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ABSTRACT
In this paper, we consider the graph class denoted as Gen(∗;P3,C3,C5). It contains
all graphs that can be generated by the split composition operation using path P3,
cycle C3, and any cycle C5 as components. This graph class extends the well-known
class of distance-hereditary graphs, which corresponds, according to the adopted
generative notation, to Gen(∗;P3,C3). We also use the concept of stretch number
for providing a relationship between Gen(∗;P3,C3) and the hierarchy formed by
the graph classes DH(k), with k ≥1, where DH(1) also coincides with the class of
distance-hereditary graphs. For the addressed graph class, we prove there exist efficient
algorithms for several basic combinatorial problems, like recognition, stretch number,
stability number, clique number, domination number, chromatic number, and graph
isomorphism. We also prove that graphs in the new class have bounded clique-width.

Subjects Algorithms and Analysis of Algorithms, Theory and Formal Methods
Keywords Graph classes, Graph algorithms, Distance-hereditary graphs, Split decomposition,
Stretch number

INTRODUCTION
Distance-hereditary graphs have been introduced by (Howorka 1977), and are defined as
those graphs in which every connected induced subgraph is isometric, that is the distance
between any two vertices in the subgraph is equal to the one in the whole graph. Therefore,
any connected induced subgraph of any distance-hereditary graph G ‘‘inherits’’ its distance
function from G. Formally:
Definition 1 (Howorka, 1977) A graph G is a distance-hereditary graph if, for each
connected induced subgraph G′of G, the following holds: dG′(x,y)= dG(x,y), for each
x,y ∈G′.

This kind of graphs have been rediscovered many times (e.g., see Bandelt & Mulder,
1986). Since their introduction, dozens of papers have been devoted to them, and different
kind of characterizations have been found: metric, forbidden subgraphs, cycle/chord
conditions, level/neighborhood conditions, generative, and more (e.g., see Brandstädt,
Le & Spinrad, 1999). Among such results, the generative properties resulted as the
most fruitful for algorithmic applications, since they allowed researchers to efficiently
solve many combinatorial problems in the context of distance-hereditary graphs
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(e.g., see Brandstädt & Dragan, 1998; Chang, Hsieh & Chen, 1997; Gioan & Paul, 2007;
Lin, Ku & Hsu, 2020; Nicolai & Szymczak, 2001; Rao, 2008a).

From an applicative point of view, distance-hereditary graphs aremainly attractive due to
their basicmetric property. For instance, these graphs canmodel unreliable communication
networks (Cicerone, Di Stefano & Flammini, 2001; Esfahanian & Oellermann, 1993) in
which vertex failures may occur: at a given time, if sender and receiver are still connected,
any message can be still delivered without increasing the length of the path used to reach
the receiver.

Since in communication networks this property could be considered too restrictive,
in Cicerone & Di Stefano (2001) the class of k–distance-hereditary graphs has been
introduced. These graphs can model unreliable networks in which messages will eventually
reach the destination traversing a path whose length is at most k times the length of a
shortest path computed in absence of vertex failures. Theminimum k a network guarantees
regardless the failed vertices is called stretch number. Formally:
Definition 2 (Cicerone & Di Stefano, 1998; Cicerone & Di Stefano, 2001) Given a real
number k ≥ 1, a graph G is a k–distance-hereditary graph if, for each connected induced
subgraph G′ of G, the following holds: dG′(x,y)≤ k ·dG(x,y), for each x,y ∈G′.

The class of all the k–distance-hereditary graphs is denoted by DH(k). Concerning this
class of graphs, the following relationships hold:

• DH(1) coincides with the class of distance-hereditary graphs;
• DH(k1)⊆DH(k2), for each k1≤ k2.

Additional results about the class hierarchy DH(k), for any rational k ≥ 1, can be found
in Cicerone (2011a), Cicerone (2021), Cicerone & Di Stefano (2000), Cicerone & Di Stefano
(2004). This hierarchy is fully general, that is, for each arbitrary graph G there exists a
number k ′ such thatG∈DH(k ′). It follows that the stretch number s(G) ofG is the smallest
rational number t such that G belongs to DH(t ). In Cicerone & Di Stefano (2001), it has
been shown that stretch number s(G) can be also computed as follows:

• the stretch number of any pair {u,v} of distinct vertices is defined as sG(u,v)=
DG(u,v)/dG(u,v), where DG(u,v) is the length of any longest induced path between u
and v , and dG(u,v) is the distance between the same pair of vertices;
• s(G)=max{u,v}sG(u,v).

It follows that if G contains n vertices, then s(G)≤max{1,(n−2)/2}. Interestingly, it
has been shown that not all the possible rational numbers define possible stretch numbers.
A positive rational number t is called admissible stretch number if there exists a graph G
such that s(G)= t . The following result characterizes which numbers are admissible stretch
numbers.
Theorem 1 (Cicerone & Di Stefano, 2000; Cicerone & Di Stefano, 2004) A rational number
t is an admissible stretch number if and only if t ≥ 2 or t = 2− 1

i for some integer i≥ 1.

The class DH(2−1/i), for each i> 1, has been characterized in Cicerone & Di Stefano
(2004) according to forbidden subgraphs. In Cicerone (2011a), this characterization has
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1The syntax Gen(opn;list_of_components)
emphasizes the generative defi-
nition of graphs in the class, like
Forb(list_of_subgraphs) is often used
to define graph classes according to a list of
minimal forbidden subgraphs.

been generalized to the class containing any graph G such that s(G)< 2. Since this class
contains graphs with stretch number strictly less than two, it is denoted here as sDH(2).
In Cicerone (2011a), the class sDH(2) has been also characterized according to cycle-chord
conditions.

In the literature, there are other hierarchies of classes that extend distance-hereditary
graphs. The class DH(k,+), for any integer k ≥ 0, contains all graphs where, for each
possible pair of vertices, the difference between the longest and the shortest induced
paths between the vertices is bounded by an integer value k (in other words, in each
possible connected induced subgraph, the distance may increase up to an additive factor
k). This hierarchy has been independently introduced in Cicerone, D’Ermiliis & Di Stefano
(2001) and Aïder (2002), and further results can be found in Cicerone & Di Stefano (2003)
and Rautenbach (2004). Another hierarchy has been proposed in Cicerone & Di Stefano
(1999a) and Cicerone & Di Stefano (1999b). It extends the distance-hereditary graphs by
exploiting the well-known characterization based on ‘‘one-vertex extension’’ operations.
Accordingly, each distance-hereditary graph can be generated starting from a single vertex
and by applying β and γ , that add false and true twins respectively, and α, that adds a
pendant node (i.e., the smallest bipartite graphs). In this hierarchy,80 denotes the class of
distance-hereditary graphs, and 8i, for each integer i≥ 1, denotes the class containing all
the graphs that can be generated by applying β, γ , and α, where the latter now can append
any bipartite graphs in8i−1. It follows that the class of parity graphs (Burlet & Uhry, 1984)
represents a limit for 8i.

Motivation and results
One of the main motivations for the introduction of the DH(k) hierarchy was to refine
the borderline between the classes of complexity P and NP. In particular, the initial
class DH(1) was found to have multiple characterizations that, when properly exploited,
produced polynomial solutions for several combinatorial problems which are NP complete
in the class of general graphs. So, the idea with the introduced hierarchy was to extend,
if possible, some of these polynomial results to a class DH(k) for some constant k > 1.
Despite some interesting properties found for the generic DH(k) class, this ambitious goal
was not achieved. As a consequence, a slightly different approach was pursued in Cicerone
(2011b): to define a new class which at the same time was a superclass of DH(1) and with
evident relationships with the DH(k) hierarchy.

The introduced class has been denoted as Gen(∗;P3,C3,C5) and it contains all
graphs that can be generated by applying the split composition operation (Cunningham,
1982) using path P3, cycle C3, and any cycle C5 as components. We use the notation
Gen(opn;list_of_components)1 for classes whose elements can be defined in a
generative way. In Cicerone (2011b) it is stated (but with omitted proofs) that in the
class Gen(∗;P3,C3,C5) several problems that are in general NP-hard can be efficiently
solved. In particular:
1. Gen(∗;P3,C3,C5) is a proper subclass of sDH(2);
2. there exist linear time algorithms for the recognition problem, the graph isomorphism

problem, and for computing the stretch number;
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3. by exploiting a result provided by Rao (2008b), it can be derived that there exist linear
time algorithms for computing the stability number, clique number, domination
number and its variants, and an O(n3)-time algorithm for computing the chromatic
number; it is also possible to prove that all graphs in Gen(∗;P3,C3,C5) have bounded
clique-width.
All the above algorithmic results are obtained by exploiting in some way the generative

definition of each graph belonging to Gen(∗;P3,C3,C5) according to the classical
decomposition approach: the problem at hand is first solved in each component and
then the solutions obtained in each component are composed/manipulated to get the
solution for the whole graph.

In this work we provide the following contribution. First, we show a counterexample
for a theorem given in Cicerone (2011b); the property contained in that theorem was the
basis of the algorithm for calculating the stretch number of graphs belonging to the studied
class. Then, we provide new structural properties for graphs in sDH(2), and we use such
properties for devising a new technique for computing the stretch number. This technique
in itself is simple (dynamic programming on the split decomposition tree), but it contains
a very interesting way to store the output of subproblems that might find applications
elsewhere, i.e., for other resolution techniques based on split decomposition. Finally, we
provide full proofs of all the other results claimed in Cicerone (2011b).

Outline
The paper is organized as follows. In ‘Notation, Basic Concepts, and Preliminary Results’ we
give basic notation, necessary concepts concerning the split decomposition, and additional
concepts and results concerning the stretch number. In ‘Extending Distance-Hereditary
Graphs Via Split Composition’ we formally recall the class Gen(∗;P3,C3,C5) and show
that the recognition problem for this new class can be solved in linear time. ‘Structural
Properties About Graphs in sDH(2)’ provides some properties about graphs in sDH(2)
that are used in ‘Computing the Stretch Number’ to provide a linear time algorithm
for computing the stretch number in any graph belonging to the newly defined class. In
‘Other Combinatorial Problems’ we observe how known results can be exploited to solve
many other combinatorial problems in the new class. Finally, ‘Conclusion’ provides some
concluding remarks.

