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ABSTRACT
Small sample learning aims to learn information about object categories from a single
or a few training samples. This learning style is crucial for deep learning methods
based on large amounts of data. The deep learning method can solve small sample
learning through the idea ofmeta-learning ‘‘how to learn by using previous experience.’’
Therefore, this paper takes image classification as the research object to study how
meta-learning quickly learns from a small number of sample images. The main
contents are as follows: After considering the distribution difference of data sets on the
generalization performance of measurement learning and the advantages of optimizing
the initial characterization method, this paper adds the model-independent meta-
learning algorithm and designs a multi-scale meta-relational network. First, the idea
of META-SGD is adopted, and the inner learning rate is taken as the learning vector
and model parameter to learn together. Secondly, in the meta-training process, the
model-independent meta-learning algorithm is used to find the optimal parameters of
themodel. The inner gradient iteration is canceled in the process ofmeta-validation and
meta-test. The experimental results show that the multi-scale meta-relational network
makes the learned measurement have stronger generalization ability, which further
improves the classification accuracy on the benchmark set and avoids the need for
fine-tuning of the model-independent meta-learning algorithm.

Subjects Computer Vision, Data Mining and Machine Learning, Natural Language and Speech
Keywords Less sample learning, Meta-learning, Multi-scale characteristics, Model-independent,
Image classification, META-SGD, Multi-scale relational network

INTRODUCTION
Deep learning has made significant progress in computer vision fields, but only on the
premise that they have a large amount of annotated data (Ni et al., 2019; Vinyals et al.,
2016; Zheng, Liu & Yin, 2021). However, it is impractical to acquire large amounts of
data in real life. As far as deep learning is concerned, fitting into a more complex model
requires more data to have good generalization ability. Once there is a lack of data, deep
learning technology can make the in-sample training effect good, but the generalization
performance of new samples is poor. Inspired by the human ability to learn quickly from
a small sample, many researchers have become increasingly aware of the need to study
machine learning from a small sample. In recent years, small sample learning has become
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a very important frontier research direction in deep learning. Human beings can learn
new concepts from a single or a few samples and obtain extremely rich representations
from sparse data. This ability is attributed to people’s ability to realize and control their
learning process, called meta-learning (Biggs, 1985; Ding et al., 2019; Ma et al., 2021; Yin et
al., 2019).

Up to now, research on learning with fewer samples can be divided into two aspects:
1. Generation model based on probabilistic reasoning; 2. Discriminant model based on
meta-learning.

The pioneering work of low-sample learning can be traced back to the work of Fe-Fei,
(2003)whichdefined the concept of low-sample learning: learning the new category by using
one or a few samples of the image of the new category (Fe-Fei, 2003). Li Fei-Fei proposed a
Bayesian learning framework in 2004. Andrew L. Maas et al. used the Bayesian network to
capture the relationship between attributes in 2009, which can deal with near-deterministic
relationships and include soft probabilistic relationships (Kemp &Maas, 2009; Li et al.,
2015). Rezende et al. (2016) implemented the hierarchical Bayesian programming learning
framework in the deep generation model based on feedback and attention principles.
Compared with the shallow hierarchical Bayesian programming learning framework (Lake,
Salakhutdinov & Tenenbaum, 2015; Tang et al., 2020b), this method has a wide range of
applications. However, more data is needed to avoid over-fitting (Rezende et al., 2016). In
2017, Vicarious researchers came up with a probabilistic model of vision, based on how the
visual cortex works, reporting up from level to level, and named it the recursive cortical
network. With the same accuracy, the recursive cortical network uses only one-millionth
of the deep learning method’s training sample. It can be used to crack various variants of
text captchAs after one training (George et al., 2017; Li et al., 2020).

Meta-learning, also known as learning to learn, refers to using previous experience to
learn a new task quickly, rather than thinking about the new task in isolation. Lake et al.
(2017) emphasized its importance as the cornerstone of artifical intelligence. Up to now,
the research directions of using meta-learning to deal with small sample learning include:
1. Memory enhancement; 2. Measure learning; 3. Learn the optimizer; 4. Optimize initial
characterization.

Memory enhancement
Memory enhancement refers primarily to the use of cyclic neural networks with memory
or temporal convolution to iterate over examples of a given problem, accumulating
information that is used to solve the problem in its hidden activation layer or external
memory. Considering that neural network Turing machines can carry out short-term
memory through external storage and carry out long-term memory through slow weight
updating (Graves et al., 2016; Tang et al., 2021), Santoro et al. (2016) proposed a memory
enhancement network based on long and short memory network (LSTM) in 2016 (Santoro
et al., 2016; Tang et al., 2020a). Next, Munkhdalai & Yu, (2017) proposed a meta-network,
which is composed of a meta-learning device and a learning device, and at the same time,
a memory unit is added externally. By using the gradient as the meta-information, the fast
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weight and slow weight are generated on two time scales, and then the fast weight and slow
weight are combined by the layer enhancement method.

