
Submitted 18 November 2020
Accepted 8 June 2021
Published 21 July 2021

Corresponding author
Javeria Hassan,
jhassan.mscs17seecs@seecs.edu.pk

Academic editor
Robertas Damaševičius

Additional Information and
Declarations can be found on
page 13

DOI 10.7717/peerj-cs.615

Copyright
2021 Hassan et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Natural language understanding of map
navigation queries in Roman Urdu by
joint entity and intent determination
Javeria Hassan1, Muhammad Ali Tahir1 and Adnan Ali2

1National University of Sciences and Technology (NUST), Islamabad, Pakistan
2University of Science and Technology of China, Hefei, Anhui, China

ABSTRACT
Navigation based task-oriented dialogue systems provide users with a natural way of
communicating with maps and navigation software. Natural language understanding
(NLU) is the first step for a task-oriented dialogue system. It extracts the important
entities (slot tagging) from the user’s utterance and determines the user’s objective
(intent determination). Word embeddings are the distributed representations of the
input sentence, and encompass the sentence’s semantic and syntactic representations.
We created the word embeddings using different methods like FastText, ELMO, BERT
and XLNET; and studied their effect on the natural language understanding output.
Experiments are performed on the Roman Urdu navigation utterances dataset. The
results show that for the intent determination task XLNET based word embeddings
outperform othermethods; while for the task of slot tagging FastText and XLNET based
word embeddings have much better accuracy in comparison to other approaches.

Subjects Artificial Intelligence, Natural Language and Speech
Keywords Natural language understanding, Roman Urdu, Navigation query, Word embeddings

INTRODUCTION
A navigation dialogue/query system (Zheng, Liu & Hansen, 2017) is a salient use case in
the task oriented dialogue systems domain. Its input is a navigational query which is
written/spoken when a user is driving or walking. The input mode can be text as well
as speech. This navigational query might include a particular point of interest (POI)
as destination and the user’s intent regarding that POI like directions to the POI or its
distance. To retrieve the POI from the input navigation query/utterance and determining
the user’s intent is the task of the natural language understanding (NLU) module (Yao et
al., 2013; Mesnil et al., 2015). This module is a part of the task oriented dialogue system.
The natural language understanding module of any dialogue system includes three tasks
which are domain detection, slot tagging and intent determination. The output of this
module includes the intent and slots of the input utterance; these are called dialogue states.
Dialogue states are used to query our knowledge base or an external database and return
some sort of output. In case of a navigation oriented dialogue system, the slots may contain
a destination point and the user’s intent could be finding directions to that destination.

Figure 1 shows the pipeline framework of a navigation oriented dialogue system. It
can be seen that NLU is a central step in the task oriented dialogue system; therefore, the

How to cite this article Hassan J, Tahir MA, Ali A. 2021. Natural language understanding of map navigation queries in Roman Urdu by
joint entity and intent determination. PeerJ Comput. Sci. 7:e615 http://doi.org/10.7717/peerj-cs.615

https://peerj.com/computer-science
mailto:jhassan.mscs17seecs@seecs.edu.pk
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.615
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.615


Figure 1 Pipeline framework of navigation oriented dialogue system.
Full-size DOI: 10.7717/peerjcs.615/fig-1

accuracy of natural language understanding greatly affects the output of the whole dialogue
system.
Figure 2 shows the natural language understanding process for an input utterance. Intent