NOTATION, BASIC CONCEPTS, AND PRELIMINARY
RESULTS
We consider finite, simple, loop-less, undirected and unweighted graphs G= (V ,E) with
vertex set V and edge set E . A subgraph of G is a graph having all its vertices and edges in
G. Given S⊆V , the induced subgraph G[S] of G is the maximal subgraph of G with vertex
set S. Given u∈V , NG(u) denotes the set of neighbors of u in G, and NG[u] =NG(u)∪{u}.

A sequence of pairwise distinct vertices (x0,x1,...,xk) is a path in G if (xi,xi+1)∈ E for
0≤ i< k. A chord of a path is any edge joining two non-consecutive vertices in the path,
and a path is an induced path if it has no chords. Each vertex xi, 0< i< k, is an internal
vertex of the path (x0,x1,...,xk). We denote by Pk any path with k ≥ 3 vertices. Two vertices

Cicerone and Di Stefano (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.627 4/34

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.627


1
v

2

v
3

v
4

v
5

v
6

v

Figure 1 The chord distance of of this C6 graph is 2 because vertices v1 and v2 are consecutive and ev-
ery chord is incident to them, and there is no other set with less than two vertices with the same prop-
erty.

Full-size DOI: 10.7717/peerjcs.627/fig-1

x and y are connected in G if there exists a path (x,...,y) in G. A graph is connected if every
pair of vertices is connected.

A cycle in G is a path (x0,x1,...,xk−1) where also (x0,xk−1) ∈ E . Two vertices xi and
xj are consecutive in Ck if j = (i+1)mod k or i= (j+1)mod k. A chord of a cycle is an
edge joining two non-consecutive vertices in the cycle. We denote by Ck any cycle with
k ≥ 3 vertices, whereas Hk denotes a hole, i.e., a cycle Ck , k ≥ 5, without chords. The chord
distance of a cycle Ck is denoted by cd(Ck), and it is defined as the minimum number of
consecutive vertices in Ck such that every chord of Ck is incident to some of such vertices
(see Fig. 1 for an example of chord distance). We assume cd(Hk)= 0.

A clique (or complete graph) is any graph in which every two distinct vertices are adjacent;
a clique with n vertices is denoted by Kn (but notice we use C3 to denote the clique with
three vertices). A complete bipartite graph is a graph whose vertices can be partitioned into
two subsets V1 and V2 such that no edge has both endpoints in the same subset, and every
possible edge that could connect vertices in different subsets is part of the graph. Symbol
Kn,m is used to denote a complete bipartite graph with |V1| = n and |V2| =m. A star is any
graph K1,n with n≥ 2.

The length of any shortest path between two vertices x and y in a graphG is called distance
and is denoted by dG(x,y). Moreover, the length of any longest induced path between them
is denoted by DG(x,y). If x and y are distinct vertices, we use the symbols pG(x,y) and
PG(x,y) to denote a shortest and a longest induced path between x and y , respectively.
Sometimes, when no ambiguity occurs, we also use pG(x,y) and PG(x,y) to denote the sets
of vertices belonging to the corresponding paths. If dG(x,y)≥ 2, then {x,y} is a cycle-pair
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Figure 2 An example showing that Lemma 2 does not hold in graphs having stretch number greater
than 2. Vertex v2 is internal to a shortest path between two vertices that provides the stretch number but it
is not incident to any chord.

Full-size DOI: 10.7717/peerjcs.627/fig-2

if there exist two induced paths pG(x,y) and PG(x,y) such that pG(x,y)∩PG(x,y)={x,y}.
In other words, if {x,y} is a cycle-pair, then the vertices in pG(x,y)∪PG(x,y) induce a
cycle in G; this cycle is denoted by G[x,y]. In Fig. 1, {v3,v6} is a cycle-pair that induces
the cycle (v3,v4,v5,v6,v1); in particular, G[v3,v6] is induced by pG(v3,v6)= (v3,v1,v6)
and PG(v3,v6)= (v3,v4,v5,v6). The following lemma states that cycle-pairs are useful to
determine the stretch number.
Lemma 1 (Cicerone & Di Stefano, 2001) If G is a graph such that s(G)> 1, then there exists
a cycle-pair {u,v} that induces the stretch number of G, that is s(G)= sG(u,v).

As a consequence of this lemma, if {u,v} is a cycle-pair that induces the stretch of G
then the cycle G[u,v] is called inducing-stretch cycle for G. In Fig. 1, the represented graph
G belongs to DH(3/2); moreover both G[v3,v6] and G[v3,v5] are inducing-stretch cycles
for G.

The following lemma refers to any graph G belonging to sDH(2)\DH(1) and provides
a very useful property concerning the chords of any induced stretch-cycle of G.
Lemma 2 (Cicerone & Di Stefano, 2004) Let G be a graph such that 1< s(G)< 2, and let
G,[y] any inducing-stretch cycle of G.Then, either G[x,y] is chordless or each internal vertex
of pG(x,y)is incident to a chord of G[x,y].

Unfortunately this property does not hold for graphs G with s(G)> 2. For instance,
Fig. 2 shows a graph with stretch number equal to 3 where: (1) the cycle G[x,y] generated
by P(x,u1,u2,...,u11,y) and p(x,v1,v2,v3,y) is an induced-stretch cycle, and (2) there
exists v2 which is an internal vertex of pG(x,y) but it is not incident to any chord of G[x,y].

We conclude this section by introducing a notion related to chords.
Let C = (x,u1,u2,...,um,y,vn,vn−1,...,v1) be a cycle with m≥ n, and assume that each
chord of C (if any) is incident to some vertex vj , for 1≤ j ≤m. Given vj , 1≤ j ≤ n, then ulj
and urj denote the vertices incident to the leftmost and rightmost chord of vj , respectively.
Formally,
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Figure 3 An example of split composition:G= (G1,m1)∗ (G2,m2).
Full-size DOI: 10.7717/peerjcs.627/fig-3

• lj =min{j ′|1≤ j ′≤mand(vj,uj ′)is a chord of C}
• rj =max{j ′|1≤ j ′≤mand(vj,uj ′)is a chord of C}

If vj is not incident to any chord of C , we say that rj and lj are undefined.

Split composition and decomposition
In this sectionwe briefly recall the concepts of split composition and decomposition as defined
by Cunningham (1982). Let G1, G2 be two graphs having disjoint vertex sets V1∪{m1},
V2∪{m2} and edge sets E1, E2, respectively. The split composition ofG1 andG2 with respect
to the joining vertices m1 and m2 is the graph G having vertex set V =V1∪V2 and edge
set E = E

′

1∪E
′

2∪{(u,v)|u∈NG1(m1),v ∈NG2(m2)}, where E
′

i = {(u,v)∈ Ei|u,v ∈Vi} for
i= 1,2.

The composition is denoted as G= (G1,m1)∗ (G2,m2), or simply G=G1 ∗G2 when
we are not interested in the joining vertices. An example of split composition is shown in
Fig. 3.

The split composition has an inverse operation, namely the split decomposition. Let G1,
G2 be two graphs having disjoint vertex sets V1∪{m1}, V2∪{m2} and edge sets E1, E2,
respectively. IfG= (G1,m1)∗(G2,m2) and |V1|,|V2| ≥ 2, thenwe say that {G1,G2} is a simple
decomposition of G.We call {V1,V2} the split ofG associated with the simple decomposition
{G1,G2}, being m1 and m2 the associated joining vertices (these vertices are often referred
as ‘‘marked’’ vertices when they are introduced by the split decomposition operation - cf
Fig. 4). IfG has a split we say thatG is split-decomposable. The split decomposition of a graph
G is the set D(G) of graphs obtained by the following recursive procedure:

- ifG has a split {V1,V2}, then apply the split decomposition to graphsG1 andG2 obtained
by the simple decomposition {G1,G2};

- if G does not have a split then G is called prime.

Each element of D(G) is called component. Sometimes it is useful to associate a
decomposition tree T (G) to D(G) as follows: each vertex of T (G) corresponds to a prime
components in D(G); furthermore two vertices of T (G) are adjacent if and only if the
corresponding components have been obtained by a simple decomposition. An important
property of the split decomposition is that every component of D(G) is isomorphic to an
induced subgraph of G. For example, the graph G2 of Fig. 3 is isomorphic to the subgraph
induced by the vertex set {a,c,d,e}.
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(A) (B)

(C) (D)

Figure 4 From (A) to (D), in order, the sequence of splits to get the Cunningham decompositionD(G)
of a graphG. Dotted lines show the splits performed at each step, black vertices represent joining/marked
vertices. It is easy to see that the corresponding decomposition tree T (G) is a P4 graph.

Full-size DOI: 10.7717/peerjcs.627/fig-4

The split decomposition of a graph is not necessarily unique, but Cunningham proved
the following uniqueness result:
Theorem 2 (Cunningham, 1982) Each connected graph has a unique split decomposition
into prime graphs, stars, and cliques with a minimum number of components.

Remark 1 The decomposition used in the previous theorem, called Cunningham decompo-
sition, is not necessarily a split decomposition, since stars and cliques are split-decomposable.
It is easy to find a minimal split decomposition from an unique split decomposition, or vice
versa (Cunningham, 1982). See Fig. 4 for an example of Cunningham decomposition of a
graph.

All known algorithms that compute the split decomposition compute in fact a
Cunningham decomposition. The first algorithm was given by Cunningham and has
running time O(n3) (Cunningham, 1982). This result has been improved to O(nm) in
Gabor, Supowit & Hsu (1989), and to O(n2) inMa & Spinrad (1994). Finally, Dahlhaus has
given a linear time algorithm in Dahlhaus (2000). Recently, more practical algorithms have
been proposed (Charbit, De Montgolfier & Raffinot, 2012; Gioan et al., 2014).

From now on, unless otherwise specified, when we use the term ‘‘split decomposition’’
we always refer to the Cunningham decomposition.

