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ABSTRACT
Hierarchical topic modeling is a potentially powerful instrument for determining
topical structures of text collections that additionally allows constructing a hierarchy
representing the levels of topic abstractness. However, parameter optimization in
hierarchical models, which includes finding an appropriate number of topics at
each level of hierarchy, remains a challenging task. In this paper, we propose an
approach based on Renyi entropy as a partial solution to the above problem. First, we
introduce a Renyi entropy-based metric of quality for hierarchical models. Second,
we propose a practical approach to obtaining the “correct” number of topics in
hierarchical topic models and show how model hyperparameters should be tuned for
that purpose. We test this approach on the datasets with the known number of topics,
as determined by the human mark-up, three of these datasets being in the English
language and one in Russian. In the numerical experiments, we consider three
different hierarchical models: hierarchical latent Dirichlet allocation model (hLDA),
hierarchical Pachinko allocation model (hPAM), and hierarchical additive
regularization of topic models (hARTM). We demonstrate that the hLDA model
possesses a significant level of instability and, moreover, the derived numbers of
topics are far from the true numbers for the labeled datasets. For the hPAM model,
the Renyi entropy approach allows determining only one level of the data structure.
For hARTM model, the proposed approach allows us to estimate the number of
topics for two levels of hierarchy.
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INTRODUCTION
The large flow of news generated by TV channels, electronic news sources and social media
is very often represented as a hierarchical system. In such a system, news items or messages
are divided into a number of global topics, such as politics, sports, or health. Within
each of the main topics, the documents usually demonstrate a considerable diversity and
can be divided into subtopics, such as COVID-19, healthcare availability or healthy
food within the global topic of health. The hierarchical division of information content
is highly convenient and seems to reflect fundamental cognitive features of humans
(Cohen, 2000; Palmer, 1977; Taylor et al., 2015). Therefore, starting from 2004, active
development of probabilistic topic models that allow for identifying hierarchical topical
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structures in large datasets has begun (Blei et al., 2003; Li & McCallum, 2006). However,
such models have a set of parameters, which need to be tuned to obtain a topical solution
of higher quality. Correspondingly, a problem of tuning hierarchical topic models
arises. A solution to this problem is hindered by a number of factors. First, there are no
generally accepted or appropriate metrics of quality that take into account the features of
hierarchical modeling, namely, the relations between pairs of parent and child topics.
Second, the number of publicly available datasets with the hierarchical mark-up, which
can be used to tune and compare hierarchical models, is very limited. Third, when
applying hierarchical topic models on real datasets, the type of topical structure of data
(non-hierarchical against hierarchical, as well as the number of levels in the case of
hierarchical structure) is usually not known in advance. Fourth, hierarchical topic models,
just like flat topic models, possess a certain level of semantic instability, which means that
different runs of the algorithm on the same source data lead to different solutions,
which, in turn, correspond to different local maxima of the model posterior: the model
may arrive to different local maxima depending on the randomness in initialization and
sampling. An analysis and discussion of topic models instability can be found in work
(Koltsov et al., 2016). This problem complicates the search for optimal model
hyperparameters on a given dataset. Thus, investigation and assessment of the ability to
tune hierarchical topic models is an important task.

In this work, we investigate the behavior of three hierarchical models, namely,
hierarchical latent Dirichlet allocation (hLDA) (Blei et al., 2003), hierarchical Pachinko
allocation (hPAM) (Mimno, Li & McCallum, 2007), and hierarchical additive
regularization of topic models (hARTM) (Chirkova & Vorontsov, 2016), in terms of two
metrics: log-likelihood and Renyi entropy. We conduct experiments on four marked-up
collections, two of which are non-hierarchical and two others have two-level hierarchical
mark-up. The latter means that assessors have assigned each news item to a lower-level
topic which in turn has been assigned to a higher-level topic, and have also determined the
overall number of topics at each level and the number of lower-level topics within each
higher-level topic. The goal of our research is threefold. First, we aim to estimate the ability
of hierarchical models to identify whether the data structure is hierarchical or non-
hierarchical. Second, we seek to develop a metric of quality that is suitable for hierarchical
models, notably for topic number search at different levels of hierarchy. Third, based on
this metric, we aim to offer an approach for tuning model hyperparamters so as to find
the true number of topics or a value close to it. For this, we propose an extension of our
entropic approach (Koltcov, 2018), which was developed earlier for non-hierarchical
topic models, as a partial solution to the hierarchical model tuning. The approach is
based on the information theory, according to which the information maximum
corresponds to the entropy minimum. This means that topic modeling solutions with
minimal entropy are likely to be the most informative which indicates a potential utility of
entropic approach for tuning all model hyperparameters. However, in this paper we focus
on topic number optimization specifically.

To simplify the structure of this work, an overview of hierarchical models and existing
metrics of quality is provided in Appendix A. Thus, our work consists of the following
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parts. ‘Entropic approach to hierarchical topic modeling’ describes the entropic
approach for estimating the quality of topic models and introduces the adaptation of this
approach to hierarchical models. ‘Computational experiments’ outlines the design of
our computer experiments for each of the considered models. ‘Numerical results’ contains
an analysis of the behavior of hierarchical models under variation of hyperparameters
and the number of topics for the three models on four datasets. ‘Discussion’ interprets
the obtained results and reviews the possible limitations of the proposed approach.
‘Conclusion’ summarizes our findings and contains practical recommendations for
choosing between hierarchical models. Appendix B contains additional experiments with
different types of pre-processing that investigate the influence of the latter on behavior of
Renyi entropy.

ENTROPIC APPROACH TO HIERARCHICAL TOPIC
MODELING
The entropic approach for topic models is based on the concept that an information
system consisting of a large number of words and documents represents a statistical
system. The state of such a statistical system can be characterized by the value of entropy.
It is well known that the maximum entropy of a statistical system corresponds to either
chaos or a uniform distribution of the system elements. However, unlike real physical
systems, a text collection can be subject to procedures (for instance, clustering or topic
modeling) that change the value of entropy by ordering the data. Based on the fact that
entropy equals minus information S = − I (Beck, 2009), one can implement the process of
document clustering or topic modeling in such a way that leads to the entropy minimum
(information maximum), which corresponds to a highly non-equilibrium distribution.
Since the procedure of clustering of text collections strongly depends on the values of
model parameters, which include the number of topics as a parameter, an algorithm of
model tuning can be organized in the form of searching for parameters that would lead to
minimum entropy. Let us note that modern widely used topic models usually include
no hyperparameters optimization algorithms (or include only for some of them). Thus,
this is the user who has to select the values of model parameters based on some external
metrics of quality.

Recent research (Koltcov, 2018; Koltcov et al., 2020) has demonstrated that the most
convenient metric for estimating the state of a textual statistical system is Renyi entropy,
whose calculation is entirely based on the words’ probabilities of belonging to a particular
cluster or topic obtained in the process of topic modeling (matrix � = {ϕwt}, where ϕwt
is the probability of word w in topic t; for more details we refer the reader to Appendix A).
Calculation of Renyi entropy for a topic model is based on two observable variables: (1)
Gibbs-Shannon entropy of the model; (2) internal energy of the model. Gibbs-Shannon
entropy S can be calculated as follows: S ¼ lnðqÞ ¼ lnð N

WTÞ, where N is the number of
words with ϕwt > 1/W,W is the number of unique words in the dataset, T is the number of
topics. The internal energy E of a topic model can be expressed in the following way:

E ¼ � lnð~PÞ ¼ � ln 1
T

P
wtðfwt � 1ffwt>1=WgÞ

� �
, where

P
wtðfwt � 1ffwt>1=WgÞ is the sum of
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probabilities of words, each of which is above the threshold 1/W. Then, Renyi entropy can
be calculated through free energy (F = − qE + S) in the following way:

SRq ¼ F
q� 1

¼ q lnð~PÞ þ lnðqÞ
q� 1

; (1)

where the deformation parameter q = 1/T is the inverse number of topics. Thus, Renyi
entropy of a topic model explicitly contains ’number of topics’ as a deformation parameter.
Application of Renyi entropy for tuning different non-hierarchical topic models is
considered in work (Koltcov et al., 2020).