determination task is similar to the multi-class classification task. The slot tagging task is
generallymore challenging than intent determination. It is similar to sequence classification
where the classifier’s job is to determine the semantic tags for the sub-sequences in the
utterance. The tasks of slot tagging and determining the intent of an input utterance are
somewhat different from each other. During the pre-deep learning era they were modeled
using separate approaches; like support vector machines for intent determination and
conditional random fields for slot tagging. Now, using deep learning, it is possible to
determine the solution of both tasks jointly using a single model.Hakkani-Tür et al. (2016)
proposed joint model for intent determination, slot tagging and domain detection using
the RNN-LSTM architecture. The input of this model are the user utterances while the
output includes the domain intent and slots. The main principle of joint modeling is
similar to that of the sequence-to-sequence modeling (Sutskever, Vinyals & Le, 2014) or
neural conversational model (Vinyals & Le, 2015); because the last hidden layer of the
neural network contains the semantic information of the whole input, giving us intent
and domain information. Liu & Lane (2016) proposed an LSTM based encoder–decoder.
The model is attention based with a bidirectional encoder and a unidirectional decoder.
This model jointly models the intent determination task and slot tagging task. Similarly,
Goo et al. (2018) also proposed an attention-based encoder–decoder architecture but
they included a slot gate. The purpose of the slot gate is to make use of the intent based
context vector, while determining the slot labels for an utterance. Slot gate based model
outperformed simple attention-based encoder decoder architecture for joint modeling of
the slot tagging and intent determination. Hardalov, Koychev & Nakov (2020) proposed
joint intent detection and slot tagging, which was built upon a pre-trained BERT language
model. It first determines the intent distribution vector by adding an additional pooling
layer to get a hidden representation of the entire input utterance, then it obtains the
predictions for each token in utterance using BERT language model. Both of these are

Hassan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.615 2/15

https://peerj.com
https://doi.org/10.7717/peerjcs.615/fig-1
http://dx.doi.org/10.7717/peerj-cs.615


Figure 2 Block diagram of natural language understanding process.
Full-size DOI: 10.7717/peerjcs.615/fig-2

used as input to predict the slots of an input utterance. The above mentioned methods
utilize the intent to determine the slots. Conversely, it can also be beneficial if we use
the determined slots for intent determination. Peng et al. (2020) proposed an interactive
two-pass decoding network. It is the joint slot tagging and intent determination model. It
uses first pass decoder to determine the explicit representation for the first task; and then
uses this representation as an input for the second pass decoder to determine the results of
the second task. This model takes full advantage of both of the determined intents and slots,
so that it can achieve bidirectional conversion between these two tasks. Joint modeling
provides a major advantage in comparison to the separate models for slot tagging and
intent determination. It provides higher accuracy with a smaller amount of labeled data.
Therefore, in our work, we have implemented a joint model as proposed by Liu & Lane
(2016).
When it comes to natural language understanding of the navigational dialogues, there

is not a lot of work done in Urdu language. This is especially true for Roman Urdu and
deep learning techniques. Roman Urdu here refers to writing Urdu language using the
transliteration in Roman (English) alphabet; as opposed to the standard way of writing
Urdu in Arabic script (with some extra letters). Examples of Roman Urdu sentences can be
seen in Fig. 3. Roman Urdu has been popularized in the last 2 decades due to increased use
of Urdu writing on the internet and mobile phones using the standard English keyboard.
Though there are examples of deep learning applied to Roman Urdu text, those are in
NLP domains other than natural language understanding, like sentiment analysis (Ghulam
et al., 2018; Shakeel & Karim, 2020) and Roman Urdu to Urdu transliteration (Alam & ul
Hussain, 2017). In this research, we are going to work on natural language understanding
of a RomanUrdu navigational dialogue dataset. The input sequence to the natural language
understanding model is converted into word embeddings as can be seen in Fig. 2. Word
embeddings are the distributed vector representations of words in a document, which
capture the semantic and syntactic meanings of these words. There are mainly two types;
context-independent and context-dependent word embedding methods. The Word2Vec
(Mikolov et al., 2013) model was the first neural network based model, which maps the

Hassan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.615 3/15

https://peerj.com
https://doi.org/10.7717/peerjcs.615/fig-2
http://dx.doi.org/10.7717/peerj-cs.615


Figure 3 Example sentences from Roman Urdu navigation dataset, along with their regular Urdu
equivalent and English translation.