Some graph classes are nicely decomposable by split decomposition. A graph is a
distance-hereditary graph if and only if every graph in its split decomposition is a star or a
clique (Cicerone & Di Stefano, 1999a). A graph is a parity graph if and only if every prime
graph in its split decomposition is bipartite or a clique (Cicerone & Di Stefano, 1999b). A
graph is a circle graph if and only if every prime graph in its split decomposition is a circle
graph (Gabor, Supowit & Hsu, 1989). The best known recognition algorithms for circle
graphs (Spinrad, 1994) and parity graphs (Cicerone & Di Stefano, 1999b; Dahlhaus, 2000)
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are based on split decomposition. Moreover, a graph is perfect if and only if every prime
graph in the split decomposition is perfect (Bixby, 1984).

Split composition and stretch number
In the remainder we will often use the following basic property - which directly follows
from the definition of split composition, and the subsequent lemma.
Lemma 3 Let G= (G1,m1)∗ (G2,m2). If u∈G1 \NG1[m1] and v ∈G2 \NG2[m2] then the
following properties hold:

• dG(u,v)= dG1(u,m1)+dG2(v,m2)−1;
• DG(u,v)=DG1(u,m1)+DG2(v,m2)−1.

Proof The former trivially follows from to the definition of split composition. Concerning
the latter, it is less trivial but it depends on the fact that G contains all the possible edges
between vertices inNG1(m1) and vertices inNG2(m2). Hence, PG(u,v) cannot include more
than two vertices in NG1(m1)∪NG2(m2), otherwise it would not be an induced path. �

Lemma 4 Let G1= (V1,E1) and G2= (V2,E2) be two graphs. If G= (G1,m1)∗ (G2,m2),
then

s(G)=max
{
s(G1),s(G2), max

u∈V1\NG1 [m1],v∈V2\NG2 [m2]

{
DG1(u,m1)+DG2(v,m2)−1
dG1(u,m1)+dG2(v,m2)−1

}}
.

Proof If we assume that vertices u and v gives the stretch number of G, that is
s(G)= sG(u,v), then three different cases may occur:

• both u and v are in V1;
• both u and v are in V2;
• u belongs to V1 \NG1[m1] and v belongs to V2 \NG2[m2].
In the first case, we get s(G)= s(G1), as any path between u and v containing more than
one vertex in V2 is not induced. Similarly for the second case where s(G)= s(G2). In the
last case, the statement follows from Lemma 3. �

EXTENDING DISTANCE-HEREDITARY GRAPHS VIA SPLIT
COMPOSITION
In this section we define a new graph class which represents a superclass of distance-
hereditary graphs.

One of the most popular characterizations of distance-hereditary graphs is based on
one-vertex extension operations (Bandelt & Mulder, 1986). More precisely, if G is a graph
and u any vertex of G, then the one-vertex operations that can be applied to u to extend G
are the following:

- α(G,u;v) adds a new vertex v to G and makes it adjacent only to u;
- β(G,u;v) adds a new vertex v to G and makes it adjacent to every neighbor of u;
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Figure 5 The one-vertex extension operations that generate each distance-hereditary graph: (A), (B),
and (C) show α(G,u;v), β(G,u;v), and γ(G,u;v), respectively.

Full-size DOI: 10.7717/peerjcs.627/fig-5

- γ (G,u;v) adds a new vertex v to G and makes it adjacent to u and to every neighbor of
u.

See Fig. 5 for a graphical representation of these operations. As stated in the following
theorem, any distance-hereditary graph can be obtained by exploiting the operations α, β
and γ .
Theorem 3 (Bandelt & Mulder, 1986) Every distance-hereditary graph is obtained starting
from a single vertex and by applying a proper sequence of operations α, β, and γ .

We now observe that this result can be reformulated in terms of a single operation,
namely, the split composition.
Lemma 5 A graph G is distance-hereditary if each of its connected components has at most
two vertices or it is obtained by applying the split composition and using path P3 and cycle
C3 as components.

Proof It is easy to verify that the following relationships hold:
- α(G,u;v)≡ (G,u)∗ (P3,v), where v is an external vertex in the path P3;
- β(G,u;v)≡ (G,u)∗ (P3,v), where v is an internal vertex in the path P3;
- γ (G,u;v)≡ (G,u)∗ (C3,v), where v is any vertex in the cycle C3.
The proof is concluded by observing that these relationships also show that every vertex of
the components P3 and C3 can be used as joining vertex. �

Notice that the previous result cannot be directly derived from the well known result
that decomposing a distance-hereditary graph by means of the split decomposition results
in components with at most 3 vertices (Cicerone & Di Stefano, 1999a; Hammer & Maffray,
1990). In fact, such result does not provide information about how such components are
joined.

From the above Lemma it follows that the class of distance-hereditary graphs can be
denoted as Gen(∗;P3,C3). Now, extending Gen(∗;P3,C3) via split composition is just
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(C) (D)(B)(A)

Figure 6 The minimal forbidden subgraphs of distance-hereditary graphs: from (A) to (D), in order,
the holeHn with n ≥ 5, the house, the fan, and the domino. Dashed lines represent paths of length at
least one.

Full-size DOI: 10.7717/peerjcs.627/fig-6

matter of selecting a new component to be used along with P3 and C3. To this aim we recall
the following additional characterization of distance-hereditary graphs (see Fig. 6).
Theorem 4 (Bandelt & Mulder, 1986) A graph G is a distance-hereditary graph if and only
if it does not contain, as induced subgraph, the following graphs: the hole Hn, n≥ 5, the
house, the fan, and the domino.

This result states that only few kinds of graphs cannot appear as induced subgraphs
in a distance-hereditary graph: the hole Hn, n≥ 6, cycles C5 with chord distance at most
one (which correspond exactly to H5, the house, and the fan), and the domino. Since the
smallest ones among such forbidden subgraphs are the cycles C5 with chord distance at
most one, then the following definition formalizes the new graph class:
Definition 3 A graph G belongs to Gen(∗;P3,C3,C5) if each of its connected components
has at most two vertices or it is obtained by means of the split composition using path P3,
cycle C3, and any cycle C5 as components.

For sake of simplicity, in this definition we do not limit the chord distance of cycles
C5 used as components, and hence any cycle with five vertices can be used. Anyway,
notice that if a cycle C5 with chord distance more than one is used, this corresponds to
join a distance-hereditary graph, which in turn is formed by P3 and C3 components. In
conclusion, a single join operation with a cycle C5 with chord distance more than one
corresponds to join a sequence of P3 and C3 components.

By comparing Lemma 5 and Definition 3 it follows that

DH(1)(Gen(∗;P3,C3,C5).

The class DH(1) is hereditary. In general, a class C is hereditary if any induced subgraph
of a graph in C is in C. We show that this nice property is also valid for the new class
Gen(∗;P3,C3,C5).
Theorem 5 Gen(∗;P3,C3,C5) is a hereditary class.

Proof LetG∈Gen(∗;P3,C3,C5), v a vertex ofG, andG′ the subgraph obtained by removing
v fromG. IfG has less than three nodes, the proof is trivial. In the remaining cases, according
to Definition 3, there exists a generative sequence of components B1,B2,...,Bt , t ≥ 1, for
G. This means:

• Bi ∈ {P3,C3,C5}, 1≤ i≤ t ;
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• G1≡B1;
• Gi≡Gi−1 ∗Bi, 2≤ i≤ t ;
• G≡Gt .
We prove the statement by providing a generative sequence for G′. Assume that Bi is the
component such that v ∈ Bi. According to Bi, there are different generative sequences for
G′ (cf. Fig. 7):

• Bi≡C3. The generative sequence forG′ is B1,B2,...,Bi−1,Bi+1,...,Bt (cf. graphG1\{v9}
in Fig. 7);
• Bi≡ P3 and v is an external vertex of the path P3. As in the previous case, the generative
sequence for G′ is B1,B2,...,Bi−1,Bi+1,...,Bt (cf. graph G1 \{v4} in Fig. 7);
• Bi≡ P3 and v is an internal vertex of the path P3. Then v is an articulation point of G,
and hence G′ is disconnected into two or more connected subgraphs. It can be observed
that removing from G all the edges adjacent to v may affect many components Bi, but
each affected Bi reduces its size and either it is no longer needed as a components for
building G′ or it is splitted in smaller components, as in the first analyzed case (cf. graph
G2 \{v9} in Fig. 7);
• Bi≡C5. Let B′i be the subgraph obtained from Bi by removing v . Since B′i has 4 vertices,
then B′i is a distance-hereditary graph, and hence the minimal split decomposition of B′i
contains only P3 and C3 components. Hence, the generative sequence for G′ is given by
B1,B2,...,Bi−1 followed by the components in D(B′i) and then followed by Bi+1,...,Bt .

This concludes the proof. �

Recognition problem
The recognition problem for the new class can be formulated as follows: given a graph G,
decide whether G belongs to Gen(∗;P3,C3,C5). After proving a useful lemma, we will show
that it can be easily solved by using split decomposition algorithms.
Lemma 6 If G ∈ Gen(∗;P3,C3,C5) then every prime graph in D(G) is a cycle C5 with
chord distance at most one.

Proof Let B be a prime component of D(G). Since B is an induced subgraph of G,
by Theorem 5 it follows that B ∈Gen(∗;P3,C3,C5) and hence there exists a generative
sequence B1,B2,...,Bt , t ≥ 1, for B. If |B| ≥ 6 then the generative sequence contains at
least two components (i.e., t ≥ 2): this is a contradiction for B prime. Hence t = 1, i.e.,
the generative sequence is composed by B exactly, and hence B∈ {P3,C3,C5}. Since B is
prime, it cannot be P3 (which is a star) and C3 (which is a clique). Then it follows that B is
a cycle C5. This cycle cannot have chord distance more than one otherwise it would be a
distance-hereditary graph and hence split-decomposable into P3 and C3 components. �

Theorem 6 A graph G belongs to Gen(∗;P3,C3,C5) if and only if each component in D(G)
is a star, a clique, or a cycle C5 with chord distance at most one.

