated (ρc) from class c are then
discarded randomly. This is done because of the random weight initialization of newly

Dube et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.633 9/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.633


Table 1 Learning settings and datasets used for all experiments.

Datasets

Learning settings CUB-200
(Welinder et al., 2010)

Stanford dogs
(Khosla et al., 2011)

CIFAR-100
(Krizhevsky, 2009)

ImageNet
(Fei-Fei, Deng & Li, 2010)

Training epochs 25 30 15 3
Number of fully
connected layers

1 1 1 2

Dropout probability 0.25 0.30 0.20 0.30,0.20
Learning rate 0.0015 0.0002 0.0001 0.0035
Batch size 16 32 64 128
Number of classes
learnt at a time

50 40 20 2

Image size 90× 90× 3 85× 85× 3 32× 32× 3 100× 100× 3
CNN model SqueezeNet

(Iandola et al., 2016)
MobileNetV2
(Sandler et al., 2018)

MnasNet
(Tan et al., 2019)

ShuffleNet V2
(Ma et al., 2018)

Train/test split 5994/5794 12000/8580 50000/10000 6937/1728
Train/Test split (%) 50.84/49.16 58.30/41.70 83.30/16.60 80.00/20.00

assigned β neurons of ANNserver and because of the stochasticity of neural networks, it is
possible for any sample to have a final loss value after training that is greater than its own
initial loss value before the start of the training. In order to reduce the frequency of such
samples that exhibit such behavior, we perform data sampling in a randomized manner.
This is discussed in much detail in Results and Discussion.

Experimental settings
We now describe the details of our experiment implementations to evaluate the
performance of our proposed data sampling algorithm (SEA). Table 1 shows the
datasets, models, and hyperparameters used for our experiments. Apart from CIFAR-100
(Krizhevsky, 2009), all the datasets are imbalanced in nature. We only choose RGB images
present in each of these datasets and all the images in these datasets are resized before
training begins as shown in Table 1. All the hyperparameters have been randomly chosen
to show that SEA can perform under any learning setting. Achieving the state-of-the-art
accuracy for incremental learning is not our goal thus the hyperparameters shown in Table 1
have not been fine-tuned. We would like to point out that when working with ImageNet
(Fei-Fei, Deng & Li, 2010), we use two fully connected layers in ANNserver therefore, for the
first layer which has 1000 neurons, we use a dropout probability of 0.30 and for the second
and the final layer (SoftMax classification layer) of ANNserver , we use a dropout probability
of 0.20. Since we are dealing in a fog computing scenario, the CNN models must be
lightweights in nature hence, we choose four different lightweights CNNmodels which are
as follows: SqueezeNet (Iandola et al., 2016), MobileNetV2 (Sandler et al., 2018), MnasNet
(Tan et al., 2019), and ShuffleNetV2 (Ma et al., 2018). Another reason for choosing four
different CNNs is to ensure the robustness of SEA under various CNN architectures.

As mentioned, SEA counts the number of samples to be discarded per class and discards
these samples in a randomized manner. We compare SEA with four baseline methods: No

Dube et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.633 10/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.633


Sampling (NS) and three non-parametric statistical methods: Wilcoxon Rank-Sum Test
(WRST) (Ozcan & Basturk, 2020), Median Test (MT) (Alippi, Boracchi & Roveri, 2017),
and Kruskal–Wallis Test (KWT) (Höpken et al., 2020). Firstly, WRST (Ozcan & Basturk,
2020), MT (Alippi, Boracchi & Roveri, 2017), and KWT (Höpken et al., 2020) are not built
on top of SEA and secondly, these methods are non-parametric in nature that do not
assume any data distribution in advance. Furthermore, these methods are very strong in
comparing statistical differences between two groups whereas KWT (Höpken et al., 2020)
can compare statistical differences across multiple groups. Data sampling leads to the
formation of two groups i.e., one group containing all samples in a class (nc) and the
second group containing only the selected samples per class for training (nc−ρc) which is
why these non-parametric methods are ideal for comparison with SEA. We apply WRST
(Ozcan & Basturk, 2020), MT (Alippi, Boracchi & Roveri, 2017), and KWT (Höpken et al.,
2020) to Ec for performing data sampling. The formulas to compute WRST (Ozcan &
Basturk, 2020), KWT (Höpken et al., 2020), and MT (Alippi, Boracchi & Roveri, 2017) are
shown in Eqs. (5)–(9), (10)–(12), and (13)–(19) respectively.

µw =
nA · (nA+nB+1)

2
(5)

σw =

√
nA ·nB(nA+nB+1)

12
(6)

z =
R−µw

σw
(7)

p=
1
2
·

[
1+erf

(
z
√
2

)]
(8)

ϑ =

{
1,p<α
0,otherwise

(9)

In Eqs. (5)– (9), nA and nB represent the number of elements in data distributions A
and B, respectively. µw and σw denote the mean and the standard deviation, respectively.
R is the rank sum of the elements in data distribution A.z represents the z score and p
represents the p-value. α is the statistical significance value which is set to 0.05 in our
experiments.

nT =
k∑

i=1

ni (10)

H =

[
12

nT · (nT +1)
·

k∑
i=1

R2
i

ni

]
−3 · (nT +1) (11)

ϑ =

{
1,H >X 2

0,otherwise
(12)

In Eqs. (10)–(12), k represents the total data distributions that are being compared, k is
set to two in our case since we are comparing two data distributions i.e., the distribution
with all entropy values of the class being processed and the distribution with the selected

Dube et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.633 11/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.633


entropy values of the class being processed. ni is the total samples in a data distribution
k and nT is the total samples across all the data distributions. Ri is the rank sum of all
elements in data distribution k.X 2 is the inverse of the p-value for a chi-square distribution
where p is set to 0.05 in our experiments.