Full-size DOI: 10.7717/peerjcs.615/fig-3

words to their distributed representation while capturing the syntactic and semantic
meaning of the words. An extension to the Word2Vec model FastText was proposed by
Bojanowski et al. (2017); which is better at predicting and recognizing out-of-vocabulary
words in comparison to the Word2Vec model. A major drawback of the FastText and
Word2Vec models is that both are context-independent. In context-independent methods,
the order of the words does not effect the resulting word embedding. To take advantage
of the context information, deep learning based models have been introduced. Elmo
was proposed by Peters et al. (2018); the model architecture includes the bidirectional
LSTM and CNN. It has the ability to capture the word meanings with changing context.
Google introduced BERT (Devlin et al., 2019), which produces embeddings in a similar
manner to those of ELMO. BERT is based on a deep learning based architecture known
as transformer (Vaswani et al., 2017). Transformer is an encoder–decoder based model
which includes multi-head attention in both encoder and decoder layers. XLNET (Yang
et al., 2019) is an extension to BERT. It is also based on the transformer, but it introduces
the permutation language modeling, which predicts its tokens in random order rather
than left to right as in BERT. Ghannay, Neuraz & Rosset (2020) have studied the effect
of different word embedding approaches on the natural language understanding output.
They have compared both context independent and context dependents approaches
and then used these embeddings as an input to the Bidirectional LSTM for natural
language understanding. The datasets that they have used include both large and small
corpora. Results have clearly shown that the embeddings based on the larger datasets
had better accuracy compared to smaller corpora. In this paper we are going to compare
different word embedding methods; these are FastText, ELMO, BERT and XLNET.
We are also investigating transformer based approaches. The semantic representations
produced by these approaches will be evaluated, and it will be observed how these semantic
representations effect the accuracy of the joint intent detection and slot tagging model.
Main objectives of our paper are: (1) Comparison of word embeddings created by different
methods for joint slot tagging and intent determination model, and their effect on the

Hassan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.615 4/15

https://peerj.com
https://doi.org/10.7717/peerjcs.615/fig-3
http://dx.doi.org/10.7717/peerj-cs.615


F1-score, and; (2) natural language understanding of navigational dialogues in Roman
Urdu using a joint slot tagging and intent determination model.

The rest of the paper is organized as follows. ‘Methods’ explains different concepts such as
natural language understanding and word embeddings, as well as various machine learning
models used for their determination. ‘Results’ introduces the data set, the experimental
methodology and results obtained. Finally, ‘Discussion’ provides a conclusion and future
prospects.

METHODS
Natural language understanding model
A joint slot tagging and intent determination model will be used. The reasoning behind
using this joint model is that it provides better accuracy with a smaller number of labeled
sentences in training data. We are going to use an LSTM based encoder decoder model
with attention mechanism and the aligned inputs (Liu & Lane, 2016).
Attention based Encoder-Decoder model Encoder–decoder architecture including
attention and aligned inputs as shown in Fig. 4 provides higher accuracy for slot tagging
and intent determination tasks (Liu & Lane, 2016). The model is an LSTM based encoder–
decoder. LSTM is used as the basic recurrent network unit because it models long-term
dependencies better than the simple RNN. The model includes the BLSTM (Graves &
Schmidhuber, 2005) encoder; it reads the input word sequence x = (x1,x2,x3,...,xT ) in
the forward and backward directions. It generates the hidden state hf while reading the
input sequence in the forward direction and the hidden state hb while reading the input
sequence in the backward direction (i.e., opposite to that of the original order of input
word sequence), for the time step i. The hidden state of the encoder hi at time step i is
computed by the concatenation of the hf and hb hidden states,

hi= [hf ,hb]. (1)

The model includes two decoders; one for intent determination task and one for slot
tagging task. Slot tagging decoder output includes the labels y = (y1,y2,y3,...,yT ) for each
of the words in the input sequence. The intent determination decoder produces a single
output which is the intent of whole input word sequence. The slot tagging decoder is LSTM
based. The decoder state si at time step i is a function of the previous output yi−1, previous
decoder state i−1, aligned encoder hidden state hi and context vector ci which is attention
(Bahdanau, Cho & Bengio, 2015).

si= f (yi−1,si−1,hi,ci) (2)

ci=
T∑
j−1

αi,jhj (3)

αi,j =
expg (si−1,hj)∑T
k expg (si−1,hk)

. (4)

Hassan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.615 5/15

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.615


Figure 4 Attention based encoder decoder for the joint modeling of intent determination and slot fill-
ing.