Proof (⇒) It directly follows by using Lemma 6. (⇐) Let us assume that each component
of D(G)={B1,B2,...,Bn} is a star, a clique, or a cycle C5 with chord distance at most one.
Now, perform the following operations on each component Bi, 1≤ i≤ n, which is a clique
or a star:
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Figure 7 Visualization of some arguments for the proof of Theorem 5.
Full-size DOI: 10.7717/peerjcs.627/fig-7

• if Bi is a clique Kt , t ≥ 3, then replace Kt by C3 ∗C3 ∗ ··· ∗C3 with t − 2 cliques C3

according to Fig. 8;
• if Bi is a star K1,t , t ≥ 2, then replace K1,t by P3∗P3∗···∗P3 with t−1 paths P3 according
to Fig. 9.

From components B1,B2,...,Bn and their modifications we get a split decomposition with
components in {P3,C3,C5}. From this split decomposition it is easy to get a generative
sequence showing that G∈Gen(∗;P3,C3,C5). �

Theorem 7 The recognition problem for the class Gen(∗;P3,C3,C5) can be solved in linear
time.
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...

Figure 8 Decomposing a cliqueKt , t ≥ 3, into C3 ∗C3 ∗ ··· ∗C3 with t −2 cliques C3 (nearby black ver-
tices represent pairs of joining vertices).

Full-size DOI: 10.7717/peerjcs.627/fig-8

...

Figure 9 Decomposing a starK1,t , t ≥ 2, into P3 ∗P3 ∗···∗P3 with t −1 paths P3 (nearby black vertices
represent pairs of joining vertices).

Full-size DOI: 10.7717/peerjcs.627/fig-9

Proof LetGbe a graph inGen(∗;P3,C3,C5). The statement directly follows fromTheorem6
and from the linear time algorithm proposed in Dahlhaus (2000) for computing the
Cunningham decomposition D(G). �

STRUCTURAL PROPERTIES ABOUT GRAPHS IN SDH(2)
In this section we provide some useful properties about graphs in sDH(2) (we remind
that this class contains any graph G such that s(G)< 2). In particular, we first show
that Gen(∗;P3,C3,C5) extends DH(1) till to sDH(2). Then, by recalling that DH(1)
is characterized by split decomposition (i.e., each distance-hereditary graph is split
decomposable into cliques and stars), we ask whether the same happens to graphs in
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sDH(2). In this respect, we show that ‘‘the core’’ of each graph G∈ sDH(2) can be fully
decomposed into a sequence of cycles C5, where by core we informally mean an induced
subgraph G[u,v] where {u,v} is a pair of vertices such that s(G)= sG(u,v).

We start by proving that sDH(2) is closed under split composition.
Lemma 7 Let G1 and G2 two graphs both belonging to sDH(2). If G= G1 ∗G2 then
G∈ sDH(2).

Proof Assume that G1= (V1,E1), G2= (V2,E2), and G= (G1,m1)∗ (G2,m2). According
to Lemma 4, to show that the statement holds, it is sufficient to prove that

DG1(u,m1)+DG2(v,m2)−1
dG1(u,m1)+dG2(v,m2)−1

< 2

for each u ∈ V1 \ n[m1] and v ∈ V2 \NG2[m2]. Since DG1(u,m1)/dG1(u,m1)< 2 and
DG2(m2,v)/dG2(m2,v)< 2 hold by hypothesis, then DG1(u,m1)≤ 2dG1(u,m1)− 1 and
DG2(m2,v)≤ 2dG2(m2,v)−1. Hence DG1(u,m1)+DG2(m2,v)−1≤ (2dG1(u,m1)−1)+
(2dG2(m2,v)−1)−1= 2dG1(u,m1)+2dG2(m2,v)−3< 2dG1(u,m1)+2dG2(m2,v)−2. �

Corollary 1 Let G be a graph. Then G∈ sDH(2) if and only if B∈ sDH(2) for each prime
components B of D(G).

Proof Let us assume G∈ sDH(2). Since each prime components B of D(G) is an induced
subgraph of G, then s(B)< 2. Assume now that B∈ sDH(2) for each prime components
B of D(G). Concerning the components that are not prime, observe that both stars and
cliques have stretch number equal to one. Then, by Lemma 7 the resulting graphG obtained
by the composition of all the components of D(G) is such that G∈ sDH(2). �

Lemma 7 allow us to give a clear relationship between the new graph class
Gen(∗;P3,C3,C5) and the class hierarchy DH(k), k ≥ 1.
Corollary 2 DH(1)(Gen(∗;P3,C3,C5)(DH(2).

Proof DH(1) ( Gen(∗;P3,C3,C5) follows from Definitions 2 and 3. If G ∈
Gen(∗;P3,C3,C5), Theorem 6 and Lemma 7 imply s(G)< 2, and henceGen(∗;P3,C3,C5)(
DH(2). �

Concerning properties about the split decomposition of graphs in sDH(2), it is worth
to observe that there exist prime graphs in sDH(2) which are larger than the components
used to generate graphs in Gen(∗;P3,C3,C5). Figure 10A shows a prime graph with stretch
number 3/2 and not belonging to Gen(∗;P3,C3,C5); in Fig. 10B we show that it is possible
to find graphs with the same properties but with any size.

Let i≥ 2 be an integer, and let G be a graph such that s(G)= 2− 1
i . Then, by definition

of stretch number, there exist vertices x,y ∈G such that

s(G)= sG(x,y)=
DG(x,y)
dG(x,y)

=
2i−1
i
.

Since integers 2i−1 and i are coprime, then there exists an inducing-stretch cycleG[x,y]
having at least (2i−1+1)+ (i+1)−2= 3i−1 vertices. We say that an inducing-stretch
cycle G[x,y] is i–minimum when G[x,y] has exactly 3i−1 vertices.
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(A) (B)

Figure 10 (A) A graph with stretch number 3/2. Since it is prime and it has more than 5 vertices, then
it does not belong toGen(∗;P3,C3,C5). (B) Same properties as in (A) but with arbitrary size.
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Figure 11 (A) The cycleG[x,y] described in Lemma 8. Dotted lines represent paths, dashed lines rep-
resent chords that may or may not exist. (B) The two components obtained fromG[x,y] after the split.
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Both Lemmas 8 and 9 require the following claim:
Claim 1 Let G∈ sDH(2). Then, G does not contain a cycle Cn, with n≥ 6 and cd(Cn)≤
1, as induced subgraph.

Lemma 8 Let i≥ 2 be an integer, and let G be a graph such that s(G)= 2− 1
i . If G[x,y]

is a i–minimum inducing-stretch cycle of G, then G[x,y] is split decomposable into a
sequence of C5 cycles.

Proof According to the hypotheses, we may assume that PG(x,y)= (x,u1,u2,...,u2i−2,y)
and pG(x,y)= (x,v1,v2,...,vi−1,y). The subgraphG[x,y] induced by PG(x,y) and pG(x,y)
is shown in Fig. 11A. If i= 2, then G[x,y] contains 5 vertices. Since G[x,y] coincides with
a cycle C5 the lemma is proven. In the remainder of the proof we assume i≥ 3.According
to Lemma 2 and to notation about leftmost and rightmost chords of cycles, it follows that
rj and lj are defined for each 1≤ j ≤ i−1. We first prove that each one of the following
properties about chords hold:
1. r1= 3;
2. l2= 2;
3. lj ≥ 3 for each 3≤ j ≤ i−1.
In this way, we prove that G[x,y] contains a split as depicted in Fig. 11A. The components
obtained by that split form a cycle C ′ (isomorphic to a cycle C5) and a cycle C ′′ - see
Fig. 11B. Then, we complete the proof by showing that the statement of the lemma can be
recursively applied to C ′′.
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1. If r1> 3 then the cycle induced by v1,x,u1,u2,...,ur1 has at least 6 vertices and chord
distance at most one. According to Claim 1, this is a contradiction. If r1< 3 then the
induced path (v1,ur1,ur1+1,...,u2i−2,y) and the path (v1,v2,...,vi−1,y) provide the
following lower bound on sG(v1,y):

sG(v1,y)≥
2i−2
i−1

= 2

This contradicts s(G)= 2− 1
i . Hence, r1= 3.

2. If l2> 2 then the cycle induced by v2,v1,x,u1,u2,...,ul2 has at least 6 vertices and chord
distance at most one. According to Claim 1, this is a contradiction. If l2< 2 then l2= 1.
The induced path (u1,u2,...,u2i−2,y) and the path (u1,v2,v3,...,vi−1,y) provide the
following lower bound on sG(u1,y):

sG(u1,y)≥
2i−2
i−1

= 2

This contradicts s(G)= 2− 1
i . Hence, l2= 2.

3. Assume lj < 3 for some j such that 3≤ j ≤ i− 1. In this case, the induced path
(ulj ,ulj+1,...,u2i−2,y) and the path (ulj ,vj,vj+1,...,vi−1,y) provide the following lower
bound on sG(vlj ,y):

sG(ulj ,y)≥
2i−1− lj
i− j+1

≥
2i−3
i−2

.

This contradicts s(G)= 2− 1
i . Hence, lj ≥ 3, for each 3≤ j ≤ i−1.

To complete the proof, let us analyze the two components obtained after the split. One
component C ′ is a cycle C5, while the other component is a cycle C ′′ with 3i−4 vertices.
Since C ′′ has 3i−4 vertices, and since the minimum number of vertices to get the stretch
2− 1

i is 3i−1, then s(C ′′)< 2− 1
i . Moreover, the induced paths (x ′,u3,u4,...,u2i−2,y) and

(x ′,v2,v3,...,vi−1,y) provide the following lower bound on sC ′′(x ′,y):

sC ′′(x ′,y)≥
2i−3
i−1

= 2−
1

i−1
.

As a consequence, s(C ′′)= sC ′′(x ′,y)= 2− 1
i−1 .

Hence, C ′′ coincides with C ′′[x ′,y] and it is a (i−1)–minimum inducing-stretch cycle.
Finally, since i≥ 3, the arguments above can be recursively applied to C ′′ by replacing i
with i−1. It follows that G[x,y] can be splitted into a sequence of i cycles C5. Notice that
this implies G[x,y] ∈Gen(∗;P3,C3,C5). �
Lemma 9 Let i≥ 2 be an integer, and let G be a graph such that s(G)= 2− 1

i . If G[x,y]
is not a i–minimum inducing-stretch cycle of G, then
• G[x,y] is split decomposable into a sequence of C5 and C4 cycles;
• G[x,y] contains an i–minimum inducing-stretch cycle of G as induced subgraph.

