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ABSTRACT
Additivemanufacturing, artificial intelligence and cloudmanufacturing are three pillars
of the emerging digitized industrial revolution, considered in industry 4.0. The literature
shows that in industry 4.0, intelligent cloud based additivemanufacturing plays a crucial
role. Considering this, few studies have accomplished an integration of the intelligent
additive manufacturing and the service oriented manufacturing paradigms. This is due
to the lack of prerequisite frameworks to enable this integration. These frameworks
should create an autonomous platform for cloud based service composition for additive
manufacturing based on customer demands. One of the most important requirements
of customer processing in autonomous manufacturing platforms is the interpretation
of the product shape; as a result, accurate and automated shape interpretation plays
an important role in this integration. Unfortunately despite this fact, accurate shape
interpretation has not been a subject of research studies in the additive manufacturing,
except limited studies aiming machine level production process. This paper has
proposed a framework to interpret shapes, or their informative two dimensional
pictures, automatically by decomposing them into simpler shapes which can be
categorized easily based on provided training data. To do this, two algorithms which
apply a Recurrent Neural Network and a two dimensional Convolutional Neural
Network as decomposition and recognition tools respectively are proposed. These two
algorithms are integrated and case studies are designed to demonstrate the capabilities of
the proposed platform. The results suggest that considering the complex objects which
can be decomposed with planes perpendicular to one axis of Cartesian coordination
system and parallel withother two, the decomposition algorithm can even give results
using an informative 2D image of the object.

Subjects Autonomous Systems, Computer Aided Design, Emerging Technologies
Keywords Recurrent Neural Networks, Long-Short Term Memory cells, Convolutional Neural
Networks, Feature recognition for additive manufacturing, Shape interpretation, Artificial
intelligence in additive manufacturing, Additive manufacturing, Cloud based manufacturing

INTRODUCTION
Today, the globalmarket for products forces companies to compete for keeping theirmarket
position (Buckley, 2009). In this context, the ability to respond to the altering demands of
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the customers with customization in a relatively short time is a necessity (Gunasekaran et
al., 2019). Consequently methods to create agility in companies are of much concern in this
era and every progress which can improve the responsiveness of the companies facing high
amount of altering demands and customizing the product features, is eagerly considered.

Beside the intense competition to attract customers, globalization has created a basis
for better cooperation and collaboration between companies that can help them in their
competition; the introduction of the internet of things (IoT) and cloud manufacturing,
which has enabled companies to create pools of services and manufacturing resources
to achieve cheaper manufacturing processes are two events that are going to reshape
companies (Xu, 2012). On the other hand the large amount of data and complex decision
making conditions, force companies to expand their reliance upon the artificial intelligence
based tools (Kiron & Schrage, 2019; Davenport & Ronanki, 2018). Artificial intelligence
provides companies with tools that ease the analysis of data and information in different
phases of the production process and in some cases, it can replace the costly and error
prone human agent. In fact, the rapid growth of knowledge in the field of cognitive science
has improved the artificial intelligence tools to become more accurate mimicry of the
human agent. As a result, they become more capable of replacing human agent in different
domains. These paradigms shape the pillars of the new emerging industrial revolution,
coined as industry 4.0 (Schwab, 2016; Vaidya, Ambad & Bhosle, 2018).

Another important progress in technology which is also at heart of the industry 4.0 is the
additive manufacturing, or as known as its most popular technology, 3D printing (Schwab,
2016; Vaidya, Ambad & Bhosle, 2018). Additive manufacturing, as its old name ‘‘rapid
prototyping’’ suggests, has been initially used as a technique for creating prototypes of
products for further analysis during the product development process (Campbell, Bourell &
Gibson, 2012). In fact, producing objects in a relatively short time and with high flexibility,
was the first intention to use these methods, and after the introduction of less expensive
methods, and increase in the demand side pressures on the companies, became their
prominent advantage and justified their application (Mehrpouya et al., 2019; Thomas,
2013).

The combination of the power of cloud manufacturing and additive manufacturing
methods can create a flexible, competitive and lower cost production ecosystem (Baumann
& Roller, 2017; Hartman, 2020; Wang et al., 2019; Valilai & Houshmand, 2015). However,
an important concern has to be addressed: although additive manufacturing methods have
a great flexibility in producing objects without being restricted to geometric specifications,
the selection of the proper additive manufacturing technology and proper additive
manufacturing parameters are essential for the product pricing and decision making
upon required techniques (Wang, Blache & Xu, 2017b). As a result it has to be decided
autonomously thatwhich product order should be produced by each of the available services
in the cloud (Goodarzi et al., 2020). This is very essential when the additive manufacturing
is considered to be accomplished by an XaaS approach in the cloud manufacturing
demands (Valilai & Houshmand, 2015), where it has to be decided that whether each
product be manufactured by each method and even the production parameters in each
method have to be determined (Baumann & Roller, 2017).

Rezaei et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.629 2/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.629


The main objective of this paper is to propose an autonomous intelligent framework to
interpret the geometry of the shape to create a basis for better integration of the design and
manufacturing phases of the production process, reducing the constraints created on the
design phase on behalf of manufacturing considerations (Wang et al., 2020; Wang, Blache
& Xu, 2017a). In fact, the flexible structure proposed in this paper can create a basis for an
autonomous recognition and expansion of the defined features based on the requirements
of the system. In this framework, determining the best production technique to create the
desired product can be accomplished autonomously by comparing the attributes of the
features with capabilities of the available techniques.