W =
nA∑
i=1

I(Ai>µ̃AB) (13)

X =
nB∑
i=1

I(Bi>µ̃AB) (14)

Y =
nA∑
i=1

I(Ai<µ̃AB) (15)

Z =
nB∑
i=1

I(Bi<µ̃AB) (16)

NAB=W +X+Y +Z (17)

X 2
=

NAB ·
(
W ·Z−X ·Y − NAB

2

)2
(W +X) · (Y +Z ) · (W +Y ) · (X+Z )

(18)

ϑ =

{
1,X 2>X 2

α,k−1
0,otherwise

(19)

In Eqs. (13)– (19), µ̃AB is the median of all the elements in the distributions A and B
combined. W and X are the number of elements in the distributions A and B respectively
that are greater than µ̃AB. Y and Z are the number of elements in the distributions A and B
respectively that are less than µ̃AB.NAB is the total number of elements in distributions A
and B combined. X 2 is the chi-square value. X 2

α,k−1 is the chi-square value at significance
level α, k−1 is the degree of freedom where k is the number of data distributions. α is set
to 0.005.

In all non-parametric tests described above, if ϑ is 1, it means there is a statistical
difference that is detected between distributionsA and B thus all the samples corresponding
to the entropies in distribution A are transmitted to the server. If ϑ is 0, it means there is
not a statistical difference between distributions A and B.

SMOTE (Chawla et al., 2002) is used to create new samples per class to tackle the
problem of class imbalance. In Eq. (20), the formula to generate a new sample (Chawla et
al., 2002) is shown.

p
′

= p1+
[
λ · (p2−p1)

]
(20)

In Eq. (20), p
′

is the newly created point (sample). p1 and p2 are any two random points
in the dataset. λ is a uniformly random generated number between zero and one i.e.,
λ∼U ([0,1]). In our experiments, we randomly choose p1 and p2 per class to balance the
number of samples across all classes.

All classification accuracies reported in our experiments are the top-5 accuracies
(rounded to two decimal places). Each experiment is run three times and all metrics

Dube et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.633 12/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.633


Table 2 Performance of the incremental learning system with respect to various data sampling algo-
rithms when evaluating CIFAR-100 (Krizhevsky, 2009) usingMnasNet (Tan et al., 2019).

Data Sampling Algorithm Number of Classes Trained

20 40 60 80 100

(i) Samples Needed for Training
NS 10000 10000 10000 10000 10000
SEA 8578 8461 8406 8453 8485
WRST (Ozcan & Basturk, 2020) 9379 9393 9394 9393 9395
MT (Alippi, Boracchi & Roveri, 2017) 8742 8751 8759 8767 8757
KWT (Höpken et al., 2020) 9260 9267 9279 9272 9271

(ii) Training time (s)
NS 4.36 8.38 12.32 16.48 20.50
SEA 3.49 7.22 10.84 13.91 17.80
WRST (Ozcan & Basturk, 2020) 4.15 8.02 11.81 15.29 18.90
MT (Alippi, Boracchi & Roveri, 2017) 3.87 7.18 10.95 14.22 18.30
KWT (Höpken et al., 2020) 3.94 7.76 11.99 16.21 19.51

iii) Classification Accuracy (%)
NS 85.35 75.25 69.73 66.66 64.08
SEA 84.75 74.25 69.01 65.93 63.59
WRST (Ozcan & Basturk, 2020) 84.74 74.23 69.15 66.36 63.58
MT (Alippi, Boracchi & Roveri, 2017) 84.50 74.13 68.55 65.26 62.67
KWT (Höpken et al., 2020) 84.55 74.18 69.08 66.16 63.39

reported in our experiments are then averaged over these three runs. However, we report
top-1 accuracy when working with the ImageNet (Fei-Fei, Deng & Li, 2010) dataset. We
calculate the classification accuracies using the test set of each dataset. The PyTorch
(Paszke et al., 2019) library is used to program the experiments. All of the input images are
normalized by converting from a range of 0 - 255 to 0 - 1. The Nvidia Tesla K80 GPU is
used as the server and a desktop computer with an i7 processor is used as a fog device to
carry out all the experiments.

RESULTS
In this section, we present and discuss our results. Tables 2–5 show the number of samples
selected before incremental training starts, the time taken to train ANNserver , and the
classification accuracies at every incremental training round. This is with respect to the
learning settings shown in Table 1 using all the data sampling algorithms along with no
data sampling. The numerical values in bold are the ones that corresponding to the best
data sampling algorithm out of SEA, WRST (Ozcan & Basturk, 2020), MT (Alippi, Boracchi
& Roveri, 2017), and KWT (Höpken et al., 2020) in terms of a given metric.

For CIFAR-100 (Krizhevsky, 2009), regardless of the data sampling algorithm, the
classification accuracies obtained at every incremental training round are very similar to
the ones obtained without any data sampling. However, the differences are observed in the
number of samples needed for training and the training time at every incremental training
round. SEA requires the least number of training samples and the least amount of training

Dube et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.633 13/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.633


Table 3 Performance of the incremental learning system with respect to various data sampling algo-
rithms when evaluating CUB-200 (Welinder et al., 2010) using SqueezeNet (Iandola et al., 2016).

