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The concept of super-resolution was first used by Gerchberg (1974) to improve the
resolution of an optical system beyond the diffraction limit. In the past two decades, the
concept of super-resolution (SR) is defined as the method of producing high-resolution
(HR) images from a corresponding low-resolution (LR) image. Initially, this technique was
classified as spatial resolution enhancement (7sai ¢» Huang, 1984). The applications of
super-resolution include computer graphics (Kim, Lee ¢» Lee, 2016a,b; Tao et al., 2017),
medical imaging (Bates et al., 2007; Ferndndez-Sudrez & Ting, 2008; Huang et al., 2008;
Hamaide et al., 2017; Jurek et al., 2020; Teh et al., 2020; Bashir & Wang, 2021a), security,
and surveillance (Zhang et al., 2010; Shamsolmoali et al., 2018; Lee, Kim ¢ Heo, 2020),
which shows the importance of this topic in recent years.

Although being explored for decades, image supefSfiesolution remains a challenging task

variables for any given LR image. Furthermore, there aiental uncertainties among
the LR and HR data since the downsamplin images may lead to a similar
LR image, making this conversion a ne proeess (Yang ¢ Yang, 2013).
The existing methods of image su be categorized into single-image
super-resolution (SISR) and multi oaches. In single image SR, the learning is

performed for single LR-HR paif for a sipgle Tmage, while in multiple-image SR, the

from a scene (multiple images) (Kawulok et al.,
2020). Video super- i with multiple successive images (frames) and utilizes
the relationghip
multiple im the images are part of a scene containing different frames
(Liu et al., 20

eep learning-based SR studies have reported superior performance than the
ical methods, and DL methods have been used frequently to achieve SR. Researchers
e used a range of methods to explore SR, ranging from the first method of
Convolutional Neural Network (CNN) (Dong et al., 2014) to the recently used Generative
Adversarial Nets (GAN) (Ledig et al., 2017). In principle, the methods used in deep
learning-based SR methods vary in hyper-parameters such as network architecture,
learning strategies, activation functions, and loss functions.

In this study, a brief overview of the classical methods of SR is outlined initially, whereas
the main focus is given to give an overview of the most recent research in SR using deep
learning. Previous studies have explored the literature on SR, but most of these studies
emphasize the classical methods (Borman ¢ Stevenson, 1998; Park, Park & Kang, 2003;
Van Ouwerkerk, 2006; Yang, Ma ¢ Yang, 2014; Thapa et al., 2016), additionally (Yang,
Ma & Yang, 2014; Thapa et al., 2016) used human visual perception to gauge the
performance of SR methods.
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In recent years, there have been some reviews (Ha et al., 2019; Yang et al., 2019; Zhang
et al., 2019¢c; Zhou & Feng, 2019; Li et al., 2020) focused on deep learning-based image
super-resolution. The study by Yang et al. (2019) was focused on the deep learning
methods for single image super-resolution. Zhang et al. (2019¢) limited the scope of image
SR to CNN-based methods for space applications, thereby only reviewing four methods
namely, SRCNN, FSRCNN, VDSR and DRCN. Ha et al. (2019) reviewed the state-of-
the-art SISR methods and classified them based on the type of framework, i.e., CNN, RNN-
CNN-based methods and GAN-based methods. Zhou ¢ Feng (2019) briefly reviewed some
of the state-of-the-art SISR methods and provided an introduction of some of the
methods without any evaluation of comparison of methods, while Li et al. (2020) reviewed

the state-of-the-art methods in image SR while e izing on the methods based on

CNNs and GANS for real-time applications. These reyi€ papers did not encompass the

o super-resolution with appropriate section

domain of super-resolution as a whole, and this pap t research gap by providing

an overview of both classical and deep learning-basé . At the same time, we

have reviewed the deep learning-based met

blocks, i.e., upsampling methods, SR wetyo
other improvements. This review pap Is t
reader could access the overall pro

for the overall image quality metfics, SR meth0ds, datasets, applications, and challenges in

This survey is a compfeh 1ew of the recent advances in SR, emphasizing
deep learning-based @pp  their achievements in systematically achieving SR.
Tables S1 and S2 iveljpsifow the complete list of symbols and acronyms used in
this study.

The ke

e brief overview of the classical methods in SR and their contributions in

dies to give perspective.

We provide a detailed survey of deep learning-based SR, including the definition of the
, dataset details, performance evaluation, deep learning methods used for SR,
and specific applications where these SR methods were used and their performance.

e compare and contrast the recent advances in deep learning-based SR methods by
summarizing the bounds of the methods by providing details of components of the SR
methods used structurally.

4. Finally, the open problems in SR and critical challenges that require further probing are
highlighted in this survey to provide future directions in SR.

This study is organized as follows:

In “Introduction”, we have introduced the concept of SR and the overall overview of this
study. In Fig. 1, we have summarized the hierarchical structure of this review. There are
four main sections: classical methods, deep learning-based methods, applications of SR,
Discussion, and future directions. In “Super-Resolution: Definitions and Terminologies”,
we put forward the problem definition and details of the evaluation dataset. “Survey
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Methodolo odology for the selection of studies included within this
review. In Methods of Super-Resolution”, we compare and contrast the
classical metho ereas, in “Supervised Super-Resolution”, the SR methods based

rning are explored. “Unsupervised Super-Resolution” covers the
tudies@ifat used unsupervised deep learning-based methods for SR, and in “Domain-
ecific ions of Super-Resolution”, various field-specific applications of SR in

eags are discussed. “Discussion and Future Directions” summarizes open
s and limitations in current SR methods and puts forward future research
ions, while “Conclusion” highlights the conclusions.

SUPER-RESOLUTION: DEFINITIONS AND TERMINOLOGIES

In this section, the problem definition and the associated concepts of image super-
resolution are discussed in light of the literature review.

Single image super-resolution—problem definition
The image SR focuses on the recovery of an HR image from LR image input as and in

principle, the LR image I,z can be represented as the output of the degradation function,
as shown in (1).

Lyr = d(Iyur, 0) (1)
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Where d is the SR degradation function that is responsible for the conversion of HR
image to LR image, I,yr is the input HR image (reference image), whereas 0 depicts
the input parameters of the image degradation function. Degradation parameters are
usually scaling factor, blur type, and noise. In practice, the degradation process and
dependent parameters are unknown, and only LR images are used to get HR images by the
SR method. The SR process is responsible for predicting the inverse of the degradation
function d, such that g = d™!

g(Lur,0) = d ' (Lar) = Ly ~ Lk (2)

Where g is the SR function, ¢ depicts the input parameters to the function g, and I, is the

estimated HR corresponding to the input I, z image. ¥

@eion ¢ is a non-injective function;
% (Lg, @) = Ly will hold.
gwn, and this process is

also worth noticing that the
super-resolution function, as in (2), is ill-posed, as the

thus, there are infinite possibilities of I, for which thg

The degradation process for the input LR i S
affected by numerous factors such as senso cedynoise, artifacts created because of
lossy compression, speckle noise, mo ld§and maisfocused images. In the literature,
most of the studies have used a singl sa g function as the image degradation
function:
d(Lr, 0) = (Lur) Ly {sLC (3)

Where lg is the
frequently used d
Zhang & A
(Zhang, Zu
functio, 1l downsampling operation is:

(IyHRa = HR & K)lsf + Hg, {Kv S, G} - 0 (4)

Wur ® Kk depicts the convolution of the HR image I,z with the blurring kernelx,
+ represents the additive white Gaussian noise with a standard deviation of ¢. The
dation function defined in (4) and Fig. 2 is closer to the actual function as it considers
ore parameters than the simple downsampling degradation function (Zhang, Zuo ¢
Zhang, 2018).

Finally, the purpose of SR is to minimize the loss function as follows:

¢ = [min £(Le, Lir)], +h¥() (5)

Where E(IyE, IyHR)is the loss function between the output HR image of SR and the
actual HR image, his the tradeoff parameter, whereas W(¢)is the regularization term.
The most common loss function used in SR is the pixel-based mean square error (MSE),
which can also be referred to as pixel loss. In recent years, researchers have used a
combination of various loss functions, and these combinations are further explored in later

Bashir et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.621 5/56


http://dx.doi.org/10.7717/peerj-cs.621
https://peerj.com/computer-science/

PeerJ Computer Science

l LR Image

.‘ "V’H»m‘ y
v?‘%"”‘f\»—\f /\

R &

Reconstruction from LR to HR

on. Noise is added to simulate realistic
ge K4l DOL: 10.7717/peerj-cs.621/fig-2

Figure 2 Downsampling and upsampling in super-reso!
degradation within an image.

sections. Further mathematical modeling of the SR
Fernandez-Granda (2014).

Methods for quality of SR im

Image quality can have several definifioNgyas pe measurement methods, and it is
generally a measure of the quali isua utes and perception of the viewers.
The image quality assessment (lRA) methods are characterized into subjective methods
(human perception of anfifage 1 and of good quality) and objective methods
(quantitative methods bgaw! inpge quality can be numerically computed) (Thung ¢
Raveendran, 2009)

of an image are mostly a good measure, but this method
ecially if the dataset is large (Wei, Yuan ¢ Cai, 1999); thus,
in SR andgeemp ston tasks, the more suitable methods are objective. As per
(Saad, @ &YChd
tegorigs, i.e., #€ference image-based features from the actual image and blind IQA with
about the ground truth. In this section, IQA methods primarily used in the

ier, 2012), the IQA methods are primarily categorized into three

R are further explored.

signal-to-noise ratio

information systems, the peak signal-to-noise ratio (PSNR) is a measurement technique
for analyzing the signal power compared to the noise power, especially in images; the
PSNR is used as a quantitative measure of the compression quality of an image. In
super-resolution, the PSNR of an image is defined by the maximum pixel value and the
mean square error between the reference image and the SR image, also known as the power
of image distortion noise. For a given maximum pixel value (M) and the reference
image (I,) having t pixels and the SR image (I,), the peak signal-to-noise ratio is defined as:

M2
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Where M is mostly for 8-bit color space depth, i.e., the max value of 255 and MSE is
given by:

t

ABE::%E:(Lﬁy—QUDZ (7)

i=1

As seen from (6), the PSNR is related to the individual pixel intensity values of the SR
image and reference image and is a pixel-based metric of image quality. In some cases
(Almohammad & Ghinea, 2010; Horé ¢ Ziou, 2010; Goyal, Lather & Lather, 2015), this
quality metric can be misleading as the overall image might not be visually similar to that

of the reference image. This metric is still used for age comparisons, especially

comparing the results of SR algorithms with previousfgpublished results to compare the
working of any new method in the field of SR.