An analysis of the studies about applications of machine learning in additive
manufacturing shows that while there are studies which applied machine vision methods
in solving issues of design and manufacturing processes in additive manufacturing (Wang
et al., 2020; Scime & Beuth, 2018) and also there are studies which try to improve the
integrity between these two processes by decomposing the part to smaller components
(namely features) to make decisions upon them (Zhao & Guo, 2020; Ranjan, Samant &
Anand, 2017), there is a lack of a flexible and autonomous structure, based on machine
vision, to interpret the shape in terms of features for further use. In fact, studies like Zhao
& Guo (2020) and Ranjan, Samant & Anand (2017) which try to interpret the geometry of
the shape based on their features, omit the flexibility and learnability created by artificial
intelligence based methods which makes the application of proposed methods problematic
in applying them in cloud based platforms where nonprofessional customers want their
products to be produced using simple 3D designs or even 2D pictures. On the other
hand, studies likeWang et al. (2020) and Scime & Beuth (2018), which try to apply artificial
intelligence based methods, overlook the need for autonomous intelligent methods in
shape interpretation to make decisions upon production process, especially in cloud based
platforms. The proposed framework in this paper is intended to be a basis to fill this gap.

The proposed framework is a multiplex of algorithms which decompose the shape into
simpler parts and recognize, or categorize each part using two kind of neural networks
separately. To illustrate the problem in better words the next section is dedicated to a review
of some related previous works. In ‘Proposed framework’ the autonomous intelligent
framework is explained in terms of its two main phases which are shape decomposition
and recognition; then their connection is built up, such that they create one autonomous
intelligent structure. Case examples shows the applicability of the framework applying it to
two cases. In ‘Conclusion and Discussion’ the overall conclusion of the paper is explained
and the future research potentials related to this paper are suggested.

LITERATURE REVIEW
As stated earlier, as this paper aims to propose an autonomous framework for geometry
interpretation, the dominant contexts of the Convolutional Neural Networks (CNN) and
Recurrent Neural Networks (RNN) using Long-Short Term Memory cells (LSTM) are
applied as mainstream artificial intelligence models. This work aims to use the capabilities
of these models which can be found in literature studies like Ajit, Acharya & Samanta
(2020) and Yu et al. (2019).

Rezaei et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.629 3/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.629


Related previous works
An overall review of some related works in different approaches related to this study is
presented in Table 1.

More comprehensive reviews on the two main interests of this paper, including cloud
based additive manufacturing systems and the application of artificial intelligence in
additive manufacturing can also be found in Guo & Qiu (2018) and Goh, Sing & Yeong
(2020) respectively.

Gap analysis and research approach
Studies related to this paper are of the following categories:

• Studies with focus on shape, object or feature recognition or categorization. These
studies are either of two groups:

– A group of these studies are trying to improve methods in artificial intelligence and
machine vision in a general approach (Lake et al., 2017; Miyagi & Aono, 2017; Yu
et al., 2019; Yin et al., 2020; Ajit, Acharya & Samanta, 2020). Such studies provide a
good insight but their suggested methods should be modified to become applicable
in an autonomous intelligent manufacturing framework. In fact some of their
considerations, should be changed to be adjusted for applications in manufacturing.

– The other group of these studies include studies which are either adjusted for
application in manufacturing or their view is inline with manufacturing concerns
(Biegelbauer, Vincze & Wohlkinger, 2008; Wohlkinger et al., 2012; Maidin, Campbell
& Pei, 2012; Yao, Moon & Bi, 2017; Wang, Blache & Xu, 2017a; Shi et al., 2018; Pham
et al., 2018). The main problem with these studies is that they either omit artificial
intelligence methods or apply methods which can not show a satisfying level of
flexibility and learnability.

• Studies with focus on methods to estimate parameters of additive manufacturing or
estimate production quality in additive manufacturing (Munguía, Ciurana & Riba, 2009;
Moroni, Syam & Petrò, 2014; Piili et al., 2015; Shi et al., 2017; Zohdi, 2018; Zhao et al.,
2018; Chan, Lu & Wang, 2018; Zhao & Guo, 2020; Williams et al., 2019). The viewpoint
in these methods is restricted to calculate or improve special parameters or values, and
the general interpretation of the geometry of the shape from manufacturing point of
view is either omitted, which restricts the application domain of them and of their
related works to special conditions and/or shop floor level decisions, or done using
non-intelligent or partially intelligent methods. As a result, the latter group face the
same issues as the second group of the first category.
• Studies with focus on the selection of manufacturing method or service composition
in a cloud (Conner et al., 2014; Mai et al., 2016; Simeone, Caggiano & Zeng, 2020). These
studies consider decisions in higher levels than the second category but they are either
very general architectures of the cloud which omit some issues in the integration of the
design and manufacturing or try to solve them using not or partially flexible solutions.

The studied literature in Table 1 shows that the most common application of artificial
intelligence in the additive manufacturing deals with parameter fixation or output
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Table 1 Dominant research studies in the literature.

Research study Research focus Contribution

Biegelbauer, Vincze &
Wohlkinger (2008)

Object recognition A model for pose detection and object recognition based on the
relative position of previously defined basic shapes

Wohlkinger et al. (2012) Object recognition A model to recognize 3D objects in CAD models based on 3D shape
descriptors

Lake et al., (2017) An overview of general approaches in
artificial intelligence

An overview of the main trends in artificial intelligence methods and
their shortcomings

Miyagi & Aono (2017) Shape recognition Applying a hybrid of CNN and LSTM to recognize 3D shapes
represented as voxel grids.

