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ABSTRACT12

Scientific Workflows (SWfs) have revolutionized how scientists in various domains of science conduct
their experiments. The management of SWfs is supported by complex tools named Scientific Workflow
Management Systems that provide support for workflow composition, monitoring, execution, capturing,
and storage of the data generated during execution. In some cases, they even provide components to
ease the visualization and analysis of the generated data. During the workflow’s composition phase,
programs must be selected to perform the activities defined in the workflow. These computer programs,
which act as experiment steps, often require additional parameters that serve to adjust the programs
according to the experiment’s goals. Consequently, workflows have many parameters to configure
manually, encompassing even more than one hundred in many cases. Choosing wrongly the parameters’
values can lead to unsuccessful executions of the workflow. As the execution of data- and compute-
intensive workflows is commonly performed in a high-performance computing environment (e.g., a cluster,
a supercomputer, or a public cloud), an unsuccessful execution configures a waste of time and resources.
In this manuscript, we present FReeP - Feature Recommender from Preferences, a parameter value
recommendation method that is designed to suggest values for workflow parameters, taking into account
user preferences. FReeP is based on Machine Learning techniques, particularly in Preference Learning.
FReeP is composed of three algorithms, where two of them aim at recommending the value for one
parameter at a time, and the third makes recommendations for n parameters at once. The experimental
results obtained with provenance data from two broadly used workflows showed FReeP usefulness in
the recommendation of values for one parameter. Furthermore, the results indicate FReeP’s potential to
recommend values for n parameters in scientific workflows.
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INTRODUCTION33

Scientific experiments are the basis for evolution in several areas of human knowledge (de Oliveira et al.,34

2019; Mattoso et al., 2010b; Hey and Trefethen, 2020; Hey et al., 2012). Based on observations of open35

problems in their research areas, scientists formulate hypotheses to explain and solve those problems36

(Gonçalves and Porto, 2015). Such hypothesis may be confirmed or refuted, and also can lead to new37

hypotheses(Gonçalves and Porto, 2015). For a long time, scientific experiments were manually conducted38

by scientists, including instrumentation, control of the environment, annotation of results, and analysis.39

Despite the advances obtained with this approach, time and resources were wasted since the smallest40

amount of error could compromise the whole experiment. The analysis of errors in the results was also far41

from trivial.42

The evolution in computer science field allowed for the development of technologies that provided43

useful support for scientists in their experiments. One of these technologies are the scientific workflows44

(de Oliveira et al., 2019; Deelman et al., 2005). Scientific workflows (or simply workflows) are an45
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abstraction that represents each step of the experiment expressed as an activity, which has input data and46

relationships with other activities, according to the stages of the experiment (Yong Zhao, 2008).47

Such workflows commonly require the execution of data-intensive operations as loading, transfor-48

mation, and aggregation (Mattoso et al., 2010b). Several computational paradigms can be used for the49

design and execution of workflows, e.g., shell and Python scripts (Marozzo et al., 2013), but they are50

usually managed by complex engines named Workflow Management Systems (WfMS). A key feature51

that a WfMS must address is the efficient and automatic management of parallel processing activities52

in High-Performance Computing (HPC) environments (Eduardo Ogasawara and et.al, 2010). Besides53

managing the execution of the workflow in HPC environments, WfMSs are also responsible for recording54

metadata associated to all the data generated during the execution: input data, intermediate data, and55

the results. These metadata is well-known as provenance (Juliana Freire and Silva, 2008). Based on56

provenance data, it is possible to analyze the results obtained and guarantee the reproducibility of the57

experiment, which is essential to prove the veracity of a produced result.58

In this article, the concept of an experiment is seen as encompassing the concept of a workflow, and59

not as a synonym. A workflow may be seen as a controlled action of the experiment. Hence, the workflow60

is defined as one of the trials conducted in the context of an experiment. In each trial, the scientist needs61

to define the parameter values for each activity of the workflow. It is not unusual that a workflow has more62

than 100 parameters to set. Setting up these parameters may be simple for an expert, but not so simple for63

non-expert users. Although WfMSs represent a step forward by providing the necessary infrastructure64

to manage workflow executions, they provide a little help (or even no help at all) on defining parameter65

values for a specific workflow execution. The correct choice of parameter values in a workflow execution66

is crucial not only for the quality of the results but also influences if a workflow will execute or not. A67

poor choice of parameter values can cause failures, which leads to a waste of execution time. Failures68

caused by poor choices of parameter values are even more severe when workflows are executing in HPC69

environments that follow a pay-as-you-go model, e.g., clouds, since they can increase the overall financial70

cost.71

This way, if the WfMS could “learn” from previous successfully executions of the workflow and72

recommend parameter values for scientists, some failures could be avoided. This recommendation is73

especially useful for non-expert users. Let us take as an example a scenario where an expert user has74

modeled a workflow and executed several trials of the same workflow varying the parameter values. If a75

non-expert scientist wants to execute the same workflow with a new set of parameter values and input76

data, but does not know how to set the values of some of the parameters, one can benefit from parameter77

values used on previous executions of the same (or similar) workflow. The advantage of the WfMS is78

provenance data already contains the parameter values used on previous executions and can be a rich79

resource to be used for recommendation. Thus, this article hypothesis is that by adopting an approach80

to recommend the parameters values of workflows in a WfMS, we can increase the probability that the81

execution of workflow will be completed. As a consequence, the financial cost associated with execution82

failures is reduced.83

In this article, we devise a method named FReeP - Feature Recommender From Preferences, which84

aims at recommending values for parameters of workflow activities. The proposed approach is able to85

recommend parameter values in two modes: (i) a single parameter value at a time, and (ii) multiple86

parameter values at once. The proposed approach relies on user preferences, defined for a subset87

of workflow parameters, together with the provenance of the workflow. The idea of combining user88

preferences and provenance is novel and allows for producing a personalized recommendation for89

scientists. FReeP is based on Machine Learning algorithms (Mitchell, 2015), particularly, Preference90

Learning (Fürnkranz and Hüllermeier, 2011), and Recommender Systems (Ricci et al., 2011). We91

evaluated FReeP using workflow benchmarks such as Montage (Hoffa et al., 2008) and SciPhy (Ocaña92

et al., 2011) and results indicated the potential of the proposed approach. This manuscript is an extension of93

the conference paper “FReeP: towards parameter recommendation in scientific workflows using preference94

learning” (Silva Junior et al., 2018) published in the Proceedings of the 2018 Brazilian Symposium on95

