. Provenance- and Machine Learning-based
. Recommendation of Parameter Values in
. Scientific Workflows

. Daniel Silva Junior!, Aline Paes?, Esther Pacitti’, and Daniel de Oliveira*

s !danieljunior@id.uff.br

« ‘alinepaes@ic.uff.br

; 3Esther.Pacitti@lirmm.fr
+ “‘danielcmo@ic.uff.br

s Corresponding author:
o Daniel de Oliveira'

Not Soumlf
ar | tnes

1 Email address: danielcmo®@ic.uff.br

2 ABSTRACT

13 Scientific Workflows (SWfs) have revolutionized how scientists in various domains of scie conduct

1 their experiments. The management of SWfs is supported by complex tools named Scientific Workflow

15 Management Systems that provide support for workflow composition, monitoring, execution, capturing,

16 &Md storage of the data generated during execution. In some cases, they even provide components to

17 ease the visualization and analysis of the generated data. During the workflow’s composition phase,

18 programs must be selected to perform the activities defined in the workflow. These computer programs,

19 Which act as experiment steps, often require additional parameters that serve to adjust the programs

6"“’\ 20 according to the experiment’s goals. Consequently, workflows have many parameters to configure
{4 21 manually, encompassing even more than one hundred in many cases. Choosing wrongly the parameters’

e .
U™ & 22 values can lead to unsuccessful executions of the workflow. As the execution of data- and compute-
N yJV‘“ 23 intensive workflows is monly performed in a high-performance computing environment (e.g., a cluster,
) W P : public cloud), an unsuccessful execution configures a waste of time and resources.

L 4

\'rb-'1 25 In this manuscript, we present FReeP - Feature Recommender from Preferences, a parameter value
26 recommendation method that is designed to suggest values for workflow parameters, taking into account
27 user preferences. FReeP is based on Machine Learning techniques, particularly in Preference Learning.
s FReeP is composed of three algorithms, where two of them aim at recommending the value for one
20 parameter at a time, and the third makes recommendations for n parameters at once. The experimental
30 results obtained with provenance data from two broadly used workflows showed FReeP usefulness in
a1 the recommendation of values for one parameter. Furthermore, the results indicate FReeP’s potential to
2 recommend values for n parameters in scientific workflows.

- W\/v..[owe V8 W omc‘. Vet Gust
. INTRODUCTION wt

s Scientific experiments are the basis for evolution in several areas of human knowledge (de Oliveira et al.,
s 2019; Mattoso et al., 2010b; Hey and Trefethen, 2020; Hey et al., 2012). Based on observations of open
s problems in their research areas, scientists formulate hypotheses to explain and solve those problems
37 (Gongalves and Porto, 2015). Such hypothesis may be confirmed or refuted, and also can lead to new
s hypotheses(Gongalves and Porto, 2015). For a long time, scientific experiments were manually conducted
s by scientists, including instrumentation, control of the environment, annotation of results, and analysis.
40 Despite the advances obtained with this approach, time and resources were wasted since the smallest
41 amount of error could compromise the whole experiment. The analysis of errors in the results was also far
42 from trivial.

43 The evolution in computer science field allowed for the development of technologies that provided
+ useful support for scientists in their experiments. One of these technologies are the scientific workflows
45 (de Oliveira et al., 2019; Deelman et al., 2005). Scientific workflows (or simply workflows) are an

@

@

w

I

iPad MAM

iPad MAM

iPad MAM

iPad MAM

¢

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

90

1% o
chw’ T -

97
98
99

100

abstraction that represents each step of the experiment expressed as an activity, which has input data and
relationships with other activities, according to the stages of the experiment (Yong Zhao, 2008).

Such workflows commonly require the execution of data-intensive operations as loading, transfor-
mation, and aggregation (Mattoso et al., 2010b). Several computational paradigms can be used for the
design and execution of workflows, e.g., shell and Python scripts (Marozzo et al., 2013), but they are
usually managed by complex engines named Workflow Management Systems (WfMS). A key feature
that a WfMS must address is the efficient and automatic management of parallel processing activities
in High-Performance Computing (HPC) environments (Eduardo Ogasawara and et.al, 2010). Besides
managing the execution of the workflow in HPC environments, WfMSs are also responsible for recording
metadata associated to all the data generated during the execution: input data, intermediate data, and
the results. These metadata is well-known as provenance (Juliana Freire and Silva, 2008). Based on
provenance data, it is possible to analyze the results obtained and guarantee the reproducibility of the
experiment, which is essential to prove the veracity of a produced result.

In this article, the concept of an experiment is seen as encompassing the concept of a workflow, and
not as a synonym. A workflow may be seen as a controlled action of the experiment. Hence, the workflow
is defined as one of the trials conducted in the context of an experiment. In each trial, the scientist needs
to define the parameter values for each activity of the workflow. It is not unusual that a workflow has more
than 100 parameters to set. Setting up these parameters may be simple for an expert, but not so simple for
non-expert users. Although WfMSs represent a step forward by providing the necessary infrastructure
to manage workflow executions, they provide a little help (or even no help at all) on defining parameter
values for a specific workflow execution. The correct choice of parameter values in a workflow execution
is crucial not only for the quality of the results but also influences if a workflow will execute or not. A
poor choice of parameter values can cause failures, which leads to a waste of execution time. Failures
caused by poor choices of parameter values are even more severe when workflows are executing in HPC
environments that follow a pay-as-you-go model, e.g., clouds, since they can increase the overall financial
cost.

This way, if the WIMS could “learn” from previous successfully executions of the workflow and
recommend parameter values for scientists, some failures could be avoided. This recommendation is
especially useful for non-expert users. Let us take as an example a scenario where an expert user has
modeled a workflow and executed several trials of the same workflow varying the parameter values. If a
non-expert scientist wants to execute the same workflow with a new set of parameter values and input
data, but does not know how to set the values of some of the parameters, one can benefit from parameter
values used on previous executions of the same (or similar) workflow. The advantage of the WfMS is
provenance data already contains the parameter values used on previous executions and can be a rich
resource to be used for recommendation. Thus, this article hypothesis is that by adopting an approach
to recommend the parameters values of workflows in a WfMS, we can increase the probability that the
execution of workflow will be completed. As a consequence, the financial cost associated with execution
failures is reduced.

In this article, we devise a method named FReeP - Feature Recommender From Preferences, which
aims at recommending values for parameters of workflow activities. The proposed approach is able to
recommend parameter values in two modes: (i) a single parameter value at a time, and (ii) multiple
parameter values at once. The proposed approach relies on user preferences, defined for a subset
of workflow parameters, together with the provenance of the workflow. The idea of combining user
preferences and provenance is novel and allows for producing a personalized recommendation for
scientists. FReeP is based on Machine Learning algorithms (Mitchell, 2015), particularly, Preference
Learning (Fiirnkranz and Hiillermeier, 2011), and Recommender Systems (Ricci et al., 2011). We
evaluated FReeP using workflow benchmarks such as Montage (Hoffa et al., 2008) and SciPhy (Ocana
etal.,2011) and results indicated the potential of the proposed approach. This manuscript is an extension of
the conference paper “FReeP: towards parameter recommendation in scientific workflows using preference
learning” (Silva Junior et al., 2018) published in the Proceedings of the 2018 Brazilian Symposium on
Databases (SBBD). This extended version provides new empirical shreds of evidence regarding several
workflow case studies as well as a broader discussion on related work.

This article is organized in five sections besides this introduction. Background section details the
theoretical concepts used in the proposal development. FReeP - Feature Recommender from Preferences
section presents the algorithm developed for the problem of parameters value recommendation using

2/35

iPad MAM

iPad MAM

iPad MAM

iPad MAM
Why does it need to be completed? Why is that what were optimizing for?

iPad MAM

101

102

108

104

105

106

107

108

109

110

11

112

113

114

115

116

117

118

119

120

121

122

128

124

125

126

127

128

129

130

131

132

133

134

135

user preferences. Experimental Evaluation section shows the results of the experimental evaluation of
the approach in three different scenarios. Then, Related Work section presents a literature review with
papers that have addressed solutions to problems related to the recommendation applied to workflows
and the Machine Learning model hyperparameter recommendation. Lastly, Conclusion section brings
conclusions about this article and points out future work.

BACKGROUND

This section presents key concepts for understanding the approach presented in this article to recommend
values for parameters in workflows based on users’ preferences and previous executions. Initially, it is
explained about scientific experiments. Following, the concepts related to Recommender Systems are
presented. Next, the concept of Preference Learning is presented. This section also brings a Borda Count
overview, a non-common voting schema that is used to decide which values to suggest.

Scientific Experiment

A scientific experiment arises from the observation of some phenomena and questions raised from the
observation. The next step in the experiment is the hypotheses formulation, that is, to develop possible
answers to the questions raised. With a developed hypothesis, it is necessary to test it to verify if an
output produced is a possible solution. Regardless of the final result with the formulated hypothesis, there
are many iterations of refinement, which may consist, for example, of testing the hypothesis under other
conditions, until it is possible to have enough elements to support the hypothesis.

Provenance
Data

Distribution

Discovery

% Visualization Monitoring

Figure 1. Mattoso et al. (2010a) Life Cycle of Scientific Experiments.

The scientific experiment can be divided into three major phases: composition, execution and analysis.
Figure 1 illustrates what is called the life cycle of the experiment comprising these three phasesMattoso
et al. (2010a). The composition phase is where the experiment is designed and structured and can still
be divided into two stages: conception and reuse. The conception stage is responsible for creating an
abstraction that represents the experiment, while the search for other experiments that have parts that
can be adapted and used in the development is in charge of reuse. Execution is the phase where all the
necessary instrumentation for the accomplishment of the experiment must be finished. Instrumentation
means the definition of input data, parameters to be used at each stage of the experiment, and monitoring
mechanisms. Finally, the analysis phase is where the data generated by the composition and execution
phases are studied to understand the results obtained. The approach presented in this article focus on the
Composition phase, where the workflow is being configured for execution.

Scientific Workflows

Scientific workflows have become a de facto standard for modeling in-silico experiments (Zhou et al.,
2018). Workflows are abstractions that represent experiment steps and the dataflow through each of
these steps. A workflow can be formally defined as a directed acyclic graph W(A,Dep). The nodes
A={ay,ay,...,a,} are the activities and the edges Dep represent the data dependencies among activities
in A. Thus, given a; | (1 <i<n), the set P={pi, p2, ..., pm } Tepresents the possible input parameters for

X Mage 5vb serift
by 22

3/35

iPad MAM

iPad MAM

139

140

141

142

143

144

145

146

147

148

152

153

154

155

156

157

161

162

163

164

165

166

167

168

169

172

173

174

175

177

Y 178

IRV

,b 180

\vm

' N0

184

185

186

activity a; that defines the behavior of a;. Therefore, a workflow can be seen as a graph where the vertices
act as experiment steps and the edges are the relations, or the dataflow between the steps.

A workflow can also be categorized according to the level of abstraction into conceptual or concrete.
A conceptual workflow represents the highest level of abstraction, where the experiment is defined
in terms of steps and dataflow between them. This definition does not explain how each step of the
experiment will execute. The concrete workflow is an abstraction where the activities are represented
by the computer programs that will execute them. Workflow activities executions are called activations
(de Oliveira et al., 2010a), where each program that represents an activity has its parameters defined.
However, managing this execution, which involves setting the correct parameter values for each program,
capturing the intermediate data and execution results, becomes a challenge. It was with this in mind, and
with the help of the composition of the experiment in the workflow format, that Workflow Management
Systems (WfMS), such as Kepler (Altintas et al., 2006), Pegasus (Deelman et al., 2005) and SciCumulus
(de Oliveira et al., 2010a) emerged.

SciCumulus is an important component of the proposed approach since it provides a framework for
parallel scientific workflows to be combined with FReeP. It is necessary to highlight that other SWfMSs
such as Pegasus and Kepler could also benefit from FReeP as long as they provide necessary provenance
data. SciCumulus architecture is composed of four main components: SCSetup, SCStarter, SCCore, and
SCQP (SciCumulus Query Processor). SCSetup is responsible for storing and retrieving prospective
provenance to/from the provenance database. Using this component, scientists insert/update the structure
of the workflows in the database. When the structure of the workflow is already inserted in the provenance
database, SCStarter can be invoked. SCStarter component is responsible for configuring the environment
for executing the workflow. In case of executions in cloud environments, SCStarter is responsible for
deploying virtual machines and configuring storage services before the workflow execution. SCStarter
has to be compatible to the cloud API. In the current version, SCStarter works with Amazon AWS API.

When all virtual machines and storage services are running, SCStarter invokes SCCore in each virtual
machine. SCCore is an MPJ (MPI-like)! application, so it runs in all virtual machines at the same time
using message passing (each virtual machine contains an instance of SCCore according to the rank of
the virtual machine, i.e., SCCore(y, SCCore;, etc). SCCore follows a Master/Worker architecture. The
SCCore-Master (SCCorey) is responsible for scheduling the workflow activities in the several virtual
machines. In addition, SCCore-Master is responsible for collecting retrospective provenance data and
store it in the provenance database. All other instances of SCCore-Workers receive activations to execute
and request more activations. In the original version of SciCumulus, all data is stored in one single
bucket in the Amazon S3 service, thus it is not fragmented neither distributed in different buckets. The
same problem occurs with other existing SW{fMSs since they do not consider data file distribution and
results confidentiality issues. The SCQP component is responsible for querying the provenance database
ing or after the workflow execution. It can be used by scientists to steer the workflow or to perform a
post-mortem analysis of the results. For more information about SciCumulus please refer to Oliveira et al.
(de Oliveira et al., 2012, 2010b).

Provenance

An workflow activation has input data, and generates intermediate and output data. WfMS has to collect all
metadata associated to the execution in order to foster reproducibility. This metadata is called provenance
(Juliana Freire and Silva, 2008). According to Goble (2002), the provenance must verify data quality, path
audit, assignment verification, and information querying. Data quality check is also related to verifying
the reliability of workflow generated data. Path audit is the ability to follow the steps taken at each stage
of the experiment that generated a given result. The assignment verification is linked to the ability to
know who is responsible for the data generated. Lastly, an information query is essential to analyze the
data generated by the experiment’s execution.

Especially for workflows, provenance can be classified as prospective (p-prov) and retrospective
(r-prov) (Juliana Freire and Silva, 2008). p-prov represents the specification of the workflow that will
be executed. It corresponds to the steps to be followed to achieve a result. r-prov is given by executed
activities and information about the environment used to produce a data product, consisting of a structured
and detailed history of the execution of the workflow.