Yin et al. (2020) Shape recognition Applying a modified version of CNN architecture for 3D shape
recognition

Munguía, Ciurana & Riba
(2009)

Build time estimation A neural network for time estimation in additive manufacturing

Maidin, Campbell & Pei
(2012)

Feature categorization A design feature database to be used in product design in different
disciplines

Conner et al. (2014) Manufacturing method selection A reference system for making decisions about the manufactur-
ing method for a part considering customization, complexity and
production volume

Moroni, Syam & Petrò
(2014)

Production accuracy estimation A simulation based model to estimate the accuracy of the
manufactured part relative to the designed one

Piili et al. (2015) Cost estimation of laser additive
manufacturing

A model for the cost estimation of laser additive manufacturing of
stainless steel

Mai et al. (2016) Service composition in cloud
manufacturing

A high level architecture for a cloud manufacturing system based on
additive manufacturing for customized parts

Yao, Moon & Bi (2017) Feature recommendation in design A method providing feasible conceptual design solutions for
inexperienced designers by recommending appropriate additive
manufacturing design features

Shi et al. (2017) Manufacturability analysis in a cloud
based system

A three dimensional model to assess the manufacturability of a
design in a cloud based additive manufacturing system

Wang, Blache & Xu
(2017a),Wang, Blache &
Xu (2017b)

Design for additive manufacturing in a
cloud based system

Creation of a knowledge based framework to help users to apply
design for additive manufacturing

Rudolph & Emmelmann
(2017)

Automated order processing in cloud
based additive manufacturing

Representing a cloud based platform to process customer orders
automatically

Zohdi (2018) Accurate tool path generation A genetic algorithm based method for the tool path generation for a
rapid free-form printing

Pham et al. (2018) Shape categorization A shape interpretation model to use CNN to categorize shapes due to
their legitimecy of production

Zhao et al. (2018) Nonplanar slicing and path generation An algorithm to slice non planar surfaces based on flattening them
into planar

Shi et al. (2018) Feature based manufacturability analysis A model for manufacturability analysis based on heat kernel
signature

Chan, Lu & Wan (2018) Cost estimation in cybermanufacturing A framework for manufacturing cost estimation using LASSO
regression

Zhao & Guo (2020) Adaptive slicing based on type of features An adaptive slicing method based on the type of the feature
Williams et al. (2019) Quantitative manufacturing metrics

estimation
A 3D Convolutional Neural Network to estimate manufacturing
metrics from design

Simeone, Caggiano & Zeng
(2020)

Service composition A modular platform to improve the resource efficiency in a cloud of
additive manufacturing services
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prediction, while geometrical interpretation as an initial step to connect customer view of
demanded part with an automated production system has been neglected. In fact in some
cases this issue has been overcame by explicitly defined shape models or other non flexible
methods which can become confusing. The literature of design for additive manufacturing
paradigm (Vaneker et al., 2020), emphasizes on some limitations on the design phase; these
limitations create constraints on behalf of product customization and design by customers
view (Wang, Blache & Xu, 2017a) while it is the duty of the production system to flexibly
welcome the needs of the customers and to configure itself to meet them.

The main approach in this paper is to propose a framework to flexibly decompose an
input shape, or even a 2D picture from the shape, taken from an informative viewpoint, into
simpler shapes and to categorize them based on their similarity to previously categorized
shapes. Although applying different neural networks is a common categorizationmethod in
different fields of study, including additive manufacturing, in most cases a neural network
is responsible for the categorization from a scratch (Yin et al., 2020; Williams et al., 2019).
The results of these models can get very accurate but as they are blind to the common,
simpler building blocks of the shape, facing the complex shapes created by these building
blocks usually gets problematic (Lake et al., 2017). The two fold framework proposed in
this paper can overcome this problem by an initial decomposition before categorization or
recognition.

This paper proposes a framework to interpret geometrical shapes (concerning additive
manufacturing related ones) to analyze their production process automatically. As
investigated in the literature, the automation of this step has not been of much concern. In
fact this process is commonly accomplished by human agents and the human agent decides
the production method or process; the dependence upon human agents makes the process
time and money consuming and creates a discontinuity in the flow of data and information
in an intelligent cloud based manufacturing ecosystem; but by using a flexible autonomous
intelligent framework these costs can be reduced and a fully automated platform can be
created.

Moreover, as the outputs of the proposed framework are general shape interpretations,
they can be used as an input for parameter fixation models or intelligent systems to flexibly
determine the best parameters to achieve better outputs; in doing so, this framework can
ease the highly appealing shape categorization based quality improvement of the additive
manufacturing parts. Finally, it should be said that the cognitive models such as one
developed in Hummel & Biederman (1992) or gestalt perceptual apparatus (Wagemans,
2015) that are the main inspirations for the core idea of this paper, have to be of much
greater considerations in engineering fields; because they create great insights into the
human cognition, which can bring about many advantages, most importantly agility and
flexibility.

PROPOSED FRAMEWORK
As explained before, regarding the industry 4.0 revolution which demands the autonomous
intelligence in production and collaboration in the manufacturing process to its full extent,
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Figure 1 Flowchart showing the main structure of the proposed framework.
Full-size DOI: 10.7717/peerjcs.629/fig-1

having a framework that provides the system with the required flexibility and automation is
a necessity. To create such a system, there has to be a flexible method to recognize the shape
and to assign a production process based on this recognition. So one of the most important
steps to have this system is to have an autonomous intelligent shape interpretation system.

The interpretation of the shape is one of the most crucial steps in the production
process, which takes part between conceptual design and manufacturing process; To
create an autonomous intelligent shape interpretation structure, a two step framework
is proposed that decomposes the shape into shapes which can be more easily recognized
in the first step, and in the second step, each of the resulted shapes are recognized.The
proposed framework uses simple information about the points, edges and plains of the
object and as a result, can do analysis using the STL file format input or simple B-Rep
model of shape or more complex CAD representation methods. The main structure of
the proposed framework has been depicted in Figs. 1 and 2. The two flowcharts show the
same structure and their only difference is the data preparation phase for neural networks
where two different approaches are proposed. The details of the framework, with respect
to the second approach (Fig. 2) is discussed further in next parts of this section.

Shape decomposition
The introduction of the design for manufacturing concept made an important contribution
in the creation of the links between manufacturing processes and the design procedure
(Wang, Blache & Xu, 2017a). This paradigm is advantageous in the cases where human
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Figure 2 Flowchart showing the main structure of the proposed framework with another data prepa-
ration approach.

Full-size DOI: 10.7717/peerjcs.629/fig-2

agents play the key role, assuring that in the designed part the essential manufacturing
factors has been taken into account; but considering the automaticmanufacturing, specially
from unstructured design data which is common in inverse engineering, it cannot be of any
use. In fact there we need a method to interpret the shape, and there, the shape perception
models of human cognition can be technically accurate source of inspiration.