Databases (SBBD). This extended version provides new empirical shreds of evidence regarding several96

workflow case studies as well as a broader discussion on related work.97

This article is organized in five sections besides this introduction. Background section details the98

theoretical concepts used in the proposal development. FReeP - Feature Recommender from Preferences99

section presents the algorithm developed for the problem of parameters value recommendation using100

2/35

iPad MAM


iPad MAM


iPad MAM


iPad MAM
Why does it need to be completed? Why is that what were optimizing for?

iPad MAM




user preferences. Experimental Evaluation section shows the results of the experimental evaluation of101

the approach in three different scenarios. Then, Related Work section presents a literature review with102

papers that have addressed solutions to problems related to the recommendation applied to workflows103

and the Machine Learning model hyperparameter recommendation. Lastly, Conclusion section brings104

conclusions about this article and points out future work.105

BACKGROUND106

This section presents key concepts for understanding the approach presented in this article to recommend107

values for parameters in workflows based on users’ preferences and previous executions. Initially, it is108

explained about scientific experiments. Following, the concepts related to Recommender Systems are109

presented. Next, the concept of Preference Learning is presented. This section also brings a Borda Count110

overview, a non-common voting schema that is used to decide which values to suggest.111

Scientific Experiment112

A scientific experiment arises from the observation of some phenomena and questions raised from the113

observation. The next step in the experiment is the hypotheses formulation, that is, to develop possible114

answers to the questions raised. With a developed hypothesis, it is necessary to test it to verify if an115

output produced is a possible solution. Regardless of the final result with the formulated hypothesis, there116

are many iterations of refinement, which may consist, for example, of testing the hypothesis under other117

conditions, until it is possible to have enough elements to support the hypothesis.118

Figure 1. Mattoso et al. (2010a) Life Cycle of Scientific Experiments.

The scientific experiment can be divided into three major phases: composition, execution and analysis.119

Figure 1 illustrates what is called the life cycle of the experiment comprising these three phasesMattoso120

et al. (2010a). The composition phase is where the experiment is designed and structured and can still121

be divided into two stages: conception and reuse. The conception stage is responsible for creating an122

abstraction that represents the experiment, while the search for other experiments that have parts that123

can be adapted and used in the development is in charge of reuse. Execution is the phase where all the124

necessary instrumentation for the accomplishment of the experiment must be finished. Instrumentation125

means the definition of input data, parameters to be used at each stage of the experiment, and monitoring126

mechanisms. Finally, the analysis phase is where the data generated by the composition and execution127

phases are studied to understand the results obtained. The approach presented in this article focus on the128

Composition phase, where the workflow is being configured for execution.129

Scientific Workflows130

Scientific workflows have become a de facto standard for modeling in-silico experiments (Zhou et al.,131

2018). Workflows are abstractions that represent experiment steps and the dataflow through each of132

these steps. A workflow can be formally defined as a directed acyclic graph W (A,Dep). The nodes133

A = {a1,a2, . . . ,an} are the activities and the edges Dep represent the data dependencies among activities134

in A. Thus, given ai | (1≤ i≤ n), the set P = {p1, p2, ..., pm} represents the possible input parameters for135

3/35

iPad MAM


iPad MAM




activity ai that defines the behavior of ai. Therefore, a workflow can be seen as a graph where the vertices136

act as experiment steps and the edges are the relations, or the dataflow between the steps.137

A workflow can also be categorized according to the level of abstraction into conceptual or concrete.138

A conceptual workflow represents the highest level of abstraction, where the experiment is defined139

in terms of steps and dataflow between them. This definition does not explain how each step of the140

experiment will execute. The concrete workflow is an abstraction where the activities are represented141

by the computer programs that will execute them. Workflow activities executions are called activations142

(de Oliveira et al., 2010a), where each program that represents an activity has its parameters defined.143

However, managing this execution, which involves setting the correct parameter values for each program,144

capturing the intermediate data and execution results, becomes a challenge. It was with this in mind, and145

with the help of the composition of the experiment in the workflow format, that Workflow Management146

Systems (WfMS), such as Kepler (Altintas et al., 2006), Pegasus (Deelman et al., 2005) and SciCumulus147

(de Oliveira et al., 2010a) emerged.148

SciCumulus is an important component of the proposed approach since it provides a framework for149

parallel scientific workflows to be combined with FReeP. It is necessary to highlight that other SWfMSs150

such as Pegasus and Kepler could also benefit from FReeP as long as they provide necessary provenance151

data. SciCumulus architecture is composed of four main components: SCSetup, SCStarter, SCCore, and152

SCQP (SciCumulus Query Processor). SCSetup is responsible for storing and retrieving prospective153

provenance to/from the provenance database. Using this component, scientists insert/update the structure154

of the workflows in the database. When the structure of the workflow is already inserted in the provenance155

database, SCStarter can be invoked. SCStarter component is responsible for configuring the environment156

for executing the workflow. In case of executions in cloud environments, SCStarter is responsible for157

deploying virtual machines and configuring storage services before the workflow execution. SCStarter158

has to be compatible to the cloud API. In the current version, SCStarter works with Amazon AWS API.159

When all virtual machines and storage services are running, SCStarter invokes SCCore in each virtual160

machine. SCCore is an MPJ (MPI-like)1 application, so it runs in all virtual machines at the same time161

using message passing (each virtual machine contains an instance of SCCore according to the rank of162

the virtual machine, i.e., SCCore0, SCCore1, etc). SCCore follows a Master/Worker architecture. The163

SCCore-Master (SCCore0) is responsible for scheduling the workflow activities in the several virtual164

machines. In addition, SCCore-Master is responsible for collecting retrospective provenance data and165

store it in the provenance database. All other instances of SCCore-Workers receive activations to execute166

and request more activations. In the original version of SciCumulus, all data is stored in one single167

bucket in the Amazon S3 service, thus it is not fragmented neither distributed in different buckets. The168

same problem occurs with other existing SWfMSs since they do not consider data file distribution and169

results confidentiality issues. The SCQP component is responsible for querying the provenance database170

during or after the workflow execution. It can be used by scientists to steer the workflow or to perform a171

post-mortem analysis of the results. For more information about SciCumulus please refer to Oliveira et al.172