Thttp://mpj-express.org/

4/35

iPad MAM

iPad MAM

iPad MAM

iPad MAM

WasDerivedFrom WasInformedBy

1 Used

Entity Activity

WasGeneratedBy

WasAttributedTo

\b\lu\ U“.{ I WasAssociatedWith

" v
W 1,(9

191

192

193

194

195

196

197

198

199

217

218

219

220

221

222

223

225

6 [Agent |
(,%

.

ActedOnBehalfOf

Figure 2. Belhajjame et al. (2013) PROV data model.

Provenance is vital for the scientific experiment analysis phase. It allows for verifying what caused an
activation to fail or generated an unexpected result, or in the case of success, what were the steps and
parameters used until the result. Another advantage of provenance is the reproducibility of an experiment,
which is essential for the validation of the results obtained by third parties.

Considering the provenance benefits in scientific experiments, it was necessary to define a model
of representation of provenance (Bose et al., 2006). The standard W3C model is PROV (Gil et al.,
2013). PROV is a generic data model and is based on three basic components and their links, being the
components: Entity, Agent and Activity. Figure 2 shows how the PROV representation uses the three
components and how their links are used to represent the dataflow during the execution of the experiment.

Recommender Systems

The massive data available in the information age, although beneficial to users, can also be seen as an
avalanche that overloads them and, in some cases, leaves them lost in the search for relevant information.
This difficulty in searching relevant information reflects the degree of freedom that the user has in
searching for available data. To address this problem recommender systems (RS) (Resnick and Varian,
1997) (Ricci et al., 2011) (Bobadilla et al., 2013) are developed. recommender systems are based on
techniques that aim to suggest the most relevant items to the user to perform their task, such as choosing
one book. The Amazon.com (Linden et al., 2003) recommender system is an example of how useful it is
to suggest some items from all the search space available on the platform.

Generally, recommender systems are specialized in only one type of item, where the objects that the
system was developed to recommend are understood by item. The recommender systems can be of the
type personalized, which means that each user of the system will have their recommendations based on
their preferences. There are also non-personalized recommender systems that return top-n lists. Freep is
based on the first type.

Personalized recommendations seek to suggest the most relevant items for carrying out the user’s task.
For this, it is necessary to collect the user’s preferences, which can be explicit or implicit. An example of
explicit preference is the evaluation of a book, giving it zero to five stars. An implicit preference may be
to visit a page about a book, how long the page remains, efc. The development of a recommender system
is based on the observation that other close individuals’ suggestion influences individuals’ decisions. An
example of this behavior is music choice, where a system can suggest songs to a user based on songs that
other same age group users have heard, are listening or have heard and that the current user has not yet
heard.

There are three essential elements for the development of a recommender system: Users, Items, and
Transactions. The Users are the target audience of the recommender system, and each user has their
characteristics and objectives. The recommender system must be able to make suggestions for items
relevant to each user’s objectives. As mentioned, /fems are the recommendation objects and also have their
characteristics. Its relevance varies from user to user. The Transactions are records that hold a tuple (user,
interaction), where the interaction is the actions that the user performed when using the recommender
system. These interactions are generally user feedbacks, which can be interpreted as their preferences.

5/35

iPad MAM

iPad MAM

iPad MAM

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

The most common is to use transactions that only consider explicit feedback of preference, such as
evaluating an item as bad, regular, or good. Implicit feedback is also useful but needs a deeper assessment
of what behaviors should be considered as feedback and how to use it to improve the recommendations’
usefulness.

The recommender system task can be defined as: given the elements Items, Users and Transactions,
find the most useful items for each user. Adomavicius and Tuzhilin (2005) formalizes that a recommender
system must satisfy Equation 1, considering U as the space for all users, I the space for all items and F
the utility function that calculates the utility of an item i inl for a u inU user. Note that in Equation 1 the
tuple (u,7) will not be defined in the entire search space, so the recommender system must extrapolate the
F function in these cases.

Vu € U,i, = argmax F (u,) (1
icl

Calculating the utility function varies according to the approach that will be used in the recommender
system. It is based on the different strategies used to calculate the utility function that recommender
systems can be categorized. The most common approaches to recommender systems are: Content Based,
Collaborative Filtering and Hybrids. There are still Demographic and Knowledge-based, however their
applications are restricted to specific cases (Ricci et al., 2011). Figure 3 provides a taxonomy of the

interesting types of recommender systems for this work.

Collaborative
Filtering

Neighborhood
Based

Y

Model Based

Y

)

Recommender]——){ Content-Based
Systems

V\Uy" Weighted

242

243

244

245

246

247

248

249

Switching

Mixed
Hybrid

Feature
Combination

Cascade

Feature
Augmentation

Meta-Level

SR

Figure 3. Interesting types of recommender systems taxonomy.

Collaborative Filtering

In Collaborative Filtering Recommender Systems, a recommendation is based on other users’ experience
with items in the system domain. The idea is very intuitive and is related to the human behavior of, at
times, giving credit to another person’s opinion about what should be done in a given situation. The
experience of other users with the recommender system’s domain items, in general, is expressed through
evaluations. Assessments can be expressed explicitly or implicitly (Schafer et al., 2007). An explicit
evaluation is one captured employing a direct request from the system to the user, such as ask the user
for rating a seen film on a scale from zero to five. The implicit evaluation is inferred by the behavior

6/35

iPad MAM

250

251

252

253

254

255

257

258

259

261

262

263

264

266

267

268

269

270

271

272

273

275

276

277

278

279

280

281

282

283

284

285

286

287

289

290

291

292

293

294

295

296

297

298

299

300

301

302

user interaction with the system, such as the time spent viewing information about a film genre. In
Collaborative Filtering, evaluations can be of the following types: scalar, binary, or unary (Schafer et al.,
2007). Scalar evaluations are like the example of a film evaluation; its values are included in a numerical
range. The binary assessment type is like good/bad, agree/disagree. Unary evaluation is present in item
purchase or non-purchase information.

Collaborative Filtering can be Neighborhood Based or Model Based. Neighborhood Based Collab-
orative Filtering strictly follows the principle that users with similar profiles have similar preferences.
Thus, given a neighborhood, the most popular items among them are used as a recommendation, where
popularity is measured concerning an item’s ratings.

A user’s neighborhood can be defined concerning the users of the system themselves or about the
items evaluated by the users. When the neighborhood is defined concerning users, the system predicts a
r,i rating of a new i item for a u user from the average of the nearest k neighbors’ ratings. It is important
to note that the nearest neighboring k must be those that have evaluated the item i. A problem with using
the average of the ratings of the nearest neighboring k is not to differentiate the ratings of users with
the closest profiles. In this case, an alternative is to include a weighting factor in the calculation of an
item’s valuation prediction. Alternatively, a user’s neighborhood can be defined in terms of items in the
recommendation domain. This approach works as follows: let u be an user with a I set of evaluated items
and a new /' item a candidate for a recommendation item. The k items, k inl, more similar to i can be
used to predict how appropriate the i’ recommendation to u is.

The neighborhood-based recommender system needs a similarity measure to define a neighborhood.
A similarity measure traditionally used to define a neighborhood is Cosine Similarity (Bell and Koren,
2007). In the context of the recommendation, for example, based on users’ similarities, this measure
requires that users have a vector representation. Therefore, let # be an user represented by a vector A and
v an user represented by a vector B, the similarity of these two users using Cosine Similarity is given by
Equation 2. Another similarity measure widely used in the definition of neighborhoods in Collaborative
Filtering is Pearson’s Correlation (Massa and Avesani, 2007). Still, using the notation where a user u is
represented by a vector A and another user v is represented by a vector B, Pearson’s correlation can be
calculated using Equation 3.

A.B cov(A,B)
- A5 - AT 3
cos® llAIlIBII @ P var(A).var(B))

Neighborhood Based Collaborative Filtering has as strengths the straightforward interpretation and
explanation of the recommendations made and the ability to incorporate new users and items into the
recommendation process without needing a offline training phase. However, as the training base grows,
the recommendation becomes more expensive due to the algorithm’s quadratic nature, due to the need to
calculate similarity measures.

In contrast, instead of loading the entire database into memory and calculating similarity measures
for each new recommendation, Model Based Collaborative Filtering seeks to generate a hypothesis
from the data and use it to make recommendations instantly. Two of the most used approaches in this
Collaborative Filtering category are clustering and matrix factorization (Thi Do et al., 2010). Clustering
(Ungar and Foster, 1998) use in the recommendation is based on the idea that users in the same group
have similar interests. The clustering-based recommendation also requires vector representation of users
and is divided into three steps: 1) dividing users into k groups; 2) assignment of a user who will receive
the recommendation to one of the groups; 3) use of item evaluations by users of the assigned group to
recommend a new item.

Collaborative Filtering based on matrix factorization (Koren et al., 2009) uses an evaluation matrix
generated from users and items. This R evaluation matrix has m lines representing each system user
and n columns representing the items. Thus, a cell 7;; represents the user rating u; for the item i;. This
matrixR in general is sparse due to the large number of items not evaluated by all users of a recommender
system. Matrix factorization uses matrix algebra to decrease the size of the R matrix, thus addressing the
R sparsity problem. Two of the main matrix factorization models in the context of Collaborative Filtering
are Principal Component Analysis (PCA) (Smith, 2002) and Singular Values Decomposition (SVD) (Ma,
2008). L. 11

The PCA factorization idef i§ t8 find the most relevant evaluation matrix components without loss
of information. In the context of the R evaluation matrix, the most relevant components can be seen as

7/35

iPad MAM

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

the users who perform the most evaluations and the items that receive the most evaluations. Differently,
SVD looks for two matrices: U a matrix of user characteristics; and V a matrix of characteristics of
recommendation items. The prediction of a user rating u; for an item i; is then given by a prediction
function p(U;,V;).

Content-Based

Content-based Recommender Systems make recommendations similar to items that the user has already
expressed a positive rating in the past. To determine the similarity degree between items, this approach
is highly dependent on extracting their characteristics. This extraction is necessary because the original
representation of an item is often not structured, which is a prerequisite for automating recognizing
similarities. Three main components can represent this recommender system type: Content Analyzer,
Profile Learner, and Filtering, as seen in Figure 4.

User rated items

Structured Item
Representation

Profile Learner

Content Analyzer [

)

% g
2 5
% S
C, o
$
% s

Recommendation II
List

Filtering

Figure 4. Content-Based recommender system architecture overview: the Content Analyzer
component is responsible for extracting the characteristics of the items, producing a structured
representation; the Profile Learner component is responsible for building a model that represents a user’s
profile based on past preferences; lastly, the Filtering component uses other items not yet evaluated as
input to the user profile model, and its output is the recommended items.

Content Analyzer: The target items of recommendation are, in most cases, not adequately represented
for the use of the computer in automating the recommendation. This component is responsible for
producing a structured representation of the items. One of the most used representations is TF-IDF
(Salton, 1989), which has its origin in the area of Information Retrieval. Equation 4 formalizes TF-IDF,
considering a feature x and an item y , 1 f; , is the frequency of the feature x in y, N is the total of items,
and d fy is the number of items that contain x. The variable w, , is a weight vector where each component
of the vector represents the relevance of the feature x to the item y. This type of representation serves as
input for the other recommender system components.

N
Wry =1 fxy xlog <dfx> (H @)

Profile Learner: This component produces a model, induced by Machine Learning techniques, that
represents the profile of an user based on the items evaluated by this user. The Naive Bayes (Lewis,
1998) is a probabilistic model based on Bayes’ Theorem, and its objective is to estimate the probability a
posteriori of an event A to occur, given that an event B occurs. In the recommender system domain, Naive
Bayes estimates the probability of an item be relevant, given its characteristics.

Filtering: With the structured representation of the items and a model of the user profile at hand, it is
possible to filter the items not yet evaluated, creating a list of these “new items” ordering them according
to their similarity to the others positively assessed items.

8/35

330

331

332

333

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

Hybrid

Hybrid recommender systems arise out of an attempt to minimize the weaknesses that traditional rec-
ommendation techniques have when used individually. Also, it is expected that a hybrid strategy can
aggregate the strengths of the techniques used together. There are some methods of combining recommen-
dation techniques in creating a hybrid recommender system, among them: Weighting, Switching, Mixing,
Feature Combination, Cascade, Feature Augmentation and Meta-Level (Burke, 2002).

Weighting: In this method, each recommendation item has a score that is defined by combining the
prediction results from all recommendation techniques that are in use. It is a simple method that can be
implemented, for example, as a linear combination of predictions, which can be assessments, that each
recommendation technique assigns to an item.

Switching: This method defines a criterion responsible for determining which recommendation
technique will be used in each recommendation situation. An example of this method is to use the Content-
Based approach, and if the recommendation of this method does not reach a predetermined degree of
confidence, use the Collaborative Filtering method to make the recommendation. A major drawback of
this method is the inclusion of a configuration parameter in the system, which is the alternation criterion
responsible for defining when to use one technique or another according to the recommendation situation.

Mixing: This method is an alternative when the system can make more than one recommendation at a
time. The mixed-method consists of using all recommendations from all recommendation techniques
employed in the system. An example of using this method is a list of suggestions for TV or film
programming, where generally more than one recommendation item is presented at a time.

Feature Combination: this method is based on the hybridization between the Content-Based rec-
ommendation and the Collaborative Filtering. The method treats the neighborhood information in
Collaborative Filtering as additional information from the dataset and then applies the Content-Based
recommendation technique.

Cascade: here, the method is divided into steps as follows: 1) a recommendation technique is used
first, performing something similar to a filter of the candidate items for the recommendation; 2) a second
technique refines candidates from the first stage, looking for the best alternative.

Feature Augmentation: in this method, there is also a chain of recommendation techniques. The
method uses a recommendation technique on the original data, and the output of this first technique is
used as an additional resource when entering a second technique. Although it is also a chain of techniques
like the Cascade, it is important to note that the Feature Augmentation is different because the set of input
attributes for one is different from the input for the other technique.

Meta-Level: this method uses the model generated by one technique as input for the second. Note that
the difference between this method and the Feature Augmentation is that this method uses the generated
model itself as an input to the second technique, while the Feature Augmentation uses the model output
generated by the first technique as an additional database resource for the second technique.