MSE for color images averaged for color channe ernate approach is to
measure PSNR for luminance and or greysc ately as the human eye
is more sensitive to changes in luminance i trasfjto changes in chrominance

(Dabov et al., 2006).

Structural similarity index

The visual perception of humangis efficiefit in extracting the structural information within
an image, and PSNR doe structural composition of the image (Rouse &
Hemami, 2008). The st imjlarity index metric (SSIM) was proposed by (Wang

et al., 2004) to mea similarity between images by comparing the contrast,

luminance, gnd_s within the reference image.
An image ixels P; the contrast C;, and luminance L; can be denoted as the
standar e mean of the image intensity given by:

(8)

> (i) = L) ) 9)

The i" pixel of the reference image is denoted by I,(i). The comparisons based on the
contrast and luminance between the reference image I, and the estimated image I are:

. 2L L;
Com(1,,1) = =1L (10)
I, 7T
. 2C, G

G+ C

Where u; = (k;S)* and u, = (k,S)?, these constant terms ensure stability by ensuring
ky <<landk, << 1.
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Normalized pixel values I, — L; /C;, represent the image structure, while the inner
product of these is the equivalent of structural similarity between the reference image I,
and the estimated image I. The covariance 01,1 is given by:

1 ¥ .
=T ; (L)) = L) (1() = L) (12)

Function for structural comparison Com;(I,, I ) is given by:

A 0.1 + Us
Coms (Ir, I) = m

SSIM (I, 1) = {Comy(1,, 1) }*{Com,(1,, 1)}

The control parameters o, f and y can be
luminance, contrast, and structural ¢ ari
Conventionally, PSNR is used in co r visiOn tasks for evaluation, but SSIM is based
on human perception of structu

within an image. Thus this method is

the reference images ard could be very unstable, thus reporting false results;

however, this is n e cas atural images (Pambrun ¢ Noumeir, 2015).

lity testers are asked to grade the quality of images based on specific
afipness, natural look, and color, where the final graded score is the mean of

hod has limitations such as non-linearity between the scores, variation in
results due to changes in test criteria, and human error. In SR, certain methods have
ted good objective quality scores but scored poorly in subjective results, especially in
man face reconstruction (Ledig et al., 2017; Nasrollahi & Moeslund, 2014; Chen et al.,
2018b). Thus, the opinion scoring method is also used in studies (Wei, Yuan ¢ Cai,
1999; Deng, 2018; Ravi et al., 2018, 2019; Vasu, Thekke Madam & Rajagopalan, 2019) to
measure the quality of human perception.

Perceptual quality

Opinion scoring used human raters for manual evaluation of the images; while this
method can provide accurate results as far as human perception is concerned, this method
requires many resources, especially large datasets (Viswanathan & Viswanathan, 2005).
Initially (Kim & Lee, 2017) proposed a CNN-based full reference image quality assessment
(FR-IQA) model where human behavior was learned using an IQA database that
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contained distorted images, subjective scores, and error maps, and this method was
called DeepQA.

In Ma et al. (2017a), the authors used quality-discriminable image pairs (DIP) for
training, and the system was called dipQA (DIP inferred quality index); they used RankNet
with L2R algorithm to learn blind opinion IQA, whereas in Ma et al. (2018) a multi-task
end-to-end optimized deep neural network (MEON) was proposed. MEON used two
stages, in the first stage, distortion type learning using large datasets already available, and
in the second stage, the output of the first stage was used to train the quality assessment
network using stochastic gradient descent. In Talebi ¢ Milanfar (2018), the authors
used CNN to develop a no-reference IQA method known as NIMA; NIMA was trained on
pixel-level and aesthetic quality datasets.

RankIQA (Liu, Van De Weijer ¢ Bagdanov, 2017)
the quality of images using datasets with known imgg

ped a Siamese network to grade
ions, CNNs were used to

learn the IQA, and this method even outperformed e methods without using
the reference image. IQA proposed in Bosse uded ten convolution
layers and five pooling layers for featyre gxtia ile there were two fully connected
layers for regression; this method per; ed
full-reference IQA.

Even though opinion scoringfand perogptudl quality-based methods do exhibit human

fifantly well for both no-reference and

ire is still an open question (i.e., if we want
e reference image); thus, PSNR and SSIM are the
primarily used methggs r vision and SR.

perception in IQA, but the gual
images to be more naturgl or ila

Task-bas jon

Although t hnary ose of image SR is to achieve better resolution, as mentioned
earlier, Iso ul in other computer vision tasks (Kim, Lee ¢ Lee, 2016b; Tao

et al, s Tehlet al., 2020; Liu et al., 2018a). The performance achieved in these can
direc e the performance of the SR methods used in those tasks. In the case of
edical images, the researchers used the original and SR constructed images to see the
ce in the training and prediction phases. In general, computer vision tasks

ch as classification (Krizhevsky, Sutskever ¢» Hinton, 2012; Cai et al., 2019), face
gnition (Nasrollahi ¢ Moeslund, 2014; Liu et al., 2015; Chen et al., 2018b), and object
segmentation (Martin et al., 2001; Lin et al., 2014; Wang et al., 2018b) can be done using
SR images. The performance of these computer vision tasks can be used as a metric to
assess the performance of the SR method.

Miscellaneous IQA methods

The development of IQA methods is an open field, and in recent years various researchers
have proposed SR metrics, but these methods were not used widely by the SR community.
Feature similarity (FSIM) index metric (Zhang et al., 2011) evaluates image quality by
extracting feature points considered by the human visual system based on gradient
magnitude and phase congruency. The multi-scale structural similarity (MS-SSIM)
(Wang, Simoncelli & Bovik, 2003) used multi-scale to incorporate variations in the viewing
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Table 1 Comparison of image quality metrics for super-resolution.

Method Strengths Weaknesses
PSNR e Most commonly used quality assessment metric; thus, it is easy e Since this metric is pixel-based, the overall score could be
to compare results with other methods. misleading in some cases where two images could be visually
¢ Quantitative and is based on MSE different, but the PSNR would still be high.
o This method does not give consider the structural information
within the image
SSIM o After PSNR, this metric is the most commonly used IQA metric; o SSIM is unstable in cases where the variance or luminance of the
thus, comparing results with other methods is easier. reference image is low; thus, in medical imaging, this metric
e Quantitatively scores an image based on its structural similarity ~ could give inconsistent results.
with the original image with the possibility to change the weights
of luminance, contrast, and structural comparison.
Opinion o Opinion scoring is a subjective quality metric, and human .
Scoring testers grade image quality based on predefined parameters such

as sharpness, color, and natural look.

o This method is particularly suitable for human face
reconstruction methods.

Perceptual e
Quality

This method is similar to opinion scoring, but human testers are
replaced by models that learn the behavior of testers using deep
learning.

e Very fast compared to opinion scoring.

ad sources for training the network to learn

fog the quality assessment network.

o It depends'@annotated datasets to learn human behavior.

uses SR images.

X

Task-based e This metric is appropriate if the SR images are used tgfper! . dependent on the performance of the associated task.
Evaluation  another task, for example, object detection/classificatigh a ame SR images will give different scores if there is a change in
diagnosis. task parameters.
o It helps in measuring the performanceyof the task,
to m@asure the image quality and proposed that MS-SSIM provides form

measurement of image quality than single-scale SSIM. In Li ¢ Bovik
0), the authors claimed that SSIM and MS-SSIM do not perform well on distorted and
ges; thus, they used a four-component-based weighted method that adjusted
eight of scores based on the local feature, whereas in the case of contrast-distorted
ages Yao ¢ Liu (2018) like TID2013 and CSIQ datasets SSIM does not perform well.
According to Blau ¢ Michaeli (2018), the perceptual quality and image distortion are at
odds with each other; as the distortion decreases, the perceptual quality should also be
worse; thus, the accurate measurement of SR image quality is still an open area of research.
The comparison of image quality assessment metrics for super-resolution is shown
in Table 1. It depends on the requirements of the methods; most of the methods use PSNR
and SSIM to evaluate the performance as these are quantitative methods.

Operating color channels

In most datasets, RGB color space is used; thus, SR methods mostly employ RGB images,
YCbCr space is also used in SR (Dong et al., 2016). The Y component in YCbCr is the
luminance component, which represents the light intensity, while Cb and Cr are the
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chrominance components (i.e., blue-differenced and red-differenced Chroma channels)
(Shaik et al., 2015). In recent years, most of the SR challenges and datasets use the RGB
color space, limiting the use of RGB space for comparison with state of the art.
Furthermore, the results of IQA based on PSNR vary if the color space in the testing stage
is different from the training/evaluation stage.

Details of the reference dataset

The datasets used in evaluating the SR algorithms are summarized in this section; the

various datasets discussed in this section vary in the total number of example images,

image resolution, quality, and imaging hardware setup. A few of the datasets comprise

paired LR-HR images for training and testing SR alg@rithms. In contrast, the rest of

the datasets include HR images, and the corresponding BRimages are usually generated by

where the default method is bicubic interpo ith tliasing, and scale is the
downsampling factor input to the functi
Table 2 comprises a list of datasets
count, image format, pixel count, iof), type of dataset, and classes of images.
Most of the datasets for SR a
using various scale factors using terpolation with antialiasing. Other than the
mentioned datasets in Tgble ike General-100 (Dong, Loy ¢ Tang, 2016), L20
(Timofte, Rothe &V,
computer vision

a, and the LR images are generated

0 and ImageNet (Deng et al., 2009) are also used in

.Inr times, researchers have preferred the use of multiple

datasets for thaifiing/&g@aluation and testing the SR models; for instance, in Bashir ¢ Ghouri
(2014), Lai ét 017):Wijjadi, Scholkopf & Hirsch (2017) and Tong et al. (2017), the
researc ed ), SET14, BSDS100 and URBAN100 for training and testing.

pe ion challenges

e most prominent SR challenges NTIRE (Agustsson ¢ Timofte, 2017; Timofte et al.,
PIRM (Blau et al., 2018), are discussed in this section.

The New Trends in Image Restoration and Enhancement (NTIRE) challenge

ustsson & Timofte, 2017; Timofte et al., 2017) was in collaboration with the Conference
on Computer Vision and Pattern Recognition (CVPR). NTIRE includes various challenges
like colorization, image denoising, and SR. In the case of SR, the DIV2K dataset
(Agustsson ¢ Timofte, 2017) was used, which included bicubic downscaled image pairs and
blind images with realistic but unknown degradation. This dataset has been widely used to
evaluate SR methods under known and unknown conditions to compare against the
state-of-the-art methods.