(de Oliveira et al., 2012, 2010b).173

Provenance174

An workflow activation has input data, and generates intermediate and output data. WfMS has to collect all175

metadata associated to the execution in order to foster reproducibility. This metadata is called provenance176

(Juliana Freire and Silva, 2008). According to Goble (2002), the provenance must verify data quality, path177

audit, assignment verification, and information querying. Data quality check is also related to verifying178

the reliability of workflow generated data. Path audit is the ability to follow the steps taken at each stage179

of the experiment that generated a given result. The assignment verification is linked to the ability to180

know who is responsible for the data generated. Lastly, an information query is essential to analyze the181

data generated by the experiment’s execution.182

Especially for workflows, provenance can be classified as prospective (p-prov) and retrospective183

(r-prov) (Juliana Freire and Silva, 2008). p-prov represents the specification of the workflow that will184

be executed. It corresponds to the steps to be followed to achieve a result. r-prov is given by executed185

activities and information about the environment used to produce a data product, consisting of a structured186

and detailed history of the execution of the workflow.187

1http://mpj-express.org/
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Figure 2. Belhajjame et al. (2013) PROV data model.

Provenance is vital for the scientific experiment analysis phase. It allows for verifying what caused an188

activation to fail or generated an unexpected result, or in the case of success, what were the steps and189

parameters used until the result. Another advantage of provenance is the reproducibility of an experiment,190

which is essential for the validation of the results obtained by third parties.191

Considering the provenance benefits in scientific experiments, it was necessary to define a model192

of representation of provenance (Bose et al., 2006). The standard W3C model is PROV (Gil et al.,193

2013). PROV is a generic data model and is based on three basic components and their links, being the194

components: Entity, Agent and Activity. Figure 2 shows how the PROV representation uses the three195

components and how their links are used to represent the dataflow during the execution of the experiment.196

Recommender Systems197

The massive data available in the information age, although beneficial to users, can also be seen as an198

avalanche that overloads them and, in some cases, leaves them lost in the search for relevant information.199

This difficulty in searching relevant information reflects the degree of freedom that the user has in200

searching for available data. To address this problem recommender systems (RS) (Resnick and Varian,201

1997) (Ricci et al., 2011) (Bobadilla et al., 2013) are developed. recommender systems are based on202

techniques that aim to suggest the most relevant items to the user to perform their task, such as choosing203

one book. The Amazon.com (Linden et al., 2003) recommender system is an example of how useful it is204

to suggest some items from all the search space available on the platform.205

Generally, recommender systems are specialized in only one type of item, where the objects that the206

system was developed to recommend are understood by item. The recommender systems can be of the207

type personalized, which means that each user of the system will have their recommendations based on208

their preferences. There are also non-personalized recommender systems that return top-n lists. Freep is209

based on the first type.210

Personalized recommendations seek to suggest the most relevant items for carrying out the user’s task.211

For this, it is necessary to collect the user’s preferences, which can be explicit or implicit. An example of212

explicit preference is the evaluation of a book, giving it zero to five stars. An implicit preference may be213

to visit a page about a book, how long the page remains, etc. The development of a recommender system214

is based on the observation that other close individuals’ suggestion influences individuals’ decisions. An215

example of this behavior is music choice, where a system can suggest songs to a user based on songs that216

other same age group users have heard, are listening or have heard and that the current user has not yet217

heard.218

There are three essential elements for the development of a recommender system: Users, Items, and219

Transactions. The Users are the target audience of the recommender system, and each user has their220

characteristics and objectives. The recommender system must be able to make suggestions for items221

relevant to each user’s objectives. As mentioned, Items are the recommendation objects and also have their222

characteristics. Its relevance varies from user to user. The Transactions are records that hold a tuple (user,223

interaction), where the interaction is the actions that the user performed when using the recommender224

system. These interactions are generally user feedbacks, which can be interpreted as their preferences.225
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The most common is to use transactions that only consider explicit feedback of preference, such as226

evaluating an item as bad, regular, or good. Implicit feedback is also useful but needs a deeper assessment227

of what behaviors should be considered as feedback and how to use it to improve the recommendations’228

usefulness.229

The recommender system task can be defined as: given the elements Items, Users and Transactions,230

find the most useful items for each user. Adomavicius and Tuzhilin (2005) formalizes that a recommender231

system must satisfy Equation 1, considering U as the space for all users, I the space for all items and F232

the utility function that calculates the utility of an item i inI for a u inU user. Note that in Equation 1 the233

tuple (u, i) will not be defined in the entire search space, so the recommender system must extrapolate the234

F function in these cases.235

∀u ∈U, i′u = argmax
i∈I

F(u, i) (1)

Calculating the utility function varies according to the approach that will be used in the recommender236

system. It is based on the different strategies used to calculate the utility function that recommender237

systems can be categorized. The most common approaches to recommender systems are: Content Based,238

Collaborative Filtering and Hybrids. There are still Demographic and Knowledge-based, however their239

applications are restricted to specific cases (Ricci et al., 2011). Figure 3 provides a taxonomy of the240

interesting types of recommender systems for this work.241

Recommender
Systems

Collaborative
Filtering

Content-Based

Hybrid

Neighborhood
Based

Model	Based

Weighted

Switching

Mixed

Feature
Combination

Cascade

Feature
Augmentation

Meta-Level

Figure 3. Interesting types of recommender systems taxonomy.