The subject of the shape interpretation has been of interest before the introduction of
the design for manufacturing concept and a great deal of literature in the process planning
field is dedicated to the interpretation of the shape from a manufacturing point of view. In
fact, there and in most other cases, the interpretation of the shape means the description
of the shape in terms of a variety of some known shapes the attributes of which are known
by the system and considering manufacturing point of view, can be produced by rather
simple production processes (Ji & Marefat, 1997). In the manufacturing point of view,
these are called geometrical features (Ji & Marefat, 1997). The basic idea of some of feature
based shape interpretations can be found in perception models to describe human object
recognition too. For example the constructive solid geometry (CSG) model (Ghali, 2008),
is to some degree similar to the powerful perception model introduced by (Hummel &
Biederman, 1992).

The classical feature based interpretation had some shortcomings which leaded to its
abundance:
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Figure 3 An example shape. (A) Isometric view. (B) Side view.
Full-size DOI: 10.7717/peerjcs.629/fig-3

• Due to the classical artificial intelligent systems which were based on predetermined
rules, there had to be rules to identify each feature, the creation of which was not an easy
accomplishment.
• The complete definition of the features, required by those systems, made the recognition
process restricted and the expansion of the system a difficult process.
• As they were completely based on classical manufacturing methods, their application in
additive manufacturing methods become very limited.

Although being problematic in some cases, geometrical features could be a good guide to
interpret other shapes and to create knowledge, to analyze the complex shapes and produce
them using known methods and considerations. On the other hand, facing the shape as a
whole limits the power to use previous knowledge and in most cases, this knowledge would
become vain. The method that can be used here, to keep the main concept of geometrical
features, while making it more flexible and expandable is to decompose the shape into
simpler shapes based on the conformity of the places of their outer edges points. As an
example for this method, suppose the shape depicted in Fig. 3. It is obvious that the overall
shape of the object is consisted of a cylinder and one half of a sphere. To decompose the
shape, the only information used here is the placement of the vertices, faces and edges,
i.e., the information that is dealt with in ordinary 3D computer aided drawings, can be
gathered through 3D scanning methods and is also available in STL file formats.

The main idea behind the method is to convert the type of one dimension from
positional to temporal, and to consider corresponding position as a time series. For a better
clarification, now suppose an imaginary scanner, scans the upper part of the shape, in the
Cartesian x− z standard plane, and that plane passes through the center of the shape. If
the scanner, scans one point per second and saves its relative position regarding the z axis,
the placements of the scanned points will create a function of time as depicted in Fig. 4.
Now, the critical points would be the points circled red, as they show the sudden changes
in the behavior of the points or in better words, they show facing another connected shape;
In these words, a simple shape, or geometrical feature in its new definition, would be a
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Figure 4 The x−z plane section of the shape of Fig. 3.
Full-size DOI: 10.7717/peerjcs.629/fig-4

group of points, the behavior of which regarding a certain start point and direction can be
determined by a pattern. This definition of the simple shape is in accordance with human
perceptual apparatus, and to some degree in line with general gestalt rules (Wagemans,
2015), (especially continuity rule) and symmetry based definition of shape in Pizlo (2014).

In fact Fig. 4 is a 2D section of the overall lower face of the shape, on the Cartesian x−z
plane (suppose that the midpoint of the shape is the reference point of the system), but
considering the x axis as a time axis, provides us with a powerful, learner and flexible tool
to recognize changes: RNN using Long-Short Term Memory cells (LSTM).

A simple change detection algorithm for changes in behavior using LSTM for a data set
DT consisting of a series of data sorted according to time (or any other similar basis, i.e.,
the position regarding one axis) is proposed in Algorithm 1.

Considering the objects created from simple shapes put together in one direction (namely
the direction of coordinate z) and can be separated using cutting planes perpendicular to
axis z and parallel with x−y Cartesian standard plane, the proposed algorithm would be
as described in Algorithm 2.

By applying the SLDA algorithm into two rotations of the shape depicted in Fig. 3, and
considering only Changes-1 set, the points circled red in Fig. 5 are resulted.

As is obvious, the resulted changes are not entirely similar: considering the two circled
points in one row, as on the picture on the left side, shows an extra change. These errors are
expected as the method is completely based on an statistical examination, checking the zero
hypothesis of continuity of the previous pattern against the existence of a new one and as
the neural networks have their own randomness in behavior, by fixing an architecture for
our neural network and a coefficient of error in second step of LCDA algorithm (named
ME there) an exchange of type 0 and type 1 errors in detection is decided. The results
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Algorithm 1 LSTM based Change Detection Algorithm (namely "LCDA")
1: Get as an input DT = {z1,z2,...,zn} which are the values of the series , the sudden

changes in which is of interest (or in other words values of the edge points on the z
axis in the before mentioned example).

2: Get as an input DX = {x1,x2,...,xn} as the corresponding independent values for DT
elements for each of which, i.e. xi, the value of zi is of interest (or in other words cor-
responding values of the edge points on the x axis in the before mentioned example,
according to which the imaginary point scanner of the example moves).

3: Get as input parametersMTR as minimum size of data,W as the look-back or win-
dow parameter of LSTM andME as minimum error coefficient.

4: Get as input an LSTM architecture architecturelstm.
5: Define set Changes={}.
6: Define variable BGN to represent index of the first training data for LSTM for each

training iteration. In better words, zBGN is the first data given to LSTM each time it is
trained. Assign the initial value as BGN = 1.

7: Define variable TRSL to represent index of the last training data for LSTM for each
training iteration. In better words, zTRSL is the last data given to LSTM each time it is
trained. Assign the initial value as TRSL=MTR.

8: Define variable ILD to represent placeholder for the data that needs to be checked.
Assign the initial value as ILD=TRSL.