Full-size DOI: 10.7717/peerjcs.615/fig-4

The context vector ci is the weighted sum of the hidden encoder states. To find the weights
to assign to these hidden states, a feed forward network g is trained. This network uses the
previous state of decoder and all the encoder hidden states to calculate the output encoder
state. The intent determination decoder state is determined by the cintent context vector and
s0 initial decoder hidden state. s0 carries information of the entire input word sequence.

Word embeddings
Word embedding models map the words to distributed representations which capture the
semantic and contextual meaning of the words. For this work, word embeddings have been
created using four different methods. These are described below.
FastText FastText is an extension of Word2Vec model, introduced by the Facebook AI
(Bojanowski et al., 2017). FastText has a lot of advantages over GloVe and Word2Vec.
First of all it has the ability to capture the semantics of shorter words better. It is also
comparatively better at recognizing and predicting out-of-vocabulary words. FastText
model represents the words in the form of n-grams of their characters, and then it trains
the skip-gram model to learn the embeddings. The values produced for each n-gram
representation are summed up to form one vector during each training step. Facebook has
provided pretrained models for 157 languages including Urdu.
ELMO ELMO (Peters et al., 2018) stands for Embeddings from Language Models. It has
the ability to capture deep contextualized meanings of the words in its embeddings. Its
architecture includesmultiple character based CNN’s, and on top it has bidirectional LSTM
to model the whole sentence. Thus, the main task of the bidirectional LSTM is to create
the contextual word embeddings. ELMO creates character based representations—this
naturally makes it more robust to the out-of-vocabulary words. ELMO creates the word
vector representations at run-time.
BERT BERT (Devlin et al., 2019) architecture includes multiple layers of the bidirectional
transformer encoder. The BERT model provides highly powerful context based word
representations. Transformer (Vaswani et al., 2017) is an encoder–decoder based model

Hassan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.615 6/15

https://peerj.com
https://doi.org/10.7717/peerjcs.615/fig-4
http://dx.doi.org/10.7717/peerj-cs.615


which includesmulti-head attention. It completely relies on self-attention for computing its
input and output representations, without relying on the aligned RNNs. The BERT’s input
representation is basically a concatenation of positional embedding, segment embedding
and word piece embedding. For fine tuning there are special tokens - [CLS] is inserted as
the first token, [SEP] is a special token which is added at the end as the last token, and
[MASK] is only used for pre-training and for masked words.
XLNET XLNET (Yang et al., 2019) is a generalized autoregressive pre-training model.
XLNET outperforms BERT in many natural language processing tasks. Autoregressive
model is a feed-forward network, which determines the future words from a given set
of words by either using the forward context or backward but not both. It is called
a generalized autoregressive model because it uses permutation language modeling to
capture the bidirectional context. Permutation language modeling predicts its tokens in
random order, rather than left to right as in BERT.

Dataset
We have created and used a navigational utterances dataset in Roman Urdu. Example
sentences from this dataset can be seen in Fig. 3. To our knowledge, such a dataset based
upon navigational dialogue in Roman Urdu has not been collected before. We have
similar such datasets in other languages especially in English like multi-turn, multi-domain
dialogue dataset (Eric & Manning, 2017), Atis (Bungeroth et al., 2008), and CU move
(Hansen et al., 2005). Roman Urdu is more commonly used among Pakistani people for
short text messaging (SMS) and on social media platforms, in comparison to either English
Language or original Urdu script. Furthermore, Pakistani street addresses available from
Google API are also in Roman Urdu. Therefore, if we want to create an online text based
dialogue agent, people will find it much easier to communicate with it in Roman Urdu
rather than communicating in English language or original Urdu script. Our system can
be interfaced with a speech recognition based front-end to create navigational dialogue
system to help the drivers on the road. There are a large number of drivers with limited
English language skills; who would be more comfortable in using a navigational dialogue
system in Urdu language rather than English. The dataset was collected from Pakistani
university students, with ages between 18 and 22 years. This group of subjects was chosen
because these students are tech savvy and frequent users of maps and navigation software.
Their opinion (training set examples) would give a good estimate of an average user of
text or voice based maps applications. These questions were related to the issues that
they face while driving or generally looking for locations in an unfamiliar area. After the
collection of dataset, the next step is the pre-processing. The main issue with Roman Urdu
is that everyone has their own spelling style; this would cause problems for creating word
embeddings of the dataset. To mitigate this problem lexical normalization is applied to the
dataset. The next step is dataset annotation i.e., assigning the intent to each utterance and
slot labels to each of the words in an utterance, as can be seen in Table 1. The slot labels
are assigned based on the IOB (Inside Outside and Beginning) format, which is a common
NER (named entity recognition) format. An example of an annotated utterance is given
below. 21 distinct intent labels and 29 distinct slot labels have been assigned.