Collaborative Filtering242

In Collaborative Filtering Recommender Systems, a recommendation is based on other users’ experience243

with items in the system domain. The idea is very intuitive and is related to the human behavior of, at244

times, giving credit to another person’s opinion about what should be done in a given situation. The245

experience of other users with the recommender system’s domain items, in general, is expressed through246

evaluations. Assessments can be expressed explicitly or implicitly (Schafer et al., 2007). An explicit247

evaluation is one captured employing a direct request from the system to the user, such as ask the user248

for rating a seen film on a scale from zero to five. The implicit evaluation is inferred by the behavior249
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user interaction with the system, such as the time spent viewing information about a film genre. In250

Collaborative Filtering, evaluations can be of the following types: scalar, binary, or unary (Schafer et al.,251

2007). Scalar evaluations are like the example of a film evaluation; its values are included in a numerical252

range. The binary assessment type is like good/bad, agree/disagree. Unary evaluation is present in item253

purchase or non-purchase information.254

Collaborative Filtering can be Neighborhood Based or Model Based. Neighborhood Based Collab-255

orative Filtering strictly follows the principle that users with similar profiles have similar preferences.256

Thus, given a neighborhood, the most popular items among them are used as a recommendation, where257

popularity is measured concerning an item’s ratings.258

A user’s neighborhood can be defined concerning the users of the system themselves or about the259

items evaluated by the users. When the neighborhood is defined concerning users, the system predicts a260

rui rating of a new i item for a u user from the average of the nearest k neighbors’ ratings. It is important261

to note that the nearest neighboring k must be those that have evaluated the item i. A problem with using262

the average of the ratings of the nearest neighboring k is not to differentiate the ratings of users with263

the closest profiles. In this case, an alternative is to include a weighting factor in the calculation of an264

item’s valuation prediction. Alternatively, a user’s neighborhood can be defined in terms of items in the265

recommendation domain. This approach works as follows: let u be an user with a I set of evaluated items266

and a new i′ item a candidate for a recommendation item. The k items, k inI, more similar to i′ can be267

used to predict how appropriate the i′ recommendation to u is.268

The neighborhood-based recommender system needs a similarity measure to define a neighborhood.269

A similarity measure traditionally used to define a neighborhood is Cosine Similarity (Bell and Koren,270

2007). In the context of the recommendation, for example, based on users’ similarities, this measure271

requires that users have a vector representation. Therefore, let u be an user represented by a vector A and272

v an user represented by a vector B, the similarity of these two users using Cosine Similarity is given by273

Equation 2. Another similarity measure widely used in the definition of neighborhoods in Collaborative274

Filtering is Pearson’s Correlation (Massa and Avesani, 2007). Still, using the notation where a user u is275

represented by a vector A and another user v is represented by a vector B, Pearson’s correlation can be276

calculated using Equation 3.277

cosθ =
A.B
‖A‖‖B‖

(2) ρ =
cov(A,B)√

var(A).var(B)
(3)278

Neighborhood Based Collaborative Filtering has as strengths the straightforward interpretation and279

explanation of the recommendations made and the ability to incorporate new users and items into the280

recommendation process without needing a offline training phase. However, as the training base grows,281

the recommendation becomes more expensive due to the algorithm’s quadratic nature, due to the need to282

calculate similarity measures.283

In contrast, instead of loading the entire database into memory and calculating similarity measures284

for each new recommendation, Model Based Collaborative Filtering seeks to generate a hypothesis285

from the data and use it to make recommendations instantly. Two of the most used approaches in this286

Collaborative Filtering category are clustering and matrix factorization (Thi Do et al., 2010). Clustering287

(Ungar and Foster, 1998) use in the recommendation is based on the idea that users in the same group288

have similar interests. The clustering-based recommendation also requires vector representation of users289

and is divided into three steps: 1) dividing users into k groups; 2) assignment of a user who will receive290

the recommendation to one of the groups; 3) use of item evaluations by users of the assigned group to291

recommend a new item.292

Collaborative Filtering based on matrix factorization (Koren et al., 2009) uses an evaluation matrix293

generated from users and items. This R evaluation matrix has m lines representing each system user294

and n columns representing the items. Thus, a cell ri j represents the user rating ui for the item i j. This295

matrixR in general is sparse due to the large number of items not evaluated by all users of a recommender296

system. Matrix factorization uses matrix algebra to decrease the size of the R matrix, thus addressing the297

R sparsity problem. Two of the main matrix factorization models in the context of Collaborative Filtering298

are Principal Component Analysis (PCA) (Smith, 2002) and Singular Values Decomposition (SVD) (Ma,299

2008).300

The PCA factorization idea is to find the most relevant evaluation matrix components without loss301

of information. In the context of the R evaluation matrix, the most relevant components can be seen as302
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the users who perform the most evaluations and the items that receive the most evaluations. Differently,303

SVD looks for two matrices: U a matrix of user characteristics; and V a matrix of characteristics of304

recommendation items. The prediction of a user rating ui for an item i j is then given by a prediction305

function p(Ui,Vj).306

Content-Based307

Content-based Recommender Systems make recommendations similar to items that the user has already308

expressed a positive rating in the past. To determine the similarity degree between items, this approach309

is highly dependent on extracting their characteristics. This extraction is necessary because the original310

representation of an item is often not structured, which is a prerequisite for automating recognizing311

similarities. Three main components can represent this recommender system type: Content Analyzer,312

Profile Learner, and Filtering, as seen in Figure 4.313

Content Analyzer Profile Learner

Filtering

Item Structured Item 
Representation

User rated items

New item
s Us

er
 P

ro
fil

e

Recommendation 
List

Figure 4. Content-Based recommender system architecture overview: the Content Analyzer
component is responsible for extracting the characteristics of the items, producing a structured
representation; the Profile Learner component is responsible for building a model that represents a user’s
profile based on past preferences; lastly, the Filtering component uses other items not yet evaluated as
input to the user profile model, and its output is the recommended items.

Content Analyzer: The target items of recommendation are, in most cases, not adequately represented314

for the use of the computer in automating the recommendation. This component is responsible for315

producing a structured representation of the items. One of the most used representations is TF-IDF316

(Salton, 1989), which has its origin in the area of Information Retrieval. Equation 4 formalizes TF-IDF,317

considering a feature x and an item y , t fx,y is the frequency of the feature x in y, N is the total of items,318

and d fx is the number of items that contain x. The variable wx,y is a weight vector where each component319

of the vector represents the relevance of the feature x to the item y. This type of representation serves as320

input for the other recommender system components.321

wx,y = t fx,y× log
(

N
d fx

)
(1) (4)

Profile Learner: This component produces a model, induced by Machine Learning techniques, that322

represents the profile of an user based on the items evaluated by this user. The Naive Bayes (Lewis,323

1998) is a probabilistic model based on Bayes’ Theorem, and its objective is to estimate the probability a324

posteriori of an event A to occur, given that an event B occurs. In the recommender system domain, Naive325