As shown in Blei et al. (2003) and Mimno, Li & McCallum (2007), the structure in
hierarchical topic models can be represented as a graph, where each node at each level
is a topic t of the corresponding degree of abstractness. While flat topic modeling results
in obtaining one distribution of probabilities of all words over all topics (represented
in matrix Φ), and one distribution of probabilities of all documents over all topics
(represented in matrix Θ), hierarchical topic modeling constructs one pair of these
matrices per each level of hierarchy (Φi, Θi, where i is the level of the hierarchy). The
number of levels, and most often the number of nodes-topics per each level, is a value
pre-selected by a user. In some models, topics of a lower level are united in clusters each
of which is nested in only one topic of a higher level; in other models, hierarchy levels
are unrelated and only differ by the number of topics, so that lower levels contain more
topics. At all levels, matrices Φi, Θi use the same number of words W and documents D
which equals the total number of words and documents in the collection, respectively.
However, the share of words with high probabilities (i.e., probabilities above the threshold)
is the lower, the higher is the level of hierarchy.

As it can be seen, instead of a single topical solution, hierarchical topic modeling obtains
a set of solutions whose number equals to the number of levels L. Each solution can be
characterized by the following variables: (1) the number of topics Ti on level i; (2) the
number of words (Ni) with high probabilities: fi

wt > 1=W; (3) the sum of probabilities
above the threshold: Pi ¼

P
wt f

i
wt � 1ffi

wt>1=Wg. Based on these variables, one can calculate
the internal energy Ei and Gibbs-Shannon entropy Si of the the solution of level i with
respect to the equilibrium state of that level: Ei ¼ � lnðPiTi

Þ, Si ¼ lnð Ni
WTi

Þ. Using Si and Ei,
one can determine free energy and Renyi entropy of level i. Free energy is expressed as
follows: Fi = Ei − Ti · Si. Renyi entropy of level i can be expressed in the following way:

SRi ¼ Fi
1�q, where q = 1/Ti is the deformation parameter characterizing each level of the

hierarchy.
By measuring the value of entropy at each level while consecutively increasing the

number of topics, it is possible to find a solution optimal in terms of information theory. In
such a design, the process of clustering of words by topics starts with the minimum
information (maximum entropy) when all the elements (words) of the statistical system
are assigned to one or two topics and ends also with the maximum entropy when all the
elements are almost uniformly distributed over topics (when the number of topics is large).
The locations of the global minimum and of several possible local minima of Renyi
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entropy, as a function of the number of topics, are determined by the features of the data.
Thus, Renyi entropy SRi serves a measure of disequilibrium for a given system. By
additionally varying other hyperparameters one can estimate how optimal each
combination of them is.

RESULTS
Data
In our numerical experiments, the following datasets were used:

� ‘Lenta’ dataset (from lenta.ru news agency, available at https://www.kaggle.com/yutkin/
corpus-of-russian-news-articles-from-lenta). This dataset contains 8,630 documents
with a vocabulary of 23,297 unique words in the Russian language. Each of these
documents is manually assigned to a class from a set of 10 topic classes. Since some of
the topics are closely related to each other, 7–10 topics can describe the documents of
this dataset.

� ‘20 Newsgroups’ dataset (http://qwone.com/~jason/20Newsgroups/) is a widely used
dataset in the field of topic modeling. It consists of 15,425 news articles in the English
language with 50,965 unique words. Each of the news items is assigned to one of 20 topic
groups. Since some of these topics might be combined, 14–20 topics can describe this
dataset’s documents according to Basu, Davidson & Wagstaff (2008).

� ‘WoS’ dataset (available at https://data.mendeley.com/datasets/9rw3vkcfy4/1) is a
dataset in the English language with a two-level hierarchical mark-up. The original
dataset contains 46,985 abstracts of published papers available from theWeb of Science.
The first level contains seven categories (domains): computer science, electrical
engineering, psychology, mechanical engineering, civil engineering, medical science,
and biochemistry. The second level is comrpised of 134 specific topics (areas), each of
which belongs to one of the categories of the first level. The number of unique words is
80,337. This dataset is often used as a benchmark for hierarchical classification (Sinha
et al., 2018). However, this dataset exhibits a highly unbalanced distribution of the
number of documents per sub-category. For instance, some sub-categories contain more
than 700 documents, while others are represented by less than 50 documents. Therefore,
we also consider a balanced subset of this dataset (described below), where poorly
presented topics, i.e., topics with a small number of documents, were deleted.

� ‘Balanced WoS’ dataset (available at https://data.mendeley.com/datasets/9rw3vkcfy4/1)
is a class-balanced subset of the ‘WoS’ dataset, which contains 11,967 abstracts. The first
level contains seven categories and the second level consists of 33 areas.

� ‘Amazon’ dataset (available at https://www.kaggle.com/kashnitsky/hierarchical-text-
classification/version/1) is a dataset with a three-level hierarchical mark-up. It contains
40,000 product reviews in English from Amazon. The vocabulary of this dataset consists
of 31,486 unique words. Level 1 of the hierarchical mark-up contains six categories,
level 2 contains 64 categories, and level 3 contains 510 categories. We consider only the
first two levels since the third level contains ‘unknown’ labels. Let us note that the
original dataset is highly imbalanced. Some sub-categories contain less than 50
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documents, while other sub-categories contain more than 2,000 documents. Therefore, a
balanced subset of this dataset is also considered.

� ‘Balanced Amazon’ dataset is a subset of the ‘Amazon’ dataset that includes only sub-
categories with the number of documents above 500. As a result, level 1 contains six
categories and level 2 contains 27 sub-categories. The total number of documents is
32,774, and the number of unique words is 28,422.

Statistical features of the above datasets are summarized in Table 1.

Computational experiments
In our numerical experiments, we used implementations of hPAM and hLDAmodels from
tomotopy package, version 0.9.1 (https://bab2min.github.io/tomotopy/v0.9.1/en/), and the
implementation of hARTM model from BigARTM package, version 0.10.1 (https://
bigartm.readthedocs.io/en/stable/). With each of them, we performed topic modeling on
both types of our datasets—those with the hierarchical and the flat mark-up.
Correspondingly, the results are divided into two parts. In the first part, we analyze the
applicability of the models for the datasets with flat structure, while focusing on the
datasets with hierarchical mark-up in the second part. Since topic modeling possesses a
certain level of instability that leads to fluctuations in the word probabilities, all
calculations were performed at least six times (for each combination of hyperparameters),
and then the results were averaged. For each model we calculated Renyi entropy, perplexity
and log-likelihood, the two latter having been chosen as the most common metrics for
hyperparameters tuning in topic modeling. However, as perplexity is in fact a reciprocal
geometric mean of log-likelihood (see Appendix A), its behavior has turned out to be
nearly identical to the latter. Therefore, we do not report it in our analysis. In this paper we
also leave out metrics related to semantic coherence or semantic stability, such as standard
topic coherence (Mimno et al., 2011), tf-idf coherence (Nikolenko, Koltcov & Koltsova,
2017), Jaccard index or their extensions, since their use needs significant adaptation to our
task and therefore deserves a separate investigation. Thus, while these metrics, after an
adaptation, can be used independently, a more promising avenue is to include them as an
entropy parameter into two-parametric Sharma–Mittal entropy, as is shown in Koltcov,
Ignatenko & Koltsova (2019). However, this is beyond the scope of this paper.

After entropy and log-likelihood is calculated for a sequence of solutions with varying
number of topics, we plot the values of these metrics as functions of the number of topics
and investigate whether the minima of these graphs, if any, fall on or near the value of the
number of topics suggested by human markup. As we do not infer the methods of
calculation of either entropy or log-likelihood from the data, we do not divide our
collections into training and test sets, and both metrics are calculated on the entire
datasets. In an additional set of experiments described in Appendix B we evaluate the
influence of three different types of text preprocessing on the location of the minimum of
entropy as a function of the number of topics.

Below we describe specific features of the main experiments for each of the three tested
algorithms.

Koltcov et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.608 6/35

https://bab2min.github.io/tomotopy/v0.9.1/en/
https://bigartm.readthedocs.io/en/stable/
https://bigartm.readthedocs.io/en/stable/
http://dx.doi.org/10.7717/peerj-cs.608
https://peerj.com/computer-science/


hPAM model
The hPAMmodel depends on the following parameters: (1) number of topics at the second
and the third levels; (2) hyperparameter η; (3) hyperparameter α. The number of topics
at the first level of hPAM model is always set to one. Moreover, in this model, the user
can only set the initial value of parameter α, and then the algorithm tunes it during the
modeling. Our experiments demonstrated that variation of the initial value of α (α0) does
not influence the results of modeling, namely, different values of α0 lead to almost the
same topic solutions and the same final value of α. Therefore, in the rest of the paper, we
fix α0 to 0.0001. For a more detailed description of the model, we refer the reader to
Appendix A.