The Content Based and Collaborative Filtering methods combination allows better performance in
recommendations in different domains due to the possibility of minimizing the weaknesses of each
approach when used separately. However, it is not an easy task to combine the two approaches since the
methods used by each approach can generate representations of incompatible data.

Several studies have emerged to propose combining the recommendation approaches in Content
and Collaborative Filtering: in (Balabanovic and Shoham, 1997) the recommendations are based on
the content that users with similar profiles are evaluated positively; Basilico and Hofmann (2004) uses
Joint Feature Maps to integrate feature vector of the users and the items; Lekakos and Caravelas (2008)
proposed a hybrid recommender system based on the Switching method, starting from using collaborative
filtering as the main method and if; it is not possible, it goes to the content-based recommendation.

Preference Learning
User preferences play a crucial role in most decision systems. Thus, preferences have become the object
of study in economics and psychology, among others, since these areas sometimes use decision support
tools (Pigozzi et al., 2016). In Computer Science, this concept has gained more relevance with the
growth of recommender systems (Feynman and Vernon Jr., 1963) (Viappiani and Boutilier, 2009) and the
development of personal assistants (Mitchell et al., 1994) (Myers et al., 2007).

The first important concept to be clarified when talking about Preference Learning is the meaning of
preference. From an Artificial Intelligence perspective, a preference is a problem restriction that allows

9/35

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

some degree of relaxation. Fiirnkranz and Hiillermeier (2011) refers to Learning Preferences as “inducing
preference models from empirical data”. Regarding the empirical data, it can be said that many times a
preference is not explicitly expressed. An example is choosing a product from the same category that
another product is as an ecommerce user. As all products are in the same category, a TV, for example, the
user’s preference is expressed by clicking on the most interesting products.

A Preference Learning task consists of learning a predictive function that, given a set of items where
preferences are already known, predicts preferences for a new set of items. It is necessary to define an
adequate representation for the preferences to create an algorithm that solves the problem for which
the Preference Learning is proposed. The most common way of representing preferences is through
binary relationships. An example of a tuple that would be part of this representation in a classic literature
format is x; > x;, which means a preference for the value i over j for the attribute x. There are also other
representations for preferences that aim to facilitate variations of the problem related to Machine Learning,
such as the Conditional Preferences Networks (Koriche, 2012), or the Generalized Additive Independence
Networks (Gonzales and Perny, 2004).

The task with more research in the Preference Learning area is the Learning to Rank. This task arises
from the characteristic of requiring a relationship of order between preferences. The task can be divided
into three categories: Label Ranking (Vembu and Giértner, 2011), Instance Ranking (Bergeron et al.,
2008) and Object Ranking (Nie et al., 2005). Label ranking is a generalization of the traditional Machine
Learning Classification task. This ranker makes an ordering of the set of classes of a problem for each
instance of the problem. An example is the categorization of a news story, where it can be included in
several topics simultaneously, such as sports and entertainment. Since the classes of a problem have an
order among themselves, the instance ranking task consists of ordering the instances of a problem. The
instances belonging to the “highest” classes precede the instances that belong to the “lower” classes. An
example is the categorization of articles submitted to a congress: reject, weak reject, weak accept and
accept. The task will produce a list where the articles will appear according to their classes, from accepted
to rejected ones. In object ranking an instance is not related to a class. This task’s objective is, given a
subset of items referring to the total set of items, to produce a ranking of the objects in that subset—for
example, the ranking of web pages by a search engine.

Pairwise Label Ranking (Hiillermeier et al., 2008) is a Preference Learning technique used specifically
for the Label Ranking problem and is based on preference relationships learning. This technique consists
of learning preferences by decomposing the problem into small binary preference problems, that is,
preference between pairs of items. The Pairwise Label Ranking technique is based on Pairwise Preference
Learning, which in turn is based on Pairwise Classification. Pairwise Classification is well known in
the context of Classification (Fiirnkranz, 2002) involving more than one class. Instead of using a single
classifier that must make predictions between m classes, given a set L of m classes, learning binary
preferences generates m(m — 1) /2 binary classifiers, where a classifier M; ; only predicts between classes
i, j inL. With this, each classifier M; ; prediction is treated as a vote for the class i or j, and, in the end, the
most voted category is returned as a prediction. The Pairwise Classification technique can be generalized
to Pairwise Preference Learning (Fiirnkranz and Hiillermeier, 2003). The generalization consists of using
each instance with a preference type a > b, representing that a is preferable to b, as a record of the training
base of a classifier M, ; which returns 1 as a prediction that a is preferable to b and 0 otherwise. With
this, each classifier M; ; also represents the preference between two categories, and the combination of the
preferences expressed by each classifier builds a complete preference relationship. For this, the strategy
defined by Pairwise Label Ranking uses the prediction of each classifier as a vote and uses a voting system
that defines an ordered list of preferences.

To bringing together recommender systems and preference learning, MovieLens (Miller et al., 2003)
is a good example. MovieLens, recommends films based on ratings, and the recommendation problem is
defined in terms of a triples set (user, item, rating) representing a system user’s ratings for a given item.
Other approaches using the MovieLens dataset, in general, focus on learning a Machine Learning model
capable of predicting a user’s evaluation for an item not yet evaluated. With a trained Machine Learning
model, the best-rated n items are recommended. However, the ordering of the items in a descending way
in relation to the predicted evaluations does not necessarily mirror the user’s order of preference. This is
because the models used for the predictions are trained and evaluated based on error metrics. The simple
exchange of evaluation between two pairs of items defines the same error measure as the configuration
with the correct evaluations. In this way, the recommendation would have its efficiency degraded.

10/35

439 Ranking algorithms can be used to alleviate the recommendation ordering problem, since they are
a0 prepared to obtain the order relationship between the predicted evaluations. (Pessiot et al., 2007) uses
a1 the approach of exchanging the predictive model for a ranking model using the MovieLens (Harper
42 and Konstan, 2016) dataset. Lu et al. (2012) refined the Area Under the Curve (AUC) metric that is
a3 traditionally used in recommender systems that work with custom ranking. A new metric called SAUC has
44 been proposed, which adds a term to the original equation of AUC, which aims to increase the likelihood
45 that an unwanted item, but that fulfills the user’s preferences, is well placed in a recommendation list.

s Borda Count
47 An election is a process that, in a democratic environment, aims to seek a consensus between conflicts and
«s interests (Koffi, 2015). Generally, in an election, there is a set of candidates and a set of voters. Voting
(U a9 Theory (Taylor and Pacelli, 2008) is an area of Mathematics aimed at the study of voting systems.
o~ 450 In an election between two candidates, it is simple to achieve a fair election, obeying the majority
>§ \0451 criterion (Strgm et al., 1990), that is, when the winning candidate obtains more than half the votes of the
\A\h l '}:0 «s2 election. However, elections involving more than two candidates require a more robust voting system.

1st choice A
2nd choice B
3rd choice C
4th choice D

k& 453 With this in mind, other two voting systems developed to handle the case of elections with more than two
w 454 candidates are Preferential Voting (Karvonen, 2004) and Borda Count (Emerson, 2013). In Preferential
W a5 Voting voting system, voters vote in an ordered list from the most preferred to the least preferred candidate.
U a6 The elected candidate is the one most often chosen as the most preferred by voters.
Q\\ 457 Borda Count is also a voting system in which voters draw up a list of candidates arranged according
O \b a8 to preference. Each position in the user’s preference list is assigned a score. In a list of n candidates, the
Q _ ,,) a9 candidate in the i position on the list receives the score n —i. To determine the winner, the sum of each
A w0 candidate’s scores for each voter is the final score, and the candidate with the highest score is the elected
/b, 41 One.
U\(b\%l.)p Position / Votes | 14 T“L L_ X

hepl b
Scan ~ Mefe df/‘l‘l,:lk’L

Table 1. Candidate votes example. £ & ﬂ-,‘ou , mﬂ?

462 An example of how Borda Count works can be given with the help of Table 1, in which there are
43 four candidates: A, B, C and D. In Table 1 the columns represent the number of votes received by the
s« candidates, and the lines represent the preference positions occupied by each candidate. As there are four
candidates, the candidate preferred by a voter receives three points. The calculation of the score for the
."M?Q candidate D is performed as follows:

> 0w ol
> QT e
> O|g| = &
> @ o o=

co
\}br‘l 467 * 8 voters elected the candidate D as the preferred candidate; 8 « 3 = 24 points
‘\‘, ’ J(468 * 441 voters elected the candidate D as the second most preferred candidate; 5 * 2 = 10 points
Wh
b“cw GJ" 469 * 10 voters elected the candidate D as the third most preferred candidate; 10* 1 = 10 points
Wv‘\'w q’ 1. 470 * 14 voters elected the candidate D as the least preferred; 14 %0 = 0 points
(R o an * Candidate D total score =24 +10+10+0=
\A’\’ \‘ Candidate D 1 244+10+10+0=44
[o4
» 472 Voting algorithms were also used together with recommender systems previously. In the Collaborative
v/ 473 Filtering recommender systems, after recovering the users who have the profiles most similar to another
M\ 474 USer, it is necessary to choose which items these users liked best to make a good recommendation. At this

475 point in choosing the items to recommend, given the various opinions, voting algorithms’ use becomes
476 an interesting tool. Rani et al. (2017) proposed a recommendation algorithm based on clustering and
a7 Voting Theory that can be applied in different domains. The algorithm consists of extracting clusters with
a7z KMeans (Kanungo et al., 2002) and using the cluster to which a recommendation target user belongs
e to perform Collaborative Filtering. The KMeansPlus"°8 P°" variant is used to lessen the impact of the

&. \f’\'\((* 11/35

iPad MAM

iPad MAM

iPad MAM

iPad MAM

u\\:‘ 2 \e

Wit a8

oCt
M\Q N\r{

(oo &

0

oQ

-
\ version. Meanwhile, the third version is a proposal for the recommendation of values for n parameters at
499

40 random choice of centroids on the cluster-based recommendation. After clustering and selecting the target
a1 user’s cluster, the Borda Count is used to select the most popular items in the cluster and use them in the
a2 recommendation. Making a performance comparison between the Borda Count and the Copeland Score
a3 Al-Sharrah (2010) in the recommendation for Collaborative Filtering, the Lestari et al. (2018) method
s« makes a clustering based on the age demographic data and alternates the two techniques in making the
45 recommendation. Still using the Borda Count, Tang and Tong (2016) proposes the BordaRank. The
as method consists of using the Borda Count method directly in the sparse matrix of evaluations, without
47 predictions, to make a recommendation.

« FREEP - FEATURE RECOMMENDER FROM PREFERENCES

a9 To address the workflow parameter recommendation problem , we propose FReeP, Feature Recommender
a0 from Preferences approach. FReeP suggests parameter values that maximize a probability to make the
a1 workflow run flawlessly until its end. As input, the approach receives a user preferences set, which makes
492 personalized recommendations. Machine Learning and Preference Learning techniques are the basis of
403 the recommendation approach.
494 The recommendation approach is presented in three versions. In the first two versions, the algorithm
405 aims at recommending a value for only one parameter at a time. While the first version assumes that all
a6 parameters have a discrete domain, the second version is an extension of the first, dealing with cases
e,‘wwhere a parameter presents a continuous domain, in addition to other improvements regarding the first
498

a time.
500 FReeP algorithm can be seen as a hybrid Recommendation technique since Collaborative Filtering,
sor and Content-Based concepts are used. We start by presenting the first version of the algorithm, which
so2, Makes the recommendation for a single parameter at a time and helps to evaluate the hypothesis. Then, we
s03, Yollow to the improved version with some variants to decrease performance problems. Finally, a generic
4 rsion of the algorithm is presented, aiming at making the recommendation of values for multiple (n)
os parameters at a time.

ss Discrete Domain Parameter Value Recommendation

s Given a provenance database D, a parameter y € Y, where Y is the workflow parameters set, and a
s preferences or restrictions set P defined by the user, where p; € P(y;,valy), the first FReeP approach
so9 described here aims to solve the problem of recommending a r value for y, so that the P preferences
sto together with the r recommendation to y maximize the chance of workflow activation to run to the end.
511 Figure 5 presents an architecture overview of FReeP’s first version. The algorithm receives as input
sz the provenance database, a target workflow and user preferences. User preferences are also input data as
si3 this work is based on the premise that the user already has a subset of parameters for which has already
si4 defined values to use. In this version of the proposed approach, user preferences are only allowed in the
si5 form a = b, where a is a parameter, and b is the parameter desired value.

516 It is important to note that, based on the user’s preferences, it would be possible to query the provenance
517 database from which the experiment came from to retrieve records that could assist in the search for other
sts parameters values that had no preferences defined. However, FReeP is based on a model generation that
st9 generalizes the provenance database, removes the user’s need to perform this query and can still provide
s20 results that the simple data query would not be able to return.

Hypotheses Predictions Election

:
Iter Vertical Filter
&
s =

Rule a
Partition *){ Partition 2 bﬁ*){ Partition 2 '\ r
Rule 2 I -t
. N . Model 2
Value 1 Value 3 Valued Value n

n Y
> Partition n [—-1¥ Partition’ | _| | [
Model 1

Figure 5. FReeP Architecture Overview.