The perceptual image restoration and manipulation (PIRM) challenges were in
collaboration with the European Conference on Computer vision (ECCV), and like
NTIRE, it contained multiple challenges. Apart from the three challenges mentioned in
NTIRE, PIRM also focused on SR for smartphones and compared perceptual quality with
generation accuracy (Blau et al., 2018). As mentioned by Blau ¢ Michaeli (2018), the

Bashir et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.621 11/56


http://dx.doi.org/10.7717/peerj-cs.621
https://peerj.com/computer-science/

PeerJ Computer Science

Table 2 List of benchmark datasets used in super-resolution.

Name Number of Image Type Resolution Details of images
images/pairs format
BSD100 (Martin et al., 2001) 100 PNG Unpaired (480, 320) 100 images of animals, people, buildings, scenic views etc.
BSDS300 (Martin et al., 2001) 300 JPG Unpaired (430, 370) 300 images of animals, people, buildings, scenic views,
plants, etc.
BSDS500 (Arbeldez et al., 2010) 500 JPG Unpaired (430, 370) Extended version of BSD 300 with additional 200 images
CelebA (Liu et al., 2015) 202,599 PNG Unpaired (2048, Over 40 attribute defined categories of celebrities
1024)
DIV2K (Agustsson ¢ Timofte, 1,000 PNG Paired (2048, Objects, People, Animals, scenery, nature
2017) 1024)
Mangal09 (Fujimoto et al., 109 PNG Unpaired (800, 1150) 109 manga mes drawn by professional manga artists
2016) in Japan
MS-COCO (Lin et al., 2014) 164,000 JPG Unpaired (640, 480) Labeled objeg er 80 object categories
OutdoorScene (Wang et al., 10,624 PNG Unpaired (550, 450) ants, animals, sceneries,
2018b)
PIRM (Blau et al., 2018) 200 PNG Unpaired (600, 500) owers, etc.
Setl4 (Zeyde, Elad ¢ Protter, 14 PNG Unpaired owers, animated characters, insects, etc.
2012)
Set5 (Bevilacqua et al., 2012) 5 PNG Unpaired ages including, butterfly, baby, bird, head, and
T91 (Yang et al., 2010) 91 PNG Unpaired ( 200) @1 images of fruits, cars, faces, etc.
Urban100 (Huang, Singh ¢ 100 PNG Un 10 rban buildings, architecture
Ahuja, 2015)
VOC2012 (Everingham et al, 11,530 JPG npair, 400) Labelled objects with over 20 classes
2014) R
models that foc§@en disfBrtion often give visually unpleasant SR images, while the models
focusi e pere@ptual image quality do not perform well on information fidelity.

for smartphones.

@ quality metrics NIQE (Mittal, Soundararajan ¢ Bovik, 2013) and
D), the methods that performed best in achieving perceptual quality (Blau
¢ 2018) was the winner. In contrast, in a sub-challenge (Ignatov et al., 2018b),
SR methods were evaluated using limited resources to evaluate SR performance for
phones using the PSNR, MS-SSIM, and opinion scoring metrics. Thus, PIRM
couraged the researchers to explore the perception-distortion tradeoff domain and SR

SURVEY METHODOLOGY

The majority of the studies included in this review paper are peer-reviewed publications to
ensure the validity of the methods; these studies include conference proceedings and
journal papers. The included papers include early access and a published version of recent
papers for super-resolution from 2008 to 2021. However, some in classical methods, some
papers, and initial papers on image SR were included before this range to develop the
review and give the background of the classical methods developed before the deep
learning-based methods overtook the field. Google Scholar, IEEE Xplore, and Science
Direct were queried to collect the initial list of papers in this research. Specific keywords
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Table 3 Inclusion and exclusion criteria.

Section Inclusion Exclusion
Introduction ~ Methods that defined image interpolation and performed some o Studies that solely defined model
practical form of image interpolation, i.e., super-resolution e Review articles
Classical Methods that performed pixel, neighborhood, or any classical image e Application research where applications of classical
Methods interpolation methods were discussed

e Review papers

Deep learning- Development of image super-resolution using deep learning methods, e Papers that emphasize video super-resolution as these
based including review papers papers give priority to frame per second (FPS) and
methods inference time were not included

Applications  Direct applications of super-resolution methods in the six fields defined e Applications ]
in “Domain-Specific Applications of Super-Resolution” were included super-resol
included

ombined other methods with image
SR was a limited part were not

e Revi ap

were used to search the databases

bas&@on gthe abstract. A further selection of papers
was made using the reference sg€tions of, thé*€lected papers as they contain additional
relevant studies in image super-regolution The last query was made on May 08, 2021. The

collected papers were segfe their relevance with the Section; for example,

papers with supervis e stored separately for review in “Supervised Super-
Resolution”, and ies hi ting the applications of SR methods were grouped for
discussion ifnddom pecific Applications of Super-Resolution”.

The rele s include image super-resolution, super-resolution, deep
learnin -re n, convolutional neural networks, image upsampling methods,
super- utiorhframeworks, supervised super-resolution, unsupervised super-resolution,

per-r igly review, image interpolation, pixel-based methods, super-resolution
lication, assisted diagnosis using deep learning. The search keywords were not limited
mage SR because our target was to report other aspects of super-resolution,
ing classical methods, applications, and datasets for SR.

ogical operators and wildcards were used to combine the keywords further and
perform the additional search. Initial screening of the collected papers was performed
following the inclusion/exclusion criteria shown in Table 3. The whole process is
graphically shown in Fig. 3, where 653 studies were collected over one year. A total of 242
studies were included from the initial 653 collected research studies.

CONVENTIONAL METHODS OF SUPER-RESOLUTION

Classical methods of SR are briefly discussed in this section to encompass the overall
development cycle of the SR. The classical methods include prediction-based, edge-based,
statistical, patch-based and sparse representation methods.

The primary methods were based on prediction, and the first method (Duchon, 1979)
was based on Lanczos filtering, which filtered the digital data using sigma factors (with
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Google scholar (n = 538)

Total articles identified IEEE Xplore (n = 76)
using databases, Science Direct (n = 39)

n=653

Articles after initial
screening and duplicate

removal
n=195
Total ay
e ¢
2
Figure 3 Mét ogy forfite collection of studies. Sample details based on inclusion/exclusion criteria
define le 59 Full-size K&l DOT: 10.7717/peerj-cs.621/fig-3
odifi ighit function), and a similar frequency-domain filtering approach was used

Tsai & Hilang (1984) for image resampling. In contrast, cubic convolution (Keys, 1981)
or resampling the image data, and the results showed that this prediction
ethod was more accurate than the nearest-neighbor prediction algorithm and linear
rpolation of image data (Parker, Kenyon & Troxel, 1983). In Tsai ¢» Huang (1984), the
authors did not consider the blur in the imaging process, while (Irani ¢ Peleg, 1991) used
the knowledge of the imaging process and the relative displacements for image
interpolation when the sampling rate was kept constant and this method reduced to
deblurring.

The patch-based approach was used in Freeman, Jones & Pasztor (2002); the authors
used a training set where various patches within the training set were extracted as training
patterns, which helped generate detailed high-frequency images using the patch texture
information. In Chang, Yeung & Xiong (2004), the authors used locally linear embedding
to use local patches for generating high-resolution images based on the local patch features.
In contrast, (Glasner, Bagon ¢ Irani, 2009) used the concept of reoccurrence of
geometrically similar patches in natural images to select the best possible pixel value based
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on the patch redundancy on the same scales. In Baker ¢ Kanade (2002), the authors
introduced the concept of hallucination, where they extracted local features within the LR
image first and used these to map the HR image.

Edge-based methods use edge smoothness priors to upsample images, and in Sun, Xu &
Shum (2008), a generic image prior, gradient prior profile was used to smoothen the edges
within an image to achieve super-resolution in natural images. In Freedman ¢ Fattal
(2011), the authors used specially designed filters to search for similar patches using the
local self-similarity observation, which performed lower nearest patch computations; this
method was able to reconstruct realistic-looking edges, whereas it performed poorly in
clustered regions with fine details.

Statistical methods were used to perform image gliper-resolution (Kim ¢ Kwon, 2010),

where the authors used Kernel ridge regression (KRR gradient descent to learn the

mapping function from the image example pairs. Aflaptive@egularization was used to

2010) while Yang et al. (2010) and Ya
perform image super-resolution i concept of compressed sensing.

The robust SR method proposgd i v-Acha & Peleg (2001) used the information
of outliers to improve the pg ce offSR in patches where other methods introduce
noise due to these outliergf” A dgiii ang et al. (2007) proposed a post-processing model
of images using a single reference image up to 100x
scaling factor. An ~ ieve SR is to use LR images to achieve a single HR image
(Tipping & op,
based, use the mati

. The conventional upsampling methods, such as interpolation-
within the LR image to generate HR images, and these methods
do not y ne ormation to the image (Farsiu et al., 2004a). Furthermore, they also
introdigg’some Inherent problems, such as noise amplification and blur enhancement.

ears, the researchers have shifted to learning-based upsampling methods
“Supervised Super-Resolution”.

UPERVISED SUPER-RESOLUTION

rious deep learning methods were developed over the years to solve the SR problem; in
this section, the models discussed are trained using both low and high-resolution images
(LR-HR pairs). Although there are significant differences in the supervised SR models,
and the models can be classified based on the components like the upsampling method
employed, deep learning network, learning algorithm, and model frameworks. Any
supervised image SR model is based on the combinations of these components, and in this
section, we summarize the employed methods for these four components in light of recent
supervised image SR research studies.