In our work, hPAM model was studied in two stages. First, we investigated the second
hierarchical level in the following way: the number of topics on the third level was
fixed T2 = 1 while hyperparameter η was varied in the range (0.001, 1) and the number of
topics on the second level (T1) was varied in the range (2, 200). For each solution, we
calculated Renyi entropy and log-likelihood of the second level of the hierarchy. Then, we
found and fixed several pairs of the values of T1 and η that were the closest to minimum
Renyi entropy. Second, we investigated the third hierarchical level, where the number
of topics T2 on the third level was varied under condition of a fixed pair of T1 and η. For
each combination of T2 and the pair (T1; η), Renyi entropy of the third level was calculated.

hLDA model
The hLDA model has the following parameters: (1) depth of the hierarchy;
(2) hyperparameter α, which is tuned by the model automatically; (3) hyperparameter γ;
(4) hyperparameter η. hLDA model is non-parametric; therefore, it infers the number of
topics on each level automatically.

In this work, we studied the dependence of the number of inferred topics on the
parameter η, which was varied in the range (0.001,1). The depth of the hierarchy was set to
three as in the experiments in the original work (Blei et al., 2003). The influence of
parameter γ was not investigated in this work. Since this model is highly unstable and can
produce different numbers of topics for the runs with the same values of hyperparameters,
we ran the model 10 times for each value of η. Then, we estimated the range of the

Table 1 Statistics of the datasets.

Dataset Number of documents Vocabulary size Labeling Number of topics

T1 T2

Lenta 8,630 23,297 Non-hierarchical 10

20 Newsgroups 15,425 50,965 Non-hierarchical 20

WoS 46,985 80,337 Hierarchical 7 134

Bal. WoS 11,967 36,488 Hierarchical 7 33

Amazon 40,000 31,486 Hierarchical 6 64

Bal. Amazon 32,774 28,422 Hierarchical 6 27
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derived numbers of topics on the second and the third levels. The mean values of Renyi
entropy and log-likelihood were calculated for each level.

hARTM model
The hARTMmodel has the following parameters: (1) number of topics at each level of the
hierarchy; (2) seed—a parameter describing the initialization procedure (it defines the
work of the random number generator). This model was also studied in two stages. First,
the number of topics on the second level was fixed (T2 = 1), and the number of topics on
the first level was varied in the range of (2, 200) topics. Based on the minimum Renyi
entropy location, the optimal T1 was chosen. Second, the number of topics on the second
level was varied under the condition of fixed T1. For each run of the model, the parameter
seed was randomly selected to investigate the variability of the model output.

Numerical results
hPAM model (investigation of the second hierarchical level)
Figures 1–4 contain the results of the first stage of our test for hPAM model. They
demonstrate the behavior of Renyi entropy under variation of η and the number of topics
on the second level of hierarchy for different datasets. A similar pattern of Renyi entropy
behavior for all datasets is observed in the ranges of small (about 2–3) and large (about
100–200) numbers of topics. These ranges correspond to the two extreme states of the
statistical system characterized by entropy maximum. Moreover, one can see that the
location and the value of minimum Renyi entropy significantly depend on the parameter η.
Large values of η (η > 0.7) lead to significant fluctuations in the Renyi entropy for large
numbers of topics that complicates finding entropy minimum the more, the higher the
number of topics is. Correspondingly, the further increase of η is inadvisable.

Figure 1 Renyi entropy curves (hPAM). Lenta dataset. Full-size DOI: 10.7717/peerj-cs.608/fig-1
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The behavior of Renyi entropy for this model allows us to find approximations of the
optimal number of topics on the second level for different datasets and the optimal value
of η by means of selecting the values that correspond to the minimum entropy. Since
we test the model on the datasets with human mark-up, we can estimate the error of the

Figure 2 Renyi entropy curves (hPAM). 20 Newsgroups dataset.
Full-size DOI: 10.7717/peerj-cs.608/fig-2

Figure 3 Renyi entropy curves (hPAM). Balanced WoS dataset.
Full-size DOI: 10.7717/peerj-cs.608/fig-3
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found approximation of the number of topics. For non-hierarchical datasets (Lenta and 20
Newsgroups), the error corresponds to ±2 topics (Figs. 1 and 2). For hierarchical datasets
we obtain the error of ±4 topics (Figs. 3 and 4).

The list of values of η and corresponding numbers of topics with the values of average
minimum Renyi entropy on the second hierarchical level is given in Table 2 (T1 refers to
the number of topics on the second level of the hierarchy). Potentially interesting
combinations of parameters that were used in our calculations at the second stage are
highlighted in bold.

Calculation of log-likelihood under variation of T1 and η demonstrates that this metric
is not useful for selecting the optimal values of η and T1 since it has large fluctuations in the
entire range of T1 (Figs. 5 and 6).

Figure 4 Renyi entropy curves (hPAM). Balanced Amazon dataset.
Full-size DOI: 10.7717/peerj-cs.608/fig-4

Table 2 Minimum points of Renyi entropy for hPAM model. Potentially interesting combinations of
parameters that were used in our calculations at the second stage are highlighted in bold.

η Lenta 20 Newsgroups Bal. WoS WoS Bal. Amazon Amazon

min. T1 min. T1 min. T1 min. T1 min. T1 min T1

0.001 3.54 7 3.27 9 3.66 8 3.25 8 3.68 19 3.93 14

0.01 3.18 6 3.06 10 2.89 10 2.96 9 3.6 16 3.74 15

0.2 3.13 6 3.19 13 2.82 12 2.67 14 3.45 13 3.47 12

0.3 3.12 8 3.17 10 2.79 12 2.68 8 3.4 7 3.39 7

0.5 3.15 7 3.14 9 2.77 10 2.66 9 3.34 6 3.29 6

0.7 3.23 5 3.08 8 2.87 8 2.95 5 3.44 5 4.01 3

1 3.38 4 3.09 6 2.96 6 3.39 6 3.93 3 3.93 3
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hPAM model (investigation of the third hierarchical level)
Figure 7 demonstrates the behavior of Renyi entropy under variation of T2 for T1 and
η chosen during investigation of the second hierarchical level. For almost all datasets
except 20 Newsgroups, Renyi entropy curves have significant fluctuations and spikes. It

Figure 5 Log-likelihood curves (hPAM). Lenta dataset. Full-size DOI: 10.7717/peerj-cs.608/fig-5

Figure 6 Log-likelihood curves (hPAM). 20 Newsgroups dataset.
Full-size DOI: 10.7717/peerj-cs.608/fig-6
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should be noted that such fluctuations are typical for both balanced and unbalanced
datasets. Moreover, parameter η visibly influences the location of a spike. Therefore, the
estimation of the number of topics on the third level is much less accurate than that on the
second level. Our calculations demonstrate that in the region of large fluctuations the
model deteriorates. This means that the number of words with high probabilities becomes
constant and does not change with the growth of the number of topics. Correspondingly,
the sum of high probabilities also becomes constant, i.e., statistical features of obtained
solutions do not change. In this case, Renyi entropy changes only because the number of
topics changes while other variables are constant. Thus, due to the features of hPAM
model, the selection of the number of topics on the third level is complicated. Moreover,
the dependence of log-likelihood on T2 has similar behavior as for the second hierarchical
level and, thus, does not allow us either to choose the right number of topics for hPAM
model or to determine whether the dataset has a hierarchical or flat structure.

hLDA
Our calculations demonstrate that hLDAmodel cannot be used in real applications since it
infers very different numbers of topics for different runs with the same parameters.
Moreover, the inferred numbers of topics are far away from the true number for
considered datasets. In addition, the order of dispersion and the mean value of the
predicted number of topics on each level significantly depends on the value of parameter η.
Due to high instability for η < 0.3 and incorrect output for η > 0.3, there is no sense in
applying Renyi entropy approach to this model. Finally, log-likelihood metric does not

Figure 7 Renyi entropy curves (hPAM). (A) Lenta dataset. (B) Balanced WoS dataset. (C) WoS dataset.
Full-size DOI: 10.7717/peerj-cs.608/fig-7
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allow us to choose the right number of topics either. The results of our calculations for
hLDA model on different datasets are summarized in Table 3. Table 3 demonstrates the
range of the derived number of topics for 10 runs on each dataset and for each value of
hyperparameter η.

hARTM
Figure 8 demonstrates the behavior of Renyi entropy on the first level of hierarchy
obtained with hARTM algorithm for different datasets. For non-hierarchical datasets, we
clearly observe only one minimum of Renyi entropy. Moreover, the location of this

Figure 8 Renyi entropy curves (hARTM). (A) Lenta dataset. (B) 20 Newsgroups dataset. (C) Balanced
WoS dataset and WoS dataset. (D) Balanced Amazon dataset and Amazon dataset.

Full-size DOI: 10.7717/peerj-cs.608/fig-8

Table 3 Range of the derived number of topics by hLDA model for the second (T1) and the third
hierarchical levels (T2).