Proof According to hypotheses, we can assume that PG(x,y)= (x,u1,u2,...,u(2i−1)s−1,y)
and pG(x,y)= (x,v1,v2,...,vis−1,y), for some integer s≥ 2. The subgraph G[x,y] induced
by PG(x,y) and pG(x,y) is shown in Fig. 12. According to Lemma 2 and to notation
about leftmost and rightmost chords of cycles, it follows that rj and lj are defined for each
1≤ j ≤ is−1. We first prove that each one of the following properties about chords hold:
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1. ri−1= 2i−1
2. rj ≤ 2i−2, for each 1≤ j ≤ i−2
3. ri= 2i
4. li= 2i−2
5. li+1= 2i−1
6. lj ≥ 2i, for each i+2≤ j ≤ is−1
In this way, we prove thatG[x,y] contains two splits as depicted in Fig. 12. The components
obtained by that split form a cycle C ′, a cycle C ′′ (isomorphic to a cycle C4) and a cycle C ′′′

(see Fig. 13). Then, we complete the proof by showing that Lemma 8 can be applied to C ′,
and that the current lemma can be recursively applied to C ′′′.
1. If ri−1 > 2i − 1 then the induced path (x,u1,u2,...,uri−1) and the path

(x,v1,v2,...,vi−1,uri−1) provide the following lower bound on sG(u1,uri−1):

sG(u1,uri−1)≥
ri−1
i
>

2i−1
i
= 2−

1
i
.
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This contradicts s(G)= 2− 1
i . Conversely, if ri−1 < 2i− 1 then the induced paths

(vi−1,uri−1,uri−1+1,...,u(2i−1)s−1,y) and (vi−1,vi,...,vis−1,y) provide the following
lower bound on sG(vi−1,y):

sG(vi−1,y)≥
(2i−1)s− ri−1+1

is− (i−1)
>

(2i−1)s− (2i−1)+1
is− i+1

≥
(2i−1)s− (2i−3)

is− i+1
.

This contradicts s(G)= 2− 1
i , because it can easily observed that (2i−1)s−(2i−3)

is−i+1 > 2− 1
i

holds for each i and for each s. Hence, ri−1= 2i−1.
2. Assume rj > 2i−2, for some j such that 1≤ j ≤ i−2. In this case, the induced path

(x,u1,u2,...,urj ) and the path (x,v1,v2,...,vj,urj ) provide the following lower bound
on sG(x,urj ):

sG(x,urj )≥
rj

j+1
>

2i−2
i−1

= 2

This contradicts s(G)= 2− 1
i .

3. If ri< 2i then the induced paths (vi,uri,uri+1,...,u(2i−1)s−1,y) and (vi,vi+1,...,vis−1,y)
provide the following lower bound on sG(vi,y):

sG(vi,y)≥
(2i−1)s− ri+1

is− i
>

(2i−1)s−2i+1
is− i

= 2−
1
i

This contradicts s(G)= 2− 1
i . Conversely, if ri > 2i then consider the induced path

(x,u1,u2,...,uri) and the path (x,v1,v2,...,vi,uri). The length of the first path is
ri> 2i≥ 2i+1, while the length of the second one is i+1. These values provide the
following lower bound on sG(x,uri):

sG(x,uri)≥
2i+1
i+1

= 2−
1

i+1
> 2−

1
i

This contradicts s(G)= 2− 1
i . Hence, ri= 2i.

4. If li < 2i− 2 then consider the induced paths (uli,uli+1,...,u(2i−1)s−1,y) and
(uli,vi,vi+1 ...,vis−1,y). The length of the first path is (2i−1)s− li> (2i−1)s−(2i−2)≥
(2i−1)s− (2i−2)+1, while the length of the second one is is− i+1. These values
provide the following lower bound on sG(uli,y):

sG(uli,y)≥
(2i−1)s− (2i−2)+1

is− i+1
= 2−

s−1
is− i+1

This contradicts s(G)= 2− 1
i , because 2− s−1

is−i+1 > 2− 1
i is equivalent to 1> 0.

Conversely, if li> 2i−2 then the induced paths (x,u1,u2,...,uli,vi) and (x,v1,v2,...,vi)
provide the following lower bound on sG(x,uri):

sG(x,vi)≥
li+1
i
>

2i−2+1
i

= 2−
1
i

This contradicts s(G)= 2− 1
i . Hence, li= 2i−2.

5. If li+1 < 2i− 1 then consider the induced path (uli+1,uli+1+1,...,u(2i−1)s−1,y) and
the path (uli+1,vi+1,vi+2,...,vis−1,y). The length of the first path is (2i−1)s− li+1>
(2i−1)s− (2i−1), while the length of the second one is is− (i+1)+1. These values
provide the following lower bound on sG(uli+1,y):

sG(uli+1,y)>
(2i−1)s− (2i−1)+1

is− i
= 2−

1
i
.

This stretch contradicts s(G)= 2− 1
i . Conversely, if li+1 > 2i−1 then consider the

induced paths (x,u1,u2,...,uli+1,vi+1) and (x,v1,v2,...,vi,vi+1). The length of the first
path is li+1+1> (2i−1)+1≥ 2i+1, while the length of the second one is i+1. These
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values provide the following lower bound on sG(x,vi+1):

sG(x,vi+1)≥
2i+1
i+1

= 2−
1

i+1
> 2−

1
i

This contradicts s(G)= 2− 1
i . Hence, li+1= 2i−1.

6. Assume lj < 2i, for some j such that i+2≤ j ≤ is−1. In this case, the induced path
(ulj ,ulj+1,...,u(2i−1)s−1,y) and the path (ulj ,vj,vj+1,...,vis−1,y) provide the following
lower bound on sG(ulj ,y):

sG(ulj ,y)≥
(2i−1)s− lj
is− j+1

>
(2i− i)s−2i
is− (i+2)+1

= 2−
s−2

is− i−1
This contradicts s(G)= 2− 1

i , because 2−
s−2

is−i−1 > 2− 1
i is equivalent to i> 1. The

latter inequality holds because i≥ 2 by hypothesis.
To complete the proof, let us analyze the three components obtained after the split.

• The first component C ′ is a cycle with 3i− 1 vertices. The induced paths
(x,u1,u2,...,u2i−2,y ′) and (x,v1,v2,...,vi−1,y ′) provide the following lower bound
on sC ′(x,y ′):

sC ′(x,y ′)≥
2i−1
i
= 2−

1
i

Since s(G)= 2− 1
i and C ′ is an induced subgraph of G, then s(C ′)= sC ′(x,y ′)= 2− 1

i
and C ′ coincides with C ′[x,y ′]. Hence, C ′ is a i–minimum inducing-stretch cycle which
the statement of Lemma 8 can be applied to. According to such a Lemma, C ′ can be
splitted into a sequence of cycles C5.
• The second component is a cycle C ′′ isomorphic to a cycle C4. Notice that C ′′ can be
splitted into two cycles C3.
• This component is a cycleC ′′′ with (is−1−i)+2+[(2i−1)s−1−2i+1] = (3i−1)(s−1)
vertices. The induced paths (x ′,u2i,u2i+1,...,u(2i−1)s−1,y) and (x ′,vi+1,vi+2,...,vis−1,y)
provide the following lower bound on sC ′′′(x ′,y):

sC ′′′(x ′,y)≥
(2i−1)s−2i+1

is− i
=

(2i−1)(s−1)
is− i

= 2−
1
i

Since s(G)= 2− 1
i and C ′′′ is an induced subgraph of G, then s(C ′′′)= sC ′′′(x ′,y)= 2− 1

i
andC ′′′ coincides withC ′′′[x ′,y]. Now, if s= 2 thenC ′′′ is a i–minimum inducing-stretch
cycle and we can recursively apply Lemma 8 to it. If s> 2 then C ′′′ is not a i–minimum
inducing-stretch cycle, and we can apply this lemma to it. Hence, according to the
analysis of cycles C ′ and C ′′, C ′′′ can be splitted into a sequence of cycles C4 and C5.

Summarizing, it follows that G[x,y] is split decomposable into a sequence of C5 and C4

cycles, and it contains an i–minimum inducing-stretch cycle of G as induced subgraph.
Moreover, it follows that G[x,y] ∈Gen(∗;P3,C3,C5). �

The above lemmata induce the following additional results.
Corollary 3 Let G be a graph such that s(G)= 2−1/i, for some i≥ 2. There exists a cycle-
pair {u,v} in G such that the induced subgraph G[u,v] can be decomposed into a sequence
of i−1 cycles C5.
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Figure 14 Two graphsG1 andG2 that can be used to show that Theorem 6 in [11] is not correct.
Full-size DOI: 10.7717/peerjcs.627/fig-14

Corollary 4 Let G be a graph such that s(G)= 2−1/i, for some i≥ 2. For each cycle-pair
{u,v} such that sG(x,y)= s(G), the induced subgraph G[u,v] belongs to Gen(∗;P3,C3,C5).

COMPUTING THE STRETCH NUMBER
In Cicerone & Di Stefano (2001) it has been shown that computing the stretch number for
arbitrary graphs is NP-hard. In Cicerone (2011b) it is stated that in Gen(∗;P3,C3,C5) it can
be computed in linear time. This result was based on the following property (cf. Theorem
6 in Cicerone (2011b)):

• Given G= (V ,E), let sG(v)=max{sG(v,u)|u∈V }, and denote as v any vertex such that
sG(v)= sG(v,v).
• Let G1= (V1,E1) and G2= (V2,E2) be two graphs. Let m1 ∈V1 such that sG1(m1)=
2−1/i, and let m2 ∈V2 such that sG2(m2)= 2−1/j. If G= (G1,m1)∗ (G2,m2), then

s(G)=max{s(G1),s(G2),sG(m1,m2)},

where sG(m1,m2)= 2− 1
i+j−1 .