The component-based review of various methods is performed in this section, and the
basic overview of the models is shown in Fig. 1.
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Figure 4 Sub-pixel layer. Blue color represents the input convolution, and output feature maps are
represented in other colors. (A) Input. (B) Convolution. (C) Reshaping.
-size ka] DOT: 10.7717/peerj-cs.621/fig-4

Upsampling methods
The upsampling is essential in deep learning-based S}
the method performed for upsampling has a
performance of the model. There are,some only used methods (Yang et al., 2010,
2008; Lee, Yang ¢ Oh, 2015; Timoffte,
conventional CNNs for end-to-en In this subsection, various deep learning-

are used in image S

Sub-pixel{ay
er (Shi et al., 2016), called the sub-pixel layer, performs
several additional channels using convolution, and by reshaping

eis h x w x cwhere h is height, w is width, and ¢ depicts color channels, the
nvolution is & X w X cs]%. In order to achieve the final image, a reshuffling
Shi et al., 2016) operation is performed to get the final output image s;h x spw x ¢, as
n in Fig. 4C. Since it is an end-to-end layer, this layer is frequently used in SR models
edig et al., 2017; Zhang, Zuo & Zhang, 2018; Ahn, Kang & Sohn, 2018a; Zhang et al., 2018b).
This layer has a wide receptive field, which helps learn more contextual information that
generates realistic details, whereas this layer may generate some false artifacts at the
boundaries of complex patterns due to its uneven distribution of the respective field.
Furthermore, predicting the neighborhood pixels in a block-type region sometimes results
in unsmooth outputs that do not look realistic when compared with the true HR

image; to address this issue, Pixel TCL (Gao et al., 2020) was proposed that used the
interdependent prediction layer, which used the information of the interlinked pixels
during upsampling. The results were smooth and more realistic when compared with the
ground truth image.
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(@) (b) (©

Figure 5 Deconvolution layer. The blue color represents the input, and the green color represents the
convolution operation. (A) Input. (B) Expansion. (C) Convglution.

Deconvolution layer

based on the feature maps from the L

to increase the resolution, and afterw on is performed. For instance,

taking scaling factor 2 for the S lution kernel of 3 x 3 (as shown in

Figs. 5A, 5B and 5C), the input expanded twice by inserting zeros, convolution

ride and padding of 1.

ed in SR methods (Sroubek, Cristobal ¢» Flusser,
L, 2017; Tong et al., 2017; Haris, Shakhnarovich &
ages in an end-to-end way, and it has compatibility with
s per Odena, Dumoulin & Olah (2017), in some cases, this layer

g factor was predefined in the previously mentioned methods, thereby training
Itiple upsampling modules with different factors, which is often inefficient and is not
actual requirement of an SR method. A meta upscaling module (Hu et al., 2019)
was proposed; this module uses arbitrary scaling factors to generate SR image-based in
meta-learning. Meta scaling module projects every position in the required HR image to a
small patch in the given LR feature maps j x j X ¢;, where j is arbitrary, and ci is the total
number of channels within the extracted feature map (in Hu ef al., 2019 this was 64).
Additionally, it also generates the convolution weights (j X j x (¢; X ¢,)), where ¢,
represents the output image channels, and it is usually 3. Thus, the meta upscaling module
continuously uses arbitrary scaling factors within a single model and using a substantial
training set, a large number of factors are simultaneously trained. The performance of this
layer even surpasses the results produced with fixed factor models, and even though
this module predicts the weights during the inference time, the overall execution time for
weight prediction is 100 times less than the total time required for feature extraction
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Table 4 Comparison of upsampling methods.

Method

Strengths

Weaknesses

Sub-pixel layer o

Deconvolution e
layer

Meta upscaling o

It uses convolution in an end-to-end manner, so it is
frequently used in SR models.

This layer has a wide receptive field, which helps learn more
contextual information

This layer is most commonly used in SR methods, and it
generates HR images in an end-to-end manner.

Compatible with vanilla convolution

This method uses arbitrary scaling factors to generate the SR
image.

Extracts more information from the LR feature maps, which
helps to construct an HR image using meta upscaling in the
last layer of the SR models, which makes this method an end-
to-end SR approach

This layer may generate some false artifacts at the boundaries
of complex patterns due to its uneven distribution of the
respective field.

Upscaling factor is fixed

In some cases, due to uneven overlapping within the generated
HR image, the patterns are replicated in a check-like format
and may result in a non-realistic HR image.

Upscaling factor is fixed

ay become unstable for high-scale factors
tion weights for every single pixel
pformation within those pixels.

(Hu et al., 2019). In cases where t

is used.

learning SR networks

ork design and advancements in design architecture are recent trends in deep

used in recent years, particularly in post-

sampling SR”). The high-level representations

ixel layers for upscaling. However, for multiple scale factors, meta

ing, and in SR, researchers have tried several design implications along with the SR
mework (as seen in “SR Frameworks”) for designing the overall SR network. Some of

the fundamental and recent network designs are discussed in this section.

Recursive learning

One of the basic network-based learning strategies is to use the same module for

recursively learning high-level features. This method also minimizes the parameters as the

strategy is based on the same module being updated recursively, as shown in Fig. 6A.

One of the most used recursive networks is the Deeply-recursive Convolutional
Network (DRCN) (Kim, Lee ¢ Lee, 2016b). Utilizing a single convolution layer DRCN
reaches up to a 41 x 41 repetitive field without requiring additional parameters, which is

very deep compared to the Super-resolution Convolution Neural Network SRCNN
(Thapa et al., 2016) (13 x 13). The Deep Recursive Residual Network (DRRN)
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Figure 6 Deep-learning network structures for super-resolution. (A) Recursive 1 learning, (C) dense connection-based
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(Tai, Yang & Liu, 2017) ck (He et al., 2016) as part of the recursive
module for a total of 25 nd was reported to achieve better performance than
the baseline ResBlgdk. Usi concept of DRCN, Tai et al. (2017) proposed a memory
block-base emNet which contained six recursive ResBlocks, whereas the
(CARN) (Ahn, Kang ¢» Sohn, 2018a) also used ResBlocks as
pproach, the network shares the weights globally in recursion

Cascading

Overall, while reducing the parameters, recursive learning networks can learn the
plex representation of the data at the cost of computational performance.
dditionally, the increase in computational requirements may result in an exploding or
vanishing gradient. Thus, recursive learning is often used in combination with multi-
supervision or residual learning for minimizing the risk of exploding or vanishing gradient
(Kim, Lee & Lee, 2016b; Tai et al., 2017; Tai, Yang & Liu, 2017; Han et al., 2018).

Residual learning

Residual learning was widely used in the field of SR (Bevilacqua et al., 2012; Timoffte,

De Smet & Van Gool, 2015; Timofte, De & Van Gool, 2013), until ResNet (He et al., 2016)
was proposed for learning residuals, as shown in Fig. 6B. Overall, there are two approaches,

local and global residual learning.
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The local residual learning approach mitigates the degradation problem (He et al.,
2016) caused by increased network depth. Furthermore, the local residual learning
also improved the learning rate and reduced the training difficulty; this is frequently used
in the SR field (Protter et al., 2009; Mao, Shen & Bin, 2016; Han et al., 2018; Li et al.,
2018).

The global residual learning is an approach used in which the input and the final output
are correlated, and in image SR, the output HR is highly correlated with the input LR
image; thus, learning the global residuals between LR and HR image is significant in SR. In
global residual learning, the model only learns the residual map that transforms the LR
image into an HR image by generating the missing high-frequency details in the LR image.
Furthermore, the residuals are minimal; thereby, t}

garning difficulty and model
complexity are significantly reduced in global residual-I
frequently used in SR methods (Kim, Lee ¢ Lee, 20
2017; Hui, Wang & Gao, 2018).

Overall, both methods use residuals to co,

ed learning. This method is also
ang & Liu, 2017; Tai et al.,

mage with the output HR
image; in the case of global residual ection is directly made, which in
local residual learning various layers to connect the input (using local

residuals) with the output.

Dense connection-based le@tning
address SR, like DenseNet (Huang et al., 2017).
fires maps generated by the previous layers as

r reconstructing a high-quality fine-detailed HR image, as shown in Fig. 6C. SRDenseNet
., 2017) proposed a 69-layer network containing dense connections within

e dense blocks and dense connections among the dense blocks. In SRDenseNet, the
ure maps from the prior blocks and the feature maps were used as inputs of all
preceding blocks. RDN (Zhang et al., 2018b), CARN (Ahn, Kang & Sohn, 2018a), MemNet
(Tai et al., 2017) and ESRGAN (Wang et al., 2019¢) also used layer or block-level dense
connection, while DBPN (Wang et al., 2018b) only used the dense connection between
the upsampling and downsampling units.

Multi-path learning

In multi-path learning, the features are transferred to multiple paths for different

representations, and these representations are later combined to gain improved

performance. Scale-specific, local, and global multi-path learnings are the main types.
For different scales, the super-resolution models use different feature extraction; in

Lim et al. (2017), the authors proposed a single network-based multi-path learning for

Bashir et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.621 20/56


http://dx.doi.org/10.7717/peerj-cs.621
https://peerj.com/computer-science/

PeerJ Computer Science

multiple scales. The intermediate layers of the model were shared for feature extraction,
while scale-specific paths, including pre-processing and upsampling, were at the end of
the models, i.e., the start and end of the network. During training, the scale relative paths
are enabled and updated accordingly, and the proposed deep super-resolution MDSR
method (Lim et al., 2017) also decreases the overall model size because of the sharing of
parameters across the scales. Like MDSR, a similar multi-path-based approach is also
implemented in ProSR and CARN.

Local multi-path learning is inspired using a new block, the inception module (Szegedy
et al., 2015), for multi-scale feature extraction, as performed in MSRN (Li et al., 2018)
(shown in Fig. 6D). The additional block consists of 3 x 3 and 5 x 5 kernel size
convolution layers, which simultaneously extracts §

eatures. After combining the
outputs of the two convolution layers, the final outpuf;@@es through a 5 x 5 kernel
convolution. Furthermore, a path links the input an@ by, element-wise addition
and uses this local multi-path learning; this method atures efficiently than
multi-scale learning.
Another variation of multi-path legrning obal mhulti-path learning; in this method,
an interact. In DSRN (Han et al.,

high-level information, and there is a

various features are extracted from
2018), there are two paths for ex
continuous sharing of features fgr improyed I€arning. In contrast, in pixel recursive

SR (Dahl, Norouzi & Shlens tioning path is responsible for extracting global

structures, and the priogfpat ds the serial codependence among the generated
pixels. A different oyed by Ren, El-Khamy ¢ Lee (2017), where
multi-path learni d for unbalanced structures, which were later combined
in the final T to e SR output.

Advan, o ion-based learning

In SR, ethpds explored depend on the convolution operation, and various research

dies pted to modify the convolution operation for better performance. In
cent years, research studies have shown that group convolution, as shown in Fig. 6E,
the total number of parameters at the cost of small loops in performance
ui, Wang & Gao, 2018; Johnson, Alahi & Li, 2016). In CARN-M (Ahn, Kang & Sohn,
8a) and IDN (Hui, Wang ¢» Gao, 2018), group convolution was used instead of vanilla
convolution. In dilated convolution, the contextual information is used to generate
realistic-looking SR images (Zhang et al., 2017); dilated convolution was used to double the
receptive field, resulting in better results.