9: while |DT |−BGN >MTR and ILD< |DT | do:
10: Create training data set and name it TR such that TR={zBGN ,....,zBGN+TRSL}
11: Check whether the set Chx = {xi ∈ xBGN −1,....,xBGN+TRSL such that: xi+1 6= xi+

1} is empty; if not add its members to Changes set. Set TRSL equal to the largest value
in Chx and go to step 171.

12: Create check data set and name it CD such that CD= {zILD−W−1,...,zILD−1}. The
predicted value of zILD using LSTM in each iteration is of interest.

13: Create an LSTM and name it lstm with predefined architecture, architecturelstm
and train it using TR.

14: Use lstm to predict the values of TR. Find the mean and standard deviation of ab-
solute value of difference between predicted and real values of TR. Name the results
MER and SDTR respectively.

15: Use lstm to predict the value zILD applying the CD as input. Name the result zpILD.
16: if |zpILD−zILD|>MER+ (ME×SDTR) then
17: Update BGN such that BGN =TRSL.
18: Append ILD to the Changes set.
19: Set TRSL=TRSL+MTR.
20: Set ILD=TRSL.
21: else
22: Set TRSL=TRSL+1.
23: Set ILD=TRSL.
24: Give the Changes set, which is the set of indexes showing the placement of the

changes, as the output.
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1Obviously i=1 and i = n are not of interest.

2This step is crucial to create functions out
of points in one direction and an accurate
definition of a series based on them.

3Although one check of changes can be
enough, but as the changes may show off
on the either side of the shape bothminxz
andmaxxz are considered. Also as the
change detection algorithm is prone to
errors resulted from the batch of initial
training data, it is suggested to perform
algorithms on both orderings of the sets.

4In fact, two cutting planes going through
the top and bottom of the corresponding
voxels should be used and the shape
between them should be omitted; this is
due to to the use of voxelgrid.

Algorithm 2 Simple LSTM based Decomposition Algorithm (namely "SLDA")
1: Get as an input, the shape of interest and name it S.
2: Get as an input parameterml which determines the size of the largest edge of

the shape to be processed by the algorithm (which is determined relative to the
computation power of the used computer).

3: Create a voxelgrid of S using an standard cube as unit (the edge length of which deter-
mines the precision in contrasting different types of objects and bounded by the com-
puting power of the computer). Name the resulted voxelgrid, VD which by definition
would be: VD = [vd](cl × cl × cl) where vd would be 0 or 1 and cl is a value larger
than or equal to the mathematical ceiling of theml value divided by the edge length of
the unit cube (for complete information on voxelization see Kaufman, Cohen & Yagel
(1993)).

4: Create matrix XZ = [vd(x,bcl/2c,z)].
5: Define set Nx = {x ′|∃z ′ such that vx ′z ′ 6= 0}. Make Nx an ordered set by sorting it val-

ues.
6: Find minimum and maximum values of z regarding each x in the indexes of nonzero

elements of XZ and create ordered setsminxz andmaxxz out of these values sorted
according to their x values respectively.2

7: Createminxzi andmaxxzi ordered sets by reversing the order inminxz andmaxxz re-
spectively.

8: Apply LCDA algorithm tominxz andminxzi separately; use Nx as the DX input for
the algorithm and append the resulted set of indexes together to create set Changes−1
(change the indexes inminxzi as to show the respective index of value inminxz). Do
the same formaxxz andmaxxzi and create the set Changes−23.

9: Set TChanges=Changes−1∪Changes−2.
10: Give TChanges, which shows the placement of x dimensions of the changes from a

simple shape to another in the voxelgrid VD, as an output
11: Create Parts set from cutting the shape S using planes parallel with x − y plane which

go through points of S corresponding to detected changes in TChanges.4

shown before are from assigning value 3 to ME and applying an LSTM neural network
with an architecture shown in Fig. 6.

Recognition algorithm
The decomposition process creates some simpler shapes to be recognized. The next step
is to categorize these simpler shapes regarding their similarity with familiar cases. To do
so, CNNs are the best candidate to use, as they can do the recognition process with a
surprisingly high accuracy (Tong, 2018). Although there are 3D CNNs which could be
used to carry out the recognition process in 3D shapes, the proposed framework uses a 2D
CNN, taking sections passing through the center of the shape and parallel with each of the
Cartesian coordinate system planes (x−y,y− z,x− z) as inputs. This method is applied
because:
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Figure 5 Changes found for shape in Fig. 3 in two orientation (A) Hemisphere component facing up.
(B) Hemisphere component facing left.

Full-size DOI: 10.7717/peerjcs.629/fig-5

Figure 6 The architecture of the applied LSTM neural network. The question marks in the cells are
due to the consideration of the overall data size as the first element of the array (the picture created us-
ing Keras c© library in python 3. 8.5 c©).

Full-size DOI: 10.7717/peerjcs.629/fig-6

• 3D CNNs are hard to train and are not as common as 2D CNNs, as a result finding good
architectures for them is difficult.
• Creating 3D matrices as inputs for 3D CNNs is memory consuming
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• In most cases, as the shapes usually have some kind of symmetry, these 2D sections are
enough to interpret the shape
• If the input dimensions regarding three Cartesian coordinates have similar upper bound,
and are interpreted by matrices of the same sizes, one 2D CNN would be enough.

So a 2D CNN with an architecture depicted symbolically by Fig. 7 is trained and used
for the recognition process. Using this neural network, the type of the object is determined
by a triplet code, representing the type of each section.

The main algorithm
Combining the mentioned steps, the overall framework would be Algorithm 3.

Algorithm 3Main Algorithm
1: Get as an input, the shape of interest and name it S.
2: Create ordered sets Parts={} and Types={}.
3: Get as an input parameterml which determines the size of the largest edge of

the shape to be processed by the algorithm (which is determined relative to the
computation power of the used computer).