Hassan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.615 7/15

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.615


Table 1 Example of the navigational query in IOB format.

Sentence Context

Directions B-directions
from O
Lahore B-fromloc
to O
Islamabad B-toloc

RESULTS
We have trained and tested our models on the Roman Urdu navigational dialogues dataset.
Details of the experimental setup are given below.

Training details
Attention based encoder decoder In this model LSTM is used as the basic RNN unit. The
number of units in the LSTM cell is set to 200. The number of layers for LSTM is set to 1.
Dropout rate is 0.5 and learning rate is 0.001. Maximum norm is set to 5. The model has
been trained for 50 and 100 epochs.
FastText FastText Urdu predtrained model has been used for creating word embeddings.
The size of the word embeddings is 300.
ELMOWe used a pretrained ELMOmodel available. It has 2 LSTM layers with 1024 hidden
states for each layer and character based word representation vector of size 512.
BERT bert-base-multilingual-cased model has been used. It is trained on 104 languages
including Urdu. This model is 12 layered, with 768 hidden states and 12 heads.
XLNET xlnet-base-cased model is used. This model is 12 layered, and has 768 hidden states
and 12 heads.

Results
Evaluation metrics
The evaluation metric used to evaluate the model is the F1 score, which is the harmonic
mean between the precision and recall. If we talk in terms of our dataset; the intent
determination model assigns each sentence an intent (navigate-directions, navigate-time,
navigate-search-directions). Similarly, precision determines the overall number of correctly
determined intents out of all the predicted intents. The data is unevenly distributed;
therefore we cannot only rely on the number of correctly predicted classes. If we only rely
on precision our results will only focus on the commonly present intents in the dataset (like
navigate-loc.search), and not focus on the other important intents (like navigate-time).
This is why recall measure is needed, as it determines how many different intents are
correctly classified. If precision is high, the recall may be low. An ideal model would have
both of thesemetrics balanced. Therefore, F1 score has been used as it balances the trade-off
between both precision and recall. Furthermore, it works really well when it comes to the
unevenly distributed multi-class dataset like ours.

Word embeddings have been created on our dataset using four of the above mentioned
models. Each of these embeddings are then used as an input to the attention based

Hassan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.615 8/15

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.615


Table 2 Validation and evaluation F1 scores (%) after 100 epochs of intent determination.

Model Validation Evaluation

FastText 80.00 76.00
ELMO 82.00 80.00
BERT 76.00 71.00
XLNET 84.00 84.00

Table 3 Validation and evaluation F1 scores (%) after 100 epochs of slot tagging.

Model Validation Evaluation

FastText 76.11 82.24
ELMO 82.11 79.74
BERT 78.33 79.57
XLNET 79.59 81.81

encoder–decoder model. The model determines both the intent and slots of an input
dataset. Given below is the comparison of the F1 scores of the models for each of the input
word embeddings for both intent determination and slot tagging.

Intent determination
In Table 2, F1 scores of the intent determination models are given after 100 epochs. From
evaluation results it can be seen that F1 score for the word-embedding based on XLNET
model has outperformed the other methods for intent determination; with the F1 score for
evaluation being 84.00.

Slot tagging
In Table 3, F1 score of the model for slot tagging is given after 100 epochs. Looking at
the evaluation F1 scores for all the models, it can be seen that both XLNET and FastText
based word embeddings have higher F1 scores in comparison to the other models; with
evaluation F1 scores being 82.11 and 82.24 respectively.