Another type of convolution is depthwise separable convolution (Howard et al., 2009);
although this convolution significantly reduces the total number of parameters, it reduces
the overall performance.

Attention-based learning

In deep learning, attention learning is the idea where certain factors are given more
preference, which processes the data than others; here, two types of attention-based
learning mechanisms are discussed in SR. In channel attention, a particular block is added
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in the model where global average pooling (GAP) squeezes the input channels; two fully
connected layers process these constants to generate channel-wise residuals (Hu, Shen ¢
Sun, 2018), as shown in Fig. 6F. This technique has been incorporated in SR, known as
RCAN (Zhang et al., 2018a), which has improved performance. Instead of GAP, Dai et al.
(2019) used the second-order channel attention (SPCA) module, which used second-order
feature metric for extracting more data representation using channel-based attention

In SR, most of the models use local fields for the generation of SR pixels, while in a
few cases, some textures or patches which are far apart are necessary for generating
accurate local patches. In Zhang et al. (2019b), local and non-local attention blocks were
used to extract local and non-local representations between pixel data. Similarly, the
[ et al. (2019) to capture
d. Chen et al. proposed an SR

non-local attention technique was incorporated by,

contextual information using a non-local attention mgf
reconstruction method with feature maps to facilitage onstruction of the image
using an attention mechanism (Chen et al., 2021 p%t al. proposed a channel
PN) for a more robust feature

obtaining and feature correlations madeli i, 2021).

Wavelet transform-based learni
Wavelet transform (WT) (Daubfchies ¢» Bate1993; Griffel & Daubechies, 1995)
represents textures using high-fi

uency8ub-bands and global structural information in
low-frequency sub-band ig
residuals of the HR
the WT, the LR i

ient way. WT was used in SR to generate the

the sub-bands of the interpolated LR wavelet. Using
eisd osed, while the inverse WT provides the reconstruction

of the HR i Other examples of WT based SR are Wavelet-based residual
attention ne (W (Xue et al., 2020), multi-level wavelet CNN (MWCNN)
(Liu et 18b a et al., 2019); these approaches used a hybrid approach by
combi T\ith other learning methods to improve the overall performance.

gion- sive-based learning
methods follow the underlying assumption that it is a pixel-independent
rocess; thus, there is no priority to the interdependence among the generated pixels.
g the concept of Pixel CNN (Van Den Oord et al., 2016; Dahl, Norouzi & Shlens, 2017)
roposed a method for pixel recursive learning, which performed SR by pixel-by-pixel
generation using two networks. The two networks (Dahl, Norouzi ¢~ Shlens, 2017) captured
information about pixel dependence and global contextual information within the pixel
recursive SR method. Using the mean opinion scoring-based evaluation method
(Dahl, Norouzi ¢ Shlens, 2017) performed well compared to other methods for generating
SR face images using the pixel recursive method. The attention-based face hallucination
method (Cao et al., 2017a) also utilized the concept of a path-based attention shifting
mechanism to enhance the details in the local patches.

While the region-recursive methods perform marginally better than other methods, the
recursive process exponentially increases the training difficulty and computation costs due
to long propagation paths.
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Other methods

Other SR networks are also used by researchers, such as Desubpixel-based learning

(Vu et al., 2019), xUnit-based learning (Kligvasser, Shaham ¢ Michaeli, 2018) and Pyramid
Pooling-based learning (Zhao et al., 2017).

To improve the computational speed, the desubpixel-based approach was used to
extract features in a low-dimensional space, which does the inverse task of the sub-pixel
layer. By segmenting the images spatially and using them as separate channels,
the desubpixel-based learning avoids any information loss; after learning the data
representations in low-dimensional space, the images are upsampled to get a
high-resolution image. This technique is particularly efficient in applications with limited

resources such as smartphones.

In xUnit learning, a spatial activation function was p@posed for learning complicated
features and textures. In xUnit, the ReLU operatio aced by xUnit to generate
the weight maps through Gaussian gating and convo model size was decreased
and without compromising

the SR performance (Kligvasser, Sha

Learning strategies
Learning strategies also dictate e overall pefformance of any SR algorithm as the

evaluations are dependent ypon
recent research studies ay d1 g the learning strategy utilized in SR, and some of

the critical strategie detail.

el loss cannot wholly represent the quality of reconstruction (Ghodrati et al., 2019).
, different loss functions such as content loss (Johnson, Alahi ¢ Li, 2016) or
versarial loss (Ledig et al., 2017) are used to measure the error in the generation these
functions have been widely used in the field of SR. Various loss functions are explored
in this section, and the notation follows the previously defined variables except where
defined otherwise.

Content Loss. The perceptual quality, as mentioned previously, is essential in the
evaluation of an SR model, and this loss was used in SR (Johnson, Alahi ¢ Li, 2016;
Dosovitskiy ¢» Brox, 2016) to measure the differences between the generated and ground-
truth images using an image classification network (N). Let the high-level data
representation on the [ 1th layer is r/(I), the content loss is defined as the Euclidean
among the high-level representations of the two images I and I, where I is the original
image and I is the generated SR image as below:
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L(LLN,I) =

2
hlwlcl Z ( Jk Jvk(I)) (15)

ij.k

Where h;, w; and ¢; respectively are height, width, and several channels of the image
representations in the / layer.

Content loss aims to share information about image features from the image
classification network N, to the SR network. This loss function ensures the visual similarity
between the original image (I) and the generated image (I) by comparing the content
and not the individual pixels. Thus, this loss function helps in producing visually
field of SR as in Ledig et al. (2017),
ang et al. (2019c), Johnson,
he networks used as

perceptible and more realistic looking images in th
Wang et al. (2018b), Sajjadi, Scholkopf & Hirsch (201
Alahi & Li (2016) and Bulat ¢ Tzimiropoulos (2018
pre-trained CNN’s were ResNet (He et al., 2016) and W

Adversarial Loss. In recent years, after th p
2014), GANs have received more co
self-supervise. A GAN combines dual

yan & Zisserman, 2015).

idera ue t@ their ability to learn and

ing generation and discrimination

tasks, i.e., generating the actual ou a discriminator network to evaluate

ntly and (ii) Adjust the discriminator while

training the generato i sive training network, and through many iterations of
training and eval augenfrator can generate the output that conforms to the
distribution | data. The discriminator is unable to differentiate between real

and generat !
, the purpose of a generative network is to generate an HR image,
criminator network will be used to evaluate if the image is of the same
e input data. This method was first introduced in SR as SRGAN

edig et al., 2017), the adversarial loss in Ledig et al. (2017) was represented by:

GAN_CE_g (j ;D) = —IOgD(A) (16)
N_CE_d(jy Is;D) = —{logD —|—10g(1 - (I))} (17)

Where Lgan_ce_g- is the adversarial loss function of the generator in the SR model,
while Lcan_ce_a is the adversarial loss function of the discriminator D , which is a binary
classifier. In (17), the randomly sampled ground truth image is denoted by I;. The same
loss functions were reported by Sajjadi, Scholkopf ¢» Hirsch (2017).

Other than binary classification error, the studies Yuan et al. (2018) and Wang et al.
(2018a) used mean square error for improved training and better results compared to
(Ledig et al., 2017), the loss functions are given in (18) and (19):

ACGAN_LS_g(j; D) = (D(j) — 1)2 (18)
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Leanrs.a(I,1;D) = {(D(j))z + (D(L) — 1)2} (19)

Contrary to the loss functions mentioned in (18) and (19), (Park et al., 2018) showed
that in some cases, pixel-level discriminator network generates high-frequency noise; thus,
we used another discriminator network to evaluate the first discriminator network for
high-frequency representations. Using the two discriminator networks, (Park et al., 2018)
were able to capture all attributes accurately.

Various opinion scoring systems have been used regressively to test the performance of
the SR model that uses adversarial loss. Although the SR models attained lower PSNR than
the pixel-loss-based SR on perceptual quality metrj
adversarial loss-based SR methods scored very high (Lé
Hirsch, 2017). The use of a discriminator as the co

ike opinion scoring, these

et al., 2017; Sajjadi, Scholkopf &
ork for the generator GANs
was able to regenerate some intricate patterns that Wi ficult to learn using
ordinary deep learning methods. The only d, AN is their training
stability (Arjovsky, Chintala & Bottoug2017; ajanilet al., 2017; Lee et al., 2018a; Miyato
et al., 2018).

Pixel Loss. As evident from the e, is lgss function performs a pixel-wise

comparison between the referen generated image, and there are two types

of comparisons, i.e., an L1 loss, Which is @lso termed as mean absolute error and L2 loss,

(20)

21)

R 1 R
—CH(Iv I) = WZ \/‘Ii,j,k - 1i,j,k|2 —e? (22)
—

Ll

Here e is a constant which ensures numerical stability.

The pixel loss function ensures that the generated HR image I has the same pixel values
as the HR image I. Furthermore, the L2 loss used the square of pixel-value errors, giving
more weightage to high-value differences than lower ones; thus, this loss function may
give either the too variable result (in case of outliers) or give too smooth results (in case of
minimal error values). Therefore, the L1 loss function is widely used over L2 loss
(Zhao et al., 2016; Lim et al., 2017; Ahn, Kang & Sohn, 2018a). Furthermore, the PSNR
equation is closely related to the definition of L1 loss, and minimizing L1 loss always leads
to increased PSNR. Thus, researchers have often used the L1 loss to maximize the PSNR; as
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mentioned earlier, the pixel loss function does not cater to perceptual quality or textures.
Thus, SR networks based on this loss function may have less high-frequency details,
resulting in smooth but unrealistic HR images (Wang, Simoncelli ¢ Bovik, 2003; Wang
et al., 2004).

Style Reconstruction Loss. Ideally, the reconstructed HR image should have comparable
styles to the actual HR image (colors, textures, gradient, contrast), thus using the
research studies (Sajjadi, Scholkopf & Hirsch, 2017; Gatys, Ecker ¢ Bethge, 2015), style
reconstruction loss was used in SR to match the texture details of the reference image with
the generated image. The correlation between the feature maps of different channels as
given by the Gram matrix (Levy ¢ Goldberg, 2014) GU. G,(lj) is the dot product of the
features 7, and j in the layer [, it is which is given

GI(IJ) = vec (ch,@ (I)) .vec <ch]@ (I)) (23)

Where vec() is the vectorization operatio h; ed the i channel of feature

maps in the layer I. Now the texture {oss is by @4)

A 1
£TEX(I7I; Chal) = (24)
]
Using the texture loss nhanceNet (Sajjadi, Scholkopf ¢ Hirsch, 2017)
reported more realistic
Although an optinai : pss function-based SR generates more realistic-looking

images, the ¢l ze is still an open field of research. The selection of small

patch size | ation of artifacts in the textured region, while selecting a

values of the neighboring pixels as:

. 1 5 5 i I
)= WZ \/(li+1,j,k —Liji)” = (Tijerk — Tia)” =

ik

Total variation loss was used in Ledig et al. (2017) and Yuan et al. (2018) to ensure
smoothness across sharp edges/transitions within the generated image.