Data Sampling Algorithm Number of Classes Trained

50 100 150 200

(i) Samples Needed for Training
NS 1498 1495 1500 1498
SEA 1381 1345 1347 1346
WRST (Ozcan & Basturk, 2020) 1068 1066 1070 1069
MT (Alippi, Boracchi & Roveri, 2017) 723 720 725 717
KWT (Höpken et al., 2020) 986 974 979 979

(ii) Training Time (s)
NS 4.16 8.33 12.49 16.69
SEA 3.74 7.45 11.05 14.85
WRST (Ozcan & Basturk, 2020) 2.92 5.75 8.61 11.70
MT (Alippi, Boracchi & Roveri, 2017) 1.99 3.88 5.82 7.92
KWT (Höpken et al., 2020) 2.70 5.34 7.95 10.74

(iii) Classification Accuracy (%)
NS 51.48 43.36 33.09 29.67
SEA 49.67 40.88 32.05 27.77
WRST (Ozcan & Basturk, 2020) 47.95 37.37 30.82 25.51
MT (Alippi, Boracchi & Roveri, 2017) 44.56 32.54 25.80 20.85
KWT (Höpken et al., 2020) 47.59 35.06 28.83 24.59

time with the exception of the training time taken when learning 40 classes using MT
(Alippi, Boracchi & Roveri, 2017). Overall, SEA performs better than other data sampling
algorithms when evaluated on this dataset.

The CUB-200 (Welinder et al., 2010) dataset has a total of 200 classes but does not have
a fixed number of images for every class. However, the number of images per class is
very small which is the main reason why we choose this dataset to test SEA. Discarding
information from a small data pool can lead to a big information change in the overall data
pool which is why we must test SEA to really observe its effectiveness.

For CUB-200 (Welinder et al., 2010), SEA is able to reject the least samples as compared
to other data sampling algorithms whereby the least samples needed for training arise
when using MT (Alippi, Boracchi & Roveri, 2017). However, the classification accuracies
obtained using SEA are the best out of all the data sampling methods. Furthermore, the
classification accuracies obtained at every incremental training round are within 3% of
the baseline (NS). The fact that WRST (Ozcan & Basturk, 2020), MT (Alippi, Boracchi &
Roveri, 2017), and KWT (Höpken et al., 2020) discard so many samples indicates that these
statistical methods are only able to conclude a significant difference between the overall
metric distribution (all samples per class) and the selected distribution (samples to be
transmitted to the server) once a high number of samples are eliminated. Clearly, for
datasets with a small number of samples per class such as CUB-200 (Welinder et al., 2010),
SEA is much better suited than other data sampling methods.

Dube et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.633 14/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.633


Table 4 Performance of the incremental learning system with respect to various data sampling algo-
rithms when evaluating Stanford Dogs (Khosla et al., 2011) usingMobileNetV2 (Sandler et al., 2018).

Data Sampling Algorithm Number of Classes Trained

40 80 120

(i) Samples Needed for Training
NS 4000 3999 4000
SEA 3505 3440 3477
WRST (Ozcan & Basturk, 2020) 3403 3410 3411
MT (Alippi, Boracchi & Roveri, 2017) 2879 2877 2871
KWT (Höpken et al., 2020) 3318 3319 3316

(ii) Training Time (s)
NS 8.93 17.13 25.09
SEA 7.77 15.43 22.15
WRST (Ozcan & Basturk, 2020) 7.68 15.29 22.14
MT (Alippi, Boracchi & Roveri, 2017) 6.45 12.78 18.96
KWT (Höpken et al., 2020) 7.39 14.61 21.32

(iii) Classification Accuracy (%)
NS 62.89 52.13 44.78
SEA 61.78 51.66 43.17
WRST (Ozcan & Basturk, 2020) 62.11 49.99 43.14
MT (Alippi, Boracchi & Roveri, 2017) 60.88 48.96 41.27
KWT (Höpken et al., 2020) 62.39 51.27 43.16

Stanford Dogs (Khosla et al., 2011) dataset has a total of 120 classes where each class
has a different number of samples. However, the number of samples in almost every class
exceeds 100 images. For Stanford Dogs (Khosla et al., 2011), the number of samples needed
for training and the training time is the least when using MT (Alippi, Boracchi & Roveri,
2017). This again indicates that MT (Alippi, Boracchi & Roveri, 2017) detects a significant
difference between the overall metric distribution (all samples per class) and the selected
distribution (samples to be transmitted to the server) once a high number of samples are
eliminated. However, there is not a huge degradation in the classification accuracies as
compared to what was observed when evaluating CUB-200 (Welinder et al., 2010), this is
because the number of samples per class in Stanford Dogs (Khosla et al., 2011) is a lot more
as compared to CUB-200 (Welinder et al., 2010). However, MT (Alippi, Boracchi & Roveri,
2017) does not achieve the highest classification accuracy at even a single incremental
training round. SEA leads to the highest classification accuracies obtained at two out of
three incremental training rounds.

ImageNet (Fei-Fei, Deng & Li, 2010) is a well know large-scale dataset which is why it
is very important to apply and test data sampling algorithms on a dataset that has a large
number of samples per class. ImageNet (Fei-Fei, Deng & Li, 2010) has a very large number
of classes, however, since we are more interested to see how data sampling algorithms
perform on classes with a large number of samples, we only use a total of six classes from
ImageNet (Fei-Fei, Deng & Li, 2010). However, these six classes are among the top 10
classes with the most number of samples in a class in the ImageNet (Fei-Fei, Deng & Li,

Dube et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.633 15/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.633


Table 5 Performance of the incremental learning system with respect to various data sampling algo-
rithms when evaluating ImageNet (Fei-Fei, Deng & Li, 2010) using ShuffleNetV2 (Ma et al., 2018).