Measure learning
Metric Learning refers to learning a similarity measure from data, and then using this
measure to compare and match samples of new unknown categories. In 2015, Gregory
Koch et al. proposed the twin network (Chen et al., 2020; Koch, Zemel & Salakhutdinov,
2015). The recognition accuracy of the model on Onniglot data is close to human. Vinyals
et al. (2016) proposed an end-to-end and directly optimized matching network based on
memory and attention (Li et al., 2017; Vinyals et al., 2016). This network can quickly learn
with few samples, and for new classes never seen in the training process, the trained model
is not changed, and the test samples can be classified with a few calibration samples of
each class. Sung et al. (2018) proposed the relationship network in 2018. Learning to get
similarity measure is more flexible and can capture the similarity between features better
than the artificially selected measure method, and good results are obtained on several
benchmark data sets learned with few samples.

Learn the optimizer
The learning optimizer refers to learning how to update the learner parameters, that is,
learning the updating function or updating rules of the new model parameters. Ravi &
Larochelle (2016) used LSTM as a meta-learner, and took the learner’s initial recognition
parameters, learning rate and loss gradient as LSTM states to learn the learner’s initialization
parameters and parameter update rules. Yang et al. (2020) introduced metric Learning
based on the method proposed by Ravi and Larochelle, and proposed a meta-metric
learner. The author integrates the matching network and the method of updating rules
using LSTM learning parameters, and obtains a better method. However, such a structure
is more complex than the structure based on measurement learning alone, and each
parameter of the learner is updated independently in each step, which will largely limit its
potential (Sung et al., 2018).

Optimize initial characterization
Optimize the initial representation, that is, optimize the initial representation directly. Finn,
Abbeel & Levine (2017) proposed a model-agnostic meta-learning algorithm (MAML)
(Finn, Abbeel & Levine, 2017; Zheng et al., 2017). Compared with the previous meta-
learning method, this method introduces no additional parameters and has no restrictions
on themodel structure. Instead of updating a function or learning rule, it only uses gradient
to update the learner weight. Andrei A. Liu et al. used the entire training set to pre-train
the feature extractor in the case that MAML could not handle high-dimensional data
well, and then used the parameter generation model to capture various parameters useful
for task distribution (Liu et al., 2020; Zheng et al., 2016a). In contrast to the mamL-based
improvement, applied antagonistic neural networks in the Zhang et al. (2018) field of
meta-learning. This method uses the idea of generating antagonistic network to expand
data and improve the learning ability of the network. However, the overall effect of this
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Figure 1 Omniglot dataset example.
Full-size DOI: 10.7717/peerjcs.613/fig-1

method is not stable, the relative cost is high, and the technology is not mature enough
(Zhang et al., 2018; Zheng et al., 2016b).

The ability to learn and adapt quickly from small amounts of data is critical to AI.
However, the success of deep learning depends to a large extent on a large amount of tag
data, and in deep neural network learning, each task is isolated from the Learning, and
Learning is always from scratch when facing a new task. Limited data or rapid generalization
in a dynamic environment challenge current deep learning methods. Therefore, this paper
takes the problem of image classification with few samples as the research object, combines
measurement learning and optimization of initial representation methods, and designs a
multi-scale meta-relational network. Finally, the classification accuracy and training speed
of the two baseline data sets with small sample learning are improved.

MATERIALS & METHODS
Materials
Omniglot data set
In 2011, the Omniglot data set was collected by Brenden Lake and his collaborators at
MIT through Amazon’s Mechanical Turk (Lake et al., 2011; Zheng et al., 2015). It consists
of 50 international languages, including mature international languages such as Latin and
Korean, little-known local dialects, and fictional character sets such as Aurek-Besh and
Klingon. The number of letters in each language varies widely, from about 15 to 40 letters,
with 20 samples for each letter. Therefore, the Omniglot data set consists of 1623 categories
and 32,460 images. Figure 1 illustrates the five languages of the Omniglot data set.

MiniImageNet data set
MiniImageNet data set, proposed by Vinyals et al., consists of 60,000 84×84×3 color
images, a total of 100 categories, each with 600 samples (Vinyals et al., 2016). The
distribution of data sets is very different, and the image category involves animals,
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household goods, remote sensing images, food, etc. Vinyals did not publish this data
set. Ravi and Larochelle randomly selected 100 classes from the ImageNet data set to create
a new MiniImageNet data set, which was divided into training set, validation set and test
set at a ratio of 64:16:20 (Ravi & Larochelle, 2016).