Bayes estimates the probability of an item be relevant, given its characteristics.326

Filtering: With the structured representation of the items and a model of the user profile at hand, it is327

possible to filter the items not yet evaluated, creating a list of these “new items” ordering them according328

to their similarity to the others positively assessed items.329
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Hybrid330

Hybrid recommender systems arise out of an attempt to minimize the weaknesses that traditional rec-331

ommendation techniques have when used individually. Also, it is expected that a hybrid strategy can332

aggregate the strengths of the techniques used together. There are some methods of combining recommen-333

dation techniques in creating a hybrid recommender system, among them: Weighting, Switching, Mixing,334

Feature Combination, Cascade, Feature Augmentation and Meta-Level (Burke, 2002).335

Weighting: In this method, each recommendation item has a score that is defined by combining the336

prediction results from all recommendation techniques that are in use. It is a simple method that can be337

implemented, for example, as a linear combination of predictions, which can be assessments, that each338

recommendation technique assigns to an item.339

Switching: This method defines a criterion responsible for determining which recommendation340

technique will be used in each recommendation situation. An example of this method is to use the Content-341

Based approach, and if the recommendation of this method does not reach a predetermined degree of342

confidence, use the Collaborative Filtering method to make the recommendation. A major drawback of343

this method is the inclusion of a configuration parameter in the system, which is the alternation criterion344

responsible for defining when to use one technique or another according to the recommendation situation.345

Mixing: This method is an alternative when the system can make more than one recommendation at a346

time. The mixed-method consists of using all recommendations from all recommendation techniques347

employed in the system. An example of using this method is a list of suggestions for TV or film348

programming, where generally more than one recommendation item is presented at a time.349

Feature Combination: this method is based on the hybridization between the Content-Based rec-350

ommendation and the Collaborative Filtering. The method treats the neighborhood information in351

Collaborative Filtering as additional information from the dataset and then applies the Content-Based352

recommendation technique.353

Cascade: here, the method is divided into steps as follows: 1) a recommendation technique is used354

first, performing something similar to a filter of the candidate items for the recommendation; 2) a second355

technique refines candidates from the first stage, looking for the best alternative.356

Feature Augmentation: in this method, there is also a chain of recommendation techniques. The357

method uses a recommendation technique on the original data, and the output of this first technique is358

used as an additional resource when entering a second technique. Although it is also a chain of techniques359

like the Cascade, it is important to note that the Feature Augmentation is different because the set of input360

attributes for one is different from the input for the other technique.361

Meta-Level: this method uses the model generated by one technique as input for the second. Note that362

the difference between this method and the Feature Augmentation is that this method uses the generated363

model itself as an input to the second technique, while the Feature Augmentation uses the model output364

generated by the first technique as an additional database resource for the second technique.365

The Content Based and Collaborative Filtering methods combination allows better performance in366

recommendations in different domains due to the possibility of minimizing the weaknesses of each367

approach when used separately. However, it is not an easy task to combine the two approaches since the368

methods used by each approach can generate representations of incompatible data.369

Several studies have emerged to propose combining the recommendation approaches in Content370

and Collaborative Filtering: in (Balabanovic and Shoham, 1997) the recommendations are based on371

the content that users with similar profiles are evaluated positively; Basilico and Hofmann (2004) uses372

Joint Feature Maps to integrate feature vector of the users and the items; Lekakos and Caravelas (2008)373

proposed a hybrid recommender system based on the Switching method, starting from using collaborative374

filtering as the main method and if, it is not possible, it goes to the content-based recommendation.375

Preference Learning376

User preferences play a crucial role in most decision systems. Thus, preferences have become the object377

of study in economics and psychology, among others, since these areas sometimes use decision support378

tools (Pigozzi et al., 2016). In Computer Science, this concept has gained more relevance with the379

growth of recommender systems (Feynman and Vernon Jr., 1963) (Viappiani and Boutilier, 2009) and the380

development of personal assistants (Mitchell et al., 1994) (Myers et al., 2007).381

The first important concept to be clarified when talking about Preference Learning is the meaning of382

preference. From an Artificial Intelligence perspective, a preference is a problem restriction that allows383
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some degree of relaxation. Fürnkranz and Hüllermeier (2011) refers to Learning Preferences as “inducing384

preference models from empirical data”. Regarding the empirical data, it can be said that many times a385

preference is not explicitly expressed. An example is choosing a product from the same category that386

another product is as an ecommerce user. As all products are in the same category, a TV, for example, the387

user’s preference is expressed by clicking on the most interesting products.388

A Preference Learning task consists of learning a predictive function that, given a set of items where389

preferences are already known, predicts preferences for a new set of items. It is necessary to define an390

adequate representation for the preferences to create an algorithm that solves the problem for which391

the Preference Learning is proposed. The most common way of representing preferences is through392

binary relationships. An example of a tuple that would be part of this representation in a classic literature393

format is xi > x j, which means a preference for the value i over j for the attribute x. There are also other394

representations for preferences that aim to facilitate variations of the problem related to Machine Learning,395

such as the Conditional Preferences Networks (Koriche, 2012), or the Generalized Additive Independence396

Networks (Gonzales and Perny, 2004).397

The task with more research in the Preference Learning area is the Learning to Rank. This task arises398

from the characteristic of requiring a relationship of order between preferences. The task can be divided399

into three categories: Label Ranking (Vembu and Gärtner, 2011), Instance Ranking (Bergeron et al.,400

2008) and Object Ranking (Nie et al., 2005). Label ranking is a generalization of the traditional Machine401

Learning Classification task. This ranker makes an ordering of the set of classes of a problem for each402

instance of the problem. An example is the categorization of a news story, where it can be included in403

several topics simultaneously, such as sports and entertainment. Since the classes of a problem have an404

order among themselves, the instance ranking task consists of ordering the instances of a problem. The405

instances belonging to the “highest” classes precede the instances that belong to the “lower” classes. An406

example is the categorization of articles submitted to a congress: reject, weak reject, weak accept and407

accept. The task will produce a list where the articles will appear according to their classes, from accepted408

to rejected ones. In object ranking an instance is not related to a class. This task’s objective is, given a409

subset of items referring to the total set of items, to produce a ranking of the objects in that subset—for410

example, the ranking of web pages by a search engine.411

Pairwise Label Ranking (Hüllermeier et al., 2008) is a Preference Learning technique used specifically412

for the Label Ranking problem and is based on preference relationships learning. This technique consists413

of learning preferences by decomposing the problem into small binary preference problems, that is,414

preference between pairs of items. The Pairwise Label Ranking technique is based on Pairwise Preference415