Cycle Consistency Loss. Using the CycleGAN (Zhu et al., 2017a) image SR method was
presented in Yuan et al. (2018) using the cyclic consistency loss function. Using the
generated HR image I, the network generated another LR image I 5, which is further
compared with the input LR image I;x for cyclic consistency.

In practice, various loss functions are used as a combination in SR to ensure various
aspects of the generation process in the form of a weighted average as in Kim, Lee ¢ Lee
(2016a), Wang et al. (2018b), Sajjadi, Scholkopf & Hirsch (2017) and Lai et al. (2017).
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The selection of appropriate weights of the loss functions in itself is another learning
problem as the results vary significantly by varying the weights of the loss function in
image SR.

Curriculum learning

In the Curriculum learning technique (Bengio et al., 2009), the method adapts itself to the
variable difficulty of tasks, i.e., starting from simple images with minimum noise to
complex images. Since SR always suffers from adverse conditions, the curriculum
approach is mainly applied to its learning difficulty and network size. For reducing the
training difficulty of the network in SR, small scaling factor, SR is performed in the

beginning; in the curriculum learning-based SR, thélraining starts with 2x upsampling,

and gradually the following scaling factors 4x, 8, arldso on are generated using the
output of previously trained networks. ProSR (War, 018a) uses the upsampled
output of the previous level and linearly trains the né
ADRSR (Bei et al., 2018) concatenates the u

adds another convolution layer. In CARN (Alf, Kang ¢» Sohn, 2018b), the previously

g the previous one, while
previous levels and further

generated image is entirely replaced en enerated image, updating the HR
image in sequential order.

Another alternative is to trangform the i SR problem into N subsets and gradually
Chun (2018), the 8 x upsampling problem
to2x;2 x to4x and 4 X to8x) and three
 these problems. Using a combination of the previous

solving these problems; as in P
was divided into three pyéB
separate networks w
reconstruction, th
Li et al. (20 t i the network from low image degradations to high image
degradations; increasing the noise in the LR input image. Curriculum
learnin es ining difficulty; hence, the total computational time is also reduced.

atc. rmalization

tch nor ation (BN) was proposed by loffe ¢» Szegedy (2015) to stabilize and

e deep CNNs by reducing the internal covariate shift of the network. Every
ini-batch was normalized, and two additional parameters were used per channel to
erve the representation ability. Batch normalization is responsible for working on the
ihtermediate feature maps; thus, it resolves the vanishing gradient issue while allowing
high learning rates. This technique is widely used in SR models such as Ledig et al. (2017),
Zhang, Zuo & Zhang (2018), Tai, Yang & Liu (2017), Tai et al. (2017), Ledig et al. (2017),
Sonderby et al. (2017), Tai et al. (2017), Tai, Yang & Liu (2017), Liu et al. (2018b) and
Zhang, Zuo ¢ Zhang (2018). In contrast, (Lim et al., 2017) claimed that batch
normalization-based networks lose the scale information of the generated images. Thus,
there is a lack of flexibility in the network; hence, Lim et al. (2017) removed batch
normalization and used the additional memory to design a large model with superior
performance compared to the BN-based network. Other studies Wang et al. (2019¢),
Wang et al. (2018a) and Chen et al. (2018a) also implemented this technique to achieve
marginally better performance.
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Figure 7 Pre-upsampling-based super-resolution networ eline.
Kal DOI: 10.7717/peerj-cs.621/fig-7

Multi-supervision
Using numerous supervision signals within e or improving the gradient

propagation and evading the explodigg/van g gralient problem is called multi-

supervision. In Kim, Lee ¢» Lee (2016 ult sion is incorporated within the

recursive units to address the gradigat p ms. In SR, the multi-supervision learning
technique is implemented by cafering to other factors in the loss function, which

improves the back-propagation path andireduces the training difficulty of the model.

SR frameworks
SR being an ill-po

probl us, upsampling is critical in defining the performance of
the SR met n learning strategies, upsampling methods, and network types,
there are se s for SR; here, four of them are discussed in detail, especially in
method used within the framework, as shown in Figs. 7-10.

apping functions for upsampling from an LR image directly to an HR
ne using this framework, where the LR image is upsampled in the beginning,
nd various convolution layers are used to extract representations in an iterative way

g deep neural networks. Using this concept Dong et al. (2014, 2016) introduced the
re-upsampling-based SR framework (SRCNN), as shown in Fig. 7. SRCNN was used to
learn the end-to-end mapping of LR-HR image conversion using CNNs. Using the
classical methods of upsampling as discussed in “Conventional Methods of Super-
Resolution”, the LR image is firstly converted to an HR image, and then deep CNN’s were
used to learn the representations for mapping the HR image.

Since the pre-upsampling layer already performs the actual pixel conversion task, the
network needs to refine the results using CNNs; this results in reduced learning difficulty.
Compared to single-scale SR (Kim, Lee ¢» Lee, 2016a), which uses specific scales of
input, these models can handle any random size image for refinement and have similar
performance. In recent years, many application-oriented research studies have used this
framework (Kim, Lee & Lee, 2016b; Shocher, Cohen & Irani, 2018; Tai, Yang & Liu, 2017;
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Figure 9 It e u -down sampling-based super-resolution network pipeline.
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Figure 10 Progressive sampling-based super-resolution network pipeline.
Full-size K&l DOT: 10.7717/peerj-cs.621/fig-10

Tai et al., 2017), the differences in these models are in the deep learning layers
employed after the upsampling. The only drawback in this model is the use of a predefined
classical method of pre-upsampling, which often results in the introduction of image
blur, noise amplification in the upsampled image, which later affects the quality of the
concluding HR image. Moreover, the dimensions of the image are increased at the start of

Bashir et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.621 0 [29/56


http://dx.doi.org/10.7717/peerj-cs.621/fig-8
http://dx.doi.org/10.7717/peerj-cs.621/fig-9
http://dx.doi.org/10.7717/peerj-cs.621/fig-10
http://dx.doi.org/10.7717/peerj-cs.621
https://peerj.com/computer-science/

PeerJ Computer Science

the method. Thus, the computational cost and memory requirements of this framework
are higher (Shi et al., 2016).

Post-upsampling SR
To minimize the memory requirements and increase computational efficiency, the
post-upsampling method was used in SR to utilize deep learning to learn the mapping
functions in low-dimensional space. This concept was first used in SR by Shi et al. (2016)
and Dong, Loy & Tang (2016), and the network diagram is shown in Fig. 8.

Due to low computational costs and the use of low-dimensional space for deep learning,
this model has been widely used in SR because this reduces the complexity of the model

Iterative up-and-down sampling SR
Since the LR-HR mapping is an ill-posed problem,
image pair using back-propagation (Irani ¢ Pgagml oW mwasdised in SR (Timofte, Rothe ¢

continuously measuring the error and r: model based on the reconstruction
error. The DBPN method prop Ha akhnarovich & Ukita (2018) used this
concept to perform continuous @psamplibhg and downsampling, and the final image was

constructed using the intg

ia tions of the HR image.
A 90) used this technique with densely connected layers

up-down upsampling for video SR. This framework has
ent over the other frameworks; still, the back-propagation

npsampling SR

st-upsampling framework uses a single layer at the end of upsampling and the
earning is fixed for scaling factors; thus, multi-scale SR will increase the computational
f the post-upsampling framework. Thus, using progressive upsampling within

e framework to gradually achieve the required scaling was proposed, as seen in Fig. 10.
An example of this framework is the LapSRN (Lai et al., 2017), which uses cascaded CNN-
based modules responsible for mapping a single scaling factor, and the output of one
module acts as the input LR image to the other module. This framework was also used in
ProSR (Wang et al., 2018a) and MS-LapSRN (Lai et al., 2017).

This model achieves higher learning rates as the learning difficulty is less since the SR
operation is segregated into several small upscaling tasks, which is more straightforward
for CNNs to learn. Furthermore, this model has built-in support for multi-scale SR as
the images are scaled with various intermediate scaling factors. Training stability and
convergence are the main issues with this framework, and this requires further research.
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Other improvements

Apart from the four primary considerations in image SR, other factors have a significant
effect on the performance of a super-resolution method, and in this section, a few are
discussed in light of recent research.

Data augmentation

Data augmentation is a common technique in deep learning, and this concept is

used to further enhance the performance of a deep learning model by generating more
training data using the same dataset. In the case of image super-resolution, some of

the augmentation techniques are flipping, cropping, angular rotation, skew, and color
degradation (Timofte, Rothe & Van Gool, 2016; Lajg@al., 2017; Lim et al., 2017; Tai,
Yang ¢ Liu, 2017; Han et al., 2018). Recoloring the in¥@e using channel shuffling in the

e SR (Bei et al., 2018).
Enhanced prediction

This data augmentation method affects the t image as multiple LR images are
nct @ofte, Rothe ¢ Van Gool, 2016).
econstruction, the reconstructed outputs are
inversely transformed, and the ffial'fIR image#is based on the mean (Timofte, Rothe ¢
Van Gool, 2016; Wang et al., 2018g) or médlian (Shocher, Cohen ¢ Irani, 2018) pixel values

LR-HR image pair is also used as data augmentatioy

These augmented are fed to the mode

odels to predict the HR image, and each prediction acts as
etwork, like in context-wise network fusion (CNF) (Ren,

nce, which was compared with the state-of-the-art SR models

Lee, 2017).

work, network interpolation is a model that uses PSNR-based and
models for image SR to boost SR performance. Network interpolation strategy
Wang et al., 2019c, 2019b) used a PSNR-based model for training. In contrast, a

-based model was used for fine-tuning while the parameters were interpolated to get
e weights of interpolation, and their results had few artifacts and look realistic.