12/35

iPad MAM

iPad MAM

521 To obtain a recommendation from FReeP’s first version, seven steps are required: partitions gener-
s22 ation, horizontal filter, vertical filter, hypothesis generation, predictions, aggregation and finally a
523 election-based recommendation is performed. Algorithm 1 shows the proposed algorithm to perform
s the parameter recommendation, considering the preferences for a subset or all other workflow execution
s25 parameters.

s26 Algorithm 1 First Version of FReeP

é{ \A \ Require: (-7 Mo fe Olﬁa,t V\-°\W"' E&MQ D\-;W
\J\f OIIL ¢ Q y : recommendation targf?t parameter

P : {(param,val) | param is a workflow parameter, val is the preference value for param}
~ D : {{(param} vall),...,(param} vall), ...(param,val}" [is the workflow parameters number,
¢ T ovdesilao {{(param},vatl), ..., (param vall), .. (param" vaii")} |

m is the provenance datas&tingth} A
W 527 : , I, \JH Ow Mah
\/\[\AW(" '*" : procedure FREEP(y, P, D) .[M_Le‘s &Q_

1

s 2 partitions < partitions_generation(P,D) ?W v "Hno 2
3 votes < 0

oTAMS = I uave. a Palometes |
530 4 for each partition € partitions do
_, 531 5 data < horizontal _filter(D, partition)
(6QC'U7W sz 6 data < vertical _filter(data, partition) Q,c'l‘lb ‘hog.,f/

53 Tt datd’ < preprocessing(data) -Z

s 8 model < hypothesis_generation(datd',y) 'F'ﬁ‘ﬂ

55 O vote < recommend(model,y)

s 10: votes < votes\U{vote}

s 11 recommendation < elect_recommendation(votes)

sa0 12: return recommendation

541 The algorithm input data are:

542 * Target parameter for which the algorithm should make the recommendation, y

543 User preferences set, such as a list of key-values, where the key is a workflow parameter and value

544 is the user’s preference for that parameter, P

545 ¢ Provenance database, D

546 It is important to note that the storage of provenance daga for an experiment may vary from one WfMS

sz to another. For example, SciCumulus, which uses a provetlance representation derived from PROV, stores
s provenance in a relational database. Using SciCumulus example, it is trivial for the user responsible for
se9 the experiment to elaborate a SQL query that returns the provenance data related to the parameters used
ss0 in each activity in a key-value representation. The key-value representation can be easily stored in a csv
st format file, which is the required format expected as provenance dataset in FReeP implementation. Thus,
ss2 convert provenance data to the csv format is up to the user. Still, regarding the provenance data, the records
ss3 - present in the algorithm input data containing information about the parameters must be related only to
ss¢ executions that were successfully concluded, that is, there was no failure that resulted in the execution
ss5 abortion. It should be noted that the inclusion of components, such as the conversion of provenance and
ss6 successful executions parameters selection, in the algorithm, would require implementations for each type
ss7 - of WEMS, which is out of the scope of this article.

558 The initial step, partitions_generation, builds partitioning rules set based on the user’s preferences.
sse Initially, the preference set parameters P are used to generate a powerset. This first step returns all
seo generated powerset as a partitions ruleset. Figure 6 shows an example of how this first step works, with
st some parameters from SciPhy workflow.

562 Then, FReeP initializes an iteration over the partitioning rules generated by the previous step. Iteration
se3 begins selecting only the records that follow the user’s preferences contained in the current ruleset, named
se« in the algorithm as horizontal filter. Figure 7 uses the partitions presented in Figure 6 to show how the
ses horizontal filter step works.

13/35

iPad MAM

iPad MAM

iPad MAM

iPad MAM

iPad MAM

566

567

568

569

570

571

572

573

574

(oo b \
g

575

576

577

578

579

580

581

Preferences / partitions
Parameters in powerset
num_aligns == 10 Preferences [[num_aligns],
modell == "WAG' [num_aligns, modell] [modell],
[num_aligns, modell]]

Figure 6. Example of FReeP’s Partitioning Rules Generation for Sciphy provenance dataset using user’s
preferences.

Provenance dataset

num_aligns [length| modell probl model2 prob2
10.0 854.0 \WAGHI+F| 4634.242459 | WAGHI+F | 4634.242459

11.0 339.0 |WAG+I+F| 2012.681247 | WAG+] (2052.864650

10.0 854.0 [WAG+I+F | 4634.242459 | WAGHI+F | 4634.242459

Current Partition rule Preferences Selection
[num_aligns] num_aligns == 10.0

EA’\\ b\\t.
Figure 7. Example of FReeP’s Horizontal Filter using one Partitioning Rule for the Sciphy provenance
dataset.

num_aligns length| modell probl model2 prob2

partitions

Horizontal
Filter

[[num_aligns], [—1° Iteragdo», 10.0 854.0 |WAG+I+F | 4634.242459 | WAGHI+F | 4634.242459
[modell],
[num_aligns,
modell]]

10.0 854.0 \WAGHI+F| 4634.242459 | WAGHI+F | 4634.242459

Subsequently, in the vertical filter step, there is a parameter removal that aims to keep only the
recommendation target parameter, the parameters present in the current set of partitioning rules, and those
that are not the recommendation target parameter nor are present in any of the original user preferences.
The last parameters mentioned remain because, in a next step, they can help to build a more consistent
hypothesis. Formalizing: let PW be all workflow parameters set, PP the workflow parameters for which
preference values have been defined; PA the parameters present in the partitioning rules of an iteration
over the partitioning rules and PV = (PW — PP)U (PPN PA) U {y}; the output from vertical filter is the
data from horizontal filter for parameters in PV. Figure 8 uses data from the examples in Figures 6 and
7 to show how the vertical_filter step works.

Provenance dataset after Horizontal Filter

num_aligns|length| modell | probl model2 prob2

Workflow Parameters
[num_aligns, length, modell
probl model2, prob2]

100 | 854.0 |WAGHI+F| 4634.242459 | WAG+I4F | 4634.242459

100 | 854.0 | WAGHF| 4634.242459 | WAGHI+F | 4634.242459

num_aligns length| probl model2 prob2

[num_aligns, length, 100 [8540 4634242459 | WAGH+F | 4634.242459
probl. model2, prob2]

100 |854.0 4634.242450 | WAGHI+F | 4634242459

[length,probl model2,prob2]

Preferences -
Parameters in
_ Preferences
um algns 100 {num_slgns, model 1]

(Current Partition Rule|
[num_aligns]

Target Parameter
y = model2 J

[num_aligns]

Figure 8. FReeP’s Vertical Filter step.

The chain comprising the partitions generation and the horizontal and vertical filters is crucial to
minimize the Cold Start problem (Lika et al., 2014). Cold Start problem is caused by the lack of ideal
operating conditions for an algorithm, specifically in the recommender systems. This problem occurs,
for example, when there are few users for the neighborhood definition with a similar user profile or lack
of ratings for enough items. FReeP can also be affected by Cold Start problem. If only all preferences
were used at one time for partitioning the provenance data, in some cases, it could be observed that
the resulting partition would be empty. This is because there could be an absence of any of the user’s

14/35

iPad MAM

iPad MAM

iPad MAM

iPad MAM

iPad MAM

iPad MAM

references in the provenance data. Therefore, generating multiple partitions with subsets of preferences
decreases the chance of obtaining only empty partitions. However, in the worst case where none of the
user’s preferences are present in the workflow provenance, FReeP will not perform properly, thus failing
to make any recommendations.

After the partitions generation and horizontal and vertical filters are discovered, there is a filtered data

ss1 set that follows part of the user’s preferences. These provenance data that will generate the hypotheses,
ssy represented by Machine Learning models, have numerical and categorical domain parameters. However,

ssd traditional Machine Learning models generally work with numerical data because the generation of these
s models, in most cases, involves many numerical calculations. Therefore, it is necessary to codify these
sef categorical parameters to numerical representation. The technique used here to encode categorical domain
sed parameters to numerical representation is One-Hot encoding (Coates and Ng, 2011). This technique
se3) consists of creating a new binary attribute, that is, the domain of this new attribute is O or 1, for each
se4) different attribute value present in dataset.

595 The encoded provenance data allows building Machine Learning models to make predictions for the
see| target parameter under the step hypothesis_generation. The hypothesis generated has parameter y as
so7 class variable, and the other parameters prefent in vertical filter step output data are the attributes used in
sof generalizing the hypothesis. In this algoritlim approach, the model representing the generated hypothesis

o \\
w\ _“O sed can be a classifier, where the model’s pregliction is a single recommendation value, or a ranker, where

e00, its prediction is an ordered list of values, ¢f the value most suitable for the recommendation, to the least
e01) suitable. -It' ’s ; 58 X
602 With a hypothesis created, we can use it to recommendohe ValLY for the target parameter. This step is
eos represented in FReeP as recommended, and the recommendation of parameter y is made from the user’s
eo4 preferences. It is important to emphasize that the model’s training data may contain parameters that the
eos user did not specify any preference. In this case, an attribute of the instance submitted for the hypothesis
e0s does not have a defined value. To clarify the problem: let PW be all workflow parameters set, PP the
eo7 parameters of workflow for which preference values have been defined; PA the parameters present in the
s partition rules of an iteration over the partitioning rules; and PV = (PW — PP)U (PPN PA) U{y}, there
e9 may be parameters p € PV | p ¢ PP, and for those parameters p there are no values defined a priori. To
st0 handle this problem, the average values present in the provenance data are used to fill in the numerical
e11 attributes’ values and the most frequent values in the provenance date for the categorical attributes.

612 All predictions generated by recommend step, which is within the iteration over the partitioning rules,
e13 are stored. The last algorithm step, elect_recommendation, uses all of these predictions as votes, which
s14 will define which value should be recommended for the target parameter. When an algorithm instance is
615 setup to return a classifier type model in hypothesis_generation step, the election takes place through the
st6 Mmajority strategy most frequent value, that is, the most voted is elected as the recommendation. On the
e17 other hand, when an algorithm instance is setup to return a ranker type model in hypothesis_generation
s1s step, the strategy is Borda Count. The use of the Borda Count strategy seeks to take advantage of the list
s19 Of lists form that the saved votes acquire when using the ranker model. This list of lists format occurs
e20 because the ranker prediction is a list, and since there are as many predictions as partitioning rules, the
ezt storage of these predictions takes the list of lists format.

«2 Discrete and Continuous Domain Parameter Value Recommendation

w62s The first version of FReeP allowed evaluating the algorithm’s proposal. The proposal showed relevant
e« results after initial tests (presented in next section), so efforts were focused on improving its performance
e2s, and utility. In particular, the following problems have been identified:

¢, < 626 1. User has some restriction to set his/her parameters preferences;
\[b‘ 627 2. The categorical domain parameters when used as a class variable;
-5 "] 628 3. Machine Learning models used in FReeP to represent the hypotheses created, classifier and ranker
\ 629 are used only for categorical class parameters;
1!;‘30 4. All partitions generated by workflow parameters powerset present in user preferences are used as
Wk' o partitioning rules for the algorithm.
632 Regarding problem 1, in Algorithm 1, the user was limited to define his preferences with the equality

e33 operator. Depending on the user’s preferences, the equality operator is not enough. With this in mind, the

15/35

BB

P4

iPad MAM

iPad MAM

iPad MAM

iPad MAM

iPad MAM

iPad MAM

634

635

636

637

638

639

640

641

642

643

644

645

646

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

second version of FReeP allows for the user to have access to the relational operators: ==, >, >=, <, <=
and ! = to define his/her preferences. In addition, two logical operators are also supported in setting
preferences: | and &. Preferences with combination of supported operators is also allowed, for example:
(a>10)|(ar <5).

However, by allowing users to define their preferences in this way we create a problem when setting
up the instances for recommendation step. As seen, PW represents all workflow parameters set , PP are
workflow parameters that preference values have been set; PA the parameters present in the partitioning
rules of an iteration over the partition rules; and PV = (PW — PP) U (PPN PA)U{y}. Thus, there may be
parameters p € PV | p ¢ PP, and for those parameters p, there are no values defined a priori. As in this
second algorithm version, since the user’s preferences can be expressed in a more relaxed way, and it is
necessary to create the instances used in the step recommendation that include a range (or set of values).
To handle these cases, all possible instances from preference values combinations were generated. In case
the preference is related to a numerical domain parameter and is defined in terms of values range, like
a <10.5, FReeP uses all values present in the source provenance database that follows the preference
restriction. It is important to note that for both numerical and categorical parameters, the combination of
possible values are those present in the provenance database and respect the user’s preferences. Then,
predictions are made for a set of instances using the hypothesis learned during the training phase.

Regarding problem 2, the provenance database, which is one algorithm input data, in general, present
attributes with numerical and categorical domains. As before, it is FReeP converts categorical values to
numerical ones.

This pre-processing step was included in Algorithm 2 as preprocessing_classes step. The preprocess-
ing consists in exchange each distinct categorical value for a distinct integer. Note that the encoding of
the parameter used as a class variable in the model generation is different from the encoding applied to
the parameters used as attributes represented by the step preprocessing.

Concerning problem 3, using Machine Learning models developed for the classification task for
continuous numerical domain class variables degrades the performance results. This problem happens
when classifier and ranker are used in the first version of FReeP. Performance degradation is because the
numerical class variables are considered as categorical. For continuous numerical domain class variables,
the Machine Learning models suggested are Regressors (Myers and Myers, 1990). In this way, the
second version of FReeP checks the parameter y domain, which is the recommendation target parameter,
represented as model_select step in Algorithm 2.

To analyze problem 4, it is important to note that after converting categorical attributes One-Hot
encoding in preprocessing step, the provenance database will have a considerable increase in the number
of attributes. Also, after categorical attributes encoding in preprocessing step, the parameters extracted
from the user’s preferences, are also encoded for partitions_generation step. In Algorithm 1, the
partitioning rules powerset is calculated on all attributes derived from the original parameters after One-
Hot encoding. If FReeP uses the powerset generated from the parameters present in the user’s preferences
set as partitioning rules (in the partitions_generation step), it can be very costly. Thus, using the powerset
makes the complexity of the algorithm becomes exponential according to the parameters present in the
user’s preferences set. Alternatives to select the best partitioning rules and handle the exponential cost are
represented in Algorithm 2 as optimized_partitions_generation step. The two strategies proposed were
based on Principal Components Analysis (PCA) (Garthwaite et al., 2002) and the Analysis of variance
(ANOVA) (Girden, 1992) statistical metric.

The strategy based on the PCA consists of extracting x principal components from all provenance

database, pcap, and for each pt € partitions, pcai,,, which are pr partition principal components. Then,

, and from that are selected n partitioning rules that generated

the norms are calculated H pcap — pca;,

pcaﬁ,t such that ||pcap — pca;, resulted in the lowest calculated values. Note that both x and n

are defined parameters when executing the algorithm. In summary, the PCA strategy will select the
partitions where the main components extracted are the closest to the principal components of the original
provenance dataset.

ANOVA strategy seeks the n partitioning rules that best represent D, selecting those that generate
partitions where the data variance is closest to D data variance. In short, original data variance and data
variance for each partition are calculated using the ANOVA metric, then partitions with most similar
variance to the original provenance data are selected. Here, the n rules are defined in terms of the data

16/35

iPad MAM

688
689

690

691

692
693
694
695
696
697
698
699
700
701

702

703
705

708

708
709
710
71
712
713
714
715
716
717
718
719
720
721

722

vwo ® v 727
W\ Ih" 729
.{ " 730

VJ\\ P 731

-Lfl (V 732

\od. y(733

percentage required to represent the entire data set, and that parameter must also be defined in algorithm
execution. Using PCA or ANOVA partitioning strategies means that the partitioning rules used by FReeP
can be reduced, depending on the associated parameters that need to be defined.