Method
Metalearning based on metric Learning
In meta-learning, metric learning refers to learning similarity measurement from a wide
range of task Spaces, so that the experience extracted from the previous learning tasks
can be used to guide the learning of new tasks to achieve the purpose of learning how to
learn. The learner (meta-learner) learns the target set on each task of the training set by
measuring the distance of the support set, and finally learns a metric. Then for the new task
of the test set, it can quickly classify the target set correctly with the help of a small number
of samples of the support set.

At present, the methods of small sample image classification based on metric Learning
include: twin network, matching network, prototype network and relational network.
The twin network is composed of two identical convolutional neural networks, and the
similarity between two images is calculated by comparing the loss function with the input
of paired samples. The other threemethods, instead of using paired sample inputs, calculate
the similarity between the two images by setting the support set and the target set. In this
paper, the improvement is made on the basis of multi-scale relational network, so the main
structure of this method is mainly introduced below.

The structure of relational network (Sung et al., 2018) first obtains feature graphs of
support set and target set samples through embedded modules, then splices feature graphs
of support set and target set samples in depth direction, and finally obtains relationship
score by learning splicer features through relationship module, so as to determine whether
support set and target set samples belong to the same category.

The calculation formula of relational fractions is as follows:

ri,j = gφ(C(fϕ(xi),fϕ(xj))), i= 1,2,...,C (1)

Where, xi represents the supporting set sample, xj represents the target set sample, fϕ(x)
represents the embedded module, fϕ(xi) and fϕ(xj) represent the feature graph of the
supporting set and target set sample, and C

(
fϕ (xi),fϕ

(
xj
))

represents the feature graph
splicing operator. gφ stands for relationship module.

Model-independent meta-learning algorithm
According to the idea of transfer learning, when adapting to a new task, MAML only
needs to fine-tune the learner so that the parameter of the learner is adapted from θ to θ ′i .
However, different from migration learning, MAML only needs to perform one or more
gradient descent iterative steps on a small amount of data in new task Ti to enable the
learner to converge to the optimal parameter.

Here, θ ′i only considers the MAML that converges to the optimal parameter after an
iterative step of gradient descent as follows:

θ ′i = θ−α∇θLTi f (θ) (2)
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Where, f (θ) stands for learner, LTi stands for loss on specific task,∇θLTi f (θ) stands for loss
gradient, and α stands for learner gradient update pace, namely learning rate of learner.

On a small amount of data in new task Ti, the learner can be converged to the optimal
parameter θ ′i after one step of gradient descent iteration, so MAML must find a set
of initialization representations that can be effectively fine-tuned according to a small
number of samples. In order to achieve this goal, based on the idea of meta-learning
‘‘using previous experience to quickly learn new tasks’’, learners need to learn the learner
parameter θ on different tasks. MAML defines this process as meta-learning process.

In the meta-learning process, for different training tasks, the optimal parameter θ ′i
suitable for the specific task was obtained through a step of gradient iteration, and then
sampled again on each task for testing, requiring LTi f

(
θ ′i
)
to reach the minimum value.

Therefore, MAML adopted the sum of test errors on different tasks as the optimization
objective of the meta-learning process, as shown below:

minθ
∑

Ti∼p(T )

LTi f
(
θ ′i
)
=

∑
Ti∼p(T )

LTi f
(
θ−α∇θLTi f (θ)

)
(3)

where, p(T ) represents the distribution of the task set, LTi represents the loss on the
specific task, ∇θLTi f (θ) represents the loss gradient, and α represents the learning rate of
the learner.

It can be seen from Eq. (3)–(3) that the optimization goal of the meta-learning process
is to adopt the updated model parameter θ ′i adapted to the specific task, while the meta-
optimization process is ultimately executed on the learner parameters θ . The stochastic
gradient descent method is adopted, and the updated iteration formula of model parameter
θ is shown as follows:

θ← θ−β∇θ
∑

Ti∼p(T )

LTi f
(
θ ′i
)

(4)

where, p(T ) represents the distribution of the task set, LTi represents the loss on the specific
task, ∇θLTi f (θ) represents the gradient, and β represents the gradient update pace of the
meta-learner, also known as the learning rate of the meta-learner.