η Lenta 20 Newsgroups Balanced WoS Balanced Amazon

T1 T2 T1 T2 T1 T2 T1 T2

0.001 6–11 31–67 288–358 911–1,402 482–652 1,751–2,242 108–148 561–654

0.01 6–11 13–30 81–111 274–334 68–93 325–453 23–36 108–122

0.2 2–3 5–7 6–11 14–18 2–5 6–13 3 5–6

0.3 2 2–4 4–9 7–11 2–3 3–7 2–3 3–4

0.5 2 2–3 3–5 5–9 2 2–3 2–3 3–4

0.7 2 2–3 3–4 3–7 2 2–3 2 2–4

1 3 2–3 2–4 3–6 2 2–3 2 2–3
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minimum is close to the human mark-up, namely seven topics for Lenta dataset and 14
topics for 20 Newsgroups dataset. The behavior of Renyi entropy on the second level of
hierarchy is almost identical to that of the first level; therefore, we do not provide figures.
Let us note that Renyi entropy curve for hARTM model does not have sharp jumps
compared to the hPAM model. Thus, the entropy approach can be successfully used for
determining the structure of non-hierarchical datasets modeled with hARTM.

For hierarchical datasets, we observe two minima of Renyi entropy which allows us to
identify two levels in the data structure. The first (global) minimum of Renyi entropy
approximately corresponds to the first level of the hierarchical mark-up of the dataset and
the second minimum corresponds to the second level. For instance, Renyi entropy for
the balanced WoS dataset has a global minimum at the value of 10 topics, while human
mark-up suggests seven topics. The second (local) minimum of Renyi entropy corresponds
to 36–42 topics, and the mark-up discerns 34 topics. For the balanced Amazon dataset,
the first minimum of Renyi entropy corresponds to 10 topics, with 6 topics on the first level
provided by the mark-up. The second minimum is found at 38 topics, whereas the
mark-up indicates 27 topics on the second level. Thus, the estimation of the number of
topics on the second level has a larger error compared to that of the first level. However, to
the best of our knowledge, Renyi entropy approach provides the best accuracy of
estimating the number of topics for this hierarchical model. Moreover, our approach
allows us to determine the very presence of hierarchical structure in the data. Let us note
that balancing the datasets allows improving the results of topic modeling in terms of topic
salience, making them strongly pronounced. This is achieved by obtaining higher
probabilities of the most probable words (that is, by obtaining more skewed distributions
of word probabilities within a topic). This, in turn, leads to the formation of a more
pronounced entropy minimum and, on average, to lower values of entropy across the runs
of the algorithm with different parameters. Figures 8C and 8D demonstrate the difference
between Renyi entropy for the balanced and unbalanced datasets. The effect of balancing
is especially pronounced in the region of entropy minima, while for large numbers of
topics the effect is less observable. This happens because that increase in the number of
topics leads to an almost uniform distribution of word probabilities regardless of the
dataset content.

Figure 9 demonstrates the behavior of log-likelihood depending on the number of topics
for non-hierarchical and hierarchical datasets. Let us note that the behavior is monotone
and does not allow determining the dataset structure.

DISCUSSION
As our experiments demonstrate, hLDA model is very unstable which means that its
different runs with the same parameters produce radically different topical structures of
the same data. This instability can be significantly reduced by changing parameter η,
which controls the sparsity of topics. However, how to choose the optimal value of η is an
open question since neither log-likelihood nor Renyi entropy allow us to tune this
parameter.
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A somewhat more promising result has been obtained for hPAMmodel which depends
on the parameter η and the number of topics on different levels. Variation of these
parameters in experiments demonstrated that Renyi entropy allows determining only one
level of data structure for this model, namely, the number of topics on the second level.
Variation of the number of topics on the next level leads to significant fluctuations of Renyi
entropy for both non-hierarchical and hierarchical datasets. Correspondingly, it seems
that sharp jumps of Renyi entropy on the third level are related to the model’s features
rather than to the datasets’ structure. Additionally, the behavior of log-likelihood as a
function of the number of topics and parameter η does not allow determining the dataset
structure since the maxima and the minima of log-likelihood do not correspond to the
structure of mark-up either for hierarchical or non-hierarchical datasets.

Among the considered models, hARTM is the most stable since the procedure of
initialization of this model has almost no effect on the obtained values of Renyi
entropy. Moreover, Renyi entropy for this model demonstrates that for the datasets
with non-hierarchical mark-up (for both the English-language and the Russian-language
datasets), there is only one minimum, which is located close to the number of topics
from the mark-up. Further increase in the number of topics does not lead to jumps (in
contrast to hPAM model) but leads to a smooth growth of Renyi entropy which coincides
with the results of modeling with non-hierarchical topic models (such as Latent Dirichlet
allocation (Blei, Ng & Jordan, 2003; Griffiths & Steyvers, 2004) and granulated Latent
Dirichlet Allocation (Koltcov et al., 2016)) on the same datasets (Koltcov et al., 2020).
However, for the datasets with hierarchical mark-up, Renyi entropy has two clear minima.
One of these minima corresponds to the number of topics from the mark-up of the first
level, and the second is close to the values from the mark-up of the second level. The
difference between the number of topics obtained by searching for Renyi entropy
minimum and the results of the mark-up is about 3-4 topics for the first level and 8-10
topics for the second level. Thus, estimation of the number of topics on the second level has
a poorer quality.

To the best of our knowledge and based on our results, our approach is the first method
allowing to detect the presence of hierarchical or non-hierarchical structure in the text

Figure 9 Log-likelihood curves (hARTM). (A) Lenta dataset. (B) Balanced WoS dataset.
Full-size DOI: 10.7717/peerj-cs.608/fig-9
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data, and, thus, can be used as a hierarchy detector. However, it is useful only for hARTM
model among the considered ones. At the same time, the behavior of log-likelihood
significantly depends on the values of hyperparameters and often it has no clear maxima
which, in turn, complicates the application of this metric for determining the optimal
number of topics on different hierarchical levels. Moreover, since human mark-up also
usually has its own limitations to precision or inter-annotator agreement, the achieved
accuracy of prediction of the topic number with Renyi entropy can be viewed as
considerable.

Based on the additional experiments with different types of data pre-processing
presented in Appendix B, we also conclude that removing short and rare words leads to
the decrease in Renyi entropy (and, correspondingly, to the increase in information).
At the same time, the location of a global minimum stays almost unchanged. However,
extensive pre-processing may lead to disappearance of local minima at the second
hierarchical level. Therefore, it is recommended to remove short words and not to remove
words with a frequency above 5. In general, cutting off the long tail of the frequency
distribution affects the results of the entropy calculation, since Renyi entropy is calculated
as the difference between high frequency words and low frequency words.

The proposed Renyi entropy approach has some limitations related to the method of
Renyi entropy calculation and to the distribution of words in text collections. First, these
distributions have long and heavy tails. Words from such tails are assigned to topics
with small probabilities. Since Renyi entropy measures the difference between words with
high probabilities and words with small probabilities, it can only detect topics that are
comprised of highly probable words. However, lower levels of hierarchy tend to contain
narrower topics, each of which is comprised of words with smaller probabilities.
Correspondingly, the ability to distinguish the sets of topics disappears as the number of
hierarchy level increases. Thus, Renyi entropy approach is suitable for determining the
number of topics and values of hyperparameters for one or two levels of hierarchical
structures. Another limitation of our approach is the presence of fluctuations in Renyi
entropy values. These fluctuations are related to fluctuations of word probabilities, which,
in turn, are caused by the stochastic nature of topic modeling. The problem of minimizing
the instability of topic modeling has not yet been solved, but the stabilization of topic
models through word embeddings can be potentially interesting. The application of Renyi
entropy approach to topic models with word embeddings is beyond the scope of this
work and could be considered a next potential stage in the development of the entropic
approach to topic modeling.

CONCLUSION
In this work, we investigated the ability of hierarchical topic models to correctly determine
the hierarchical structure in data by applying three topic modeling algorithms to four
datasets with a human mark-up of topics. Two of these datasets have a flat mark-up, while
the mark-up of two others is two-level. Three of the datasets are in the English language,
and one is in Russian. Thus, we analyze the models and test our approach on a variety of
data structures and languages. We first formulated the principle of Renyi entropy
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calculation for hierarchical topic models. Next, we consecutively analyzed the chosen topic
models using log-likelihood metric and Renyi entropy. Based on the results of our
calculations, we can conclude the following.