DISCUSSION
Our dataset was human labeled training data. One problem with this type of human labeled
datasets is that they are prone to errors. Another issue with RomanUrdu is that there are no
standardized spellings; different writers may use different spellings for the same word. Even
though we have normalized each word to one spelling; still there are a few words having
more than one spellings. This leads to poor generalization capability for word embedding
models.

Intent determination
For the task of intent determination, there are 21 distinct classes. The model assigns each
utterance an intent from those distinct classes. If we look at the F1 score (%) plot in Fig. 5A
it can be clearly seen that the word embeddings which were created using the XLNETmodel
has the highest F1 (%) of 84.00. Figure 6A contains the confusion matrix, based of the

Hassan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.615 9/15

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.615


Figure 5 Evaluation F1 score (%) graphs (A) for intent determination and (B) for slot tagging.
Full-size DOI: 10.7717/peerjcs.615/fig-5

intent classes predicted using the word embedding created using XLNET. The diagonal of
the confusion matrix shows the number of classes predicted correctly. XLNET based word
embeddings have provided much better results for the intent determinations task, because
it is much better at capturing the contextual information present in an utterance. XLNET
is a bidirectional transformer. If we talk about the F1 (%) plot in Fig. 5A, it can be seen that
in comparison to BERT (which is also transformer based), XLNET performs much better
for this task. XLNET uses the permutation language modeling, and predicts all the token
in random order. This helps it to better understand the bidirectional relationships among
the words in comparison to BERT which only predicts 15% of the masked tokens.

Hassan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.615 10/15

https://peerj.com
https://doi.org/10.7717/peerjcs.615/fig-5
http://dx.doi.org/10.7717/peerj-cs.615


Figure 6 Confusionmatrix (A) for intent determination (XLNET) and (B) for slot tagging (FastText).
Full-size DOI: 10.7717/peerjcs.615/fig-6

Slot tagging
For the task of slot tagging, there were 29 distinct classes. Our model assigned a slot tag
to each of the word in an utterance. If look at the F1 scores (%) plot in Fig. 5B it can

Hassan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.615 11/15

https://peerj.com
https://doi.org/10.7717/peerjcs.615/fig-6
http://dx.doi.org/10.7717/peerj-cs.615


be clearly seen that the word embeddings created using the FastText model and XLNET
performed really well with the F1 score of 82.24 and 81.81. Figure 6B contains the confusion
matrix, based on the slot tags using the word embedding created using FastText. F1 score is
dependent upon the number of classes correctly identified. FastText is better at recognizing
the out-of-vocabulary words. FastText model represents the words in the form of n-grams
of their characters. The n-grams of characters are learned such that the sum of these
character representations is equivalent to the word representation. So the words which are
missing some letters or out-of-vocabulary words can learned because they are represented
using the sum of the representations of the n-gram characters contained in those words.
XLNET has provided good accuracy. However it could not perform as good as it did for
the intent determination task, because the dataset is too small for the task of slot tagging.
Transformer based models are generally much better with larger datasets. If we look at the
F1 plot for slot tagging, ELMO based word embedding also provided much better accuracy
for earlier epochs and also has the highest validation F1 score 82.11. ELMO creates word
distributed representations using deep learning models. It is character-based like FastText,
therefore it is great at context based modeling and for modeling the out-of-vocabulary
words.

Ghannay, Neuraz & Rosset (2020) also studied the effect of word embeddings on NLU.
They have compared GloVe, FastText, and ELMO. For the slot tagging and intent
determination tasks they have used the bidirectional LSTM encoder–decoder model.
Their experimental results have shown that the word embeddings created using the larger
out-of-domain datasets yield better results in comparison to smaller datasets. Their results
have shown that even for the larger out-of-domain datasets the embeddings created using
ELMO provided the highest score. They did not compare the transformer based models. In
our research work, we have also explored transformer based word embedding approaches.
Furthermore, we have also used the attention mechanism in the slot tagging and intent
determination tasks.