4: Apply the SLDA algorithm and save the resulted shapes in the Parts set.
5: for each p in Parts do
6: Rescale p such that its largest edge be of length less than or equal toml .
7: Rotate p such that its face with the largest area has a normal parallel to the axis z .
8: Create a voxelgrid of p using an standard cube as unit (the edge length of which

determines the precision in contrasting different types of objects and bounded by the
computing power of the computer). Name the resulted voxelgrid, VD which by def-
inition would be: VD = [vd](cl × cl × cl) where vd would be 0 or 1 and cl is a value
larger than or equal to the mathematical ceiling of them value divided by the edge
length of the unit cube.

9: Create matrices XY = [vd(x,y,bcl/2c)] , XZ = [vd(x,bcl/2c,z)] and
YZ = [vd(bcl/2c,y,z)] where x,y,z ∈ [1,cl].

10: Create an ordered triplet [XY ,XZ ,YZ ] using fore mentioned matrices.
11: Use the previously trained 2D CNN to determine the type regarding each matrix

in [XY ,XZ ,YZ ] and create [t (XY ),t (XZ ),t (YZ )] where t (a) is the type of a accord-
ing to the neural network.

12: Append the triplet [t (XY ),t (XZ ),t (YZ )] to the Types set.

13: Give Types set which shows the type of parts in terms of triplets, as output.

This framework provides the compositionality and learnability at the same time; while
the neural networks are used to find out the type of the building blocks of the shapes, which
can be trained to recognize new basic shapes, the framework decomposes the main shape
into simple shapes to be interpretable, without trying to recognize the type of the overall
shape.
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Figure 7 The structure of applied 2D CNN. As mentioned before the question marks in the cells are
due to the consideration of the overall data size as the first element of the array (the picture created us-
ing Keras c© library in python 3.8.5 c©).

Full-size DOI: 10.7717/peerjcs.629/fig-7
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Figure 8 Six force sensor based on Stewart platform. (A) Isometric view. (B) Side view.
Full-size DOI: 10.7717/peerjcs.629/fig-8

CASE EXAMPLES
In this section to illustrate that how the proposed model works, it has been applied to two
cases.

General considerations
• In both cases CNN with architecture depicted in Fig. 7 has been applied. Activation
functions in all layers except the last one were rectified linear unit and in the last layer
it was set to Softmax. Optimization method was adaptive subgradient method (Duchi,
Hazan & Singer, 2011).
• To prepare data to be used as an input for the CNN, the shape has been scaled, to
make the length of the largest edge equal with 80 units. The cube with an edge length
of 0.5 units is used to create voxelgrid of the shape. Then the shape has been put in a
185×185×185 array of voxels
• To train the CNN in both cases train data consisting of 4,000 randomly created circles
or ellipses as curved or partially curved shapes and 4,000 randomly created rectangles,
pentagons or hexagons as linear shapes has been used. The shapes were represented as
185×185 arrays. Uniformly distributed random integers have been generated and based
on their value each shape for each group was created.
• For the first case, LSTMwith architecture depicted Fig. 6 has been applied. Optimization
method was RMSprop (Tieleman & Hinton, 2012). To initialize LSTM in each iteration,
40 points were used and the look-back value was set to 1.

Case 1
The first case, that has been chosen to be the input of the proposed framework, is the six
force sensor based on Stewart platform depicted in Fig. 8. There were two reasons to choose
this shape as a case:
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Figure 9 The first midsection of the part.
Full-size DOI: 10.7717/peerjcs.629/fig-9

• The shape is a symmetrical combination of different types of simpler shapes and is able
to show the power of the framework in dealing with similar shapes.
• The shape is analyzed as a real case for the application of the manufacturing framework
presented in Zhao & Guo (2020) where it has been decomposed using structured data
available in high level CAD model and based on the curvature of its components,
decision upon its manufacturing process has been made. Here it has been shown that
how the shape analysis step can be done using less structured data and in a completely
autonomous manner.

In the first step, to decompose the shape the framework can be applied in two ways:
1. Applying LCDA algorithm to the 2D mid section of the part as in SLDA algorithm. In

this respect the SLDA is improved to act in a divide and conquer manner such that by
detection of each change, a perpendicular slicing is done and the algorithm is applied
to each of resulted parts.

2. Applying SLDA algorithm but instead of the mid section in step 4, the 2D image of the
shape as a whole, on a plane, as depicted in the right hand side of Fig. 8 be used.
Here, both approaches are applied to the example, applying the first approach, at first.

To apply the model, the shape has been scaled uniformly, to make the size of the largest
edge of the shape, equal with 100 units. Then, the standard cube with the edge length of
0.25 units has been used to create the voxelgrid of the shape. By creating a midsection of
the voxelized part as a whole, the 2D image depicted in Fig. 9 is resulted. Applying the
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Figure 10 One of six remaining components.
Full-size DOI: 10.7717/peerjcs.629/fig-10

LCDA, the step 11 of the algorithm, guarantees the separation of the two prismatic ends in
a consequent manner.

As these two ends can not be decomposed further, six components with the shape
depicted in Fig. 10 remain to be decomposed. Although the algorithm faces them separately
(as it is blind to such similarities), only one of them is considered here (the others are faced
in the same manner).

The analysis of the depicted components using only one side of the 2D section results
in detected changes, which are circled blue in Fig. 11.

As mentioned before, to apply the second approach to analyze this example, the 2D
image of the object as shown on the right hand side of the Fig. 8 can be used as an input to
SLDA algorithm.

Here a 2D picture of the shape with resolution of 3,000×1,500 pixels has been used.
Applying the second approach, and only applying the algorithm for one side of the picture,
the points which are circled red in the Fig. 12 are resulted.

In both approaches, more change points than the real ones are marked; as mentioned
before, due to randomness in the behavior of neural networks, in these models a decision
upon acceptance interval for a statistical examination should be done considering the
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Figure 11 The results of the analysis of the component depicted in Fig. 10.
Full-size DOI: 10.7717/peerjcs.629/fig-11

errors type 0 and 1; as the larger errors in recognizing excessive points as change points, is
much less important than error of not recognizing the real change points, the acceptance
interval is configured for less error of not recognizing which results in excessive points,
marked as change points. Another reason for the excessive change points is disruptions
created by representation of the continuous lines by discrete pixels.