Multi-task learning

Multi-task learning is used for learning various problems and getting a generalized model
for representations found in learning, for example, image segmentation, object detection,
and facial recognition (Caruana, 1997; Collobert ¢ Weston, 2008). In the field of
super-resolution, Wang et al. (2018b) used semantic maps as input to the model and
predicted the parameters of the affine transformation on the transitional feature maps. The
SFT-GAN in Wang et al. (2018b) generated more realistic and crisp-looking images with
good visual details regarding the textured regions. While in DNSR (Bei et al., 2018),

a denoising network was proposed to denoise the output generated by the SR network;
thus, using this closed-loop system (Bei et al., 2018) was able to achieve good results. Like
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DNSR, (Yuan et al., 2018) proposed an unsupervised SR using the cycle-in-cycle GAN
(CinCGAN) for denoising during the SR task. Using a multi-tasking framework may
increase the computational difficulty, but the system's performance is also enhanced in
terms of PSNR and perceptual quality indexes.

State-of-the-art SR methods

The recent year has excelled in developing SR models, especially using supervised deep
learning; thus, the models have excelled in achieving state-of-the-art performance.
Previously various aspects of the SR models and their underlying components were
discussed in light of their strengths and weaknesses. In recent times the use of multiple
pf-the-art methods have used a

learning strategies is common, and most of the sta
combination of these strategies.

The first innovation was using the dual-branched (DBCN) (Gao, Zhang e
igle-branched network by

Mou, 2019) to increase the computational efficienc g
ation. Furthermore, in RCAN

using a smaller number of convolutional lay: epre

(Zhang et al., 2018a), attention-basedyleagni as us@d combined with residual learning,
L1 pixel loss function, and subpixel pli od to achieve the state-of-the-art
results in image SR. Furthermore, yasious¥ede}s and their reported results and some key

factors are summarized in Tabld(5.
In previous sections, we discu§ded varius strategies and compared and contrasted

them; while these are i ormance of any SR algorithm in comparison

to the computation eters is also vital. In Fig. 11, we have graphically

overall
model s fixed to 2x.

Asev ig. 11, the five best-performing methods on the selected datasets based on
NR are WRAN (34.790 dB), RCAN (34.540 dB), SAN (34.480 dB), Meta-RDN

) and EDSR (34.330 dB). The variation in the average PSNR reported by these
ds only varies in the range of 0.46 dB. There is a significant difference in the number
arameters reported by these five methods; WRAN reported only 2.710 million
parameters while EDSR reported the highest parameters among the five methods,

i.e., 40.74 million. WRAN and RCAN performed well in terms of PSNR, the number of
parameters, and computational cost, thereby making them one of the best methods for
image super-resolution.

UNSUPERVISED SUPER-RESOLUTION

In this section, the methods of unsupervised SR are discussed, which does not require
LR-HR pairs. The limitation of the supervised learning methods is that the LR images are
usually generated using known degradations. In supervised learning, the model learns
the reverse transformation function of the degradation function to convert the LR image
into the HR image. Thus, using the unsupervised model to upsample the LR images is a
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Table 5 SR method details of various SR algorithms.

Year Method name UsS Network Framework Loss Details
function
2014, ECCV SRCNN (Dong et al., 2014) Bicubic CNN Pre L First deep learning-based SR
2016, CVPR DRCN (Kim, Lee ¢ Lee, 2016b) Bicubic Res., Rec. Pre L Recursive layers
2016, ECCV FSRCNN (Dong et al., 2016) Deconv Post Lo Lightweight
2017, CVPR ESPCN (Caballero et al., 2017) Sub-pixel Pre L Sub-pixel
2017, CVPR LapSRN (Lai et al., 2017) Bicubic Res. Prog L1 Cascaded CNN
Lpix_cu
2017, CVPR DRRN (Tai et al., 2017a) Bicubic Res., Rec. Pre Lo Recursive layer blocks
2017, CVPR SRResNet (Ledig et al., 2017) Sub-pixel Res. Post 2 Content loss
2017, CVPR SRGAN (Ledig et al., 2017) Sub-pixel Res. Post s GAN-based loss
2017, CVPR EDSR (Lim et al., 2017) Sub-pixel Res. Post 3 Compact design
2017, ICCV EnhanceNet (Sajjadi, Scholkopf & Bicubic Res. Pre (JAN-based loss
Hirsch (2017))
2017, ICCV MemNet (Tai et al., 2017) Bicubic Res., Rec., Pre Lr Memory layers blocks
Dense
2017, ICCV SRDenseNet (Tong et al., 2017) Deconv Res., Den: Post 5 Fully connected layers
2018, CVPR DBPN (Haris, Shakhnarovich & Deconv Res., Dense L Back-prop. Based
Ukita, 2018)
2018, CVPR DSRN (Han et al., 2018) Deconv Redl Rec. re Li> Dual-state network
2018, CVPRW ProSR, ProGanSR (Wang et al., 2018) Progressive rog Lys Least square loss
Upscale
2018, ECCV MSRN (Li et al.,, 2018) Sub-pi Post Lo Multi-path
2018, ECCV RCAN (Zhang et al., 2018a) Su el Attent. Post L1 Attention-based loss
2018, ECCV ESRGAN (Wang et al., 2019c) ub-p Res., Dense  Post L1 GAN-based loss
2019, CVPR Meta-RDN (Hu et al., 2019) ta Up Res., Dense  Post L1 Multi-scale model
2019, CVPR Meta-SR (Hu et al., 2019) scale  Res., Dense Post L1 Arbitrary scale factor as input
2019, CVPR RBPN (Haris, Shakhnarovic b-Pixel Rec. Post L1 Used SISR and MISR together
Ukita, 2019) for VSR
2019, CVPR SAN (Dai ub-Pixel Res., Attent. Post L1 2" order attention
2019, CVPR SRFBN1{L: & Deconv Res., Rec., Post L1 Feedback path
Dense
2020, Neuro- WRAN (Xue et al Bicubic Res., Attent. Pre L1 Wavelet-based
computing
Note:

“US,” “Rec.,” “Res.,” “Attent.,” “Dense,” “Pre.,” “Post.,” “Iter.,” and “Prog.” represent upsampling methods, recursive learning, residual learning, attention-based learning,
dense connections, pre-upsampling framework, post-upsampling framework, iterative up-down upsampling framework, and progressive upsampling framework
respectively.

field of growing interest, where the model learns the real-world image degradation to
achieve SR using the information of unpaired LR and HR images. A few of the
unsupervised SR models are discussed in the sub-sections.

Weakly-supervised super-resolution

The first method to address the use of known degradation in the model for the generation
of LR images using weakly supervised deep learning, this method utilized the unpaired LR
and HR images for training the model. Although this model still requires both LR and
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Figure 11 Benchmarking of super-
blue color), which is a significant ev:
of parameters learned by eve
tera multiply-adds, and it i

HR images, the as ot defined. Thus, there are two possible approaches; the
first one is degradation function first, which can generate the degraded LR
images and to generate the HR images. The other method is to employ
degrad rning and LR-HR mapping cyclically, thus validating the results
with e therY Ignatov et al., 2018a).

-supervised SR

npaired LR and HR images and referring them to two separated uncorrelated
atasets, this method uses a cycle-in-cycle approach to predict the mapping function
ese two datasets, i.e., from LR to HR and HR to LR images. This is a recursive process
ere the mapping functions generate images with equal distribution, and these images
are fed to the second prediction cyclically.

Using the deep learning-based CycleGAN (Zhu et al., 2017a), a cycle-in-cycle SR
framework was proposed in Yuan et al. (2018) this framework used a total of four
generators, while there were two discriminators; the two GANS learned the representation
of degraded LR to LR and LR to HR mappings. In Yuan et al. (2018), the first generator
is a simple denoising element that generates similar scale denoised LR images; these
denoised images act as input to the second generator to regenerate the HR image, which is
further validated by the adversarial network, i.e., a discriminator. Thus, using different loss
functions, the CycleGAN achieves image SR using weakly supervised learning.
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Although this method has achieved comparable results, especially in very noisy images
where classical degradation functions in supervised learning cannot be used, there is room
for research to decrease the learning difficulty of the computational cost of this method.

Learning the degradation function
A similar concept to the cyclic SR, but the two networks, i.e., a degradation learning
network and LR-HR mapping network, are independently trained. In Bulat, Yang ¢
Tzimiropoulos (2018), a two-staged method of image SR was proposed, where a GAN
learns the representations of the HR to LR transformation while the second GAN is trained
using the paired output of the first GAN to learn the mapping representations of the LR to
HR transformation. This two-stage model outperfofimed the state-of-the-art in Fréchet
Inception Distance (FID) (Heusel et al., 2017) with 10
reported superior reconstruction of HR human facig

ailure cases. This method

Zero-shot super-resolution
Using the training concept at the time of th , thé\zero-shot SR (ZSSR) (Shocher,
Cohen ¢ Irani, 2018) uses a single i i ep learning network using image
augmentation techniques to learn the deSgadatipn tunction. ZSSR was used (Michaeli &
Irani, 2013) to predict the degraflation kern@lwhich was further used to generate scaled

and augmented images. The fin to train an SRCNN network to learn the

elo el dtails in any learning problem can be mapped using CNNs, thus using a
ndomly mmiitialized CNN as an image prior (Ulyanov, Vedaldi ¢ Lempitsky, 2020) to

. The network is not trained; instead, it uses a random vector v as input to

e model, and it generates the HR image I,yz. This method aims to determine an image
that, when downsampled, returns an LR image that is similar to the input LR
image Lz The model performed 2dB the state-of-the-art methods but reported superior
results than the conventional bicubic upsampling method by 1dB.

DOMAIN-SPECIFIC APPLICATIONS OF SUPER-RESOLUTION

In this section, various applications of SR grouped by the application domains are
discussed.

Face image super-resolution

Face hallucination (FH) is perhaps the ultimate target utility of the image SR for face-
recognition-based tasks such as (Gunturk et al., 2003; Taigman et al., 2014; Korshunova
et al., 2017; Zhang et al., 2018c; Grm, Scheirer & Struc, 2020). The facial images contain
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facial-structured information; thus, using image priors in FH has been a common
approach to achieve FH.

Using techniques such as in CBN (Zhu et al., 2016), the generated HR images can be
constrained to face-related features, forcing the model to output HR images containing
facial features. In CBN, this was achieved by using a facial prior and a dense
correspondence field estimation. While in FSRNet (Chen et al., 2018b) facial parsing maps
and facial landmark heatmaps were used as priors to the learning network to achieve face
image SR, SICNN (Zhang et al., 2018¢) used a joint training approach to recover the
real identity using a super-identity loss function. Super-FAN (Bulat & Tzimiropoulos,
2018) approached FH using end-to-end learning with FAN to ensure the generated images
are consistent with human facial features.