CONCLUSIONS
In this paper we have used a joint slot tagging and intent determination model for
for determining the slots and intent of navigational queries in Roman Urdu. We have
used different approaches for creating word embeddings of our dataset. We wanted to
determine how the word embeddings created using different approaches will effect the
results of slot tagging and intent determination models. Word embeddings were created
using the both context independent and dependent methods. The experimental results
have shown that for the intent determination task the word embeddings created using the
XLNET provided much better F1 score. XLNET is a transformer based model and more
effective at capturing the relationships and dependencies among words in an utterance
as compared to other approaches. For the task of slot tagging, word embeddings created
using XLNET and FastText provided much better results. FastText has the ability to cater
to rare/out-of-vocabulary words much better because it creates representations for words
not present at training time. ELMO also provided the highest validation score for the task

Hassan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.615 12/15

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.615


of slot tagging. ELMO is based on Bidirectional LSTM and CNN, and provides much better
context based representation for the resulting embeddings. Future work in this direction
is suggested to focus on gathering larger data sets, as the performance of some methods
like BERT could be more pronounced on large datasets. Also, having more demographic
variation in the data gathering subjects could lead to newer insights.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Javeria Hassan conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, and approved the final draft.
• Muhammad Ali Tahir analyzed the data, prepared figures and/or tables, authored or
reviewed drafts of the paper, and approved the final draft.
• Adnan Ali analyzed the data, authored or reviewed drafts of the paper, and approved
the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available at GitHub:
https://github.com/sz128/slot_filling_and_intent_detection_of_SLU.git.
The Python code files are available in the Supplementary File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.615#supplemental-information.

REFERENCES
AlamM, ul Hussain S. 2017. Sequence to sequence networks for roman-urdu to urdu

transliteration. In: 2017 international multi-topic conference (INMIC). 1–7.
Bahdanau D, Cho K, Bengio Y. 2015. Neural machine translation by jointly learning to

align and Translate. ArXiv preprint. arXiv:1409.0473.
Bojanowski P, Grave E, Joulin A, Mikolov T. 2017. Enriching word vectors with

subword information. Transactions of the Association for Computational Linguistics
5:135–146 DOI 10.1162/tacl_a_00051.

Bungeroth J, Stein D, Dreuw P, Ney H, Morrissey S, Way A, Zijl LV. 2008. The ATIS
sign language corpus. In: LREC.

Hassan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.615 13/15

https://peerj.com
https://github.com/sz128/slot_filling_and_intent_detection_of_SLU.git
http://dx.doi.org/10.7717/peerj-cs.615#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.615#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.615#supplemental-information
http://arXiv.org/abs/1409.0473
http://dx.doi.org/10.1162/tacl_a_00051
http://dx.doi.org/10.7717/peerj-cs.615


Devlin J, ChangM-W, Lee K, Toutanova K. 2019. BERT: pre-training of deep bidirec-
tional transformers for language understanding. In: NAACL-HLT.

Eric M, Manning CD. 2017. Key-value retrieval networks for task-oriented dialogue. In:
Proceedings of the SIGDIAL 2017 conference: the 18th annual meeting of the special
interest group on discourse and dialogue, Saarbrücken, Germany, SIGDIAL’17.

Ghannay S, Neuraz A, Rosset S. 2020.What is best for spoken language under-
standing: small but task-dependant embeddings or huge but out-of-domain
embeddings? In: ICASSP 2020 - 2020 IEEE international conference on acous-
tics, speech and signal processing (ICASSP). Piscataway: IEEE, 8114–8118
DOI 10.1109/ICASSP40776.2020.9053278.

GhulamH, Zeng F, LiW, Xiao Y. 2018. Deep learning-based sentiment analysis for
Roman Urdu text. In: IIKI.

Goo C-W, Gao G, Hsu Y-K, Huo C-L, Chen T-C, Hsu K-W, Chen Y-N. 2018. Slot-gated
modeling for joint slot filling and intent prediction. In: Proceedings of the 2018 con-
ference of the North American chapter of the association for computational linguistics:
human language technologies, Volume 2 (Short Papers). New Orleans, Louisiana:
Association for Computational Linguistics, 753–757 DOI 10.18653/v1/N18-2118.

Graves A, Schmidhuber J. 2005. Framewise phoneme classification with bidirectional
LSTM and other neural network architectures. Neural Networks 18(5–6):602–610
DOI 10.1016/j.neunet.2005.06.042.