Learning, which in turn is based on Pairwise Classification. Pairwise Classification is well known in416

the context of Classification (Fürnkranz, 2002) involving more than one class. Instead of using a single417

classifier that must make predictions between m classes, given a set L of m classes, learning binary418

preferences generates m(m−1)/2 binary classifiers, where a classifier Mi, j only predicts between classes419

i, j inL. With this, each classifier Mi, j prediction is treated as a vote for the class i or j, and, in the end, the420

most voted category is returned as a prediction. The Pairwise Classification technique can be generalized421

to Pairwise Preference Learning (Fürnkranz and Hüllermeier, 2003). The generalization consists of using422

each instance with a preference type a > b, representing that a is preferable to b, as a record of the training423

base of a classifier Ma,b which returns 1 as a prediction that a is preferable to b and 0 otherwise. With424

this, each classifier Mi, j also represents the preference between two categories, and the combination of the425

preferences expressed by each classifier builds a complete preference relationship. For this, the strategy426

defined by Pairwise Label Ranking uses the prediction of each classifier as a vote and uses a voting system427

that defines an ordered list of preferences.428

To bringing together recommender systems and preference learning, MovieLens (Miller et al., 2003)429

is a good example. MovieLens, recommends films based on ratings, and the recommendation problem is430

defined in terms of a triples set (user, item, rating) representing a system user’s ratings for a given item.431

Other approaches using the MovieLens dataset, in general, focus on learning a Machine Learning model432

capable of predicting a user’s evaluation for an item not yet evaluated. With a trained Machine Learning433

model, the best-rated n items are recommended. However, the ordering of the items in a descending way434

in relation to the predicted evaluations does not necessarily mirror the user’s order of preference. This is435

because the models used for the predictions are trained and evaluated based on error metrics. The simple436

exchange of evaluation between two pairs of items defines the same error measure as the configuration437

with the correct evaluations. In this way, the recommendation would have its efficiency degraded.438
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Ranking algorithms can be used to alleviate the recommendation ordering problem, since they are439

prepared to obtain the order relationship between the predicted evaluations. (Pessiot et al., 2007) uses440

the approach of exchanging the predictive model for a ranking model using the MovieLens (Harper441

and Konstan, 2016) dataset. Lu et al. (2012) refined the Area Under the Curve (AUC) metric that is442

traditionally used in recommender systems that work with custom ranking. A new metric called SAUC has443

been proposed, which adds a term to the original equation of AUC, which aims to increase the likelihood444

that an unwanted item, but that fulfills the user’s preferences, is well placed in a recommendation list.445

Borda Count446

An election is a process that, in a democratic environment, aims to seek a consensus between conflicts and447

interests (Koffi, 2015). Generally, in an election, there is a set of candidates and a set of voters. Voting448

Theory (Taylor and Pacelli, 2008) is an area of Mathematics aimed at the study of voting systems.449

In an election between two candidates, it is simple to achieve a fair election, obeying the majority450

criterion (Strøm et al., 1990), that is, when the winning candidate obtains more than half the votes of the451

election. However, elections involving more than two candidates require a more robust voting system.452

With this in mind, other two voting systems developed to handle the case of elections with more than two453

candidates are Preferential Voting (Karvonen, 2004) and Borda Count (Emerson, 2013). In Preferential454

Voting voting system, voters vote in an ordered list from the most preferred to the least preferred candidate.455

The elected candidate is the one most often chosen as the most preferred by voters.456

Borda Count is also a voting system in which voters draw up a list of candidates arranged according457

to preference. Each position in the user’s preference list is assigned a score. In a list of n candidates, the458

candidate in the i position on the list receives the score n− i. To determine the winner, the sum of each459

candidate’s scores for each voter is the final score, and the candidate with the highest score is the elected460

one.461

Position / Votes 14 10 8 4 1
1st choice A C D B C
2nd choice B B C D D
3rd choice C D B C B
4th choice D A A A A

Table 1. Candidate votes example.

An example of how Borda Count works can be given with the help of Table 1, in which there are462

four candidates: A, B, C and D. In Table 1 the columns represent the number of votes received by the463

candidates, and the lines represent the preference positions occupied by each candidate. As there are four464

candidates, the candidate preferred by a voter receives three points. The calculation of the score for the465

candidate D is performed as follows:466

• 8 voters elected the candidate D as the preferred candidate; 8∗3 = 24 points467

• 4+1 voters elected the candidate D as the second most preferred candidate; 5∗2 = 10 points468

• 10 voters elected the candidate D as the third most preferred candidate; 10∗1 = 10 points469

• 14 voters elected the candidate D as the least preferred; 14∗0 = 0 points470

• Candidate D total score = 24+10+10+0 = 44471

Voting algorithms were also used together with recommender systems previously. In the Collaborative472

Filtering recommender systems, after recovering the users who have the profiles most similar to another473

user, it is necessary to choose which items these users liked best to make a good recommendation. At this474

point in choosing the items to recommend, given the various opinions, voting algorithms’ use becomes475

an interesting tool. Rani et al. (2017) proposed a recommendation algorithm based on clustering and476

Voting Theory that can be applied in different domains. The algorithm consists of extracting clusters with477

KMeans (Kanungo et al., 2002) and using the cluster to which a recommendation target user belongs478

to perform Collaborative Filtering. The KMeansPlusLog Power variant is used to lessen the impact of the479
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random choice of centroids on the cluster-based recommendation. After clustering and selecting the target480

user’s cluster, the Borda Count is used to select the most popular items in the cluster and use them in the481

recommendation. Making a performance comparison between the Borda Count and the Copeland Score482