Using implicit methods for solving the face misaligfilient problem is another way to

approach FH; for instance, in Yu & Porikli (2017), the spatial transformation is achieved
using transformation networks (Jaderberg et al., 20 method based on
(Jaderberg et al., 2015) is TDAE (Wang et al., ,
for FH, using a D-E-D (decoder-enc
performs denoising and upsampling
which is fed to the final decoder
datasets to decompose the facialffeatures pf ait LR image and project the HR features into
the exemplar dataset to achieve Yol Liu ¢ Yang, 2018). In Song et al. (2018), an

adversarial discriminati

Wses a three-module approach

erzdeq@der) madel to achieve FH; the first decoder
wnsamples the denoised image
r approach is to use HR exemplars from

roposed for feature learning on both feature space

and raw pixel space; formed well for heterogenous face recognition (HFR).

In other resear an perception of attention shifting (Najemnik &
Geisler, 200 as uss@yin Attention-FH (Cao et al., 2017a) to learn face patches for local
enhancement . et al. (2017), a multi-class GAN network was proposed for
FH, w! mpo f multiple generators and discriminators, while in Yu ¢ Porikli

auth®rs adopted a network model analogous to SRGAN (Ledig et al., 2017).
1 GAN (Gauthier, 2014), the studies (Lee et al., 2018b; Yu et al., 2018)

t multilayer locality-constrained matrix regression (MLCMR) framework for
e super-resolution of highly degraded LR images (Gao et al., 2021).

Real-world image super-resolution

In real-world images, the sensors used to capture them already introduce degradations as
the final RGB (8-bit) image is converted from the raw image (usually more than 14-bit or
higher). Thus, using these images as a reference for SR is not optimal as the images
have already been degraded (Wang, Chen ¢ Hoi, 2020). To approach this problem,
research studies such as Zhang et al. (2019a) and Chen et al. (2019) have proposed methods
for developing real-world image datasets. In Zhang et al. (2019a), the SR-RAW dataset was
developed by the authors, which contained raw-HR-LR(RGB) pairs generated using the
optical zoom in cameras, while in Chen et al. (2019), image resolution and its relationship
with the field of view (FoV) were explored by the authors to generate a real-world
dataset called City100.
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Depth map super-resolution
In the field of computer vision, problems like image segmentation (Zaitoun ¢ Agel, 2015;
Yu ¢ Koltun, 2016; Kirillov et al., 2019) and pose estimation (Wei et al., 2016; Cao et al.,
2017b; Chen ¢ Ramanan, 2017) have been approached by using depth maps. Depth
maps retain the distance information of the scene and the observer, although these depth
maps are of low-resolution because of the hardware constraints of the modern camera
systems. Thus, image SR is used in this regard to increase the resolution of the depth maps.
Using multiple cameras to record the same scene and generate multiple HR images is
the most suitable way of doing depth map SR. In Hui, Loy ¢ Tang (2016), the authors
used two separate CNNs to downsample HR image concurrently and upsample the LR
depth map; after the generation of RGB features fi

he downsampling CNN, these
features were used to fine-tune the upsampling procegsi@hdepth maps, while Riegler,
(2014)) to guide the model for generating HR depth
reference images.

Remote sensing and satellite
The use of SR in improving the tio
increased in the past years (Sherfyeyer ¢ YVan Etten, 2019). In Li et al. (2017b), the authors

used the concept of multi-line ¢ as @ utilize multiple LR images to generate a

high-quality HR image ffom #ig ZY-3(TLC) satellite image dataset. In Zhu et al. (2017b)
and Benecki et al. (2 s argued that the conventional methods of evaluation
of the SR techni d for satellite imaging as the degradation functions

and operati i of the satellite hardware are entirely in a different environment
and thus (Ben
ods. An adaptive multi-scale detail enhancement (AMDE-SR) was
et al., 2018) to use the multi-scale SR method to generate high-detailed
accurate textual and high-frequency information. GAN-based methods

caded conditional Wasserstein generative adversarial network (CCWGAN) to
ate HR images for remote sensing (Liu et al., 2020a). Bashir et al. proposed a
LOv3-based small-object detection framework SRCGAN-RFA-YOLO (Bashir ¢
Wang, 2021b), where the authors used residual feature aggregation and cyclic GAN to
improve the resolution of remote sensing images before performing object detection.

Video super-resolution

In video SR, multiple frames represent the same scene; thus, there is inter and intra-frame
spatial dependency in the video, which includes the information of brightness, colors, and
relative motion of objects. Using the optical flow-based method (Sun, Roth ¢ Black, 2010;
Liao et al., 2015), Sun et al. and Liao et al. proposed a method to generate probable

HR candidate images and ensemble these images using CNNs. Using the Druleas
(Drulea & Nedevschi, 2011) algorithm, CVSRnet (Kappeler et al., 2016) addressed the effect
of motion by using CNNs for the images in successive frames to generate HR images.
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Apart from direct learning motion compensation, a trainable spatial transformer
(Jaderberg et al., 2015) was used in VESPCN (Caballero et al., 2017) to motion
compensation mapping using data from successive frames for end-to-end mapping. Using
a sub-pixel layer-based module, (Tao et al., 2017) achieved super-resolution and motion
compensation simultaneously.

Another approach is to use recurrent networks to indirectly grasp the spatial and
temporal interdependency to address the motion compensation. In STCN (Guo ¢ Chao,
2017), the authors used a bidirectional LSTM (Graves, Ferndndez ¢ Schmidhuber, 2005)
and deep CNNs to extract the temporal and spatial information from the video frames,
while BRCN (Huang, Wang ¢» Wang, 2015) utilized RNNs, CNNs, and conditional
CNN s respectively for temporal, spatial and tempq

patial interdependency mapping.
arge-sized filter, FSTRN (Li

et al., 2019a) achieves state-of-the-art performance fising d NNs, sustaining a low
etwofR(STMN) for video SR was
e the dependence on motion

Using 3D convolution filters of small size to replace th

computational cost. A novel spatio-temporal matchi
proposed, which worked on the wavelet tran ()
estimations (Zhu et al., 2021).

SR for medical imaging
Other fields also used the concept of image stper-resolution to achieve high-resolution
r & Garnavi (2019); the authors proposed the
image quality of magnetic resonance (MR)

al., 2018) used image SR methods to generate
thin-sliced knee
has high im jon time and low resolution, Super-resolution Reconstruction
Diffusion Tén
diffusi hte ) images (Van Steenkiste et al., 2016). Hamaide et al. (2017) also
used S TI
Assis @@nosis using super-resolution has been a recent trend; for instance,

find the structural sex variances in the adult zebra finch brain.

earchers,used deep learning-based SR methods to assist the diagnosis of movement
ike isolated dystonia (Bashir ¢~ Wang, 2021a).

er applications

Other applications of SR include object detection (Li et al., 2017a; Tan, Yan & Bare, 2018),
stereo image SR (Duan & Xiao, 2019; Guo, Chen & Huang, 2019; Wang et al., 2019a),
and super-resolution in optical microscopy (Qiao et al., 2021). Overall, SR plays a vital role
in multi-disciplines, from medical science, computer vision to satellite imaging and remote
sensing.

DISCUSSION AND FUTURE DIRECTIONS

This paper gives an overall review of literature for image super-resolution, and the
contribution of this paper is discussed in this section.
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Learning strategies
Learning strategies in image SR are introduced in “Learning Strategies”; while the learning
strategies are well matured in image SR, there are research directions in the development of
alternate loss functions and alternative of batch normalization

There are various loss functions in SR, and the choice of SR depends upon the task,
while it is still an open research area to find an optimal loss function that fits all SR
frameworks. A combination of loss functions is currently used to optimize the learning
process, and there are no standard criteria for the selection of loss function; thus, exploring
various probable loss functions for super-resolution is a promising future direction.

Batch normalization is a technique that performs well in computer vision tasks and
reduces the overall runtime of the training, and enhAf@es the performance; however, in SR
017; Wang et al., 2018a; Chen
peg-resolution should be

batch normalization proved to be sub-optimal (Li e/
et al., 2018a). In this regard, normalization techniq
explored further.

Network design

Network design strategies require fur exp in SR as the network design

inherently dictates the overall pe an y SR method. Some of the key research
areas are highlighted in this secfion
i , current upsampling methods have significant

drawbacks for the deconfrol nd may produce checkerboard artifacts. In

contrast, the sub-pi ptible to the non-uniform distribution of receptive
fields; the stability issues, while the interpolation-based methods
lack end-to- . Thus, further research is required to explore upsampling

methods that ¢
factors

For an p@rception in SR, further research is required in attention-based SR, where
mo e trained to give more attention to some image features than others like
uman,visual system does.

a combination of low and high-level representations simultaneously to accelerate
process is another field in network design for fast and accurate reconstruction of the
image.

Exploring network architectures that can be implemented in practical applications since
current methods use deep neural networks, which increases the performance of the SR at
the expense of higher computational cost; thus, research in the development of network
architecture that is minimal and provides optimal performance is another promising
research direction.

Evaluation metrics

The image quality metrics used in SR act as the benchmark score, while the two most
commonly used metrics, PSNR and SSIM, help gauge the performance of SR, but these
metrics introduce inherent issues in the generated image. Using PSNR as an evaluation
metric usually introduces non-realistic smooth surfaces, while SSIM works with textures,
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structures, brightness, and contrast to imitate human perception. These metrics cannot
completely grasp the perceptual quality of images (Ledig et al., 2017; Sajjadi, Scholkopf &
Hirsch, 2017). Opinion scoring is a metric that ensures perceptual quality, but this
metric is impractical for implementing SR methods for large datasets; thus, a probable
research direction is developing a universal quality metric for SR.

Unsupervised super-resolution

In the past 2 years, unsupervised SR methods have gained popularity, but still, the
task of collecting various resolution scenes for a similar pose is difficult; thus, bicubic
interpolation is used instead to generate an unpaired SR dataset. In actuality, the

unsupervised SR methods learn the inverse mappig@of this interpolation for the

reconstruction of HR images, and the actual learning OfiSR is still an open research field

using unsupervised learning methods.

CONCLUSION
A detailed survey of classical SR and recent ncesjin SR with deep learning are
explored in this survey paper. The cefitfal th is survey was to discuss deep

learning-based SR techniques and t

applisatiqn of SR in various fields. Although image
SR has achieved a lot in the lastfecdde, so pen problems are highlighted in
“Discussion and Future Directios”. This 8urvey is intended for the researchers in the field

of SR and researchers fro r se image SR in their respective fields of interest.
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