Unfortunately, the following counterexample shows that this property is not true.
Considering the graphs G1 and G2 as represented in Fig. 14. It can be observed that
both the graphs can be obtained by composing holes with five and four vertices, namely
G1 =H5 ∗H5 ∗H5 ∗H5 ∗H4 ∗H5 ∗H5 and G2 =H5 ∗H5 ∗H5. Concerning their stretch
numbers, we get s(G1)= sG1(x,y)=

9
5 = 2− 1

5 and s(G2)= sG2(m2,z)= 7
4 = 2− 1

4 .
By focusing on m1 and m2, we get that m1 ≡ x and sG1(m1)= sG1(m1,x)= 14

8 =
7
4 ,

whereas m2≡ z and sG2(m2)= sG2(m2,z)= 2− 1
4 . Hence, by referring to the notation used

in the above property we have i= j = 4.
Consider now the composed graph G= (G1,m1)∗ (G2,m2). According to the property

above, we get s(G)=max{s(G1),s(G2),sG(m1,m2)}=max{sG1(x,y),sG2(m2,z),sG(x,z)}=
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max{ 95 ,
7
4 ,

20
11}=

20
11 . Unfortunately, Theorem 1 implies that 20

11 is not an admissible stretch
number. Additionally, the above property further states that sG(m1,m2)= 2− 1

i+j−1 , but in
the example sG(m1,m2)= sG(x,z)= 20

11 whereas 2−
1

i+j−1 =
13
7 . In reality, it can been easily

observed that s(G)= sG(y,m2)= 11
6 . Hence, the above property does not hold.

In the remainder of this section we provide a correct linear time algorithm for computing
the stretch number in the class Gen(∗;P3,C3,C5). The technique underlying the algorithm
is the following:
1. decompose G by using a split decomposition algorithm;
2. compute the stretch number of all the components inD(G) (by exploiting Theorem 6);
3. starting from the components in D(G), rebuild G by exploiting the split composition:

at each step use some relationship that allow us to compute s(G) from s(G1) and s(G2)
when G=G1 ∗G2.
It is clear that such an approach works only if the relationship at Step 3 exists: fortunately,

in the subsequent Theorem 8 we show such a relationship for graphs in the class sDH(2).
Also, we will show that for graphs in Gen(∗;P3,C3,C5), steps 2 and 3 can be performed in
linear time. Before presenting the main theorem and the subsequent algorithm, we provide
some properties for graphs in sDH(2).

Notation and properties for graphs in sDH(2)
Given a pair (u,v) of distinct vertices in any graph G∈ sDH(2), we are interested not only
in the stretch number sG(u,v) they produce, but also to the distances that generated such
stretch. To this end we use the symbol δG(·) to represent the distance-pair between the
vertices u and v in G, that is:

δG(u,v)= (DG(u,v),dG(u,v))

According to Lemma 3, if G = (G1,m1) ∗ (G2,m2), u ∈ G1 \NG1[m1], and v ∈
G2 \NG2[m2], then we get

δG(u,v)= (DG1(u,m1)+DG2(v,m2)−1,dG1(u,m1)+dG2(v,m2)−1).

However, if δG1(u,m1)= (p1,q1) and δG2(u,m2)= (p2,q2), it is difficult to represent

δG(u,v)= (p1+p2−1,q1+q2−1) (1)

in terms of δG1(u,m1) and δG2(u,m2) and then to compute sG(u,v). In order to simplify
the computation of sG(u,v), we prefer to encode the distances between u and v with a
different pair of natural numbers, called distance-copair. The function η(·) transforms a
distance-pair (p,q) into a distance-copair. By definition:

η((p,q))=〈p−q,2q−p−1〉.

Note that distance-copairs are represented by angle brackets to easily distinguish them
from distance-pairs. It is not difficult to prove that η is bijective and that

η−1(〈a,b〉)= (2a+b+1,a+b+1).
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Then, given two vertices u,v of a graph G, as δG(u,v) provides the distance-pair between
u,v , the next function ζG(·,·) provides the distance-copair between the same pair of
vertices:

ζG(u,v)= η(δG(u,v)).

Now, when G= (G1,m1)∗ (G2,m2) and u and v are such that u ∈G1 \NG1[m1] and
v ∈G2 \NG2[m2], we can compute ζG(u,v) starting from ζG1(u,m1) and ζG2(v,m2):

ζG(u,v)= ζG1(u,m1)+ζG2(v,m2) (2)

where the + operator used in the above equation is such that:

〈a1,b1〉+〈a2,b2〉= 〈a1+a2,b1+b2〉.

We can prove that Eq. (2) holds by calculating δG(u,v) when δG1(u,m1)= (p1,q1) and
δG2(u,m2)= (p2,q2), as done in Eq. (1). For the left side of Eq. (2), by applying the η−1

function, we have:

η−1(ζG(u,v))= δG(u,v)

For the right side:

η−1(ζG1(u,m1)+ζG2(v,m2)) = η−1(〈p1−q1,2q1−p1−1〉+〈p2−q2,2q2−p2−1〉)
= η−1(〈p1−q1+p2−q2,2q1+2q2−p1−p2−2〉)
= (p1+p2−1,q1+q2−1)
= δG(u,v).

Then Eq. (2) holds being η bijective. For sake of simplicity, we remove the subscript G
from function ζ whenever the graph under consideration is clear from the context.

Given any distance-copair 〈a,b〉,

σ (〈a,b〉)=
2a+b+1
a+b+1

,

that is σ (〈a,b〉) represents the stretch number produced by the distance-pair η−1(〈a,b〉).
In particular, notice that if u and v are two distinct vertices of G then

s(G[u,v])= σ (ζG(u,v)) (3)

Again, for sake of simplicity, we simply write σ (a,b) instead of σ (〈a,b〉). According to
Theorem 1, we know that if s(G)< 2, then s(G)= 2−1/i, for some integer i≥ 1. It is worth
to remark that σ (i,0), with i≥ 0, gives exactly all the possible stretch numbers smaller than
two. In fact:

σ (0,0)=
1
1
,σ (1,0)=

3
2
,σ (2,0)=

5
3
,σ (3,0)=

7
4
,σ (4,0)=

9
5
,...,σ (i,0)= 2−

1
i+1

,...

There is an interesting interpretation of a distance-copair 〈n,m〉. Indeed, it can be
thought as the distance-copair of two vertices x,y with maximum stretch number in any
graph G obtained by the split composition of n cycles C5 and m cycles C4, when T (G) is
a path and the marked vertices of a component are at distance two. This is the case of the
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Figure 15 Dashed edges represent chords that may or may not exist. (u,v) is a stretch-pair in G,
δG(u,v)= (4,3) and ζG(u,v)= 〈1,1〉. Notice that the distance-copair 〈1,1〉 represents exactly the number
of cycles C4 and C5 to be joined by the split composition in order to get G (cf. cycles G1 and G2 to be
joined viam1 andm2 to get G).

Full-size DOI: 10.7717/peerjcs.627/fig-15

graphs G[x,y] mentioned in the statements of Lemmas 8 and 9 (see also Figs. 11, 12 and
13). The case with a graph G obtained by the split composition of a C5 cycle and a C4 cycle
is given in Fig. 15. Here the distance-copair of vertices u,v is 〈1,1〉, since ζG1(u,m1)=〈1,0〉
and ζG2(v,m2)= 〈0,1〉. Note that G[u,v] is not an inducing stretch cycle of G, being
σ (〈1,1〉)= 4/3, whereas s(G)= 3/2.

Regarding the sum operator for distance-copairs, note that it is both commutative and
associative, then we write:

k〈a,b〉= 〈a,b〉+〈a,b〉+···+〈a,b〉︸ ︷︷ ︸
k times

and then, in particular, a〈1,0〉= 〈a,0〉.
We also introduce a partial order in the set of the distance-copairs:

• 〈x,b〉< 〈y,b〉 for x < y and each b;
• 〈a,x〉< 〈a,y〉 for x > y and each a 6= 0.

As a consequence, given a sets of comparable distance-copairs, it is possible to find the
maximum distance-copair, as we will see in Algorithm 1.

Regarding the σ function, we have the following properties:

• 〈x,b〉< 〈y,b〉⇐⇒ σ (x,b)<σ (y,b) for each b;
• 〈a,x〉< 〈a,y〉⇐⇒ σ (a,x)<σ (a,y) for each a 6= 0.

Then the stretch number σ (a,x) decreases when x increases. Moreover, when a= 0,
σ (a,x)= 1 for each possible value of x .

A further property of the σ function is that, for each integer k> 0, we get

σ (ka,k−1)= σ (a,0), (4)

and, in particular, σ (2a,1)= σ (a,0).
Given the set S(G)= {(u,v) : δG(u,v)= (2i+1,i+1) for some integer i≥ 0}, we call

stretch-pair of G each element in S . It follows that if (u,v)∈S(G), then ζG(u,v)= 〈i,0〉.
Among the elements of S there are pairs of vertices that define the (i+ 1)–minimum
inducing-stretch cycles of G. Note that not all the pairs of vertices are stretch-pairs: an
example is given by the pairs of vertices at distance two in a chordless cycle C4. Anyway, it
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can be observed that given any vertex v , there exists at least one stretch-pair involving v . In
fact, if v and v ′ are adjacent in G, then (v,v ′)∈S(G) and ζ (v,v ′)=〈0,0〉. Given any vertex
v , we denote τG(v) (or just τ (v), when G is clear by the context) any vertex of G such that
both the following properties hold:

• (v,τG(v)) is a stretch-pair in S(G);
• σ (ζG(v,τG(v))) is maximum.

Moreover with ζG(v) we denote ζG(v,τ (v)), and by ζ (G) we denote ζG(v) for a vertex v
such that σ (ζG(v,τG(v))) is maximum.Notice that ζ (G) corresponds to the distance-copair
〈i,0〉 where i is such that s(G)= σ (i,0).

The following theorem exploits all the above notation to provide a property useful
to compute s(G) in any graph G obtained by composing two graphs in sDH(2) via split
composition.
Theorem 8 Let G1= (V1,E1) and G2= (V2,E2) be two graphs in sDH(2), let m1 ∈V1,
and let m2 ∈V2. If G= (G1,m1)∗ (G2,m2), then

s(G)=max{s(G1),s(G2),σ (ζG1(m1)+ζG2(m2))}.