Data Sampling Algorithm Number of Classes Trained

2 4 6

(i) Samples Needed for Training
NS 1868 2435 2631
SEA 1540 2066 2223
WRST (Ozcan & Basturk, 2020) 1785 2340 2533
MT (Alippi, Boracchi & Roveri, 2017) 1698 2246 2436
KWT (Höpken et al., 2020) 1767 2322 2513

((ii) Training Time (s)
NS 1.00 2.04 3.01
SEA 0.64 1.75 2.51
WRST (Ozcan & Basturk, 2020) 0.70 1.97 2.91
MT (Alippi, Boracchi & Roveri, 2017) 0.69 1.91 2.75
KWT (Höpken et al., 2020) 0.70 1.97 2.86

(iii) Classification Accuracy (%)
NS 97.01 95.07 86.37
SEA 97.22 95.45 85.27
WRST (Ozcan & Basturk, 2020) 97.01 94.80 83.48
MT (Alippi, Boracchi & Roveri, 2017) 97.22 94.42 86.83
KWT (Höpken et al., 2020) 97.44 93.31 83.71

2010) dataset. The classes we use are as follows: n01882714 (koala bear, kangaroo bear,
native bear), n02086240 (Shih-Tzu), n02094433 (Yorkshire terrier), n02138441 (meerkat),
n02279972 (monarch butterfly, Danaus plexippus), and n09428293 (seashore).

For ImageNet (Fei-Fei, Deng & Li, 2010), SEA manages to utilize the least number
of training samples and the least time for training as compared to all the other data
sampling methods. Furthermore, all classification accuracies obtained irrespective of the
data sampling algorithm are within 3% of the baseline accuracies therefore, SEA is the
better performing algorithm in this experiment. The reason why the training time is so
small is that we are only experimenting with six classes of ImageNet (Fei-Fei, Deng & Li,
2010) and the training epochs are very small thus there is not a very high training time.
Despite reporting top-1 accuracies when working on ImageNet (Fei-Fei, Deng & Li, 2010)
dataset, the classification accuracies that we obtain at every incremental training round are
very high and this is because all the models mentioned in Table 1 are already pre-trained
on this dataset.

From Tables 2–5 we showed that SEA is the best performing data sampling algorithm,
however, we must further examine the performance and effectiveness of SEA. Table 6
shows the standard deviation in the number of samples transmitted to the server with
respect to NS, time taken for training on the server, and the classification accuracies all of

Dube et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.633 16/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.633


Table 6 Standard deviation of the reduction in the number of training samples, reduction in the train-
ing time on the server and the difference in classification accuracies after applying SEA.

Datasets Standard deviations between NS and SEA

Samples
transmitted

Training
time (s)

Accuracies
(%)

CIFAR-100 (Krizhevsky, 2009) 1077 15.87 0.50
CUB-200 (Welinder et al., 2010) 101 5.32 1.27
Stanford Dogs (Khosla et al., 2011) 1115 4.10 0.75
ImageNet (Fei-Fei, Deng & Li, 2010) 781 0.82 0.40

which are calculated using formulas shown in Eqs. (21)–(23) respectively.

Samplesdev=


∣∣∣∑T

t=1SamplestSEA−
∑T

t=1SamplestNS
∣∣∣

√
2

 (21)

Traindev=

∣∣∣∑T
t=1Train

t
SEA−

∑T
t=1Train

t
NS

∣∣∣
√
2

(22)

Accdev=
1
T
·

T∑
t=1

∣∣AcctSEA−AcctNS∣∣
√
2

(23)

In Eqs. (21)–(23), T represents the total number of incremental training rounds. At
incremental training round t , SamplestSEA denotes the number of samples transmitted
from the fog device to the server, TraintSEA represents the training time of ANNserver , Acc tSEA
represents the classification accuracy. In Eqs. (21) and (22), using SEA and NS, we compute
the standard deviation in the total samples sent to the server and the total training time
of ANNserver , respectively. We then compute the standard deviation between SEA and NS
for the metrics: total samples transmitted to the server and the total training time on the
server. At each incremental training round, we obtain a classification accuracy, therefore,
in Eq. (23), the standard deviation of the classification accuracy between SEA and NS
is computed at each incremental training round, and then the average of all standard
deviations is computed.

It is shown in Table 6 that the standard deviation of the classification accuracies is less
than one for all datasets except CUB-200 (Welinder et al., 2010) which also has a very small
standard deviation of 1.27 even though the total samples per class in this dataset is very
low. For such small standard deviations in the classification accuracies, we achieve a very
large standard deviation in the reduction of the number of training samples and also a
decent standard deviation in the reduction of the training time after applying SEA.

The learning settings for evaluating each dataset are different which is why the standard
deviations in the training time reduction are different for each dataset i.e., not directly
proportional to the reduction in the number of training samples. However, the main
point here is that the results in Table 6 support our hypothesis that after using SEA, the
classification accuracies are very similar to the ones obtained without data sampling while
reducing the training time and the number of samples transmitted to the server.

Dube et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.633 17/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.633


Figure 4 Overall change in the number of samples transmitted to the server, the training time on the
server, and the classification accuracies after applying SEA. Blue: Samples transmitted. Orange: Training
time on server. Gray: Accuracy.

Full-size DOI: 10.7717/peerjcs.633/fig-4

We train our model incrementally by carrying out joint training and by doing so, we
also show that SEA can also work for static training. In joint training, all the samples of
the new classes are concatenated together with all samples of the old classes, and the model
is then trained. However, if we observe closely, joint training is simply a series of static
training sessions. E.g., if we look at the first row of Tables 2–5, at this stage, no training has
taken place but when the training begins, the model is trained on all of the available data
so far and it can be seen that even after applying SEA, the classification accuracies are very
similar as compared to training without data sampling thus proving that SEA is not only
useful for incremental training but also for static training of deep learning models.