Hakkani-Tür DZ, Tür G, Çelikyilmaz A, Chen Y-N, Gao J, Deng L,Wang Y-Y. 2016.
Multi-domain joint semantic frame parsing using bi-directional RNN-LSTM. In:
INTERSPEECH.

Hansen HLJ, Zhang X, AkbacakM, Yapanel HU, Pellom B,WardW, Angkititrakul P.
2005. CU-move: advanced in-vehicle speech systems for route navigation. In: DSP
for in-vehicle and mobile systems. 19–45.

HardalovM, Koychev I, Nakov P. 2020. Enriched pre-trained transformers for joint slot
filling and intent detection. ArXiv preprint. arXiv:abs/2004.14848.

Liu B, Lane I. 2016. Attention-based recurrent neural network models for joint intent
detection and slot filling. ArXiv preprint. arXiv:abs/1609.01454.

Mesnil G, Dauphin Y, Yao K, Bengio Y, Deng L, Hakkani-Tur D, He X, Heck L, Tur
G, Yu D, Zweig G. 2015. Using recurrent neural networks for slot filling in spoken
language understanding. IEEE/ACM Transactions on Audio, Speech, and Language
Processing 23:530–539 DOI 10.1109/TASLP.2014.2383614.

Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J. 2013. Distributed repre-
sentations of words and phrases and their compositionality. ArXiv preprint.
arXiv:abs/1310.4546.

Peng H, ShenM, Jiang L, Dai Q, Tan J. 2020. An interactive two-pass decod-
ing network for joint intent detection and slot filling. In: Zhu X, Zhang M,
Hong Y, He R, eds. Natural language processing and chinese computing. NLPCC
2020. Lecture notes in computer science, vol. 12431. Cham: Springer, 69–81
DOI 10.1007/978-3-030-60457-8_6.

Hassan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.615 14/15

https://peerj.com
http://dx.doi.org/10.1109/ICASSP40776.2020.9053278
http://dx.doi.org/10.18653/v1/N18-2118
http://dx.doi.org/10.1016/j.neunet.2005.06.042
http://arXiv.org/abs/abs/2004.14848
http://arXiv.org/abs/abs/1609.01454
http://dx.doi.org/10.1109/TASLP.2014.2383614
http://arXiv.org/abs/abs/1310.4546
http://dx.doi.org/10.1007/978-3-030-60457-8_6
http://dx.doi.org/10.7717/peerj-cs.615


Peters ME, NeumannM, Iyyer M, Gardner M, Clark C, Lee K, Zettlemoyer L. 2018.
Deep contextualized word representations. ArXiv preprint. arXiv:abs/1802.05365.

Shakeel M, Karim A. 2020. Adapting deep learning for sentiment classification of code-
switched informal short text. In: Proceedings of the 35th annual ACM symposium on
applied computing. New York: ACM.

Sutskever I, Vinyals O, Le QV. 2014. Sequence to sequence learning with neural
networks. ArXiv preprint. arXiv:abs/1409.3215.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polo-
sukhin I. 2017. Attention is all you need. ArXiv preprint. arXiv:abs/1706.03762.

Vinyals O, Le QV. 2015. A neural conversational model
ArXiv preprint. arXiv:abs/1506.05869.

Yang Z, Dai Z, Yang Y, Carbonell J, Salakhutdinov R, Le QV. 2019. XLNet: generalized
autoregressive pretraining for language understanding. In: NeurIPS.

Yao K, Zweig G, HwangM, Shi Y, Yu D. 2013. Recurrent neural networks for language
understanding. In: INTERSPEECH.

Zheng Y, Liu Y, Hansen J. 2017. Intent detection and semantic parsing for navigation
dialogue language processing. In: 2017 IEEE 20th international conference on
intelligent transportation systems (ITSC). Piscataway: IEEE, 1–6.

Hassan et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.615 15/15

https://peerj.com
http://arXiv.org/abs/abs/1802.05365
http://arXiv.org/abs/abs/1409.3215
http://arXiv.org/abs/abs/1706.03762
http://arXiv.org/abs/abs/1506.05869
http://dx.doi.org/10.7717/peerj-cs.615