Substituting Eq. (3)–(1) into Eq. (3)–(4), we can get:

θ← θ−β∇θ
∑

Ti∼p(T )

LTi f
(
θ−α∇θLTi f (θ)

)
(5)

Algorithm design of multi-scale meta-relational network
In the multi-scale meta-relational network, we hope to find a set of characterization θ that
can make fine adjustments efficiently according to a small number of samples. Where,
θ is composed of feature extractor parameter ϕ and metric learner parameter φ. During
the training process, each task is composed of training set Dtrain and test set Dtest . Where,
Dtrain is used for the inner optimization iteration, Dtest serves as the target set of the outer
optimization iteration, and the support set adopts the support set DS in Dtrain.

In the inner optimization iteration process, on the new task Ti with a small amount
of data Dtrain, the learner converges to the optimal parameter θi after an iterative step of
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gradient descent, as shown below:

θi= θ−α∇θLTi,Dtrain f (θ) (6)

Where α is a vector of the same size as L′Ti,Dtrain
(θ), representing the learning rate of the

learner. The direction of the vector represents the update direction, and the magnitude of
the vector represents the learning step.

For different training tasks, the optimal parameter θi suitable for specific tasks was
obtained through a step of gradient iteration, and then tested on Dtest of different tasks,
requiring LTi,Dtest ,DS f (θi) to reach the minimum value. Therefore, the meta-optimization
objectives of the meta-training process are as follows:

minθ
∑

Ti∼p(T )

LTi,Ds,Dtest f (θi) (7)

Substituting Eq. (3)–(6) into Eq. (3)–(7), we can find:

minθ
∑

Ti∼p(T )

LTi,DS,Dtest f
(
θ−α∇θLTi,Dtrain f (θ)

)
(8)

For parameter θ , the gradient calculation formula of formula (3–8) is as follows:

gθ =
∂

∂θ
LTi,DS,Dtest f

(
θ−α∇θLTi,Dtrain f (θ)

)
(9)

Substituting Eq. (3)–(6) into Eq. (3)–(9) can be simplified as follows:

gθ =
∂LTi,DS,Dtest f (θi)

∂f (θi)
×
∂f (θi)
∂θi
×
∂θi

∂θ

=
∂LTi,DS,Dtest f (θi)

∂f (θi)
×
∂f (θi)
∂θi
× (I−α

∂
(
∇θLTi,Dtrain f (θ)

)
∂θ

)
(10)

where I is the unit vector.
It can be seen fromEq. (3)–(10) that the update process of themulti-scalemeta-relational

network involves the gradient calculation process, that is, when the gradient operator in the
meta-target is used to propagate the meta-gradient, additional reverse transfer is required
to calculate the Hessian vector product (Kemp &Maas, 2009).

In the multi-scale relational network, except for the sigMIod nonlinear function at the
last full connection layer of the metric learner, all other nonlinear functions are ReLU. The
ReLU neural network is almost linear in part, which indicates that the second derivative
is close to zero in most cases. Therefore, the multi-scale element relational network, like
MAML, ignores the second derivative in the calculation of the back propagation of the
element gradient (Kemp &Maas, 2009), as follows:

gθ =
∂LTi,DS,Dtest f (θi)

∂f (θi)
×
∂f (θi)
∂θi

=
∂LTi,DS,Dtest f (θi)

∂θi
=∇θiLTi,DS,Dtest f (θi)

(11)

Therefore, in the process of calculating the outer gradient, the multi-scale element
relation network stops the back propagation after calculating the gradient at θi and
calculates the second derivative at θ .
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For parameter α, the gradient calculation formula of formula (3–8) is as follows:

gα =
∂

∂α
LTi,DS,Dtest f

(
θ−α∇θLTi,Dtrain f (θ)

)
=
∂LTi,DS,Dtest f (θi)

∂θi
×
∂θi

∂α

=−∇θLTi,Dtrain f (θ)×∇θiLTi,DS,Dtest f (θi)

(12)

In the outer optimization iteration process, stochastic gradient descent method is
adopted, and the updated iteration formula of model parameter θ is shown as follows:

θ← θ−β
∑

Ti∼p(T )

∇θiLTi,DS,Dtest f (θi) (13)

Similarly, the update iteration formula of model parameter α is shown as follows:

α←α+β
∑

Ti∼p(T )

(
∇θiLTi,DS,Dtest f (θi)

)(
∇θLTi,Dtrain f (θ)

)
(14)

In each inner iteration, all tasks can be used to update the gradient, but when the number
of tasks is very large, all tasks need to be calculated in each iteration step, so the training
process will be slow and the memory capacity of the computer will be high. If each inner
iteration uses one task to update the parameters, the training speed will be accelerated, but
the experimental performance will be reduced, and it is not easy to implement in parallel.
So, during each inner iteration, we take num_inner_task for the number of tasks. By
selecting the number of tasks in the inner iteration process as a super parameter, memory
can be reasonably utilized to improve the training speed and accuracy.