Apart from the standard deviations, in Fig. 4, we also show the overall reduction in both
the sample transmission rate to the server and the training time of ANNserver after applying
SEA. We also show the average change in the classification accuracies after applying SEA.
From Fig. 4, it can be seen that when evaluating SEA on several datasets, the sample
transmission reduction rate to the server and training time reduction rate on the server
is greater than 13% and 11% respectively in all cases. The maximum reduction in sample
transmission rate to the server and training time reduction rate on the server we achieve
is 15.94% and 23.67%, respectively. The maximum and minimum change in the average
difference between the classification accuracies is only 1.81% and 0.56%, respectively.
This shows that SEA can largely maintain incremental learning performance while greatly
reducing the samples being transmitted to the server and the training time on the server.

Dube et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.633 18/26

https://peerj.com
https://doi.org/10.7717/peerjcs.633/fig-4
http://dx.doi.org/10.7717/peerj-cs.633


DISCUSSION
From the results obtained in Tables 2–5, SEA has the highest classification accuracies
at the majority of the incremental training rounds across all datasets. WRST (Ozcan &
Basturk, 2020), MT (Alippi, Boracchi & Roveri, 2017), and KWT (Höpken et al., 2020) lead
to an extremely poor classification accuracy performance when evaluated on CUB-200
(Welinder et al., 2010) which indicates that such methods are inducing a lot of catastrophic
forgetting in incremental learning as compared to SEA. Furthermore, SEA requires no
hyperparameters for performing data sampling whereas WRST (Ozcan & Basturk, 2020),
MT (Alippi, Boracchi & Roveri, 2017), andKWT (Höpken et al., 2020) all require the p-value
to be set for performing data sampling.

The biggest advantage offered by SEA is in the reduction of the training samples followed
by the reduction in the training time of the classifier on the server. In the context of fog
computing, this leads to a big reduction in the communication cost between the fog device
and the server along with an accelerated training time on the server. All of this is achieved
while maintaining the model performance. In terms of the classification accuracies, what
matters is the performance of themodel after incrementally learning all the classes, in which
case even after applying SEA, all the classification accuracies after the final incremental
training round are less than 3% compared to the classification accuracies obtained where
no data sampling is used. In our methodology, we discard ρc samples whereby ρc samples
in each class have entropies whose distance from the median of the entropy distribution is
smaller than the standard deviation of the entropy distribution of that class. We claim that
due to this phenomenon, ρc samples are not needed for training due to their extremely low
variance with respect to the entropy distribution of the class as such samples will not aid
the training of the neural network on the server. The results obtained in Table 6 support
the theory of our data sampling algorithm (SEA).

Applying SEA on small-scale datasets is challenging as there is not enough room for data
sampling and even if data sampling does take place, the number of samples to be discarded
should be chosen very carefully as a huge impact can be made on incremental learning in
such cases. For e.g., discarding one image from a total of hundred images results in only a
1% data discard rate but if one image is discarded from a total of ten images then this results
in a 10% data discard rate. Despite this, our proposed SEA is able to retain incremental
learning performance for small datasets such as CUB-200 (Welinder et al., 2010).

The reason why SEA works so well in terms of retaining incremental learning
performance is simply because of the unpredictability of the novel classes themselves.
When neural networks face novel classes and a cross-entropy loss is calculated for each
image, the neural network can never guarantee that the loss values of all samples will
decrease after training. On the contrary, it is possible that after training, the loss values of
some samples might increase, this is especially true in the case of class incremental learning
as seen in Fig. 5.

Figure 5A shows the initial loss values of samples belonging to classes with labels: 0-9
inclusive of CIFAR-100 (Krizhevsky, 2009), Fig. 5B shows the initial loss values of samples
belonging to classes with labels: 50–59 of CIFAR-100 (Krizhevsky, 2009), and Fig. 5C shows

Dube et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.633 19/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.633


Figure 5 Initial cross entropy values of samples from CIFAR-100 (Krizhevsky, 2009) on SqueezeNet
(Iandola et al., 2016) when learning 10 classes at a time using the same learning settings as shown in
Table 1. (A) Initial cross entropy loss values of all samples with labels between 0–9 inclusive. (B) Initial
cross entropy loss values of all samples with labels between 50–59. (C) Initial cross entropy loss values of
all samples with labels between 90–99.

Full-size DOI: 10.7717/peerjcs.633/fig-5

the initial loss values of samples belonging to the classes with labels: 90–99 inclusive of
CIFAR-100 (Krizhevsky, 2009). The points in red denote the loss values of samples that
increased after an incremental training round, the points in blue denote the loss values
of samples that decreased after an incremental training round. From Fig. 5A it can be
deduced that samples that have very low loss values are the ones that exhibit higher loss
value after training. However, as incremental learning progresses, this no longer is the case
as shown in Fig. 5B and Fig. 5C. As incremental learning progresses, the pattern at which
the samples in every incremental training round that exhibit higher loss values (red marks)
after training become increasingly randomized.

Since the occurrence of entropy values that increase after training (red points) becomes
increasingly randomized as incremental learning progresses, we must discard a certain
number of samples in a randomized manner as this increases the probability of discarding
a sample that might not turn out useful for incremental learning. Therefore, SEA is the
most consistent performing data sampling algorithm as we saw in the experiments that we
conducted.

Dube et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.633 20/26

https://peerj.com
https://doi.org/10.7717/peerjcs.633/fig-5
http://dx.doi.org/10.7717/peerj-cs.633


CONCLUSIONS
In this paper, we present a novel data sampling technique called Sample Elimination
Algorithm (SEA). We compare our algorithm with three non-parametric statistical tests
namely: the Wilcoxon Rank-Sum Test (WRST) (Ozcan & Basturk, 2020), the Median Test
(MT) (Alippi, Boracchi & Roveri, 2017), and the Kruskal-Wallis Test (KWT) (Höpken et al.,
2020). Though SEA does not always lead to the least number of samples being transmitted
to the server and the fastest training time on the server, SEA does lead to the highest
classification accuracies at the majority of the incremental training rounds regardless of the
dataset which is what set as the original target in this paper. We show that SEA is a more
generalized data sampling algorithm as compared to the other non-parametric statistical
tests for data sampling.