Algorithm 2 Second Version of FReeP

Require:

y : recommendation target parameter

P : {(param,val) | param is a workflow parameter, val is the preference value for param}

D : {{(param!,val}), ..., (param vall),...(param" ,val!")} | is the workflow parameters number,

m is the provenance dataset length}

1: procedure FREEP(y, P, D)

2 D' < classes_preprocessing(D)

3 partitions < optimized_partitions_generation(P,D’)
4 votes < 0

5: for each partition € partitions do

6: data < horizontal_filter(D', partition)

7 data + vertical _filter(data, partition)

8 model _type < model _select(data,y)

9: datd’ < preprocessing(data)

10: model < hypothesis_generation(data',y,model _type)
11 vote < recommend(model,y)

12: votes <— votes U {vote}

13: recommendation < elect_recommendation(votes)
14: return recommendation

Recommendation for » Parameters at a time

Algorithms 1 and 2 aims at producing single parameter recommendation at a time. However, in a real
usage scenario of scientific workflows, the WfMS will probably need to recommend more than one
parameter at a time. A naive alternative to handle this problem is to execute Algorithm 2 for each of the
target parameters, always adding the last recommendation to the user’s preference set. This alternative
assumes that the parameters to be recommended are independent random variables. One way to implement
this strategy is to use a classifiers chain (Read et al., 2011).

Nevertheless, this naive approach neglects that the order in which the target parameters are used during
algorithm interactions can influence the produced recommendations. The influence is due to parameter
dependencies that can be found between two (or more) workflow activities (e.g., two activities consume a
parameter produced by a third activity of the workflow). In Figure 9, the circles represent the activities of
workflow, so it can be seen that activities 2 and 3 are preceded by activity 1 (e.g., they consume the output
of activity 1). Using this example, we can see that it is possible that there is a dependency relationship
between the parameters param2 and param3 with the parameter paramli. In this case, the values of
param?2 and param3 parameters can be influenced by parameter paraml value.

In order to deal with this problem, FReeP leverages the Classifiers Chains Set (Read et al., 2011)
concept. This technique allows for estimating the joint probability distribution of random variables based
on a Classifiers Chains Set. In this case, random variables are the parameters for which values are to
be recommended, and the joint probability distribution concerns the possible dependencies between
these parameters. The Classifiers Chains and Classifiers Chains Set are techniques from Multi-label
Classification (Tsoumakas and Katakis, 2007) Machine Learning task.

An architecture overview for the proposed algorithm named as Generic FReeP that recommends
n parameters simultaneously is shown in Figure 10. The architecture presented in Figure 10 shows
that the solution developed to make n parameter recommendations at a time is a packaging of FReeP
algorithm to one parameter. This final approach is divided into five steps: identification of parameters
for the recommendation, generation of ordered sequences of these parameters, iteration over each of the
sequences generated with the addition of each recommendation from FReeP to the user preferences set,
separation of recommendations by parameter and finally the choice of value recommendation for each
target parameters. The formalization can be seen in Algorithm 3.

17/35

iPad MAM

iPad MAM

737

754

755
789
788
760

761

762

param2

paraml

3

param3

Figure 9. A generic workflow representation: circles represent activities, arrows between the circles
represent the link between activities, and the labels for each circle represent the configuration parameters
for each activity.

Generic FReeP

Recomendations Per Parameter
Recommendation
aggregator

= gilide

Parameters Sequences
Extractor Generator

=
e

)

Election

i

Recommendation

Parameter / = val /
Parameter 2 = val 2

Parameter mn = val m

Value 1 Value 3 Value 4 Value n

- "
FReeP ¢

Figure 10. Generic FReeP architecture overview

Algorithm 3 Generic FReeP

Require:

P : {(param,val) | param is a workflow parameter, val is the preference value for param}
D: {{(param},val}), ..., (param ,vall),...(param]" ,vall")} | is the workflow parameters number,
m is the provenance dataset length}

N :number of random sequences orders to be generated

1: procedure GENERIC FREEP(P, D, N)

2 target _parameters <— parameters,extractOr(P, D)

3 votes < 0

4: for each param € target_parameters do

5: votes < votes U{(param,|])}

6 ordered_sequences < sequence_generator(target_parameters,N)
7 for each sequence € ordered_sequences do

8 preferences tmp < P

9: for each param € sequence do
10: recommendation <— FReeP(param, pre ferences_tmp,D)
11 votes[param] < votes|param] U recommendation
12: new_pre ference < generate_pre f erence(param,recommendation)
13: preferences_tmp < preferences_tmp\Unew_preference
14: response < 0
15: for each (param,values) € votes do
16: response[param) < most voted (values)
17: return response

The first step parameters_extractor extracts the workflow parameters that are not present in the
users’ preferences and will be the targets of the recommendations. Thus, all other parameters that are not
in the user’s preferences will have recommendation values.

18/35

iPad MAM

763 Lines 4 and 5 of the algorithm comprise the initialization of the variable responsible for storing
74 the different recommendations for each parameter during the algorithm execution. Then, the list of
765 all parameters that will be recommended is used for generating different ordering of these parameters,
76 indicated by sequence_generators step. For example, w be a workflow with 4 p parameters and let u be
767 an user with pr| and pr3 preferences for the p; and p3 parameters respectively. The parameters to be
768 recommended are p; and p4, in this case two possible orderings are: {p», ps} and {p4, p»}. Note that the
769 number of sorts used in the algorithm are not all possible sorts, in fact N of the possible sorts are selected
770 at random.
7 Then, the algorithm initializes an iteration over each of the sorts generated by the step sequence_generators.
772 Another nested iteration over each parameter present in the current order also begins. An intuitive explana-
773 tion of the algorithm between lines 9 and 13 is that each current sequence parameter is used together with
774 the user’s preferences for its recommendation. At the end of the recommendation of one of the ordering
)oh-\-g 77s"Wparameters, the recommendation is incorporated into the preferences set used in the recommendation of
“the next ordering parameter. In this iteration, the recommendations are grouped by parameter to facilitate
N\‘/J\g the election of the recommended value for each target parameter.
778 The step of iterating over the generated sequences, always adding the last recommendation to the set
\e 779 of preferences, is the Classifiers Chains concept. To deal with the dependency between the workflow pa-
780 rameters that can influence a parameter value recommendation, the step that generates multiple sequences
781 of parameters, combined with the Classifiers Chains, is the Classifiers Chains Set concept.
782 Finally, to choose the recommendation for each target parameter, a vote is taken on lines 15 and 16.
783 The most_voted procedure makes the majority election that defines the target parameter recommendation
78« value. This section presented three algorithms that are part of the FReep approach developed for the
785 parameter recommendation problem in workflows. The proposals covered two main scenarios for
786 parameters value recommendation (single and multiple parameter at a time).

w EXPERIMENTAL EVALUATION

788 All FreeP algorithms presented in this article were implemented using the Python programming language.
789 Some of the most used Python libraries to develop Machine Learning tools were used, for example
70 Scikit-Learn (Pedregosa et al., 2011), which provides several classifiers and regressors, in addition to
791 tools that assist in the proposal evaluation, such as K Fold Cross Validation (Arlot et al., 2010); numpy
72 (Walt et al., 2011), a numerical data manipulation library; and pandas (McKinney, 2011), which provides
793 tabular data functionalities.

794 To measure recommendations performance when the parameter is categorical, precision and recall
795 are used as metrics. Precision and recall are metrics widely used for the quantitative assessment of
796 recommender systems (Herlocker et al., 2004) (Schein et al., 2002). Equation 5 defines precision and
797 Equation 6 defines recall, following the recommender vocabulary, where T'R is the correct recommendation
798 set and R is all recommendations set. An intuitive explanation to precision is that it represents the most
799 appropriate recommendations fraction. Still, recall represents the appropriate recommendation fraction
s0 that was made.

801 .. ITROR|| ITRNR|| 1 & 2
precision = ———— (5) recall = ————— (6) MSE=-) (RV-TV)* (7)
IR]] ITR]| n ;
802 When the parameter to be recommended is numerical, the performance of FReeP is evaluated with

g3 Mean Square Error (MSE). The MSE formula is given by Equation 7 where »n is the recommendations
s+ number, TV is the correct recommendation values set, and RV is the recommended values set.

ws Dataset “V"‘bﬁf, lN'e.er'M.?

ss The datasets used are provenance data extracted from past executions of the workflows SciPhy (Ocaiia
g7 etal., 2011) and Montage (Hoffa et al., 2008). SciPhy is a Bioinformatics workflow aiming at generating
sos phylogenetic trees, that is, trees that represent an organism evolutionary history. Montage is a well-known
g9 astronomical workflow that generates mosaics from several sky images.

810 Table 2 summarizes the main characteristics of the datasets. The Total Records column shows the
s11 amount of data from past executions of each workflow. Each provenance dataset record can be used as an
sz example for generating Machine Learning models during the algorithm’s execution. As seen, the Sciphy
s13 dataset is relatively small compared to Montage. The column Total Attributes shows how many activity

19/35

iPad MAM

iPad MAM

.\t,
)N\' Dataset Total Total Categorical | Numerical
BO Records | Attributes | Attributes | Attributes
Sciphy 376 6 2 4
Montage 1565 8 2 6

815

816

Parameter Minimum Maximum Standard
L'/""\ e ‘, Value Value Deviation
<0 num_aligns 9.000000 11.000000 0.209135
ted 7 length 85.000000 | 1039.000000 | 169.904263
Q(‘Cp f, probl 634.673994 | 5753.519623 | 1103.431812
u\ok prob2 635.874188 | 5795.280758 | 1101.762483

‘A \IS d: \l’\&
814 pararg?ers are present in each workflow execution. Both workflows have the same number of categorical

domain parameters, as can be attested by the column Categorical Attributes. Montage has more numeric
domain parameters than Sciphy, as shown in the Numerical Attributes column.

Table 2. Dataset characteristics.

8

7

818

819

820

821

822

Table 3. Sciphy dataset statistics.

Statistics on the Sciphy dataset numerical attributes are shown in Table 3. This table presents the
minimum and maximum values of each attribute, in addition to the standard deviation. As can be seen,
the attribute probl has the highest standard deviation, and its range of values is the largest among all
attributes. The prob2 attribute has both a range of values and the standard deviation similar to probl. The
standard deviation of the values of num_aligns is very small, while the attribute length has a high standard
deviation, considering its values range.

Parameter Minimum | Maximum Standard
Value Value Deviation

cntr 0.000000 | 134.000000 | 35.335662

ra 83.118935 | 323.898836 | 91.131423

dec -27.166501 | 28.845708 17.903018
crvall 83.118785 | 323.898697 | 91.131426
crval2 -27.166362 | 28.845847 17.903018
crota2 0.000084 | 359.999884 | 178.643719

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

Table 4. Montage dataset statistics.

The Montage dataset numerical attributes, in most of the cases, have smaller standard deviation than
the Sciphy dataset. On average, Montage attributes also have a smaller values range than Sciphy dataset
attributes. Also, in Montage dataset, the crota2 attribute has the largest values range and the largest
standard deviation. The dec and crval2 attributes have close statistics and are the attributes with the
smallest data range and the smallest Montage data standard deviation.

In Figure 11, it is possible to check the correlation between the different attributes in the datasets.
It is notable in both Figure 11a and Figure 11b that the attributes (i.e., workflow parameters) present a
weak correlation. All those statistics are relevant to understand the results obtained by the experiments
performed from each version of FReeP algorithm.

Discrete Domain Recommendation Evaluation

This experiment was modeled to evaluate FReeP’s algorithm key concepts using the first version presented
in Algorithm 1, that was developed to recommend one discrete domain parameter at a time. This
experiment aims at evaluating and comparing the performance of FReeP when its hypothesis_generation
step instantiates either a single classifier or a ranker. The ranker tested as a model was implemented
using the Pairwise Label Ranking technique. K Nearest Neighbors (Keller et al., 1985) classifier is used

20/35

iPad MAM

iPad MAM

?S"""

ot

) |

How T
N V‘;’(@

T tovamt Yherv

wee Sewel

modell_BLOSUM62+G
modell_BLOSUM62+I+F
modell_CPREV+I+G
modell_Dayhoff+G

- 1.00

-0.75

modell JTT+G+F
modell_RtREV+F

model1_RtREV+!

04 modell VT+G
modell_WAG+F

modell_WAG+!

00 modell_WAG++G+F
model2_BLOSUM62+1
model2_CPREV+G
model2_DCMut+G
model2_Dayhoff+I+F
model2 JTT+!
model2_RtREV+G+F
-08 model2_VT+G
model2_WAG+G+F

model2_ WAG+I+G e

0.50

0.25

0.00

=025

gns

model2_WAG+G+F

num_ali

model2_WAG
model2_WAG+I+F

modell_BLOSUMS.

(a) Montage dataset attributes Correlation Matrix. (b) Sciphy dataset attributes Correlation Matrix.

Figure 11. Datasets Attributes Correlation matrices.

s as the classifier of this ranker implementation. The k parameter of K Nearest Neighbors classifier was set
s as 3,5,7 for both the ranker and classifier. The choice of k € {3,5,7} is because small datasets are used,
ss0 and thus k values greater than 7 do not return any neighbors in the experiments.

o w?(ov/ 5 Experiment 1. Algorithm 1 Evaluation Script.
(-]

6“ - d The algorithm is instantiated with the classifier or ranker and a recommendation target workflow

J w(Asv.)arameter.

*W QD" 2. The provenance database is divided using K-Fold Cross Validation (Kohavi, 2001), which consists
of dividing the data set into k parts, and at each step k — 1 parts for model training and 1 parts for
model prediction. In this experiment was used k = 5.

3. Each workflow parameter is used as recommendation target parameter.
4. Each provenance record in test data is used to retrieve target parameter real value.

5. Parameters that are not the recommendation target are used as preferences, with values from current
test record.

6. Then, algorithm performs recommendation and both the result and the value present in the test

\;e w the rscommendation target parameter are stored.