First, our Renyi entropy-based approach can be extended to hierarchical topic models
since the accuracy of the approximations of the optimal topic number for some of such
models is not inferior to that for non-hierarchical models demonstrated in Koltcov (2018)
and Koltcov et al. (2020). Second, our calculations on the test datasets demonstrated
that hLDA model in its current form is not applicable to practical tasks due to its extreme
instability (although it is open to regularization in future research). Third, for hPAM
model, the proposed Renyi entropy approach allows selecting the number of topics only
for one level of hierarchy. Determining the number of topics on the next levels is
complicated by the large fluctuations of entropy for large numbers of topics. Thus, hPAM
model, in conjunction with Renyi entropy as a metric to optimize, can be used for
modeling datasets with non-hierarchical topical structures. Although this is suboptimal, let
us note that log-likelihood metric does not allow tuning most of the model parameters
on either hierarchical or flat data. Fourth, based on our calculations, it can be concluded
that hARTMmodel provides the best results as, when applied to this model, Renyi entropy
approach allows detecting both the hierarchical and non-hierarchical structures of the
datasets. In the case of non-hierarchical dataset structure, we observe only one minimum
of Renyi entropy under variation of the number of topics for both languages. In the
case of a two-level dataset structure, Renyi entropy has two minima, each of which
approximately corresponds to the topic number at the respective level of the hierarchy.

hARTM model is thus the easiest for tuning and, additionally, the most stable among
the considered algorithms, while Renyi entropy is obviously a better quality metric
compared to log-likelihood. We can also conclude that Renyi entropy is better than
perplexity as the latter behaves very similar to log-likelihood whose derivative it is. Thus,
for the purposes of topic number optimization it is recommended to select other model
parameters based on the minimum of Renyi entropy.

The main limitation of Renyi entropy approach is that it can detect the true number of
topics only for one or two levels of a topic hierarchy. Topic numbers at the subsequent
levels are hard to predict since the probabilities of words at these levels get smaller
and more uniform, thus determining the formation of less pronounced topics with unclear
boundaries that, furthermore, are much more prone to random shifts from one run to
another. This, in turn, hinders discrimination between genuine local minima of Renyi
entopy and its random fluctuations. The problem of detecting poorly pronounced topics
and the related task of topic model stabilization can possibly be solved by means of word
embeddings technology, which appears a promising direction for a future research.

Our paper also provides important insights for the use of the entropic approach in a
broader task of topic modeling parameter optimization. In general, optimal model
parameters (be it α, η or the number of topics) are those which produce a solution with the
best value of one or more metrics of quality. However, when such metric cannot be
optimized directly, as it is in the case of the number of topics, or its optimization is very
time-consuming, an optimizable substitute metric should be found, of which Renyi
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entropy is a promising example. While in this work we have shown the utility of Renyi
entropy metric for finding an optimal number of topics, our earlier work (Koltcov, Ignatenko
& Koltsova, 2019) also demonstrates that its two-parametric extension (Sharma–Mittal
entropy) can also help selecting semantically stable solutions (which is usually very
computationally complex)—i.e. it can point at such combinations of parameters that
produce similar sets of most probable words in topics across multiple runs of the algorithm.
Application of two-parametric entropy to hierarchical topic models is a future work.

However, apart from the stability and correctness of topic number identification, topic
interpretability is of significant importance for topic modeling quality. This has not been
explored yet in our framework. Furthermore, the very measurement of interpretability
needs development. Few existing metrics, such as standard coherence (Mimno et al., 2011)
or tf-idf coherence (Nikolenko, Koltcov & Koltsova, 2017) aim at measuring interpretability
of individual topics, while methods of generalization of those for the entire topic solutions
are multiple, and none has been tested. Moreover, the correspondence of coherence to
interpretability as defined by humans is far from perfect (Nikolenko, Koltcov & Koltsova,
2017). Neither it is obvious that a single topic modeling solution could be found combining
the best interpretability, stability and the optimal number of topics; these different
measurements of quality might be competing. Our research, in addition to our previous
investigation in Koltcov, Ignatenko & Koltsova (2019), points to the prospect of
applicability of the entropic approach to simultaneous parameter optimization in topic
modeling. For this, more research into topic interpretability and into multi-parametric
entropies should be carried out.

APPENDIX A
Classic probabilistic topic models
Let us briefly discuss the most widely used topic models and the existing quality metrics in
the field of topic modeling. Assume that we have a document collection D with a
vocabulary of all unique words denoted byW. A document d contains a sequence of words
{w1, w2,…,wn}, where wi ∈ W. So, the words and the documents are the only observable
variables. The goal of topic modeling is to retrieve hidden topics in the document
collection, where each topic is characterized by its distribution over the vocabulary. Thus,
the primary goal of topic modeling is to find the word distribution for each topic and to
find the proportions of topics in each document. In most probabilistic topic models, it
is assumed that, first, there exists a finite number T of topics, and each entry of a word w in
document d is associated with a certain topic t. Second, it is assumed that the order of
words in documents is not important for TM (‘bag-of-words’model) and, in addition, the
order of documents in the collection is neither important. Third, a conditional
independence assumption states that document d and word w are independent
conditioned on the latent topic t, i.e., words, conditioned on the latent class t, are generated
independently of the specific document identity d (Hofmann, 2001).

Two basic topic models are probabilistic latent semantic analysis (pLSA) (Hofmann,
1999) and its Bayesian version called Latent Dirichlet Allocation (LDA) (Blei, Ng & Jordan,
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2003). Mathematically, the probability of word w in document d can be expressed as
follows (Hofmann, 1999):

pðwjdÞ ¼
X
t2T

pðwjtÞpðtjdÞ ¼
X
t2T

fwthtd

where t is a topic, p(w|t) is the distribution of words by topics, and p(t|d) is the distribution
of topics by documents. The output of TM is represented with two matrices, namely,
matrix �: = {ϕwt}≡ {p(w|t)} containing the distribution of words by topics and matrix Θ: =
{θtd}≡ {p(t|d)} containing the distribution of topics by documents (or, in other words, the
proportions of topics in documents). Many modifications of the LDA model were
developed for various specific applications. However, these models share the same
practical issue: to build a model, the user has to set the number of topics unknown in
advance in many cases.

Generally, standard quality metrics such as perplexity (Heinrich, 2004; Newman et al.,
2009; Zhao et al., 2015), log-likelihood (Wallach, Mimno & McCallum, 2009; Heinrich,
2004; Griffiths & Steyvers, 2004), and semantic coherence (Mimno et al., 2011; Stevens
et al., 2012) are used to select the number of topics or to tune other model parameters.
Perplexity is a metric that evaluates the efficiency of the model to predict the data. For
LDA-based models, the perplexity for document collection D̂ with D documents can be
calculated as follows (Heinrich, 2004):

perplexityðD̂Þ ¼ exp �
P

d logpðdÞP
d Nd

� �
¼ exp �

P
d

P
w n

w
d lnð

P
t fwthtdÞP

d Nd

� �
;

where Nd is the number of words in document d, c ¼ fcdgDd¼1 is the number of times word
w was observed in document d. A lower perplexity value means better model quality.
Perplexity is closely related to likelihood, namely, perplexity is a reciprocal geometric mean
of the likelihood, where likelihood for a document d is expressed as (Heinrich, 2004)

Pðdj�;�Þ ¼
Y
w

ð
X
t

fwthtdÞ
nwd :

In turn, log-likelihood of document collection D̂ can be calculated for LDA-based
models as follows (Wallach, Mimno & McCallum, 2009; Heinrich, 2004):

lnðPðD̂j�;�ÞÞ ¼
X
d

X
w

nwd lnð
X
t

fwthtdÞ:

The number of topics and the other model parameters are selected when finding
maximum log-likelihood (Griffiths & Steyvers, 2004).

Semantic coherence is another type of quality metrics. It aims at measuring the
interpretability of inferred topics (Mimno et al., 2011) rather than the predictive power of
the model. Semantic coherence can be calculated as an average of the topic coherence
scores, where each topic coherence score is expressed as
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Cðt;WðtÞÞ ¼
XM
m¼2

Xm�1

l¼1

logðDðv
t
m; v

t
l Þ þ 1

Dðvtl Þ
Þ;

W(t) = (v1
t,… , vM

t) is a list ofMmost probable words in topic t, D(v) is the number of
documents containing word v, and D(v,v′) is the number of documents where words v and
v′ co-occur. The typical value for M is 5–20 words.

The discussion on the application of the above metrics to the task of determining the
number of topics for pLSA and LDA models and limitations of these metrics can be found
in papers (Koltcov, Ignatenko & Koltsova, 2019; Koltcov et al., 2020).