During the meta-training of multi-scale meta-relational network, after the end of an
epoch, the accuracy on the meta-validation set was calculated, and the highest accuracy on
the meta-validation set was recorded so far. If consecutively N epoches (or more, adjusted
according to the specific experimental conditions) did not reach the optimal value, it could
be considered that the accuracy was no longer improved, and the iteration could be stopped
when the accuracy was no longer improved or declined gradually. Output the model with
the highest accuracy, and then test it with this model.

EXPERIMENT AND RESULTS
Multi-scale meta-relational network design
In the algorithm design of multi-scale meta-relational network:

1. Adopting the meta-SGD idea, the learning rate of the inner layer, that is, the learning
rate of the learner, is taken as the learning vector and model parameter to learn together, so
as to further improve the performance of the learner. 2. Considering that the small sample
image classification method based on metric learning can be adapted to the new task
without fine-tuning, the multi-scale meta-relational network adopts the MAML algorithm
to learn and find the optimal parameters of the model in the meta-training process, and
eliminates the inner gradient iteration in the meta-validation and meta-testing process.
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Table 1 Omniglot dataset experiment super parameter value.

Meta-learning rate β 1-shot 5-shot num_inner_task

b1 b2 b1 b2 5-way 20-way

0.003 8 8 5 5 32 16

Small sample learning benchmark dataset experiment
The model structure of multi-scale meta-relational network adopts multi-scale relational
network, which is mainly composed of feature extractor and measure learner (Biggs, 1985).
The second derivative is ignored in the back propagation process of the multi-scale element
relational network. In practical implementation, the back propagation process can be
truncated after the calculation of the outer gradient of the multi-scale element relational
network is completed.

For experimental comparison, MAML and MetaSGD experiments are carried out
simultaneously in this paper. According to Finn, Abbeel & Levine (2017) in the experiment
of MAML and MetaSGD, a convolutional neural network composed of four layers of
convolution and one layer of full connection is adopted as a learning device. Each
convolution module of the learner is composed of a convolutional layer consisting of
64 filters of size 1, a batch standardization layer, a modified linear element layer and
a maximum pooling layer of size 2. All the convolutional layers are filled with zero. The
fourth convolutionmodule is followed by the full connection layer. The number of neurons
in the full connection layer is 64, and the nonlinear function log_SOFTmax is adopted.
Different from the multi-scale relational network, the cross-entropy loss function is used
to optimize the learning object.

Omniglot data set
In the Omniglot data set experiment, all samples were processed into a size of 28×28 and a
random rotationwas used to enhance the data. From 1,623 classes, 1200, 211 and 212 classes
were selected as meta-training set, meta-validation set and meta-test set respectively. In
this section, single-sample image classification experiments of 5-ways 1-shot and 20-ways
1-shot and small-sample image classification experiments of 5-ways 5-shot and 20-ways
5-shot are conducted.

In the experiment, 100 episodes of multi-scale meta-relational network were taken as
one epoch. The iteration times of the meta-training set, meta-validation set and meta-test
set are accordingly 70,000, 500 and 500. Other super-parameter selections on the Omniglot
dataset are shown in Table 1.

Single sample image classification
It can be seen from Fig. 2 that, when the number of iterations is 42400, the multi-scale
meta-relational network achieves the highest accuracy rate of 99.8667% in the 5-way 1-shot
experiment on themeta-validation set. The iteration time of themulti-scale meta-relational
network is less than that of the multi-scale relational network (method 1 in this paper).
Therefore, compared with the convergence of the multi-scale relational network when the
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Figure 2 Accuracy and loss iteration curves of 5-way 1-shot in multi-scale meta-relational network.
Full-size DOI: 10.7717/peerjcs.613/fig-2

Table 2 Omniglot dataset single sample classification experimental results.

Model Fine-tuning Accuracy

5-way 1-shot 20-way 1-shot

MAML Y 97.80± 0.32% 95.60± 0.21%
Meta-SGD Y 99.50± 0.23% 95.83± 0.36%
Multi-scale relational networks N 99.35± 0.25% 97.41± 0.28%
Multi-scale meta-relational network N 99.57± 0.16% 97.88± 0.20%

iteration reaches 114,000, the learning speed of the multi-scale meta-relational network is
faster than that of the multi-scale relational network.
The trained model was tested on the meta-test set, and the test results were shown in Table
2. According to Table 2:

1. The accuracy rate of the 5-way 1-shot experiment on themeta-test set of themulti-scale
meta-relational network is higher than that of MAML and Meta-SGD, and about 0.22%
higher than that of the multi-scale meta-relational network.