Proof According to Lemma 4, it is sufficient to assume that s(G)>max{s(G1),s(G2)} and
then to prove that if s(G)= sG(u,v) for some u∈V1 \NG1[m1] and v ∈V2 \NG2[m2], then
s(G)= sG(u,v)= σ (ζG1(m1)+ζG2(m2)) - see Fig. 16 for an example. By construction,

s(G) = sG(u,v)
≥ s(G[τG1(m1),τG2(m2)])
= s((G1[τG1(m1),m1],m1)∗ (G2[m2,τG2(m2)],m2))
= σ (ζG1(m1)+ζG2(m2)).

where the last equality is obtained by applying Eqs. (2) and (3).

In what follows we show that s(G)= sG(u,v)≤ σ (ζG1(m1)+ζG2(m2)).
Since u∈V1 \NG1[m1] and v ∈V2 \NG2[m2], the shortest path from u to v must pass

through a vertex x1 of V1 in NG1(m1) and a vertex x2 of V2 in NG2(m2). The same for the
longest path from u to v that must pass through a vertex y1 of V1 in NG1(m1) and a vertex
y2 of V2 in NG2(m2). As G is not distance-hereditary (otherwise, both u and v are in V1

or V2, against the hypothesis), these four vertices are all distinct. Moreover each of these
paths can not include more than two vertices in NG1(m1)∪NG2(m2) otherwise they would
be not induced.

Since both G1 and G2 belong to sDH(2), by Corollary 3 we can assume s(G1)= σ (a1,0)
and s(G2)= σ (a2,0) for some integers a1,a2 ≥ 0. Without loss of generality, let a1 ≥ a2.
Moreover, by Lemma 7 we get that also s(G) belongs to sDH(2), and hence by Lemma 9
G[u,v] can be obtained by a sequence of split compositions of C5 and C4 cycles. Notice
that both x1 and y1 belongs to a component of such a decomposition, as well as x2 and y2.

If x1 and y1 (or x2 and y2) belongs to a C4 cycle, the maximum number of consecutive
C5 graphs in the decomposition of G[u,v] is bounded by a1. Then:

s(G[u,v])= σ (k1〈1,0〉+k2〈1,0〉+···+kl〈1,0〉,h1〈0,1〉+h2〈0,1〉+···+hl−1〈0,1〉),
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Figure 16 An example for Theorem 8. Here s(G1)= sG1 (u,m1)= 5/3, s(G2)= sG2 (m2,v)= sG2 (m2,v ′)=
3/2. Notice (m2,v) is a stretch-pair in G2 whereas (m2,v ′) is not. Moreover, u= τG1 (m1) and v = τG2 (m2),
and s(G)= sG(u,v)= 7/4 against sG(u,v ′)= 5/3.

Full-size DOI: 10.7717/peerjcs.627/fig-16

where ki is the number of C5 in the ith sequence of consecutive C5 graphs in the
decomposition of G[u,v]. Similarly for hj . Note that if the sequences of consecutive
C5 graphs are l , the sequences of consecutive C4 graphs are l−1 since u and v belongs to
C5 components.

Then s(G[u,v])= σ ((
∑l

i=1ki)〈1,0〉+ (
∑l−1

j=1hj)〈0,1〉). Since ki ≤ a1, for each i, and
hj ≥ 1 for each j, we have:

s(G[u,v])≤ σ ((l ·a1)〈1,0〉+ (l−1)〈0,1〉)= σ (〈l ·a1,l−1〉)= σ (a1,0)= s(G1),

a contradiction.
Then x1 and y1 belong to a C5 cycle in a sequence of consecutive C5 graphs. Let F

the graph induced by this sequence. Then s(F)≤ σ (ζG1(m1)+ ζG2(m2)), as otherwise,
s(G[m1,τG1(m1)])>σ (ζG1(m1)) or s(G[m2,τG2(m2)])>σ (ζG2(m2)).

Let 〈c,0〉 = ζG1(m1)+ ζG2(m2). If σ (c,0)≤ σ (a1,0), then we reach a contradiction as
above. Then c > a1 and ki≤ c . As consequence:

s(G) = s(G[u,v])

= σ ((
l∑

i=1

ki)〈1,0〉+ (
l−1∑
j=1

hj)〈0,1〉)

≤ σ ((l · c)〈1,0〉+ (l−1)〈0,1〉)
≤ σ (〈l · c,l−1〉)
= σ (c,0)
= σ (ζG1(m1)+ζG2(m2)).

This concludes the proof. �

The algorithm
Here we assume that T (G) is rooted at a component of D(G). If B is a vertex of T (G), we
denote by B̄ the graph obtained by the composition of B and all the descendant vertices of
B in T (G).

Given a graph G, the following recursive function Z (·,·) computes ζ (B̄) for a generic
component B of T (G) and, if m is the marked vertex connecting B to its parent in T (G), it

Cicerone and Di Stefano (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.627 26/34

https://peerj.com
https://doi.org/10.7717/peerjcs.627/fig-16
http://dx.doi.org/10.7717/peerj-cs.627


computes ζB̄(m), too. Then the function Z returns the pair [ζ (B̄),ζB̄(m)] and first (Z (·,·))
and second(Z (·,·)) denote the first and second element of the pair, respectively.

The following algorithm computes s(G) for a graph G such that s(G)< 2.

Algorithm 1: function Z (T ,B), T =T (G), for G∈ sDH(2)
Input: T (G) is assumed rooted, B is a component of T (G)
Output: the pair [ζ (B̄), ζB̄(m)]

1 Let {B1,B2,...,Bk} the children of B connected to B by edges (mi,m′i), i= 1,...,k, wheremi ∈B
2 Letm the marked vertex connecting B to its parent in T , if it exists.
3 Let a= b= c = d = e= f =〈0,0〉
4 a=max{ζ (u,v) | (u,v) is a stretch-pair of B}
5 b=max{first (Z (T ,Bi)) | i= 1,...,k}
6 c =max{ζB(mi)+ second(Z (T ,Bi)) | i= 1,...,k}
7 d =max{ζ (mi,mj)+ second(Z (T ,Bi))+ second(Z (T ,Bj)) | (mi,mj) is a stretch-pair of B}
8 ifm exists then
9 e= ζB(m)
10 f =max{ζ (m,mi)+ second(Z (T ,Bi)) | (m,mi) is a stretch-pair of B}
11 return [max{a,b,c,d},max{e,f }]

Algorithm 2: computing s(G)
Input: a graph G with any component B ofD(G) such that s(B)< 2
Output: s(G)

1 computeD(G) and T (G)
2 choose a component B ofD(G) as a root of T (G)
3 return σ (first (Z (T (G),B)))

Theorem 9 If G is a graph and any component B of D(G) is such that s(B)< 2 then s(G)
can be computed in O(t (B) ·n2) time, where t (B) is the time to compute ζ (B).

Proof We prove the statement by analyzing Algorithm 2, and assuming that the input
graph G has n vertices. By using the algorithm proposed in Dahlhaus (2000), step at Line 1
can be performed in linear time.At Line 2 a component B is chosen as root of T (G), and at
the last line the function Z is called on B. Then assuming that first (Z (T (G),B)) correctly
returns ζ (B̄), then σ (ζ (B̄)) is s(G), being G≡ B̄. Then we have to analyze Algorithm 1. This
algorithm is a recursive algorithm that, working on a node B of T (G) call itself at Lines 5,
6, 7, and 10 for the children of B. We assume that these lines are not performed if B has no
children or, which is the same, that the function max applied to an empty set returns 〈0,0〉.
Let u,v two vertices of G such that s(G)= s(G[u,v]), then there are the following cases:

• u and v are both in B, then ζ (B̄)= ζB(u,v) and this value is stored in variable a at Line
4. It can be computed in time t (B).
• u and v are both in B̄i, for a certain i, then this value is stored in variable b at Line 5. It
can be computed in O(k) time.
• u is in B and v is in a child of B, then by Theorem 8 u is τB(mi), for a certain i, and
ζ (B̄)= ζB(mi)+ζB̄i(m

′

i). This value is stored in variable c at Line 6. It can be computed
in time t (B) ·k.
• u and v are in two different children Bi and Bj , i 6= j, of B, then by applying two times
Theorem 8, ζ (u,v)= ζB̄i(m

′

i)+ζB(mi,mj)+ζB̄j (m
′

j). This value is stored in variable d at
Line 7. It can be computed in time t (B) ·k2.
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The maximum of these four values is returned as ζ (B̄) at Line 11. Note that the distance
co-pairs are in general only partially ordered, but the stretch-pairs used in the algorithm
are totally ordered and then the maximum function is well defined. It could be possible that
u is not in B̄, whereas v is. Then, being Z a recursive function it is important to compute
and return ζB̄(m), since this value could be needed to compute ζ (G).There are two cases
according to τB̄(m) is in B or not.

• if τB̄(m) is in B, then ζB(m) is stored in variable e at Line 9. It can be computed in time
t (B).
• if τB̄(m) is not in B, then by Theorem 8, ζB̄(m)= ζB(m,mi)+ζB̄i(m

′

i) for a certain i and
this value is stored in variable e at Line 9. It can be computed in time t (B) ·k.

The maximum of these two values is returned as ζ (B̄) at line 11. The overall time for a call
of Algorithm 1 is then O(t (B) ·k2). Since it is sufficient a single call of the ζ function for
each component of D(G) and all the children of the components sum up to O(n) then the
overall time needed to Algorithm 2 is O(t (B) ·n2). �

Corollary 5 If G∈Gen(∗,P3,C3,C5) then s(G) can be computed in linear time.

Proof By Theorem 6, the components of D(G) are cliques, stars and C5. For the clique
and star components of D(G), ζ (u,v)= 〈0,0〉 for each stretch-pair u,v in a component,
obviously computable in constant time. For the C5 components ζ (u,v) is equal to 〈0,0〉
or to 〈1,0〉, but being the vertices at most five, O(t (B)) is constant, too. Then the values a
and e are computable in constant time, whereas b,c,f are computable in linear time in the
size of the number of children of B.The value d can be also computed in linear time in the
size of the number of children. In fact if the component is a C5 component the number
of children is at most five and then the total time is constant. If B is a star or a clique,
since ζB(mi,mj) is always 〈0,0〉 then the maximum value is given by the sum of the two
maximum values for second(Z (T ,Bi)) and second(Z (T ,Bj)), and this can be computed
in linear time in the number of children of B.Then, since the total number of children
is bounded by O(n) and D(G) can be computed in linear time, then the overall time for
Algorithm 2 when G∈Gen(∗,P3,C3,C5) is linear in the size of G. �

It is not difficult to modify Algorithms 1 and 2 to return also a pair of vertices u,v
such that s(G)= sG(u,v) and to compute the lengths of the longest and shortest paths
connecting them, given by η−1(first (Z (T (G),B))).