Nonparametric topic models
Further development of topic models occurred in the direction of nonparametric models.
The main idea of nonparametric topic modeling is to infer the model structure (namely,
the number of topics) from the data. Theoretically, nonparametric models are able to select
the number of topics automatically according to available data. Such models introduce a
prior distribution on potentially infinite partitions of integers using some stochastic
process that would give an advantage in the form of a higher prior probability for solutions
with fewer topics. In works (Teh et al., 2006; Teh et al., 2004), a topic model based on
hierarchical Dirichlet process (HDP) was first proposed. This model can be considered as
an infinite extension of LDA model (Heinrich, 2008). More complicated models that
are based on the Indian buffet process are considered in works (Chen, Zhou & Carin, 2012;
Williamson et al., 2010). Detailed surveys on nonparametric models can be found in Hjort
et al. (2010) and Rasmussen & Williams (2006). However, nonparametric models possess
a set of parameters that can significantly influence the inferred number of topics and
results of TM in general (Vorontsov, Potapenko & Plavin, 2015). Moreover, in work
(Koltcov et al., 2020), we demonstrated that, in real applications, the number of topics
inferred by HDPmodel does not correspond to the number of topics obtained with human
judgment. Thus, the application of this type of models is complicated in practice.

Hierarchical topic models
The next important step in the development of topic models was dictated by the intention
to organize topics into a hierarchy. It resulted in the development of hierarchical topic
models. In contrast to flat topic models (such as pLSA or LDA), the hierarchical topic
models are able to discover a topical hierarchy, which comprises levels of topical
abstraction. Usually, each node in the hierarchy corresponds to a topic, which, in turn, is
represented by the distribution over words. Different hierarchical topic models are
based on different prior assumptions on the distribution of topics and on the type of
hierarchical structure to be inferred. The two most widely used in practice hierarchical
topic models (Liu et al., 2016) are hierarchical latent Dirichlet allocation (hLDA) (Blei
et al., 2003) and hierarchical Pachinko allocation (hPAM) (Mimno, Li &McCallum, 2007).

hLDA model is a hierarchical and nonparametric extension of LDA model. In the
framework of this model, it is assumed that each sub-topic (child topic) has a single parent
topic, thus, providing a tree of topics. Moreover, it is assumed that all topics of a document
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are found within a path in that tree. It imposes significant restrictions on the inferred
topical components of documents. Thus, for instance, a document can not be devoted to
several specific sub-topics within the assumptions of the model. Another feature of this
model is that the first level of the hierarchy always contains one topic (the root of the
hierarchy). hLDA model learns topic hierarchies based on the nested Chinese Restaurant
Process (nCRP), which specifies a prior for the model. Nested Chinese Restaurant Process
is a hierarchical version of the Chinese Restaurant process and is used to express
uncertainty about possible L-level trees. To illustrate nCRP, assume that there are infinitely
many Chinese restaurants with infinitely many tables. One restaurant is associated with a
root (level 1) and each table of this restaurant has a card with a reference to another
restaurant (level 2). Tables of those restaurants, in turn, have references to other
restaurants (level 3), and this structure repeats. Each restaurant is referred to exactly once,
therefore, the structure produces an infinitely-branched tree of restaurants. Imagine that a
tourist enters the root restaurant and selects a table according to

pðoccupied table i j previous customersÞ ¼ mi

cþm� 1

pðnew table j previous customersÞ ¼ c
cþm� 1

;
(2)

where mi is the number of previous customers at table i, m is the number of customers in
the restaurant, including the tourist, and γ is a parameter that controls how often a
customer chooses a new table. The next day, the tourist goes to the restaurant identified
on the card of the table chosen the day before and selects a table according to Eq. (2).
This process is repeated for L days. AfterM tourists proceed this process, the collection of
their paths describes a particular L-level tree. In terms of topic modeling, customers
correspond to documents, and restaurants correspond to topics. In the framework of
hLDA model, the following prior distributions are assumed: (1) nCRP prior with
hyperparameter γ on possible trees; (2) symmetric Dirichlet prior with hyperparameter η
on the distribution of words by topics ϕwt; (3) L-dimensional Dirichlet prior with
hyperparameter α on mixing proportions θtd of the topics along the path from the root to
the leaf.

The generative process of hLDA model can be described as follows:

� For each node t, draw ϕ· t∼ Dir(η).
� For each document d: draw a path of topics cd = {cd1,…,cdL} according to nCRP with
parameter γ (2); draw the topic mixing proportion θd ∼ Dir(α). For each position n
of word in the document, choose the level assignment zdn∼ Mult(θd) (as the level is
chosen in the path, the topic is determined), then draw a word from the chosen topic
wdn∼ Mult(f· cdzdn).

Thus, a document is drawn by choosing an L-level path through the restaurants (topics)
and then sampling the words from the L chosen topics. The inference can be approximated
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by means of Collapsed Gibbs sampling Blei, Griffiths & Jordan (2010) and Chen et al.
(2018). The expressions for assessment of zdn and cd variables are the following:

pðzdn ¼ ljwdn ¼ v;W; z:dn; cÞ / ða:dndl þ aÞ b:dncdl ;v
þ g

s:dncdl
þ Vg

;

pðcd ¼ ecjW; z; c:dÞ / pð~cjc:dÞ
YL
l¼1

Bðb:dcl þ bdcl þ gÞ
Bðb:dcl þ gÞ ;

where W is the vocabulary (set of words), V is the vocabulary size, z = {zd}d = 1
D , ¬ dn

means all the tokens excluding token wdn, c ¼ fcdgDd¼1 ; a
:dn
dl is a counter that equals the

number of tokens in level l in document d excluding token wdn, b:dncdl;v
is a counter that

equals the number of tokens of the word v assigned to topic cdl excluding the current token
wdn, s:dncdl

is a counter that equals the number of tokens assigned to topic cdl excluding
the current token wdn, ~c ¼ fc1;…; cLg is a path in the hierarchy, b:dcl is a counter that
equals the number of tokens assigned to topic cl excluding the tokens of document d, bdcl is
the number of tokens of document d that were assigned to topic cl, B(·) is the multivariate
beta function and pð~cjc:dÞ is according to nCRP (2). The details can be found in Chen et al.
(2018). Then, matrix � is calculated according to

fwt ¼
cwt þ gPV

v¼1 cvt þ gV
;

where a counter cwt equals the number of instances word w was assigned to topic t.
We would like to note that hLDAmodel has three hyperparameters: (1) α is a parameter

of Dirichlet distribution, which controls smoothing over levels in the tree; (2) η is
hyperparameter of another Dirichlet distribution, which controls the sparsity of topics;
(3) γ is a parameter of the nested Chinese restaurant process, which controls how often a
document will choose new, i.e., not previously encountered paths.

In hPAM model, in contrast to hLDA, it is assumed that each child topic can be related
to each node (topic) from the upper level, thus, resulting in a directed acyclic graph of
topics. Therefore, in hPAM model, a child topic has several parent topics. It reduces the
necessity of inferring the correct tree structure that is crucial in hLDA. Moreover, it allows
the documents to contain several specific sub-topics. Moreover, hPAM model always
infers a three-level hierarchy, where the first level corresponds to a root topic, the second
level corresponds to super-topics, and the third level contains sub-topics. Another
important difference between hLDA and hPAM models is that hLDA is a nonparametric
model, i.e., it infers the number of topics on each level automatically while hPAMmodel is
parametric, therefore, a user has to manually select the number of topics on each level.
Thus, the number of topics on each level of the hierarchy is a model parameter. Moreover,
hPAM model has two hyperparameters: η is a parameter of a prior Dirichlet distribution
for ϕt, which controls sparseness of topics, and α is a parameter of a prior Dirichlet
distribution for θ. Let us note that since hPAM constructs a directed acyclic graph, each
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node (topic) at a given level has a distribution over all nodes on the next lower level. Let T1

be the number of ‘super-topics’ and T2 be the number of ‘sub-topics’.
The generative process of hPAM model is as follows (hPAM model 2):

� For each vertex (topic) t of the graph, draw ϕ· t∼ Dir(η).
� For each document d, sample θ0 from a T1 + 1-dimensional Dirichlet distribution with
hyperparameter α0 and distribution θT from a T2 + 1-dimensional Dirichlet distribution
with hyperparameter αT for each super-topic. The first component of θ0 determines
the probability of the event that a word is generated by the root topic while the other T1

components of θ0 determine the distribution of the root topic over super-topics.
Analogously, the first component of θT defines the probability of the event that a word is
generated by the super-topic T, and the other T2 components determine the distribution
of the super-topic T over sub-topics.

� For each word w: sample a super-topic zT ∼Mult(θ0). If zT = 0, sample a word from ϕ· 0

∼ Dir(η). Otherwise, sample a sub-topic zt ∼ Mult(θzT). If zt = 0, then sample a word
from ϕ· zT∼ Dir(η). Otherwise, sample a word from fzt.