2. MAML and Meta-SGD based on optimized initial characterization need fine-tuning
on new tasks, while themulti-scale relational network based onmetric Learning can achieve
good generalization performance on new tasks without fine-tuning. By comparing the two
methods, the accuracy rate of the 5-way 1-shot experiment on the meta-test set of the
multi-scale relational network is higher than MAML, but slightly lower than meta-SGD.

As can be seen from Fig. 3, when the number of iterations is 57,700, the multi-scale
meta-relational network (method 2 in this paper) achieves the highest accuracy rate of
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Figure 3 Accuracy and loss iteration curves of 20-way 1-shot in multi-scale meta-relational network.
Full-size DOI: 10.7717/peerjcs.613/fig-3

98.86% in the 20-way 1-shot experiment on the meta-validation set. Compared with the
multi-scale relational network (method 1 in this paper), the learning speed of multi-scale
meta-relational network is faster than that of multi-scale relational network when it iterates
to 89,000.

The trained model was tested on the meta-test set, and the results were shown in Table
2 below. According to Table 2:

1. The accuracy rate of the 20-way 1-shot experiment of the multi-scale meta-relational
network on the meta-test set is about 0.47% higher than that of the multi-scale meta-
relational network, which is higher than MAML and Meta-SGD.

2. MAML and Meta-SGD based on optimal initialization representation were compared
with the multi-scale relational network based on metric Learning. The accuracy of the
multi-scale relational network in the 20-way 1-shot experiment on the meta-test set was
higher than that of MAML and meta-SGD.

Small sample image classification
As can be seen from Fig. 4, when the number of iterations is 29100, the multi-scale
meta-relational network (method 2 in this paper) achieves the highest accuracy of 99.89%
in the 5-way 5-shot experiment on the meta-validation set. Compared with the multi-scale
relational network (method 1 in this paper), the learning speed of the multi-scale meta-
relational network is faster than that of the multi-scale relational network when it iterates
to 293,500.
The trained model is tested on the meta-test set, and the results are shown in Table 3.
According to Table 3:
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Figure 4 Accuracy and loss iteration curves of 5-way 5-shot in multi-scale meta-relational network.
Full-size DOI: 10.7717/peerjcs.613/fig-4

Table 3 Small sample classification experimental results in Omniglot dataset.

Model Fine-tuning Accuracy

5-way 5-shot 20-way 5-shot

MAML Y 99.89± 0.10% 98.90± 0.13%
Meta-SGD Y 99.91± 0.11% 98.92± 0.22%
Multi-scale relational networks N 99.70± 0.08% 99.01± 0.13%
Multi-scale meta-relational network N 99.84± 0.16% 99.20± 0.12%

1. The accuracy rate of the 5-way 5-shot experiment on themeta-test set of themulti-scale
meta-relational network is about 0.14% higher than that of the multi-scale meta-relational
network, but lower than MAML and Meta-SGD.

2. MAML and Meta-SGD based on optimal initial representation were compared with
the multi-scale relational network based on metric learning. The accuracy of the 5-way
5-shot experiment on the meta-test set of the multi-scale relational network was lower than
that of MAML and meta-SGD.

As can be seen from Fig. 5, when the number of iterations is 65800, the multi-scale
meta-relational network (method 2 in this paper) achieves the highest accuracy rate of
99.82% in the 20-way 5-shot experiment on the meta-validation set. Compared with the
multi-scale relational network (method 1 in this paper), the learning speed of multi-scale

Zheng et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.613 12/21

https://peerj.com
https://doi.org/10.7717/peerjcs.613/fig-4
http://dx.doi.org/10.7717/peerj-cs.613


Figure 5 Accuracy and loss iteration curves of 20-way 5-shot in multi-scale meta-relational network.
Full-size DOI: 10.7717/peerjcs.613/fig-5

meta-relational network is faster than that of multi-scale relational network when it iterates
to 119500.

The trained model is tested on the meta-test set, and the results are shown in Table 3.
According to Table 3:

1. The accuracy rate of the 20-way 5-shot experiment of the multi-scale meta-relational
network on the meta-test set is about 0.19% higher than that of the multi-scale meta-
relational network, which is also higher than MAML and Meta-SGD.

2. MAML and Meta-SGD based on optimized initial characterization were compared
with the multi-scale relational network based on metric learning. The accuracy of the
multi-scale relational network in the 20-way 5-shot experiment on the meta-test set was
higher than that of MAML and meta-SGD.