Al-Sharrah (2010) in the recommendation for Collaborative Filtering, the Lestari et al. (2018) method483

makes a clustering based on the age demographic data and alternates the two techniques in making the484

recommendation. Still using the Borda Count, Tang and Tong (2016) proposes the BordaRank. The485

method consists of using the Borda Count method directly in the sparse matrix of evaluations, without486

predictions, to make a recommendation.487

FREEP - FEATURE RECOMMENDER FROM PREFERENCES488

To address the workflow parameter recommendation problem , we propose FReeP, Feature Recommender489

from Preferences approach. FReeP suggests parameter values that maximize a probability to make the490

workflow run flawlessly until its end. As input, the approach receives a user preferences set, which makes491

personalized recommendations. Machine Learning and Preference Learning techniques are the basis of492

the recommendation approach.493

The recommendation approach is presented in three versions. In the first two versions, the algorithm494

aims at recommending a value for only one parameter at a time. While the first version assumes that all495

parameters have a discrete domain, the second version is an extension of the first, dealing with cases496

where a parameter presents a continuous domain, in addition to other improvements regarding the first497

version. Meanwhile, the third version is a proposal for the recommendation of values for n parameters at498

a time.499

FReeP algorithm can be seen as a hybrid Recommendation technique since Collaborative Filtering,500

and Content-Based concepts are used. We start by presenting the first version of the algorithm, which501

makes the recommendation for a single parameter at a time and helps to evaluate the hypothesis. Then, we502

follow to the improved version with some variants to decrease performance problems. Finally, a generic503

version of the algorithm is presented, aiming at making the recommendation of values for multiple (n)504

parameters at a time.505

Discrete Domain Parameter Value Recommendation506

Given a provenance database D, a parameter y ∈ Y , where Y is the workflow parameters set, and a507

preferences or restrictions set P defined by the user, where pi ∈ P(yi,valk), the first FReeP approach508

described here aims to solve the problem of recommending a r value for y, so that the P preferences509

together with the r recommendation to y maximize the chance of workflow activation to run to the end.510

Figure 5 presents an architecture overview of FReeP’s first version. The algorithm receives as input511

the provenance database, a target workflow and user preferences. User preferences are also input data as512

this work is based on the premise that the user already has a subset of parameters for which has already513

defined values to use. In this version of the proposed approach, user preferences are only allowed in the514

form a = b, where a is a parameter, and b is the parameter desired value.515

It is important to note that, based on the user’s preferences, it would be possible to query the provenance516

database from which the experiment came from to retrieve records that could assist in the search for other517

parameters values that had no preferences defined. However, FReeP is based on a model generation that518

generalizes the provenance database, removes the user’s need to perform this query and can still provide519

results that the simple data query would not be able to return.520

Provenance	
D

Preferences	
P			

Target	parameter
y

Partition
Rule	1

Partition
Rule	2

Partition
Rule	n

Partition	1

Partition	2

Partition	n

Partition	1'

Partition	2'

Partition	n'

Model	1

Model	2

Model	n

...
...

... ...

Prediction	1

Prediction	2

Prediction	n

...
Votes

Value 1 Value 2 Value 3 Value 4 Value n

Recommendation

Partition's
Rule

Generator
Horizontal
Filter Vertical	Filter

Hypotheses Predictions
Aggregation

Election

FReeP

Figure 5. FReeP Architecture Overview.
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To obtain a recommendation from FReeP’s first version, seven steps are required: partitions gener-521

ation, horizontal filter, vertical filter, hypothesis generation, predictions, aggregation and finally a522

election-based recommendation is performed. Algorithm 1 shows the proposed algorithm to perform523

the parameter recommendation, considering the preferences for a subset or all other workflow execution524

parameters.525

Algorithm 1 First Version of FReeP526

Require:

y : recommendation target parameter
P : {(param,val) | param is a workflow parameter, val is the preference value for param}
D : {{(param1

1,val1
1), ...,(paraml

1,vall
1), ...(paramm

l ,valm
l )} | l is the workflow parameters number,

m is the provenance dataset length}

1: procedure FREEP(y, P, D)527

2: partitions← partitions generation(P,D)528

3: votes← /0529

4: for each partition ∈ partitions do530

5: data← horizontal f ilter(D, partition)531

6: data← vertical f ilter(data, partition)532

7: data′← preprocessing(data)533

8: model← hypothesis generation(data′,y)534

9: vote← recommend(model,y)535

10: votes← votes∪{vote}536537

11: recommendation← elect recommendation(votes)538

12: return recommendation539540

The algorithm input data are:541

• Target parameter for which the algorithm should make the recommendation, y542

• User preferences set, such as a list of key-values, where the key is a workflow parameter and value543

is the user’s preference for that parameter, P544

• Provenance database, D545

It is important to note that the storage of provenance data for an experiment may vary from one WfMS546

to another. For example, SciCumulus, which uses a provenance representation derived from PROV, stores547

provenance in a relational database. Using SciCumulus example, it is trivial for the user responsible for548

the experiment to elaborate a SQL query that returns the provenance data related to the parameters used549

in each activity in a key-value representation. The key-value representation can be easily stored in a csv550

format file, which is the required format expected as provenance dataset in FReeP implementation. Thus,551

convert provenance data to the csv format is up to the user. Still, regarding the provenance data, the records552

present in the algorithm input data containing information about the parameters must be related only to553

executions that were successfully concluded, that is, there was no failure that resulted in the execution554

abortion. It should be noted that the inclusion of components, such as the conversion of provenance and555

successful executions parameters selection, in the algorithm, would require implementations for each type556

of WfMS, which is out of the scope of this article.557

The initial step, partitions generation, builds partitioning rules set based on the user’s preferences.558

Initially, the preference set parameters P are used to generate a powerset. This first step returns all559

generated powerset as a partitions ruleset. Figure 6 shows an example of how this first step works, with560

some parameters from SciPhy workflow.561

Then, FReeP initializes an iteration over the partitioning rules generated by the previous step. Iteration562

begins selecting only the records that follow the user’s preferences contained in the current ruleset, named563

in the algorithm as horizontal filter. Figure 7 uses the partitions presented in Figure 6 to show how the564

horizontal filter step works.565
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num_aligns	==	10
model1	==	'WAG'

Preferences
Parameters	in
Preferences

[num_aligns,	model1]

partitions

[	[num_aligns],
[model1],

[num_aligns,	model1]	]

powerset

Figure 6. Example of FReeP’s Partitioning Rules Generation for Sciphy provenance dataset using user’s
preferences.