Thus, matrix of the distribution of words by topics has dimension W × (T1 + T2 + 1).
The inference algorithm is based on Gibbs sampling method Mimno, Li & McCallum
(2007). Sampling distribution for a given word w in document d is as follows:

pðzT ¼ x;zt ¼ yjwdn ¼w;W;z:wÞ/ ða:dndx þa0;xÞ �
b:dnd;x;yþax;yPT2

y¼1ðb:dnd;x;yþax;yÞ
� c:dnwk þgP

wðc:dnwk þgÞ ; (3)

where x ∈ {0,1,…, T1} is the index of super-topic if x ≠ 0; y ∈ {0,1,…,T2} is the index of
sub-topic if y ≠ 0; z¬w is the topic assignments for all other words, counter a:dndx

equals the number of tokens (excluding the current tokem wdn) in document d that were
assigned to super-topic x, x ≠ 0, and to the root topic if x = 0; α0,x means the x-th
component of vector α0; counter b:dnd;x;y equals the number of tokens (excluding the current
token wdn) in document d that were assigned to super-topic x and sub-topic y; counter c:dnwk

equals the number of tokens of the word w that were generated by topic k, where k is
the root topic if x = 0, k = 1, …,T1 is a super-topic if y = 0 and k = T1 + 1, …, T2 + 1 is a
sub-topic otherwise. Then, a pair of indices (x, y) is sampled from the distribution (3) and
assigned to the current word wdn. Matrix � is calculated according to

fwt ¼
cwt þ gPV

v¼1 cvt þ gV
;

where a counter cwt equals the number of instances word w was generated by topic t. One
can use the fixed point update equations described in Minka (2000) to optimize the
asymmetric Dirichlet parameters α. Thus, in most of the publicly available model
implementations hyperparameter η is fixed and has to be set by a user while
hyperparameters αt are optimized during the training step.
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Besides hLDA and hPAM, many other hierarchical topic models have been developed,
for instance, nested hierarchical Dirichlet process (nHDP) (Paisley et al., 2015),
hierarchical probabilistic latent semantic analysis (hPLSA) (Gaussier et al., 2002), topic
hierarchies of Hierarchical Dirichlet Processes (hHDP) (Zavitsanos, Paliouras & Vouros,
2011), hierarchical latent tree analysis (HLTA) (Chen et al., 2017), hierarchical stochastic
block model (hSBM) (Gerlach, Peixoto & Altmann, 2018), and hierarchical Additive
Regularization of Topic Models (hARTM) (Chirkova & Vorontsov, 2016).

To relax the restrictions of hLDA that each document follows one path down the tree of
topics, nHDP model was proposed (Paisley et al., 2015). Two main changes with respect to
hLDA model are the following: (1) each word follows its own path to a topic; (2) each
document has a distribution on possible paths in a shared tree. In the framework of this
model, all documents share a global nCRP drawn according to the stick-breaking
construction. Let us denote this tree by T. From a root Dirichlet process Gi0, a path is
followed by drawing ϕl + 1 ∼ Gil (Gil denotes Dirichlet process for the children of node il,)
for l = 0,1,2,…, where i0 is the root index, and il = (i1,…,il) indexes the Dirichlet process
associated with the topic ϕl = θil. For each document d, a tree Td is constructed, where
for each Gil, a corresponding GðdÞ

il 2 Td is drawn according to the Dirichlet process:

GðdÞ
il � DPðbGilÞ. Using this construction, each document has a tree with document

specific transition probabilities defined over the same subset of nodes. To generate a
document with this tree, for each node il, a document specific beta random variable is
drawn. Namely, given that the path for word wd,n is at node il, stop with probability Ud, il ∼
Beta(γ1, γ2). If we do not select topic θil, then continue by selecting node il + 1 according to
Gidl

. Thus, for wordwd,n in document d, the probability that it is generated by topic ϕdn = θil
is as follows Prðfd;n ¼ hil jTd;UdÞ ¼

Ql�1
m¼0 G

ðdÞ
im ðfhimþ1gÞ

� �
� Ud;il

Ql�1
m¼1 ð1� Ud;imÞ

� �
.

The left term is the probability of path il, the right term is the probability that the word
selects the lth topics, but not the first l − 1 topics, im denotes the first m values in il (m≤ l).
The authors propose a stochastic variational inference (Paisley et al., 2015), which is
scalable to large datasets, for this model.

In the framework of hPLSA, the generative process is as follows. First, a document class
α is chosen with probability p(α) from a predefined number of classes. Second, a document
d is chosen according to conditional probability p(d|α). Third, a topic for each word
position is chosen according to class-conditional probability p(t|α). Forth, a word is
sampled according to p(w|t). In the hierarchical structure of hPLSA, the document classes
are the leaves of the hierarchy while topics occupy non-leaf nodes of the hierarchy. pLSA
model is a special case of hPLSA since if only one topic per class is sampled then the
result corresponds to the flat topic solution of pLSA. If a topic is shared among classes,
then it is placed at a higher level of the hierarchy. hPLSA model has certain limitations,
which are analogous to limitations of pLSA, namely, it possesses a large number of
parameters that have to be estimated, and this number grows linearly with the size of the
dataset. It can lead to model overfitting.

In the framework of hHDP, two models are proposed. The first one (hvHDP) results in
a hierarchy, where internal nodes are represented as probability distributions over topics
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and over words. Thus, in hvHDP model, all nodes can be considered as topics. In the
second model (htHDP), only leaf nodes are represented as distributions over words. Thus,
only the leaf nodes are essentially the topics. Both models are non-parametric and exploit
the mixture model of hierarchical Dirichlet processes (HDP). At each level of the
hierarchy, there is a Dirichlet process for each document and a global Dirichlet process
over all the Dirichlet processes at that level. Thus, each level is associated with a HDP.
These assumptions allow inferring the number of nodes on each level automatically.
According to the authors (Zavitsanos, Paliouras & Vouros, 2011), hPAM and hLDA are
the closest relatives of hvHDP in terms of inferred hierarchical structure. Indeed,
analogously to hLDA, hHDP model is able to infer the number of topics automatically.
In addition, analogously to hPAM, hHDP allows a child node to have several parent
nodes, thus providing a more flexible structure. In turn, htHDP resembles the PAMmodel
(Li & McCallum, 2006) since the words in both models are generated only at the leaf level.
In contrast to PAM, htHDP is fully non-parametric and is able to infer the depth of
the hierarchy and the number of nodes at each level. However, hHDP has a set of
hyperparameters (H, α, γ) that can potentially lead to different hierarchies in terms of the
depth and the number of nodes (topics) on each level.

HLTA is a probabilistic hierarchical topic model, however, it has significant differences
with respect to LDA-based models. First, HLTA models a collection of documents without
specifying a document generation process. The latent variables are unobserved attributes
of the documents. Second, each observed variable is related to a word and is a binary
variable that represents the presence or absence of the word in a document. Third, topics in
HLTA are clusters of documents. Namely, each binary latent variable in HLTA partitions a
document collection into two soft clusters of documents. The document clusters are
interpreted as topics. HLTA provides a tree-structured model, where the word variables
are at the leaves and the latent variables are at the internal nodes. In turn, each latent
variable can be described by a set of top words according to their mutual information, i.e.,
by a set of words that are the best ones to characterize the difference between the two
clusters due to the fact that their occurrence probabilities in the two clusters differ the
most. Latent variables at high levels of the hierarchy correspond to more general topics,
while latent variables at low levels correspond to more specific topics. The construction of
the hierarchy is based on the subsequent application of flat models. The details of the
model construction can be found in the original work (Chen et al., 2017).

The authors of hSBM model propose an approach that relates topic modeling and
community detection in complex networks. Here, the word-document matrix is
considered a bipartite network, and the problem of inferring topics becomes a problem of
inferring communities. The authors claim that their nonparametric approach
automatically determines the depth of the hierarchy and the number of groups for both
documents and words. Let us note that this model clusters both documents and words into
hierarchical categories separately. Thus, hSBM model splits the network into groups on
different levels, which are organized as a hierarchical tree. The construction of the
hierarchy is based on the subsequent application of stochastic block models (which were
originally developed for community detection in networks) yielding a hierarchy of nested
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stochastic block models, where each level clusters the groups of the levels below. A detailed
description of adaptation of stochastic block models to topics modeling can be found in
Gerlach, Peixoto & Altmann (2018).

hARTM is a hierarchical version of the proposed earlier Additive Regularization of
Topic Models (ARTM) approach. In the framework of hARTM, it is allowed for a topic to
have several parent topics and, moreover, the authors claim that the model can
automatically determine the number of sub-topics for each topic (Chirkova & Vorontsov,
2016). However, the number of topics on each level of the hierarchy has to be specified by a
user. To construct a hierarchy, it is proposed to learn several flat topic models and then to
tie them via regularization. Thus, for already learned ϕl, i.e., the matrix containing the
distribution of words by topics for topics on level l, it is proposed to implement matrix
decomposition ϕl ∼ ϕl + 1 ψ, where matrix ψ = {p(tl + 1|tl)} contains interlevel distributions
of sub-topics tl + 1 in parent topics tl, ϕl + 1 is the matrix containing the distribution of
words by sub-topics tl + 1 with additional sparsing regularizers. So, one can infer the
hierarchy level by level via finding parent topics for each sub-topic using interlevel
regularizers. A more detailed description of the model and the model inference can be
found in work (Chirkova & Vorontsov, 2016).