In summary, the experimental results on Omniglot data set are as follows:
1. The classification accuracy of the 5-way 5-shot experiment on Omniglot data set

was slightly lower than that of meta-SGD and MAML, and the other experiments were
all higher than that of the three methods of multi-scale relational network, MAML and
Meta-SGD. And the training speed of multi-scale meta-relational network is faster than
that of multi-scale relational network.

2. MAML and Meta-SGD based on optimal initial characterization were compared with
the multi-scale relational network based on metric learning. Except that the classification
accuracy of 5-way 1-shot experiment on Omniglot data set was slightly lower than that
of META-SGD and MAML, the classification accuracy of 5-way 5-shot experiment was
lower than that of META-SGD and MAML, the other two groups of experiments were
both higher than that of META-SGD and MAML.
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Table 4 miniImageNet dataset experiment super parameter value.

Meta-learning rate β 1-shot 5-shot num_inner_task

b1 b2 b1 b2 1-shot 5-shot

0.003 10 10 5 5 8 4

Table 5 The experimental results of 5-way 1-shot inMiniImagenet dataset.

Model Fine-tunning Accuracy

MAML Y 48.69± 1.47%
Meta-SGD Y 50.46± 1.23%
Multi-scale relational networks N 50.21± 1.08%
Multi-scale meta-relational network N 50.56± 0.93%

Miniimagenet data set
According to the ratio of 64:16:20, it is divided into meta-training set, meta-validation set
and meta-test set. In this chapter, the classification experiment of single-sample image of
5-ways 1-shot and the classification experiment of small-sample image of 5-ways 5-shot is
carried out.

In the experiment, the multi-scale meta-relational network took 500 episodes as one
epoch. The number of iterations of the meta-training set, meta-validation set and meta-test
set can be valued at 120,000, 600 and 600. Other super-parameter selections on the
MiniImageNet dataset are shown in Table 4.

Single sample image classification
As can be seen from Fig. 6, with the increase of iteration, loss decreases to convergence,
and accuracy gradually increases to convergence. When the number of iterations is 87,000,
the multi-scale meta-relational network (method 2 in this paper) achieves the highest
accuracy rate of 51.234% in the 5-way 1-shot experiment on the meta-validation set.
The iteration time of multi-scale meta-relational network is less than that of multi-scale
relational network (method 1 in this paper). Therefore, compared with the convergence
of multi-scale relational network when iteration reaches 155,000, the learning speed of
multi-scale meta-relational network is faster than that of multi-scale relational network.
The trained model is tested on the meta-test set, and the results are shown in Table 5.
According to Table 5:

1. The accuracy rate of the 5-way 1-shot experiment on themeta-test set of themulti-scale
meta-relational network is about 0.35% higher than that of the multi-scale meta-relational
network, and higher than MAML and Meta-SGD.

2. MAML and Meta-SGD based on optimized initial characterization were compared
with the multi-scale relational network based onmetric learning. The accuracy of the 5-way
1-shot experiment on the meta-test set of the multi-scale relational network was higher
than MAML, but lower than meta-SGD.
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Figure 6 Accuracy and loss iteration curves of 5-way 1-shot in multi-scale meta-relational network.
Full-size DOI: 10.7717/peerjcs.613/fig-6

Table 6 The experimental results of 5-way 5-shot inMiniimagenet dataset.

Model Fine-tunning Accuracy

MAML Y 63.10± 0.82%
Meta-SGD Y 64.03± 0.66%
Multi-scale relational networks N 65.89± 0.32%
Multi-scale meta-relational network N 66.23± 0.55%

Small sample image classification
As can be seen from Fig. 7, with the increase of iteration, loss decreases to convergence, and
accuracy gradually increases to convergence. When the number of iterations is 62000, the
multi-scale meta-relational network (method 2 in this paper) achieves the highest accuracy
rate of 66.81% in the 5-way 5-shot experiment on the meta-validation set. Compared with
the convergence of multi-scale relational network (method 1 in this paper) when iterative
to 140,000, the learning speed of multi-scale meta-relational network is faster than that of
multi-scale relational network.
The trained model is tested on the meta-test set, and the results are shown in Table 6.
According to Table 6:

1. The accuracy rate of the 5-way 5-shot experiment on themeta-test set of themulti-scale
meta-relational network is about 0.34% higher than that of the multi-scale meta-relational
network, which is higher than MAML and Meta-SGD.