(]
éo e,sv&m Precisig call values are calculated based on all K-Fold Cross Validation iterations.
9& .S((W
e\
w@é‘ R W\IJ
i

ent 1 results are presented and analyzed based on the values of precision and recall, in addition to
the execution time. Figure 12a shows that Algorithm 1 execution with Sciphy provenance database, using

5
D ot W& s both the classifier and the ranker. Only KNN classifier with k = 3 gives a precision greater than 50%.
V)

on

we'
oe

Ao

a5 Also, a high standard deviation is noticed. Even with unsatisfactory performance, Figure 14b shows that

\:% E/m ‘TKNN classifier presented better recall results than those for precision, both in absolute values terms and
a

@' standard deviation, which had a slight decrease. In contrast, the ranker recall was even worse with the
sss precision results and still present a very high standard deviation.

O\J\o 849 Figure 13 shows the execution time spent, in seconds, to obtain the experiment’s recommendations

g0 for SciPhy. The execution time of ranker is much more significant when compared to the time spent by
ss1 the classifier. This behavior can be explained by the fact that the technique used to generate the ranker
g2 creates multiple binary classifiers. Another point to note is that the execution time standard deviation

21/35

iPad MAM

iPad MAM

iPad MAM

iPad MAM

iPad MAM

iPad MAM

iPad MAM

iPad MAM

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

MODEL
s KNNFeatureRecommender
s RankFeatureRecommender

MODEL
mmm KNNFeatureRecommender
s RankFeatureRecommender

PRECISION

(a) Precision results with Sciphy data. (b) Recall results with Sciphy data.

Figure 12. precision and Recall results with Sciphy data.

10000 -
8000 -

$ 6000- MODEL
H

== KNNFeatureRecommender
== RankFeatureRecommender

4000 -

2000 -

Figure 13. Experiment recommendation execution time with Sciphy data.

from ranker is also very high. It is important to note that when FReeP uses KNN, it is memory-based,
since each recommendation needs to be loaded into main memory.

Analyzing Figure 14a (Montage) one can conclude that with the use of k = 3 for the classifier and
for the ranker produces relevant results. The precision for this case reached 80%, and the standard
deviation was considerably smaller compared to the precision results with Sciphy dataset in Figure 12a.
For k € {5,7}, the same results behavior was observed, considerably below those expected.

Considering the precision, Figure 14b shows that the results for k = 3 were the best for both the
classifier and for ranker, although for this case they did not reach 80% (although it is close). It can
be noted that the standard deviation was smaller when compared to the standard deviations found for
precision. One interesting point about the execution time of the experiment with Montage presented
in Figure 15 is that for k € {3,7} the ranker spent less time than the classifier. This behavior can be
explained because the ranker, despite being generated by a process where several classifiers are built,
relies on binary classifiers. When used alone, the classifier needs to handle all class variables values,
in this case, parameter recommendation values, at once. However, it is also important to note that the
standard deviation for ranker is much higher than for the classifier.

In general, it was possible to notice that the use of ranker did not bring encouraging results. In all
cases, ranker precision and recall were lower than those presented by the classifier. Besides, the standard
deviation of ranker in the execution time spent results was also very high. Another point to be noted
is that the best precision and recall results were obtained with the data from Montage workflow. These
results may be linked to the fact that the Montage dataset has more records than the Sciphy dataset.

Discrete and Continuous Domain Recommendation Evaluation
Experiment 1 was modified to evaluate the Algorithm 2 performance, yielding Experiment 2. Algorithm
2 was executed with variations in the choice of classifiers and regressors, partitions strategies, and records

22/35

MODEL
mmm KNNFeatureRecommender
s RankFeatureRecommender

MODEL

PRECISION

me RankFeatureRe

3 5 7
K

3 5 7
K

(a) Precision results with Montage data. (b) Recall results with Montage data.

Figure 14. precision and Recall results with Montage data.

MODEL
W= KNNFeatureRecommender

wb

= RankFeatureRecommender

Figure 15. Experiment recommendation execution time with Montage data.

e7e percentage from provenance database. All values per algorithm parameter are presented in Table 5.

Classifiers Regressors Partition Strategy | Percentage
KNN Linear Regression PCA 30
SVM KNR ANOVA 50
Multi-Layer Perceptron SVR 70
Multi-Layer Perceptron

Table 5. Algorithm 2 values per parameter used in Experiment 2

Results

Experiment 2 results are presented using precision, recall, and execution time for categorical domain
parameters recommendations, while numerical domain parameters recommendations are evaluated using
MSE and the execution time. Based on the results obtained in Experiment 1, only classifiers were used as
Machine Learning models in Experiment 2, i.e., we do not consider rankers.

The first observation when analyzing the precision data in Figure 16a is that ANOVA partitioning
strategy obtained better results than PCA. ANOVA partitioning strategy precision in absolute values is
generally more significant, and variation in precision for each attribute considered for recommendation is
lower than PCA strategy. The classifiers have very similar performance for all percentages of partitions in
the ANOVA strategy. On the other hand, the variation in the percentages of elements per partition also
reflects a more significant variation in results between the different classifiers. The Multi Layer Perceptron
(MLP) classifier, which was trained using the Stochastic Descending Gradient (Bottou, 2010) with a
single hidden layer, presents the worst results except in the setup that it follows the PCA partitioning

23/35

iPad MAM

iPad MAM

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

Experiment 2. Algorithm 2 Evaluation Script.

1. Algorithm 2 is instantiated with a classifier or regressor, a partitioning strategy, percentage data to
be returned by partitioning strategy, and a target workflow parameter.

2. Provenance database is divided using K-Fold Cross Validation, k =5
3. Each provenance record on test data is used to retrieve the target parameter’s real value.

4. A random number x between 2 and parameters number present in provenance database is chosen to
simulated preference number used in recommending target parameter.

5. x parameters are chosen from the remaining test record to be used as preferences.

6. Algorithm performs recommendation, and both result and test record value for the target parameter
are stored.

7. Precision and recall, or MSE values are calculated based on all K-Fold Cross Validation iterations.

CLASSIFIER
. KNN3
NN S
—KNN 7
- SVM
mmm Multi Layer Perceptron

CLASSIFIER
= KNN3
NN S
—KNN 7
- SVM
mmm Multi Layer Perceptron

PRECISION
RECALL

0
PCA-30 PCA50 PCA-70 ANOVA-30 ANOVA-50 ANOVA-70
PARTITIONER

PCA-30 PCA50 PCA-70 ANOVA-30 ANOVA-50 ANOVA-70
PARTITIONER

(a) Precision results with categorical domain Sciphy (b) Recall results with categorical domain Sciphy data.
data.

Figure 16. Precision and Recall results with Sciphy data.

strategy with a percentage of 70% elements in the partitioning. The MLP model performance degradation
may be related to the fact that the numerical attributes are not normalized before algorithm execution.

Recall results, in Figure 16b were very similar to precision results in absolute values. A difference
is the smallest variation, in general, of recall results for each attribute used in the recommendation
experiment. The Multi Layer Perceptron classifier presented a behavior similar to the precision results,
with a degradation in the setup that includes ANOVA partitioning with 70% of the elements in the
partitioning.

Figure 17 shows the average execution time in seconds during the experiment with categorical domain
parameters in each setup used. Execution time of ANOVA partitioning strategy was, on average, half
the time used with the PCA partitioning strategy. The execution time using different classifiers for each
attribute is also much smaller and stable for ANOVA strategy than for PCA, regardless of element partition
percentage.

Analyzing precision, recall, and execution time spent data jointly, ANOVA partitioning strategy showed
the best recommendation performance for the categorical domain parameters of the Sciphy provenance
database. Going further, the element partition percentage generated by the strategy has no significant
impact on the results. Another interesting point is that a simpler classifier like KNN presented results very
similar to those obtained by a more complex classifier like SVM.

Figure 18a brings the data from results obtained for the numerical domain parameter Sciphy provenance
database. The data shows zero MSE in all cases, except for the use of Multi Layer Perceptron in the

24/35

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

CLASSIFIER
== KNN3
= KNN 5
W= KNN 7
- SVM
mmm Multi Layer Perceptron

TIME

PCA-30 PCA-50 PCA-70 ANOVA-30 ANOVA-50 ANOVA-70
PARTITIONER

Figure 17. Experiment recommendation execution time with categorical domain Sciphy data.

le17

REGRESSOR
mm Linear Regression

w —KNR 3

z = KNR S

2- — KNR 7

m—SVR

W Multi Layer Perceptron

REGRESSOR
mmm Linear Regression
= KNR 3
= KNR 'S
m— KNR 7
m SVR
W Multi Layer Perceptron

0
PCA30 PCAS0 PCA-70 ANOVA-30 ANOVA-50 ANOVA-70 PCA-30 PCA-50 PCA-70 ANOVA-30 ANOVA-50 ANOVA-70
PARTITIONER PARTITIONER

(a) MSE results with categorical domain Sciphy data. (b) Experiment recommendation execution time with
numerical domain Sciphy data.

Figure 18. MSE results and recommendation execution time with Sciphy data.

regression. This result can be explained by the small database and the few different values for each
numerical domain parameter. Small values difference per parameter suggests that the regressors have no
work to generate a result equal to what is already present in the database.

Looking at Figure 18b, one can notice that, similar to the categorical domain parameters results,
the execution time of ANOVA partitioning strategy is much less than the time used by the PCA strategy.
Another similar point with categorical domain parameter results is the smaller and more stable ANOVA
strategy results variation.

From all results obtained in the Experiment 2 using Sciphy provenance database, it can be noticed that
the ANOVA partitioning strategy had the best performance. Further precision, recall, and MSE results,
for the Algorithm 2 setup with ANOVA partitioning strategy also proved to be the one that performed
the recommendations in the shortest time, generally in half the time that the PCA partitioning strategy.
Note that the recommendation time can be treated as training time since the proposed algorithm has a
memory-based approach. Finally, the choice of the generated partition size and the classifier or regressor
used have no significant impact on the final result unless the classifier or regressor is based on Multi
Layer Perceptron with the same parametrization used in this work.

Analyzing Figure 19a, precision results obtained with categorical domain parameters from Montage
workflow provenance database is observed that in almost all the experiment setup variations evaluated,
maximum performance is reached. As seen in Table 2, the Montage workflow provenance database used
in the experiments has only two categorical domain parameters. The small variation in possible values in
the database is an explanation for the precision results. The recall results in Figure 19b are similar to the
precision ones.

25/35

iPad MAM

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

CLASSIFIER
- KNN3
W= KNN 5
NN 7
- SVM
mmm Multi Layer Perceptron

CLASSIFIER
KNN3

s KNN 5

- KNN 7

- SVM

mmm Multi Layer Perceptron

PRECISION
RECALL

0
PCA-30 PCA50 PCA-70 ANOVA-30 ANOVA-50 ANOVA-70 PCA-30 PCA50 PCA-70 ANOVA-30 ANOVA-50 ANOVA-70
PARTITIONER PARTITIONER

(@) Precision results with categorical domain Monrage (b) Recall results with categorical domain Montage
data. data.

Figure 19. precision and Recall results with Montage data.

16000 -

CLASSIFIER
— KNN3
- KNN 5
— KNN 7
- SvM
== Multi Layer Perceptron

0
PCA-30 PCA50 PCA-70 ANOVA-30 ANOVA-50 ANOVA-70
PARTITIONER

Figure 20. Experiment recommendation execution time with categorical domain Montage data.

Concerning the results about the experiment time with categorical domain parameters from the
Montage provenance database, presented in Figure 20, one can see that the KNN classifier, k = 3,
with PCA partitioning strategy was the most time-consuming. On the other hand, with the same PCA
partitioning strategy, the Multi Layer Perceptron classifier used less time, but with a wide variation in
recommendation times for different parameters. The ANOVA partitioning strategy continued to be a
partitioning strategy that delivers the fattest recommendations. Still analyzing ANOVA partitioning strategy
results, it is possible to see that the KNN classifier, with k € {5,7}, was the fastest in recommending
Montage workflow categorical domain parameters.

Making a general analysis of results in Figure 19 and 20, the setup that uses ANOVA partitioning
strategy with the KNN classifier, k = 7 it’s the best. This setup was the one that obtained the best results
for precision, recall, and execution time spent simultaneously. MSE results for Montage numerical domain
parameters presented in Figure 21a show that, in general, the MSE was very close to zero for all cases,
except in algorithm setup using PCA partitioning strategy with 30% elements in the generated partition
and the regressor implemented by Multi Layer Perceptron. The MSE and its variation were very close to
zZero.

Regarding the execution time of Experiment 2 for numerical domain parameters recommendations for
Montage data, Figure 21b indicates the same behavior shown by results with SciPhy provenance database.
Using ANOVA partitioning strategy and KNR regressors with k € {5,7} as setup for Algorithm 2 produced
the fastest recommendations.

The experiment execution time of Montage provenance database was much greater than the time used
with the data from the workflow Sciphy. The explanation is the difference in the database size. Another

26/35

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

25000 -

25000 -

20000 -

-t §

REGRESSOR 15000 -
W 15000~ mmm Linear Regression
@ KNR 3

KNR 5
m— KNR 7
= SVR 10000 -
W Multi Layer Perceptron

REGRESSOR
mmm Linear Regression
KNR 3
KNR 5
m— KNR 7
= SVR
mE Multi Layer Perceptron

TIME

10000 -

5000- 5000~

0 o
PCA-30 PCA-50 PCA-70 ANOVA-30 ANOVA-50 ANOVA-70 PCA-30 PCA-50 PCA-70 ANOVA-30 ANOVA-50 ANOVA-70
PARTITIONER PARTITIONER

(a) MSE results with categorical domain Montage data. (b) Experiment recommendation execution time with
numerical domain Montage data.

Figure 21. MSE results and recommendation execution time with Montage data.

observation is that the ANOVA partitioning strategy produces the fastest recommendations. Another point
is that the percentage of the elements in partitioning generated by each partitioning strategy has no impact
on the algorithm performance. Finally, it was possible to notice that the more robust classifiers and
regressors had their performance exceeded by simpler models in some cases for the data used.

Generic FReeP Recommendation Evaluation

A third experiment was modeled to evaluate Algorithm 3 performance. As in Experiment 2, different
variations, following Table 5 values, were used in algorithm execution. Precision, recall, and MSE are
also the metrics used to evaluate the recommendations made by each algorithm instance.

Experiment 3. Algorithm 3 Evaluation Script.

1. n Records from the provenance database were chosen as random examples.

2. m > 2 random parameters were chosen for each example record as preferences, and their values are
the same as those present in the example record.