In addition to a wide variety of unsupervised hierarchical topic models, many semi-
supervised and supervised extensions of hLDA have been proposed. For instance,
supervised hierarchical latent Dirichlet allocation (SHLDA) (Nguyen, Boyd-Graber &
Resnik, 2013), constrained hierarchical Latent Dirichlet Allocation (constrained-hLDA)
(Wang et al., 2014), hierarchical labeled-LDA (HLLDA) (Petinot, McKeown & Thadani,
2011), and semi-supervised hierarchical latent Dirichlet allocation (SSHLDA) model (Mao
et al., 2012).

Although many hierarchical topic models have been developed, there are still no
well-established quality metrics for topic hierarchies (Chen et al., 2017; Zavitsanos,
Paliouras & Vouros, 2011; Belyy et al., 2018). Therefore, hierarchical topic models are often
compared by the same quality metrics as flat models, namely, by means of per-word
log-likelihood (Chambers, Smyth & Steyvers, 2010; Chen et al., 2017), perplexity
(Zavitsanos, Paliouras & Vouros, 2011) or semantic coherence (Chen et al., 2017).
However, log-likelihood and perplexity are criticized for their inability to account for the
interpretability of topic solutions that, in turn, is essential for end-users. Moreover, it was
demonstrated that improved likelihood may lead to lower interpretability (Chang et al.,
2009). In contrast, semantic coherence is closer to the human evaluation of topic modeling
output, however, it measures only topic interpretability and does not take into account
the parent-child relations in topic hierarchies (Belyy et al., 2018). Therefore, semantic
coherence only partially reflects the quality of a hierarchical model ignoring the
hierarchical relations of topics.

APPENDIX B
To estimate the influence of datasets pre-processing on the behavior of Renyi entropy in
hierarchical models, the following experiments were conducted. First, let us describe
additional pre-processing steps. At the first stage, words of length less than three letters
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were removed. At the second stage, in addition to short words, rare words with frequencies
below 5 were also removed. For instance, after the initial pre-processing used in the main
text of the paper, the 20 Newsgroups dataset consists of 50,965 unique words. After the first
stage of additional pre-processing, the size of vocabulary is 25,956, and after the second
stage it is 19,086 unique words. Analogously, Balanced WoS dataset contains 36,488
unique words in the experiments described in the main text. After the first stage of
additional pre-processing it contains 31,725 unique words and 14,526 words after the
second stage. For the obtained datasets with different types of pre-processing, hPAM and
hARTMmodels were implemented to study the behavior of Renyi entropy in the same way
as in section ‘Computational experiments’ of the main body of the article.

hPAM model (Influence of pre-processing on entropy of the second
hierarchical level)
Figure A1 demonstrates Renyi entropy curves on the second hierarchical level for 20
Newsgroups dataset for different values of parameter η. Here and further, “pre-processing
0” refers to the initial pre-processing; “pre-processing 1” refers to the first stage of

Figure A1 Renyi entropy curves (hPAM). 20 Newsgroups dataset. (A) η = 0.001. (B) η = 0.3. (C) η = 0.5.
(D) η = 0.7. (E) η = 1. Full-size DOI: 10.7717/peerj-cs.608/fig-A1
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additional pre-processing; “pre-processing 2” refers to the second stage of additional pre-
processing. Based on the calculations, one can conclude the following. Removing only
short words slightly worsens Renyi entropy, with the worsening being only in raising the
entropy curve. The range of topics, where minima of Renyi entropy are observed,
corresponds to 6–12 topics for the dataset with the first stage of additional pre-processing.
The closest result to the human markup is observed at η = 0.3. Removing short and
rare words leads to entropy curve raising and shifting of minima points. The range of
minima points for the second stage of pre-processing corresponds to 8–14 topics. Since
human mark up corresponds to 14–20, one can conclude that additional pre-processing
with removing of short and rare words has a positive effect on the results of topic modeling
on a dataset with a non-hierarchical labeling.

Figure A2 demonstrates the results for balanced WoS dataset. One can see that
removing only short words leads to raising of the whole Renyi entropy curve, however, the
overall structure of the curve does not change. The range of topics with minimum Renyi
entropy corresponds to 6-10 topics, i.e., there is a small variation associated with the
change in parameter η. Removing of short and rare words leads to a back-down shift of

Figure A2 Renyi entropy curves (hPAM). Balanced WoS dataset. (A) η = 0.001. (B) η = 0.3. (C) η = 0.5.
(D) η = 0.7. (E) η = 1. Full-size DOI: 10.7717/peerj-cs.608/fig-A2
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Renyi entropy. Moreover, variation of parameter η does not influence significantly the
minimum location under condition of this type of pre-processing. In general, Renyi
entropy minimum corresponds to six topics that, in turn, is very close to close to the
human mark-up. Thus, extensive pre-processing is necessary to obtain a better result of
topic modeling.

hPAM model (Influence of pre-processing on entropy of the third
hierarchical level)
Figure A3 demonstrates Renyi entropy curves on the third hierarchical level for 20
Newsgroups dataset for fixed values of η and T1. The results demonstrate that removing
short and rare words improves Renyi entropy. For instance, sharp fluctuations appearing
for hPAM model may disappear with a more extensive pre-processing.

Figure A4 demonstrates Renyi entropy curves on the third hierarchical level for
balanced WoS dataset. One can see that in the region of the first entropy minimum, the
difference between Renyi entropy curves for different pre-processing procedures is very
small. A significant difference occurs where the HPAM model deteriorates, that is, for
more than 25 topics. In addition, the second stage of pre-processing leads to smaller
entropy values.

hARTM model (Influence of pre-processing on entropy of the first
hierarchical level)
Figure A5 demonstrates Renyi entropy curves for hARTM model on the first hierarchical
level for two datasets, 20 Newsgroups, and balanced WoS. One can see that different types
of pre-processing have almost no effect on the resulting Renyi entropy curves for 20
Newsgroups dataset, i.e., the dataset with non-hierarchical structure. For all types of pre-
processing, the minimum corresponds to 14 topics, which is close to the human markup.
Thus, hARTM model is stable and reproduces the results in terms of Renyi entropy.
For balanced WoS dataset, we obtain that Renyi entropy curves are similar for initial and

Figure A3 Renyi entropy curves (hPAM). 20 Newsgroups dataset. (A) η = 0.01, T1 = 10. (B) η = 0.7,
T1 = 8. Full-size DOI: 10.7717/peerj-cs.608/fig-A3
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for the first additional pre-processing, namely, they have two clear minima corresponding
to two hierarchical levels. However, more extensive pre-processing leads to the
disappearance of the second local minimum in the region of 38 topics and the appearance
of a small, not clearly pronounced minimum in the region of 16-18 topics. In addition,
Renyi entropy curve for more extensive pre-processing is lower on average, which means a
slightly better model.

hARTM model (Influence of pre-processing on entropy of the second
hierarchical level)
Figure A6 demonstrates Renyi entropy curves for the hARTM model on the second
hierarchical level for two datasets. Again, for the 20 Newsgroups dataset, we observe that
different types of pre-processing have almost no effect on Renyi entropy curves and

Figure A5 Renyi entropy curves (hARTM). (A) 20 Newsgroups dataset. (B) balanced WoS dataset.
Full-size DOI: 10.7717/peerj-cs.608/fig-A5

Figure A4 Renyi entropy curves (hPAM). Balanced WoS dataset. (A) η = 0.3, T1 = 12. (B) η = 0.5,
T1 = 10. Full-size DOI: 10.7717/peerj-cs.608/fig-A4
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entropy minimum corresponds to 14–15 topics. In general, the behavior of Renyi entropy
curves on the second level is almost identical to that of the first level. For the balancedWoS
dataset, extensive pre-processing leads to smaller entropy values on average; however, it
also leads to disappearance of the second local minimum.
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