OTHER COMBINATORIAL PROBLEMS
By using results in Rao (2008b), in this section we show that several basic combinatorial
problems can be efficiently solved in the graph class Gen(∗;P3,C3,C5). We first provide
the definitions of such problems and then we give the results.

Given any graph G= (V ,E) and a weight function w :V→N, the pair (G,w) is called
weighted graph. For any subset V ′ ⊆ V , w(V ′)=

∑
v∈V ′w(v). Unlike a set, a multiset

〈v1,v2,...,vk〉 allows for multiple instances for each of its elements.

• independent number: an independent set ofG= (V ,E) is a subset S⊆V of vertices ofG
no twoofwhich are adjacent (i.e., (u,v) 6∈ E for everyu,v ∈V ,). Theweighted independent
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number of a weighted graph (G,w) is the maximum weight of an independent set of G.
It is usually denoted by αw(G).
• clique number: The weighted clique number ωw(G) of a weighted graph (G,w)
corresponds to the maximum weight of a clique of G.
• chromatic number: A proper coloring of a graph G= (V ,E) is an assignment of
colors to the element of V so that no two adjacent vertices have the same color. The
chromatic number of G is the minimum number of colors required in a proper coloring;
it is denoted χ(G). It can be observed that if G admits a proper k-coloring, then V can
be partitioned into k stable sets (i.e., color classes) V1,V2,...,Vk . Given a weighted graph
(G,w), a k-coloring of G, and the corresponding color classes V1,V2,...,Vk , we define
w(Vi)=max{w(v)|v ∈Vi} to be the weight of a color class (or simply the weight of a
color). The weighted coloring problem is to find a proper k-coloring of vertices of G so as
to minimize the sum of the weights of the color class, i.e., find a coloring that minimizes∑k

i=1w(Vi). This value is called the weighted chromatic number of (G,w).
• domination number and its variants: For a graph G= (V ,E), a subset S⊆V is said
to be a dominating set of G if NG[S] =V . A dominating set of smallest size is called a
minimum dominating set and its size is known as the domination number γ (G). The
concept of domination simply extends to weighted graphs, and the weighted domination
number, denoted by γw(G), corresponds to the minimum weight of a dominating set. In
the literature there exists some variants of the concepts of dominating set:

– A set S⊆V is a connected dominating set if S is a dominating set andG[S] is connected;
the weighted connected domination number is denoted by γcw(G) and corresponds to
the minimum weight of a connected dominating set of G.

– A set S⊆V is a dominating clique if S is a dominating set and a clique; the weighted
dominating clique number is denoted by γclw(G) and corresponds to the minimum
weight of a dominating clique of G.

– A set S⊆ V is a independent dominating set if S is both a dominating set and an
independent set; the weighted independent domination number is denoted by γiw(G)
and corresponds to the minimum weight of an independent dominating set of G.

– A set S⊆V is a total dominating set if S is a dominating set and G[S] has no isolated
vertex; the weighted total dominating number is denoted by γtw(G) and corresponds
to the minimum weight of a total dominating set of G.

• clique-width: Let k be a positive integer. A k-graph is a graph whose vertices are
labeled by integers from {1,2,...,k}. We consider an arbitrary graph as a k-graph with all
vertices labeled by 1. We call the k-graph consisting of exactly one vertex v (say, labeled
by i∈ {1,2,...,k}) an initial k-graph and denote it by i(v). The clique-width cwd(G) of
a graph G is the smallest integer k such that G can be constructed from initial k-graphs
by means of repeated application of the following three operations:
1. Disjoint union (denoted by ⊕);
2. Relabeling: changing all labels i to j (denoted by ρi→j);
3. Edge insertion: connecting all vertices labeled by i with all vertices labeled by j, i 6= j

(denoted by ηi,j or ηj,i) - already existing edges are not doubled.
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A construction of a k-graph using the above operations can be represented by an algebraic
term composed of ⊕, ρi→j , and ηi,j , (i,j ∈ {1,2,...,k}, and i 6= j). Such a term is called
a cwd-expression defining G. A k-expression is a cwd-expression in which at most k
different labels occur. Thus, the clique-width of a graph G is the smallest integer k such
that G can be defined by a k-expression (see Courcelle, Engelfriet & Rozenberg, 1993 for
a more formal definition).
• graph isomorphism: two graphs G1 = (V1,E1) and G2 = (V2,E2) are isomorphic if
there exists an ‘‘edge-preserving bijection’’ from G1 to G2, that is a function f :V1→V2

such that (u,v)∈ E1 if and only if (f (u),f (v))∈ E2.

Till now we have used the notion of split decomposition according to the ‘‘uniqueness’’
Theorem 2. Conversely, the following result given by M. Rao in (Rao, 2008b) uses the
‘‘minimal split decomposition’’ version, in which each component is splitted till to reach
its minimal size. So, let Gk , for k ≥ 3, be the class of graphs for which every prime graph in
a minimal split decomposition has at most k vertices.
Theorem 10 (Rao, 2008b) For any fixed k ≥ 3:

• there is an O(n) algorithm to compute the weighted stability number, the weighted cliques
number, the domination number and its variants respectively, and a O(n3) algorithm to
compute the chromatic number of graph in the class Gk , if a minimal split decomposition
tree is given with the graph;
• the clique-width of graphs in the class Gk is bounded by 2k+1.

Accordingly, the following results concerning the new class Gen(∗;P3,C3,C5) can be
easily derived:
Corollary 6 For any fixed k ≥ 3:

• there is a O(n) algorithm to compute the weighted stability, the weighted cliques number,
the domination number and its variants respectively, and a O(n3) algorithm to compute
the chromatic number of graph in the class Gen(∗;P3,C3,C5), if a minimal split
decomposition tree is given with the graph;
• the clique-width of graphs in the class Gen(∗;P3,C3,C5) is bounded by 11.

The next theorem still use the the ‘‘uniqueness’’ version of split decomposition. Let C
the class of graphs for which the isomorphism problem can be solved in time O(t ).
Theorem 11 If G1 and G2 are graphs such that the components of both D(G1) and D(G2)
are in C, then the isomorphism between G1 and G2 can be tested in time O(max{t ,n+m}).

Proof By Theorem 2, any graph G can be transformed into a unique decomposition tree
T . By using the algorithm in Dahlhaus (2000), such a tree can be computed in linear time.
Hence, testing the isomorphism betweenG1 andG2 corresponds to testing the isomorphism
between the decomposition trees T1 and T2. It is a well known result that the isomorphism
problem for trees can be solved in linear time (Aho, Hopcroft & Ullman, 1974), and it is easy
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to see that such a basic result can be extended to decomposition trees once the isomorphism
between vertices of T1 and T2 (i.e., the isomorphism between components of D(G1) and
D(G2)) can be performed efficiently. Since components of D(G1) and D(G2) belong to C,
then the isomorphism between G1 and G2 can be tested in time O(max{t ,n+m}). �

Corollary 7 In the class Gen(∗;P3,C3,C5), the isomorphism problem can be solved in
linear time.

Proof By Theorem 6, each component in the split decomposition of graphs
inGen(∗;P3,C3,C5) is a star, a clique, or a cycleC5. Then, byTheorem11, the isomorphism
problem in Gen(∗;P3,C3,C5) can be solved in linear time. �

CONCLUSION
In this work we introduced the graph class denoted as Gen(∗;P3,C3,C5) and containing
all graphs that can be generated by means of split composition using path P3, cycle C3,
and any cycle C5 as components. This new graph class extends the well known class of
distance-hereditary graphs, which corresponds to Gen(∗;P3,C3).

For this new class we provided efficient algorithms for several basic combinatorial
problems: recognition, stretch number, stability number, clique number, domination
number, chromatic number, and graph isomorphism. We also proved that graphs in the
new class have bounded clique-width. All these results have been obtained by exploiting in
some way the generative definition of each graph belonging to the class according to the
classical decomposition approach: the problem at hand is first solved in each component
and then the solutions obtained in each component are composed/manipulated to get the
solution for the whole graph.

A first possible extension of this work could be to investigate in the classGen(∗;P3,C3,C5)
other combinatorial problems that have been solved in the class of distance-hereditary
graphs.

A more interesting direction could be that of extending to the whole class sDH(2) the
approach used here for solving problems in in the class Gen(∗;P3,C3,C5). In particular,
we have shown that Gen(∗;P3,C3,C5) is a subclass of sDH(2), i.e., each graph in
Gen(∗;P3,C3,C5) has stretch number less than two. Unfortunately, Gen(∗;P3,C3,C5)
is a proper subclass of sDH(2), in particular we observed that there are prime graphs in
sDH(2) of arbitrary size. This implies that the class sDH(2) cannot be characterized by using
the split decomposition, as instead holds for both Gen(∗;P3,C3) and Gen(∗;P3,C3,C5).
Since we have shown that the subgraphs forming the ‘‘core’’ of any graphGen(∗;P3,C3,C5)
is fully split-decomposable (cf. results in ‘Structural Properties About Graphs in sDH(2)’),
it would be interesting (i) to study how such ‘‘core’’ graphs are joined each other in
graphs belonging to sDH(2), and (ii) to study whether there exists a sort of ‘‘extended
split-decomposition’’ that can be used to characterize graphs in sDH(2). Concerning
the latter, observe Fig. 10A: there, a split is missing and hence the graph is prime. If we
added two arcs among the four vertices forming the square, then the graph would have
the requested split. This suggest to allow an extended split to exists also when some of
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the requested edges are missing and, at the same time, this lack of edges creates cycles of
bounded size (e.g., cycle no larger than C4). Of course, the existence of a such desired
generalized split-decomposition would imply the study of an efficient algorithm for its
computation.
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