3. Algorithm 3 was instantiated with a classifier or a regressor, a partitioning strategy, the partitions
percentage to be returned by the partitioning strategy, and the selected m preferences.

4. Each returned recommendation is separated into numeric and categorical and is stored.

5. Precision and recall values were calculated for categorical recommendations and Mean Square
Error (MSE) for numerical recommendations.

Results
Results showed here were obtained by fixing parameter n = 10 in Experiment 3, and using only SciPhy
provenance database. Based on Experiment 2 results, it was decided to use the ANOVA partitioning
strategy with 50% recovering elements from the provenance database. This choice is because the ANOVA
partitioning strategy was the one that obtained the best results in previous experiment. As the percentage
of data recovered by the strategy was not an impacting factor in the results, an intermediate percentage
used in the previous experiment is selected. In addition, only KNN, with k € {5,7}, and SVM were kept
as classifiers, whereas only KNR, with k € {5,7}, and SVR was chosen as regressors. These choices are
supported by, in general, are the ones that present the best precision, recall, and MSE results in Experiment
2.

Table 6 presents the results obtained with the Algorithm 3 instance variations. Each row in the table
represents an Algorithm 3 instance setup. The column that draws the most attention is the Failures. What

27/35

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

Classifier | Regressor | Partitioning Strategy MSE precision | recall | Failures
KNN 5 KNR 5 ANOVA 50 0.0 1.0 1.0 6
KNN 5 KNR 7 ANOVA 50 0.0 1.0 1.0 6
KNN 5 SVR ANOVA 50 1.1075 1.0 1.0 6
KNN 7 KNR 5 ANOVA 50 4279.2240 1.0 1.0 5
KNN 7 KNR 7 ANOVA 50 0.0 1.0 1.0 5
KNN 7 SVR ANOVA 50 0.444 1.0 1.0 5

SVM KNR 5 ANOVA 50 1148.1876 0.75 0.75 6
SVM KNR 7 ANOVA 50 0.0 1.0 1.0 7
SVM SVR ANOVA 50 0.0 1.0 1.0 7

Table 6. Experiment 3 results with Sciphy dataset

happens is that, for some cases, the algorithm was not able to carry out the recommendation together and
therefore did not return any recommendations. It is important to remember that each algorithm setup
was tested on a set with 10 records extracted randomly from the database. The random record selection
process can select records in which parameter values can be present only in the selected record. For this
experiment, the selected examples are removed from the dataset, and therefore there is no other record
that allows the correct execution of the algorithm.

Analyzing Table 6 results, focusing on the column Failures and taking into account that 10 records
were chosen for each setup, it is possible to verify that in most cases, the algorithm was not able to
make recommendations. However, considering only the recommendations made, it can be seen that
the algorithm had satisfactory results for the precision and recall metrics. The values presented for the
MSE metric were mostly satisfactory, differing only in the configurations of lines 4 and 7, both using
the regressor KNR with k = 5. Another point to note is that the algorithm had more problems to make
recommendations when the SVM classifier was used. Furthermore, it is possible to note that algorithm
setups with more sophisticated Machine Learning models such as SVM and SVR do not add performance
to the algorithm, specifically for Sciphy provenance dataset used.

RELATED WORK

Previous literature works had already relied on recommender systems to support scientific workflows. In
general, the works that seek to assist scientists with some type of recommendation involving scientific
workflow are focused on the composition phase. Zhou et al. (2018) uses a graph-based clustering technique
to recommend workflows that can be reused in the composition of a developing workflow. De Oliveira
et al. (2008) uses workflow provenance to extract connection patterns between components in order to
make recommendations of new components for a workflow in composition. For each new component
used in the composition of workflow, new components are recommended. Halioui et al. (2016), uses
Natural Language Processing combined with specific ontologies in the field of Bioinformatics to extract
concrete workflows from works in the literature. After the reconstruction of concrete workflows, tool
combinations patterns , its parameters, and input data used in these workflows are extracted. All this data
extracted can be used as assistance for composing new ones workflows that solve problems related to the
mined workflows.

Yet concerned with assistance during the workflow composition phase, Mohan et al. (2015) proposes
the use of Folksonomy (Gruber, 2007) to enrich the data used for the recommendation of others workflows
similar to a workflow under development. A design workflow tool was developed that allows free
specification tags to be used in each component, making it possible to use not only the recommendation
strategy through the workflow syntax, but also component semantics. Soomro et al. (2015) uses domain
ontologies as a knowledge base to incorporate semantics into the recommendation process. A hybrid
recommender system was developed using ontologies to improve the already known recommendation
strategy based on the extraction of standards from other workflows. Zeng et al. (2011) uses data and
control dependencies between activities, stored in the workflow provenance to build a causality table and
another weights table. Subsequently, a Petri network (Zhou and Venkatesh, 1999) is used to recommend
other components for the composition of workflow.

The works that uses recommender system methods to support the scientific process are closely linked

28/35

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

to the experiment’s composition phase. The execution phase, where there is a need to adjust parameters,
still lacks alternatives. This work proposes a hybrid recommendation algorithm capable of making
value recommendations for one or n parameters of a scientific workflow, taking into account the user’s
preferences.

A very similar problem to the recommendation of parameters in scientific workflows is Machine
Learning algorithms hyperparameters tuning. A Machine Learning model can perform poorly with a set
of hyperparameters, but a simple adjustment of the values can significantly improve the results. Then,
the use of information from similar use cases can also help in the arduous task of looking for additional
parameters to execute a Machine Learning model training process. In order to improve the search for the
best sets of hyperparameters, some initiatives (Hutter et al., 2011) (Bergstra et al., 2011) sought to do a
combination of manual search and Grid Search (Hsu et al., 2003).

Another approach that has shown relevant results and influenced other variants’ development is
Sequential Model-Based Bayesian Optimization. Brochu et al. (2010) proposed the method of optimizing
a function f through an iterative process. The process needs to define a function f, aset T : {to,1,...,t, }
of hyperparameters, 6, a set of values for 7', 6 the search space for 6 and probabilistic model y. The
process starts by calculating f for each of the 6; and the pairs < 6;, f(6;) > are stored. That done, there
is an iteration over three steps: 1) Training the mu model with the pairs < 6;, f(6;) >; 2) Use of the
mu model to select the next 6 set that is promising; 3) New calculation for the pairs < 6/, /(6]) >.
In step 2, the new set 0’ is chosen with the help of a function called acquisition function that seeks a
balance between the choice in the search space and the quality of the improvement obtained. Through this
acquisition function, the number of evaluations by the search space decreases dramatically.

To further assist the use of Machine Learning algorithms, Thornton et al. (2013) proposed a work
that aims to indicate which hyperparameters and which Machine Learning model to use for a dataset.
The proposal was developed based on the classification task and consisted of using the algorithm as an
input hyperparameter in a Sequential Model-Based Bayesian Optimization algorithm. The good results
obtained were due to the use of the implementation of Sequential Model-Based Optimization (Hutter et al.,
2011) and Tree-Structured Parzen Estimator (Bergstra et al., 2011) that allow the search for values of
parameters with restriction related to the Machine Learning model taken into question during an iteration.

Also based on Sequential Model-Based Bayesian Optimization, Bardenet et al. (2013) makes a
replacement for the f function used in Sequential Model-Based Bayesian Optimization by an f' function.
This f’ function is such that it will not be influenced by the different orders of quantities present in
different databases, allowing a choice of an initial set of hyperparameters in a more generalized way,
called Surrogate-Based Collaborative Tuning.

However, the works presented do not consider that the user may prefer values for a subset of parameters.
The present work proposes an algorithm that considers the user’s preferences to make recommendations
for one or n parameters for which there is no defined preference.

CONCLUSION

The scientific process is mostly responsible for several advances in human knowledge. The process
involves observing phenomena from different areas, formulating hypotheses, testing, and refining them.
Arguably, this is an arduous job for the responsible scientist. With the advances in computational
resources, there is a growing concern about helping scientists in scientific experimentation. A significant
step towards a more robust aid was the adoption of scientific workflows as a model for representing
scientific experiments. From the representation of workflows, several tools emerged to support the
management of experiment executions, storage of the data generated during the execution, and analysis of
the data, called Scientific Workflow Management Systems.

Computational execution of the experiments represented as scientific workflows relies on the use of
computer programs that play the role of each stage of the experiment. In addition to input data, these
programs often need additional configuration parameters to be adjusted to simulate the experiment’s
conditions. The scientist responsible for the experiment ends up developing an intuition about the sets of
parameters that lead to satisfactory results. However, another scientist who runs the same experiment will
not have the same experience, which may lead him/her to define a set of parameters that will not result in
a successful experiment.

Several proposals in the literature have aimed at supporting the composition phase of the experiments,
but recommending parameter values for the experiment execution phase is still an open field. This article

29/35

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

presented an algorithm for recommending values for parameters in scientific workflows considering the
user’s preferences. The goal was to allow a new user to express their preferences of values for a subset
of workflow parameters and recommend values for the parameters that had no preference defined. The
developed algorithm was called FReeP: Feature Recommender From Preferences, and has three versions,
all of them relying on Machine Learning concepts and techniques. Two approaches focused on the value
recommendation for one parameter at a time. The third instance addresses recommending values for all
the other parameters of a workflow for which a user preference was not defined.

The first approach was developed as a proof of concept. The second approach addressed the problems
perceived by the first approach and increases the performance of the algorithm. Finally, the third approach
is a proposal for recommending n parameters at once. A different experiment evaluated each approach.
The first experiment showed that a classifier came out as a better option than a ranker for a Machine
Learning model in the algorithm. The second experiment was carried out under several variants of the
second version of the algorithm, using different classifiers, regressors, and partitioners. The second
experiment results showed that the algorithm’s first approach’s changes had the desired effects, increasing
the algorithm’s performance. The third experiment clarifies that the algorithm approach for recommending
simultaneously n parameters still needs to be refined to obtain satisfactory results. Empirically, the FReeP
algorithm was able to make valuable recommendations for one scientific workflow parameter at a time,
especially the second approach presented.

The proposed algorithm proved to be useful for recommending one parameter, indicating a path for
the recommendation of n parameters. Nevertheless, there are some limitations, such as:

* FReeP, as a memory-based algorithm, faces scalability issues as its implementation can consume a
lot of computational resources.

* The recommendations of FReeP are limited to the existence of examples on the provenance dataset.
This means that the algorithm cannot make any “default” recommendations if there are no examples
for the algorithm’s execution or recommend values that are not present in the provenance dataset.

* The recommendation algorithm may have a longer processing time than the experiment itself.

* All the instances have the same weight during the recommendation process. The algorithm does not
consider the user’s expertise that performed the previous execution to adjust an example’s weight.

* The algorithm considers only the set of parameters of the workflow; however, a set of parameters
may be more or less relevant according to the input data.

* The recommendation algorithm may end up recommending a set of values present in the provenance
base that causes a workflow execution failure.

Based on those limitations, some proposals for future work are:

* Parallelizing the processing of the generated partitions, which should decrease the time spent on
the recommendation

* Evaluating FReeP on data from other domains.
* Evaluating the tradeoff between the recommendation time and the algorithm execution time.
* Associating weights with examples from the provenance dataset according to the user’s profile.

 Using instances from the provenance dataset that failed to execute the workflow as a constraint to
improve the recommendations’ results.

ACKNOWLEDGMENTS
Authors would like to thank FAPERJ, CAPES and CNPq for partially sponsoring this research.

30/35

1107

1108

1109

1110

111

1112

1113

1114

1115

1116

117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

REFERENCES

Adomavicius, G. and Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey
of the state-of-the-art and possible extensions. IEEE transactions on knowledge and data engineering,
17(6):734-749.

Al-Sharrah, G. (2010). Ranking using the copeland score: a comparison with the hasse diagram. Journal
of chemical information and modeling, 50(5):785-791.

Altintas, 1., Ludaescher, B., Klasky, S., and Vouk, M. A. (2006). Introduction to scientific workflow
management and the kepler system. In SC’06: Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, page 205.

Arlot, S., Celisse, A., et al. (2010). A survey of cross-validation procedures for model selection. Statistics
surveys, 4:40-79.

Balabanovic, M. and Shoham, Y. (1997). Fab: content-based, collaborative recommendation. Communi-
cations of the ACM, 40(3):66-73.

Bardenet, R., Brendel, M., Kégl, B., and Sebag, M. (2013). Collaborative hyperparameter tuning. In
International conference on machine learning, pages 199-207.

Basilico, J. and Hofmann, T. (2004). Unifying collaborative and content-based filtering. In Proceedings
of the twenty-first international conference on Machine learning, page 9. ACM.

Belhajjame, K., B’Far, R., Cheney, J., Coppens, S., Cresswell, S., Gil, Y., Groth, P., Klyne, G., Lebo, T.,
McCusker, J., et al. (2013). Prov-dm: The prov data model. W3C Recommendation. http://www. w3.
org/TR/prov-dm.

Bell, R. M. and Koren, Y. (2007). Improved neighborhood-based collaborative filtering. In KDD cup
and workshop at the 13th ACM SIGKDD international conference on knowledge discovery and data
mining, pages 7—-14. Citeseer.

Bergeron, C., Zaretzki, J., Breneman, C., and Bennett, K. P. (2008). Multiple instance ranking. In
Proceedings of the 25th international conference on Machine learning, pages 48-55.

Bergstra, J. S., Bardenet, R., Bengio, Y., and Kégl, B. (2011). Algorithms for hyper-parameter optimization.
In Advances in neural information processing systems, pages 2546-2554.

Bobadilla, J., Ortega, F., Hernando, A., and Gutiérrez, A. (2013). Recommender systems survey.
Knowledge-based systems, 46:109-132.

Bose, R., Foster, 1., and Moreau, L. (2006). Report on the international provenance and annotation
workshop:(ipaw’06) 3-5 may 2006, chicago. ACM SIGMOD Record, 35(3):51.

Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In Proceedings of
COMPSTAT’ 2010, pages 177-186. Springer.

Brochu, E., Cora, V. M., and De Freitas, N. (2010). A tutorial on bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv
preprint arXiv:1012.2599.

Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User modeling and user-
adapted interaction, 12(4):331-370.