The next step would be the recognition of the shapes based on the presupposed standard.
As mentioned before, the applied method is to create three 2D sections of the parts using
planes parallel with each of the Cartesian standard planes which pass through the center
of the shapes. In the first step, a preparation process as described in section ‘General
considerations’, has to be conducted which results in matrices with standard sizes that can
be used as an input to a 2D CNN with a fixed size of input layer. The resulted voxelgrid
which can be interpreted as a 3D matrix can be sliced into three 2D matrices by fixing
a number for each of its coordinate indexes; and as if these numbers be the middle of
the maximum and minimum values of that index, the concerned 2D sections would be
resulted. The resulted 2D sections for each shape is depicted underneath it in the Fig. 13
(The resulted matrices are depicted as 2D shapes in which the yellow pixels represent
value 1 and other pixels represent value 0). Having the matrix representation for the three
sections of concern, their type would be determined using a previously trained 2D CNN;
Based on the type of the data and the required precision and the determination power for
different axes, different neural networks may be used, however a single neural network
trained with different part types is enough to determine the types of the sections. Using
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Figure 12 The results of the analysis of the 2D image of the shape.
Full-size DOI: 10.7717/peerjcs.629/fig-12

a neural network trained by two different types of 2D matrices, a type representing multi
linear (partially or completely) sections (namely type ‘‘01’’) and another representing
circular ones (namely type ‘‘00’’), the framework determines the type of each section as
depicted in the last row of Fig. 13.

Case 2
Another example that shows the applicability of the framework based on convex
decomposition proposed in Appendix 1 is depicted in Fig. 14. This shape consists of 3
boxes and 3 cylinders connected to them. The reasons for choosing the shape in Fig. 14 are:

• It is a combination of many components and there are many cases in the real world
where combinations of cylinders or cones and boxes, create the main outline of the
shape.
• It can depict the power of the framework being within the limitations of the framework.
In general terms, shapes which become problematic using the convex decomposition
proposed in Appendix 1 include:
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Figure 13 The 2D sections of the components. Pictures (A) to (D) depict one of each type of resulted
components and their sections and the results of the recognition phase.

Full-size DOI: 10.7717/peerjcs.629/fig-13

Figure 14 The initial shape of the example. (A) Side view. (B) Isometric view.
Full-size DOI: 10.7717/peerjcs.629/fig-14

– Shapes which include sphere or torus or a part of them. The problem here happens
due to the tessellated representation of these shapes consists of large number of facets
and as the analysis in the convex decomposition algorithm is based on facets, this
multitude of facets, facing many directions can cause unwanted cuts.

– Shapes consisting of the intersection of two (or more) shapes with curved cross
sections. Here The problem happens due to the inseparability of these intersections
using facets.

The first step is to decompose this shape into its convex components. To do this the
shape is tessellated to small planar triangles covering the shape. The resulted triangles would
be accounted as one with each other with respect to their coplanarity, and the resulted
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Figure 15 The resulted convex shapes from the convex decomposition of the initial shape. (A) Cylin-
der which connects the cubes (B) Cube.

Full-size DOI: 10.7717/peerjcs.629/fig-15

Figure 16 2D sections of each of the convex parts of the original shape. (A) 2D sections and the results
of the recognition phase for each of the cylindrical components. (B) Results for each of the cubic compo-
nents.

Full-size DOI: 10.7717/peerjcs.629/fig-16

planes would be used to decompose the shape into its convex parts respectively. Applying
this method, the model decomposed the shape in Fig. 14 into separate shapes. As resulting
shapes are similar, only two types of the resulted components are depicted in Fig. 15.

The resulted 2D sections for each shape is depicted underneath it in the Fig. 16 (like
the previous example, the resulted matrices are depicted as 2D shapes in which the yellow
pixels represent value 1 and other pixels represent value 0). By applying the recognition
CNN applied in the previous case, the results would be as depicted in the last row of Fig. 16.
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Asmentioned before, the two fold framework proposed by this paper can be a preliminary
step in micro and macro process planning of additive manufacturing products. The results
of the categorizations, can be considered as features used by different viewpoints of process
planning without need to define them explicitly; in fact, categories considered in the
examples were intended to be simple cases, for the illustrative purpose of these examples.
2D CNN’s are one of the most powerful tools in the categorization of images (Tong, 2018)
and by enriching their training data and some changes in their architecture, they are capable
of categorizing a vast variety of images.

CONCLUSION AND DISCUSSION
The cases analyzed in section ‘‘Case examples’’ are examples showing the power of the
proposed framework in different regards including:

• Considering the input structure: the framework can perform the analysis using simple
design information. In fact, the information provided in a 2D image of a symmetrical
shape, taken from a viewpoint that shows the changes in the behavior of the outer edges
of the shape is enough.
• Considering the decomposition phase: the decomposition is done, just using data
provided in the shape itself and without need for additional training data. The geometric
positions of the points on the shape is enough to decompose the shape.
• Considering the recognition phase: the recognition or categorization is accomplished
using 2D CNN trained by data which represent simple attributes. The overall structure
of the shape is represented by a combination of these simple attributes. This makes the
preparation of the training data easier while representing a method to interpret more
complex attributes as composition of simpler ones.
• Considering the application phase: each of the recognized curved or linear components
can be manufactured applying special parameter level considerations based on their
type (Zhao & Guo, 2020). From a higher level manufacturing technique viewpoint, some
methods have better outputs facing curved surfaces (Zhang et al., 2020) and in a cloud
platform where many techniques are available, such a framework can help to decide
upon the technique autonomously.

In general terms, as it has been shown in section ‘‘Case examples’’ a divide and conquer
viewpoint in the interpretation of complex shapes, can provide us with a powerful tool to
interpret a vast variety of shapes. Regarding the recognition phase, although the power of
convolutional neural networks is dominant, the simple categorization of the sections as
to be completely circular versus partially or completely multi linear, is concerned and the
outputs were in accordance with the expectations.