From the results obtained, we can conclude that our proposed SEA can adapt to input
datasets of various sizes, different training hyperparameters, a different number of classes
being learned incrementally, and still maintain incremental learning performance despite
using fewer training images as compared to the total available samples. This in turn reduces
the transmission costs to the server and the training time on the server as well. This is the
case when working with the convolutional layers of CNNs for feature extraction of images
and using Artificial Neural Networks (ANN) as classifiers for training.

Limitations and Future Work
Due to the scope of this work, we use ANNs as classifiers, however, future work should
investigate using classifiers other than ANNs. When discussing Fig. 1, we mentioned
accumulating all the samples that belong to an incremental training round, however,
storage is an important issue especially in the case of a large number of samples per class or
a large number of classes in an incremental training round. Since we do not consider this
concept in this work, for future work, it is important to perform data sampling as soon as
a significant amount of memory is starting to get consumed on fog devices and knowing
exactly when to start the incremental training process.

In this work, we consider one fog device and one server. Therefore, one potential future
research direction is how to perform incremental learning in a distributed computing
scenario i.e., multiple fog devices receiving new data classes.

We think that one of the most important advancements that can be made is the
development of an unsupervised concept drift detection algorithm whereby such an
algorithm should be able to know exactly when a new class has been encountered. Being
able to do so greatly reduces the amount of catastrophic forgetting in incremental learning.

Dube et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.633 21/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.633


ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the University of Nottingham Malaysia Campus and the
Fundamental Research Grant Scheme (FRGS) by the Ministry of Higher Education,
Malaysia (FRGS/1/2018/ICT02/UNIM/02/4). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Ministry of Higher Education, Malaysia: FRGS/1/2018/ICT02/UNIM/02/4.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Swaraj Dube conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.
• Yee Wan Wong and Hermawan Nugroho conceived and designed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The data and codes are available in the Supplemental Files and at figshare: Dube, Swaraj;
Wong, Yee Wan; Nugroho, Hermawan (2021): Codes_and_data.zip. figshare. Dataset.
https://doi.org/10.6084/m9.figshare.14872647.v1.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.633#supplemental-information.

REFERENCES
AfrinM, Jin J, Rahman A, Tian YC, Kulkarni A. 2019.Multi-objective resource allo-

cation for Edge Cloud based robotic workflow in smart factory. Future Generation
Computer Systems 97:119–130 DOI 10.1016/j.future.2019.02.062.

Alain G, Lamb A, Sankar C, Courville A, Bengio Y. 2015. Variance reduction in SGD by
distributed importance sampling. 1–18. ArXiv preprint. arXiv:1511.06481.

AlamMGR, HassanMM, UddinM Zi, Almogren A, Fortino G. 2019. Autonomic
computation offloading in mobile edge for IoT applications. Future Generation
Computer Systems 90:149–157 DOI 10.1016/j.future.2018.07.050.

Dube et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.633 22/26

https://peerj.com
https://doi.org/10.6084/m9.figshare.14872647.v1
http://dx.doi.org/10.7717/peerj-cs.633#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.633#supplemental-information
http://dx.doi.org/10.1016/j.future.2019.02.062
http://arXiv.org/abs/1511.06481
http://dx.doi.org/10.1016/j.future.2018.07.050
http://dx.doi.org/10.7717/peerj-cs.633


Alippi C, Boracchi G, Roveri M. 2017.Hierarchical change-detection tests. IEEE
Transactions on Neural Networks and Learning Systems 28(2):246–258
DOI 10.1109/TNNLS.2015.2512714.

Baek J, KaddoumG. 2021.Heterogeneous task offloading and resource allocations via
deep recurrent reinforcement learning in partial observable multifog networks. IEEE
Internet of Things Journal 8(2):1041–1056 DOI 10.1109/JIOT.2020.3009540.

Birodkar V, Mobahi H, Bengio S. 2019. Semantic redundancies in image-classification
datasets: The 10% you don’t need. ArXiv. 1–11. Available at https:// arxiv.org/abs/
1901.11409 .

Castro FM,MarMJ, Schmid C. 2018. End-to-End_Incremental_Learning_ECCV_2018
_paper.pdf. 16–18.

Chawla NV, Bowyer KW, Hall LO, KegelmeyerWP. 2002. SMOTE: synthetic minority
over-sampling technique. Journal of Artificial Intelligence Research 16:321–357
DOI 10.1613/jair.953.

Choi E, Lee K, Choi K. 2019. Autoencoder-based incremental class learning without
retraining on old data. ArXiv preprint. arXiv:1907.07872.

D’Agostino D, Morganti L, Corni E, Cesini D, Merelli I. 2019. Combining Edge and
Cloud computing for low-power, cost-effective metagenomics analysis. Future
Generation Computer Systems 90:79–85 DOI 10.1016/j.future.2018.07.036.

Eshratifar AE, AbrishamiMS, PedramM. 2021. JointDNN: an efficient training and
inference engine for intelligent mobile cloud computing services. IEEE Transactions
on Mobile Computing 20(2):565–576 DOI 10.1109/TMC.2019.2947893.

Eshratifar AE, PedramM. 2018. Energy and performance efficient computation
offloading for deep neural networks in a mobile cloud computing environment. In:
Proceedings of the ACM Great Lakes Symposium on VLSI, GLSVLSI, June. 111–116
DOI 10.1145/3194554.3194565.