Coates, A. and Ng, A. Y. (2011). The importance of encoding versus training with sparse coding and vector
quantization. In Proceedings of the 28th international conference on machine learning (ICML-11),
pages 921-928.

de Oliveira, D., Ocafia, K. A. C. S., Baido, F. A., and Mattoso, M. (2012). A provenance-based adaptive
scheduling heuristic for parallel scientific workflows in clouds. J. Grid Comput., 10(3):521-552.

de Oliveira, D., Ogasawara, E., Baido, F., and Mattoso, M. (2010a). Scicumulus: A lightweight cloud
middleware to explore many task computing paradigm in scientific workflows. In 2010 IEEE 3rd
International Conference on Cloud Computing, pages 378-385. IEEE.

de Oliveira, D., Ogasawara, E., Baido, F., and Mattoso, M. (2010b). Scicumulus: A Lightweight Cloud
Middleware to Explore Many Task Computing Paradigm in Scientific Workflows. In 3rd International
Conference on Cloud Computing, pages 378-385.

de Oliveira, D. C. M., Liu, J., and Pacitti, E. (2019). Data-Intensive Workflow Management: For Clouds
and Data-Intensive and Scalable Computing Environments. Synthesis Lectures on Data Management.
Morgan & Claypool Publishers.

De Oliveira, F. T., Murta, L., Werner, C., and Mattoso, M. (2008). Using provenance to improve workflow
design. In International Provenance and Annotation Workshop, pages 136—143. Springer.

Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K., Berriman,

31/35

1162

1163

1164

1165

1166

1167

1168

1169

1170

"7

1172

173

1174

1175

1176

177

1178

179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

G. B., Good, J., et al. (2005). Pegasus: A framework for mapping complex scientific workflows onto
distributed systems. Scientific Programming, 13(3):219-237.

Eduardo Ogasawara, D. d. O. and et.al (2010). An Algebraic Approach for Data-Centric Scientific
Workflows. Proceedings of the VLDB Endownment, 4:1328-13369.

Emerson, P. (2013). The original borda count and partial voting. Social Choice and Welfare, 40(2):353—
358.

Feynman, R. and Vernon Jr., F. (1963). The theory of a general quantum system interacting with a linear
dissipative system. Annals of Physics, 24:118-173.

Fiirnkranz, J. (2002). Round robin classification. Journal of Machine Learning Research, 2(Mar):721-747.

Fiirnkranz, J. and Hiillermeier, E. (2003). Pairwise preference learning and ranking. In European
conference on machine learning, pages 145-156. Springer.

Fiirnkranz, J. and Hiillermeier, E. (2011). Preference learning. In Encyclopedia of Machine Learning,
pages 789-795. Springer.

Garthwaite, P. H., Jolliffe, I. T., Jolliffe, 1., and Jones, B. (2002). Statistical inference. Oxford University
Press on Demand.

Gil, Y., Miles, S., Belhajjame, K., Deus, H., Garijo, D., Klyne, G., Missier, P., Soiland-Reyes, S., and
Zednik, S. (2013). Prov model primer. W3C Working Group Note, 30.

Girden, E. R. (1992). ANOVA: Repeated measures. Number 84. Sage.

Goble, C. (2002). Position statement: Musings on provenance, workflow and (semantic web) annotations
for bioinformatics. In Workshop on Data Derivation and Provenance, Chicago, volume 3.

Gongalves, B. and Porto, F. (2015). Managing scientific hypotheses as data with support for predictive
analytics. Comput. Sci. Eng., 17(5):35-43.

Gonzales, C. and Perny, P. (2004). Gai networks for utility elicitation.

Gruber, T. (2007). Ontology of folksonomy: A mash-up of apples and oranges. International Journal on
Semantic Web and Information Systems (IJSWIS), 3(1):1-11.

Halioui, A., Valtchev, P., and Diallo, A. B. (2016). Towards an ontology-based recommender system for
relevant bioinformatics workflows. bioRxiv, page 082776.

Harper, F. M. and Konstan, J. A. (2016). The movielens datasets: History and context. ACM Transactions
on Interactive Intelligent Systems (TiiS), 5(4):19.

Herlocker, J. L., Konstan, J. A., Terveen, L. G., and Riedl, J. T. (2004). Evaluating collaborative filtering
recommender systems. ACM Transactions on Information Systems (TOIS), 22(1):5-53.

Hey, T., Gannon, D., and Pinkelman, J. (2012). The future of data-intensive science. Computer, 45(5):81—
82.

Hey, T. and Trefethen, A. E. (2020). The fourth paradigm 10 years on. Inform. Spektrum, 42(6):441-447.

Hoffa, C., Mehta, G., Freeman, T., Deelman, E., Keahey, K., Berriman, B., and Good, J. (2008). On
the use of cloud computing for scientific workflows. In eScience, 2008. eScience’08. IEEE Fourth
International Conference on, pages 640-645. IEEE.

Hsu, C.-W., Chang, C.-C., Lin, C.-J., et al. (2003). A practical guide to support vector classification.

Hiillermeier, E., Fiirnkranz, J., Cheng, W., and Brinker, K. (2008). Label ranking by learning pairwise
preferences. Artificial Intelligence, 172(16-17):1897-1916.

Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011). Sequential model-based optimization for general
algorithm configuration. In International Conference on Learning and Intelligent Optimization, pages
507-523. Springer.

Juliana Freire, David Koop, E. S. and Silva, C. T. (2008). Provenance for Computational Tasks: A Survey.
Computing in Science & Engineering, pages 20-30.

Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., and Wu, A. Y. (2002). An
efficient k-means clustering algorithm: Analysis and implementation. /EEE transactions on pattern
analysis and machine intelligence, 24(7):881-892.

Karvonen, L. (2004). Preferential voting: Incidence and effects. International Political Science Review,
25(2):203-226.

Keller, J. M., Gray, M. R., and Givens, J. A. (1985). A fuzzy k-nearest neighbor algorithm. /EEE
transactions on systems, man, and cybernetics, (4):580-585.

Koffi, C. (2015). Exploring a generalized partial borda count voting system.

Kohavi, R. (2001). A study of cross-validation and bootstrap for accuracy estimation and model selection.
14.

32/35

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization techniques for recommender systems.
Computer, (8):30-37.

Koriche, F. (2012). Relational networks of conditional preferences. Machine learning, 89(3):233-255.

Lekakos, G. and Caravelas, P. (2008). A hybrid approach for movie recommendation. Multimedia tools
and applications, 36(1-2):55-70.

Lestari, S., Adji, T. B., and Permanasari, A. E. (2018). Performance comparison of rank aggregation
using borda and copeland in recommender system. In 2018 International Workshop on Big Data and
Information Security (IWBIS), pages 69-74. IEEE.

Lewis, D. D. (1998). Naive (bayes) at forty: The independence assumption in information retrieval. In
European conference on machine learning, pages 4—15. Springer.

Lika, B., Kolomvatsos, K., and Hadjiefthymiades, S. (2014). Facing the cold start problem in recommender
systems. Expert Systems with Applications, 41(4):2065-2073.

Linden, G., Smith, B., and York, J. (2003). Amazon. com recommendations: Item-to-item collaborative
filtering. IEEE Internet computing, 7(1):76-80.

Lu, Q., Chen, T., Zhang, W., Yang, D., and Yu, Y. (2012). Serendipitous personalized ranking for
top-n recommendation. In 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and
Intelligent Agent Technology, volume 1, pages 258-265. IEEE.

Ma, C.-C. (2008). A guide to singular value decomposition for collaborative filtering. Computer (Long
Beach, CA), pages 1-14.

Marozzo, F., Talia, D., and Trunfio, P. (2013). Scalable script-based data analysis workflows on clouds.
In WORKS, pages 124-133.

Massa, P. and Avesani, P. (2007). Trust-aware recommender systems. In Proceedings of the 2007 ACM
conference on Recommender systems, pages 17-24. ACM.

Mattoso, M., Werner, C., Travassos, G. H., Braganholo, V., Murta, L., Ogasawara, E., de Oliveira, D.,
da Cruz, S. M. S., and Martinho, W. (2010a). Towards Supporting the Life Cycle of Large-scale
Scientific Experiments. International Journal of Business Process Integration and Management, pages
79-92.

Mattoso, M., Werner, C., Travassos, G. H., Braganholo, V., Ogasawara, E. S., de Oliveira, D., da Cruz, S.
M. S., Martinho, W., and Murta, L. (2010b). Towards supporting the life cycle of large scale scientific
experiments. IJBPIM, 5(1):79-92.

McKinney, W. (2011). pandas: a foundational python library for data analysis and statistics. Python for
High Performance and Scientific Computing, pages 1-9.

Miller, B. N., Albert, 1., Lam, S. K., Konstan, J. A., and Riedl, J. (2003). Movielens unplugged: experi-
ences with an occasionally connected recommender system. In Proceedings of the 8th international
conference on Intelligent user interfaces, pages 263-266. ACM.

Mitchell, T. M. (2015). Machine Learning. McGraw-Hill Science/Engineering/Math.

Mitchell, T. M., Caruana, R., Freitag, D., McDermott, J., Zabowski, D., et al. (1994). Experience with a
learning personal assistant. Communications of the ACM, 37(7):80-91.

Mohan, A., Ebrahimi, M., and Lu, S. (2015). A folksonomy-based social recommendation system for
scientific workflow reuse. In Services Computing (SCC), 2015 IEEE International Conference on,
pages 704-711. IEEE.

Mpyers, K., Berry, P., Blythe, J., Conley, K., Gervasio, M., McGuinness, D. L., Morley, D., Pfeffer, A.,
Pollack, M., and Tambe, M. (2007). An intelligent personal assistant for task and time management. A
Magazine, 28(2):47.

Myers, R. H. and Myers, R. H. (1990). Classical and modern regression with applications, volume 2.
Duxbury Press Belmont, CA.

Nie, Z., Zhang, Y., Wen, J.-R., and Ma, W.-Y. (2005). Object-level ranking: bringing order to web objects.
In Proceedings of the 14th international conference on World Wide Web, pages 567-574.

Ocaiia, K. A., de Oliveira, D., Ogasawara, E., Davila, A. M., Lima, A. A., and Mattoso, M. (2011).
Sciphy: a cloud-based workflow for phylogenetic analysis of drug targets in protozoan genomes. In
Brazilian Symposium on Bioinformatics, pages 66—70. Springer.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine learning in python. Journal of machine
learning research, 12(Oct):2825-2830.

Pessiot, J.-F., Truong, V., Usunier, N., Amini, M., and Gallinari, P. (2007). Learning to rank for

33/35

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

collaborative filtering.

Pigozzi, G., Tsoukias, A., and Viappiani, P. (2016). Preferences in artificial intelligence. Annals of
Mathematics and Artificial Intelligence, 77(3-4):361-401.

Rani, P,, Shokeen, J., and Mullick, D. (2017). Recommendations using modified k-means clustering and
voting theory.

Read, J., Pfahringer, B., Holmes, G., and Frank, E. (2011). Classifier chains for multi-label classification.
Machine learning, 85(3):333.

Resnick, P. and Varian, H. R. (1997). Recommender systems. Communications of the ACM, 40(3):56-59.

Ricci, F.,, Rokach, L., and Shapira, B. (2011). Introduction to recommender systems handbook. In
Recommender systems handbook, pages 1-35. Springer.

Salton, G. (1989). Automatic text processing: The transformation, analysis, and retrieval of. Reading:
Addison-Wesley.

Schafer, J. B., Frankowski, D., Herlocker, J., and Sen, S. (2007). Collaborative filtering recommender
systems. In The adaptive web, pages 291-324. Springer.

Schein, A. I, Popescul, A., Ungar, L. H., and Pennock, D. M. (2002). Methods and metrics for cold-start
recommendations. In Proceedings of the 25th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 253-260. ACM.

Silva Junior, D., Paes, A., Pacitti, E., and de Oliveira, D. (2018). Freep: towards parameter recommenda-
tion in scientific workflows using preference learning. In XXXIII Brazilian Symposium on Databases
(SBBD), pages 211-216, Rio de Janeiro, Brazil.

Smith, L. I. (2002). A tutorial on principal components analysis. Technical report.

Soomro, K., Munir, K., and McClatchey, R. (2015). Incorporating semantics in pattern-based scientific
workflow recommender systems: Improving the accuracy of recommendations. In Science and
Information Conference (SAI), 2015, pages 565-571. IEEE.

Strgm, K., Strem, K., et al. (1990). Minority government and majority rule. Cambridge University Press.

Tang, Y. and Tong, Q. (2016). Bordarank: A ranking aggregation based approach to collaborative filtering.
In 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS), pages
1-6. IEEE.

Taylor, A. D. and Pacelli, A. M. (2008). Mathematics and politics: strategy, voting, power, and proof.
Springer Science & Business Media.

Thi Do, M.-P., Van Nguyen, D., and of Loc Nguyen, A. N. (2010). Model-based approach for collaborative
filtering.

Thornton, C., Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2013). Auto-weka: Combined selection and
hyperparameter optimization of classification algorithms. In Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 847-855. ACM.

Tsoumakas, G. and Katakis, I. (2007). Multi-label classification: An overview. International Journal of
Data Warehousing and Mining (IJDWM), 3(3):1-13.

Ungar, L. H. and Foster, D. P. (1998). Clustering methods for collaborative filtering. In AAAI workshop
on recommendation systems, volume 1, pages 114-129.

Vembu, S. and Girtner, T. (2011). Label Ranking Algorithms: A Survey, pages 45-64. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Viappiani, P. and Boutilier, C. (2009). Regret-based optimal recommendation sets in conversational
recommender systems. In Proceedings of the third ACM conference on Recommender systems, pages
101-108. ACM.

Walt, S. v. d., Colbert, S. C., and Varoquaux, G. (2011). The numpy array: a structure for efficient
numerical computation. Computing in Science & Engineering, 13(2):22-30.

Yong Zhao, Ioan Raicu, I. F. (2008). Scientific Workflow Systems for 21st Century, New Bottle or New
Wine? IEEE Congress on Services, page 1.

Zeng, R., He, X., and van der Aalst, W. M. (2011). A method to mine workflows from provenance for
assisting scientific workflow composition. In 2011 IEEE World Congress on Services, pages 169—175.
IEEE.

Zhou, M. and Venkatesh, K. (1999). Modeling, simulation, and control of flexible manufacturing systems:
a Petri net approach, volume 6. World Scientific.

Zhou, Z.., Cheng, Z., Zhang, L.-J., Gaaloul, W., and Ning, K. (2018). Scientific workflow clustering and
recommendation leveraging layer hierarchical analysis. IEEE Transactions on Services Computing,

34/35

1327 11(1):169-183.

35/35