The framework proposed in this paper, creates a basement for an autonomous intelligent
additive manufacturing system which can get a design in STL (or any other 3D design)
file format, and interpret it as a union of some simpler shapes, regarding the desired
geometrical attributes of which, the decision upon the production process can be made.
In fact, the resulted categories would provide the system with information about the
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geometrical structure of the product that is of much concern in the process planning for
the product.

One potential approach to expand this work is based on the learning capability: The
recognition algorithm of this structure can be applied by using only two initial categories
and some examples for each category; by the passage of time the data categorized by the
neural network can be labeled based on the accuracy of categorization. The inaccurately
categorized data can be braked into some groups by a clustering based method and when
the data volume in each of the groups raises to a lower bound, these group of data be
added to the training data of the neural network as a new category. Applying these steps,
the proposed framework can learn new categories during its application.

To expand the shape decomposition part, it should be reminded that the proposed
algorithm deals with simple shapes which meet the explained conditions. To improve the
algorithm to be applicable to all types of shapes, two extensions are needed to be made:

• Improve the algorithm to be more sensitive to the changes in 2D sections images.
The algorithm in the proposed form in Section 3, considers the changes to be only in
the direction z of the Cartesian coordinate system (or in better words, by an accurate
definition of the coordinate system, they would be so). However, in cases such as the
propeller depicted in Fig. 17 there is no such a definition of the coordinate system that
meets this condition.
• Apply the algorithm for the change detection not only to a single 2D section of the shape.
Obviously, to deal with shapes with changes in different directions, most of the times,
one 2D section is not enough. As an example consider the propeller of Fig. 17. Some
of sections in this shape, which have been created by planes perpendicular to the z axis
and parallel with x−y plane are as depicted in Fig. 18. These pictures show that these
simple cuttings would not be enough to decompose the shape and detected changes in
each section should be connected in a special manner to create accurate cutting planes
to simplify the shape.

As an example of the desired output of the algorithm, suppose that we want to cut off
one of the blades of the propeller. To illustrate the desired cut, consider Fig. 19. In Fig. 19
analysis in each of the perpendicular sections would result in the blue points (blue line
segments show a section of the perpendicular section plane) and the red lines create the
desired cut in 3D space (obviously with an error corresponding to the space between the
lines as the behavior between two planes considered to be linear).

The expansion of the decomposition algorithm to solve such cases is the other related
research potential. As the last proposed related research potential, it is recommended that
the categorization outputs become inputs to a model, algorithm or another intelligent
structure, to determine the production method based on the attributes of each category.

APPENDIX A1. CONVEX DECOMPOSITION AS A SIMPLER
METHOD FOR DECOMPOSITION
Regarding the bounded randomness of the behavior of the neural networks (or other
change detection methods), and considering the primitive based structure of the most
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Figure 17 A simple propeller.
Full-size DOI: 10.7717/peerjcs.629/fig-17

products, in this appendix the convex parts of the shape are considered as the building
blocks to be recognized. This point of view, creates a good intermediary level between
fixed, predetermined basic features and the consideration of the shape as a whole because:

• The convex parts of the shape can be recognized using the information provided by
STL (or other B-Rep) representations of the shape, using simple and general rules and
assessments and there are many exact and heuristic methods to decompose the shape
into its convex parts.
• Many convex parts in the real world are somehow modified versions of the basic CSG
convex features. In fact, in many cases, the shape consists of some convex simple shapes
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Figure 18 2D sections of the propeller. Pictures (A) to (L) show sections created by planes cutting the
propeller in different heights.

Full-size DOI: 10.7717/peerjcs.629/fig-18

Figure 19 The semi-curved shape of the desired cut.
Full-size DOI: 10.7717/peerjcs.629/fig-19
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that are similar to CSG convex features to a degree; but this similarity does not mean
being limited to these features. The known building blocks in the proposed system can
be expanded automatically by adding them to the dataset of the framework.
• From production point of view, the most of convex parts can be created by additive
manufacturing using an accurate rotation without need for external base creation
(complete sphere is an important exception).

As a result, at the first step, the shape is decomposed into its convex parts using the
following algorithms. The ‘‘CDA’’ algorithm can substitute the data preparation and
decomposition sections in Figs. 1 and 2:

Algorithm 4 Slicer Algorithm (namely "SA")
1: Get as an input, the shape of interest and name it S.
2: Tessellate the faces of the input shape (reduce the faces into flat triangular facets of a

predetermined maximum edge length). Name the resulted shape TS and the set of the
resulted triangles STS.

3: Find the set of maximal subsets of STS considering the coplanarity of the triangular
facets. Name the resulted set CSTS.

4: For each element of the CSTS find the covering super plane using the normal vector
and one point of the plane (which are the normal and one point of one of its mem-
bers respectively). Name the set of resulting planes SP .

5: for each plane pl ∈ SP : do
6: Create set SLP ={}.
7: (Optional) If the plane pl slices S into at least two distinct shapes and doesn’t cut

through any edges of TS except in the vertices of the TS, add the resulted shapes into
SLP ; give SLP as the output and finish the algorithm.

8: If the plane pl slices S into at least two distinct shapes, add the resulted shapes into
SLP ; give SLP as the result and finish the algorithm.

Algorithm 5 Convex Decomposition Algorithm (namely "CDA")
1: Get the input shape and name it O. Create ordered sets Convexshapes = {}and

Concaveshapes={O}.
2: while the cardinality of the Concaveshapes set is not zero: do
3: Apply the SA algorithm on the first member of the Concaveshapes, which we name

CV and name the result set RS.
4: if RS is not empty then
5: Append the members of RS to the end of the Concaveshapes set.
6: else
7: Move CV from Concaveshapes set to Convexshapes set.

8: Give Convexshapes set as the output.
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