Fei-Fei L, Deng J, Li K. 2010. ImageNet: constructing a large-scale image database.
Journal of Vision 9(8):1037–1037 DOI 10.1167/9.8.1037.

Gepperth A, Karaoguz C. 2016. A bio-inspired incremental learning architec-
ture for applied perceptual problems. Cognitive Computation 8(5):924–934
DOI 10.1007/s12559-016-9389-5.

Gopal S. 2016. Adaptive sampling for SGD by exploiting side information. In: 33rd
international conference on machine learning, ICML 2016. 567–575.

Hayes TL, Kafle K, Shrestha R, AcharyaM, Kanan C. 2019. REMIND your neural
network to prevent catastrophic forgetting. ArXiv preprint. arXiv:1910.02509.

HöpkenW, Eberle T, Fuchs M, LexhagenM. 2020. Improving tourist arrival predic-
tion: a big data and artificial neural network approach. Journal of Travel Research
60(5):998–1017 DOI 10.1177/0047287520921244.

Iandola FN, Han S, Moskewicz MW, Ashraf K, DallyWJ, Keutzer K. 2016. SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. 1–13.
ArXiv preprint. arXiv:1602.07360.

Dube et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.633 23/26

https://peerj.com
http://dx.doi.org/10.1109/TNNLS.2015.2512714
http://dx.doi.org/10.1109/JIOT.2020.3009540
https://arxiv.org/abs/1901.11409
https://arxiv.org/abs/1901.11409
http://dx.doi.org/10.1613/jair.953
http://arXiv.org/abs/1907.07872
http://dx.doi.org/10.1016/j.future.2018.07.036
http://dx.doi.org/10.1109/TMC.2019.2947893
http://dx.doi.org/10.1145/3194554.3194565
http://dx.doi.org/10.1167/9.8.1037
http://dx.doi.org/10.1007/s12559-016-9389-5
http://arXiv.org/abs/1910.02509
http://dx.doi.org/10.1177/0047287520921244
http://arXiv.org/abs/1602.07360
http://dx.doi.org/10.7717/peerj-cs.633


Katharopoulos A, Fleuret F. 2018. Not all samples are created equal: deep learning with
importance sampling. In: 35th international conference on machine learning (ICML
2018) vol. 6, Stockholm, Sweden: 3936–3949.

Kemker R, Kanan C. 2018. FearNet: brain-inspired model for incremental learning. In:
6th international conference on learning representations, ICLR 2018 - conference track
proceedings. 1–16.

Khosla A, Jayadevaprakash N, Yao B, Fei-Fei L. 2011. Novel dataset for fine-grained
image categorization. In: Proceeding of the IEEE conference on computer. Piscataway:
IEEE.

Krizhevsky A. 2009. Learning multiple layers of features from tiny images. Available at
https://www.cs.toronto.edu/~kriz/ learning-features-2009-TR.pdf .

Lecun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature 521(7553):436–444
DOI 10.1038/nature14539.

Lesort T, Lomonaco V, Stoian A, Maltoni D, Filliat D, Díaz-Rodríguez N. 2020. Con-
tinual learning for robotics: definition, framework, learning strategies, opportunities
and challenges. Information Fusion 58:52–68 DOI 10.1016/j.inffus.2019.12.004.

Liu D, Yang C, Li S, Chen X, Ren J, Liu R, DuanM, Tan Y, Liang L. 2019. FitCNN: A
cloud-assisted and low-cost framework for updating CNNs on IoT devices. Future
Generation Computer Systems 91:277–289 DOI 10.1016/j.future.2018.09.020.

López Chau A, Li X, YuW. 2013. Convex and concave hulls for classification with
support vector machine. Neurocomputing 122:198–209
DOI 10.1016/j.neucom.2013.05.040.

Loshchilov I, Hutter F. 2015. Online batch selection for faster training of neural
networks. 1–20. ArXiv preprint. arXiv:1511.06343.

MaN, Zhang X, Zheng HT, Sun J. 2018. Shufflenet V2: practical guidelines for efficient
cnn architecture design. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, eds.
Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science. vol.
11218. Cham: Springer, 122–138 DOI 10.1007/978-3-030-01264-9_8.

Martins R, Correia ME, Antunes L, Silva F. 2019. Iris: secure reliable live-streaming with
opportunistic mobile edge cloud offloading. Future Generation Computer Systems
101:272–292 DOI 10.1016/j.future.2019.06.011.

Nallaperuma D, Nawaratne R, Bandaragoda T, Adikari A, Nguyen S, Kempitiya T, De
Silva D, Alahakoon D, Pothuhera D. 2019. Online incremental machine learning
platform for big data-driven smart traffic management. IEEE Transactions on Intelli-
gent Transportation Systems 20(12):4679–4690 DOI 10.1109/TITS.2019.2924883.

Nee SH, Nugroho H. 2020. Task distribution of object detection algorithms in fog-
computing framework. In: 2020 IEEE student conference on research and development,
SCOReD 2020, September. Piscataway: IEEE, 1–395
DOI 10.1109/SCOReD50371.2020.9251038.

Needell D, Srebro N,Ward R. 2016. Stochastic gradient descent, weighted sampling,
and the randomized Kaczmarz algorithm.Mathematical Programming 155(1–
2):549–573 DOI 10.1007/s10107-015-0864-7.