2. MAML and Meta-SGD based on optimized initial characterization were compared
with the multi-scale relational network based on metric learning. The accuracy of the
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Figure 7 Accuracy and loss iteration curves of 5-way 5-shot in multi-scale meta-relational network.
Full-size DOI: 10.7717/peerjcs.613/fig-7

multi-scale relational network in the 5-way 5-shot experiment on the meta-test set was
higher than that of MAML and meta-SGD.

In summary, the experimental results on Miniimagenet data set are as follows:
1. The classification accuracy of MNS on Miniimagenet data set is higher than that of

MNS, MAML and META-SGD, and the training speed is higher than that of MNS.
2. By comparing the MAML and Meta-SGD based on optimal initial representation and

the multi-scale relational network based on metric learning, the classification accuracy
of the 5-way 1-shot experiment on Miniimagenet data set was slightly lower than that of
meta-SGD, and the classification accuracy of the 5-way 5-shot experiment was higher than
that of the META-SGD and MAML.

DISCUSSION
Themulti-scale meta-relational network proposed in this paper learns specific classification
tasks by training the multi-scale relational network on a wide range of task Spaces. Then,
MAML algorithm is used to find a set of highly adaptive parameters, which can make
good use of the experiential knowledge learned in previous tasks and realize the ability of
Learning.

1. By comparing the MAML and Meta-SGD based on optimized initial characterization
with the multi-scale relational network based on metric learning, the overall experimental
performance of the two methods is almost the same in terms of accuracy, and it cannot be
absolutely determined that one method is better than the other.

2. MAML, Meta-SGD and multi-scale meta-relational networks based on optimal initial
characterization are compared separately, although Meta - SGD and MAML on 5 - way
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Omniglot data set the classification accuracy of cyber-shot experiment was slightly higher
than that of multi-scale mata relation network, but Meta - SGD and MAML need to
use a small amount of data from a new task computing steps to update one or more of
the gradient parameters, on a new task has the largest generalization performance, and
multi-scale meta network for not seen in the process of training the new category of
image, With the help of a small number of samples for each new category, it has a good
generalization ability. Therefore, the method combining metric learning and learning
optimization initial representation has higher performance than the method based on
optimization initial representation.

3. Compare the multi-scale relational network based on metric learning with the multi-
scale meta-relational network separately. Multi-scale meta network will study MAML
initialization characterization method is introduced to measure the Learning, because
the initialization characterization is more suitable for MAML learning Yu Zaiyuan task
distribution of training data sets, thus reduced multi-scale mate network data sets the
influence of the difference of distribution in the small sample experiment results on
benchmark data set higher than that of multi-scale network, network learning speed and
multi-scale relation in multi-scale network. Therefore, the method combining metric
learning and learning optimization initial representation has higher performance than the
method based on metric learning.

Therefore, the method combining metric learning and optimal learning initial
representation has higher performance than the method based on metric or optimal initial
representation. The multi-scale meta-relational network enables the learned measurement
method to have stronger generalization ability, which not only improves the classification
accuracy and training speed on the benchmark set, but also avoids the situation thatMAML
needs fine-tuning.

CONCLUSION
Considering the difference of task set distribution, and in order to make the learned
measurement have stronger generalization ability, this paper designs a multi-scale meta-
relational network (MSNN), a classification method based on optimized initialization
representation, for image with few samples. First, the multi-scale meta-relational network
adopts themeta-SGD idea and takes the inner learning rate as the learning vector andmodel
parameter to learn together. Secondly, in the process ofmeta-training, themulti-scalemeta-
relational network adopts the MAML algorithm to learn and find the optimal parameters
of the model, while in the process of meta-validation and meta-test, the inner gradient
iteration is eliminated and the test is carried out directly. The experimental results show
that the method combined with metric learning and optimized initial representation has
higher performance than the method based on metric or optimized initial representation.
The multi-scale meta-relational network enables the learned measurement method to
have stronger generalization ability, which not only improves the classification accuracy
and training speed on the benchmark set, but also avoids the situation that MAML needs
fine-tuning.
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Although the method in this paper improves the classification accuracy on the learning
benchmark set with few samples and the overfitting situation, it still needs to be improved
in the following aspects:

1) Compared with miniImageNet datasets, the Omniglot dataset is simpler; on the small
sample learning problems, Omniglot baseline is above 97%. However, the classification of
the dataset on miniImageNet dataset classification effect is not very ideal. Finding a better
way of meta learning in order to reduce the influence of the difference of the task set ascend
in the miniImageNet data set classification effect is worth exploring.

2) In the multi-scale element relational network, partial gradient information will be
lost when the second derivative is omitted. Whether a better way to simplify the second
derivative can be found is also the direction to be solved in future work.
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