Dube et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.633 24/26

https://peerj.com
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1016/j.inffus.2019.12.004
http://dx.doi.org/10.1016/j.future.2018.09.020
http://dx.doi.org/10.1016/j.neucom.2013.05.040
http://arXiv.org/abs/1511.06343
http://dx.doi.org/10.1007/978-3-030-01264-9_8
http://dx.doi.org/10.1016/j.future.2019.06.011
http://dx.doi.org/10.1109/TITS.2019.2924883
http://dx.doi.org/10.1109/SCOReD50371.2020.9251038
http://dx.doi.org/10.1007/s10107-015-0864-7
http://dx.doi.org/10.7717/peerj-cs.633


Ozcan T, Basturk A. 2020.Human action recognition with deep learning and
structural optimization using a hybrid heuristic algorithm. Cluster Computing
23(4):2847–2860 DOI 10.1007/s10586-020-03050-0.

Parisi GI, Tani J, Weber C,Wermter S. 2018. Lifelong learning of spatiotemporal repre-
sentations with dual-memory recurrent self-organization. Frontiers in Neurorobotics
12(November):1–19 DOI 10.3389/fnbot.2018.00078.

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z,
Gimelshein N, Antiga L, Desmaison A, Köpf A, Yang E, De Vito Z, RaisonM,
Tejani A, Chilamkurthy S, Steiner B, Fang L, Chintala S. 2019. PyTorch: an
imperative style, high-performance deep learning library. NeurIPS. ArXiv preprint.
arXiv:1912.01703.

Rebuffi SA, Kolesnikov A, Sperl G, Lampert CH. 2017. iCaRL: incremental classifier and
representation learning. In: Proceedings - 30th IEEE conference on computer vision
and pattern recognition, CVPR 2017, 2017-Janua. Piscataway: IEEE, 5533–5542
DOI 10.1109/CVPR.2017.587.

Rusu AA, Rabinowitz NC, Desjardins G, Soyer H, Kirkpatrick J, Kavukcuoglu K,
Pascanu R, Hadsell R. 2016. Progressive Neural Networks. ArXiv preprint.
arXiv:1606.04671.

Sandler M, Howard A, ZhuM, Zhmoginov A, Chen LC. 2018.MobileNetV2:
inverted residuals and linear bottlenecks. In: Proceedings of the IEEE com-
puter society conference on computer vision and pattern recognition. 4510–4520
DOI 10.1109/CVPR.2018.00474.

Settles B. 2009. Active learning literature survey. Computer sciences technical report..
Shen XJ, Mu L, Li Z, WuHX, Gou JP, Chen X. 2016. Large-scale support vector machine

classification with redundant data reduction. Neurocomputing 172:189–197
DOI 10.1016/j.neucom.2014.10.102.

SongM, Zhong K, Zhang J, Hu Y, Liu D, ZhangW,Wang J, Li T. 2018. In-situ AI:
towards autonomous and incremental deep learning for IoT systems. In: Proceedings
- international symposium on high-performance computer architecture, 2018-Febru.
92–103 DOI 10.1109/HPCA.2018.00018.

Sze V, Chen Y-H, Yang T-J, Emer JS. 2017. Efficient processing of deep neural
networks: a tutorial and survey. Proceedings of the IEEE 105(12):2295–2329
DOI 10.1109/JPROC.2017.2761740.

TanM, Chen B, Pang R, Vasudevan V, Sandler M, Howard A, Le QV. 2019.Mnasnet:
platform-aware neural architecture search for mobile. In: Proceedings of the IEEE
computer society conference on computer vision and pattern recognition, 2019-June.
Piscataway: IEEE, 2815–2823 DOI 10.1109/CVPR.2019.00293.

Wang D, Qiao H, Zhang B,WangM. 2013. Online support vector machine based on
convex hull vertices selection. IEEE Transactions on Neural Networks and Learning
Systems 24(4):593–609 DOI 10.1109/TNNLS.2013.2238556.

Dube et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.633 25/26

https://peerj.com
http://dx.doi.org/10.1007/s10586-020-03050-0
http://dx.doi.org/10.3389/fnbot.2018.00078
http://arXiv.org/abs/1912.01703
http://dx.doi.org/10.1109/CVPR.2017.587
http://arXiv.org/abs/1606.04671
http://dx.doi.org/10.1109/CVPR.2018.00474
http://dx.doi.org/10.1016/j.neucom.2014.10.102
http://dx.doi.org/10.1109/HPCA.2018.00018
http://dx.doi.org/10.1109/JPROC.2017.2761740
http://dx.doi.org/10.1109/CVPR.2019.00293
http://dx.doi.org/10.1109/TNNLS.2013.2238556
http://dx.doi.org/10.7717/peerj-cs.633


Welinder P, Branson S, Mita T,Wah C, Schroff F. 2010. Caltech-ucsd birds 200.
Caltech-UCSD technical report. 1–15. Available at https://doi.org/CNS-TR-2010-
001.

WuY, Chen Y,Wang L, Ye Y, Liu Z, Guo Y, Fu Y. 2019. Large Scale Incremental
Learning. ArXiv 374–382.

Xu X, Liu Q, Luo Y, Peng K, Zhang X, Meng S, Qi L. 2019. A computation offloading
method over big data for IoT-enabled cloud-edge computing. Future Generation
Computer Systems 95:522–533 DOI 10.1016/j.future.2018.12.055.

Zhao X, Yang K, Chen Q, Peng D, Jiang H, Xu X, Shuang X. 2019. Deep learning
based mobile data offloading in mobile edge computing systems. Future Generation
Computer Systems 99:346–355 DOI 10.1016/j.future.2019.04.039.

Dube et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.633 26/26

https://peerj.com
https://doi.org/CNS-TR-2010-001
https://doi.org/CNS-TR-2010-001
http://dx.doi.org/10.1016/j.future.2018.12.055
http://dx.doi.org/10.1016/j.future.2019.04.039
http://dx.doi.org/10.7717/peerj-cs.633