1ª	Iteração

partitions

[	[num_aligns],
[model1],

[num_aligns,
model1]	]

Current	Partition	rule
[num_aligns]

Preferences	Selection
num_aligns	==	10.0

num_aligns length model1 prob1 model2 prob2

10.0 854.0 WAG+I+F 4634.242459 WAG+I+F 4634.242459

11.0 339.0 WAG+I+F 2012.681247 WAG+I 2052.864650

10.0 854.0 WAG+I+F 4634.242459 WAG+I+F 4634.242459

num_aligns length model1 prob1 model2 prob2

10.0 854.0 WAG+I+F 4634.242459 WAG+I+F 4634.242459

10.0 854.0 WAG+I+F 4634.242459 WAG+I+F 4634.242459

Horizontal
Filter

Provenance	dataset

Figure 7. Example of FReeP’s Horizontal Filter using one Partitioning Rule for the Sciphy provenance
dataset.

Subsequently, in the vertical filter step, there is a parameter removal that aims to keep only the566

recommendation target parameter, the parameters present in the current set of partitioning rules, and those567

that are not the recommendation target parameter nor are present in any of the original user preferences.568

The last parameters mentioned remain because, in a next step, they can help to build a more consistent569

hypothesis. Formalizing: let PW be all workflow parameters set, PP the workflow parameters for which570

preference values have been defined; PA the parameters present in the partitioning rules of an iteration571

over the partitioning rules and PV = (PW −PP)∪ (PP∩PA)∪{y}; the output from vertical filter is the572

data from horizontal filter for parameters in PV . Figure 8 uses data from the examples in Figures 6 and573

7 to show how the vertical filter step works.574

Current	Partition	Rule
[num_aligns]

num_aligns length model1 prob1 model2 prob2

10.0 854.0 WAG+I+F 4634.242459 WAG+I+F 4634.242459

10.0 854.0 WAG+I+F 4634.242459 WAG+I+F 4634.242459

Preferences

num_aligns	==	10.0
model1	==	'WAG'

Parameters	in
Preferences

[num_aligns,	model1]

Workflow	Parameters
[num_aligns,	length,	model1,

prob1,	model2,	prob2]

∩ [num_aligns]

- [length,prob1,model2,prob2]

∪ [num_aligns,	length,
prob1,	model2,	prob2]

Vertical	
Filter

num_aligns length prob1 model2 prob2

10.0 854.0 4634.242459 WAG+I+F 4634.242459

10.0 854.0 4634.242459 WAG+I+F 4634.242459

Provenance	dataset	after	Horizontal	Filter

Target	Parameter
y	=	model2

Figure 8. FReeP’s Vertical Filter step.

The chain comprising the partitions generation and the horizontal and vertical filters is crucial to575

minimize the Cold Start problem (Lika et al., 2014). Cold Start problem is caused by the lack of ideal576

operating conditions for an algorithm, specifically in the recommender systems. This problem occurs,577

for example, when there are few users for the neighborhood definition with a similar user profile or lack578

of ratings for enough items. FReeP can also be affected by Cold Start problem. If only all preferences579

were used at one time for partitioning the provenance data, in some cases, it could be observed that580

the resulting partition would be empty. This is because there could be an absence of any of the user’s581
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preferences in the provenance data. Therefore, generating multiple partitions with subsets of preferences582

decreases the chance of obtaining only empty partitions. However, in the worst case where none of the583

user’s preferences are present in the workflow provenance, FReeP will not perform properly, thus failing584

to make any recommendations.585

After the partitions generation and horizontal and vertical filters are discovered, there is a filtered data586

set that follows part of the user’s preferences. These provenance data that will generate the hypotheses,587

represented by Machine Learning models, have numerical and categorical domain parameters. However,588

traditional Machine Learning models generally work with numerical data because the generation of these589

models, in most cases, involves many numerical calculations. Therefore, it is necessary to codify these590

categorical parameters to numerical representation. The technique used here to encode categorical domain591

parameters to numerical representation is One-Hot encoding (Coates and Ng, 2011). This technique592

consists of creating a new binary attribute, that is, the domain of this new attribute is 0 or 1, for each593

different attribute value present in dataset.594

The encoded provenance data allows building Machine Learning models to make predictions for the595

target parameter under the step hypothesis generation. The hypothesis generated has parameter y as596

class variable, and the other parameters present in vertical filter step output data are the attributes used in597

generalizing the hypothesis. In this algorithm approach, the model representing the generated hypothesis598

can be a classifier, where the model’s prediction is a single recommendation value, or a ranker, where599

its prediction is an ordered list of values, of the value most suitable for the recommendation to the least600

suitable.601

With a hypothesis created, we can use it to recommend the value for the target parameter. This step is602

represented in FReeP as recommended, and the recommendation of parameter y is made from the user’s603

preferences. It is important to emphasize that the model’s training data may contain parameters that the604

user did not specify any preference. In this case, an attribute of the instance submitted for the hypothesis605

does not have a defined value. To clarify the problem: let PW be all workflow parameters set, PP the606

parameters of workflow for which preference values have been defined; PA the parameters present in the607

partition rules of an iteration over the partitioning rules; and PV = (PW −PP)∪ (PP∩PA)∪{y}, there608

may be parameters p ∈ PV | p /∈ PP, and for those parameters p there are no values defined a priori. To609

handle this problem, the average values present in the provenance data are used to fill in the numerical610

attributes’ values and the most frequent values in the provenance date for the categorical attributes.611

All predictions generated by recommend step, which is within the iteration over the partitioning rules,612

are stored. The last algorithm step, elect recommendation, uses all of these predictions as votes, which613

will define which value should be recommended for the target parameter. When an algorithm instance is614

setup to return a classifier type model in hypothesis generation step, the election takes place through the615

majority strategy most frequent value, that is, the most voted is elected as the recommendation. On the616

other hand, when an algorithm instance is setup to return a ranker type model in hypothesis generation617

step, the strategy is Borda Count. The use of the Borda Count strategy seeks to take advantage of the list618

of lists form that the saved votes acquire when using the ranker model. This list of lists format occurs619

because the ranker prediction is a list, and since there are as many predictions as partitioning rules, the620

storage of these predictions takes the list of lists format.621

Discrete and Continuous Domain Parameter Value Recommendation622

The first version of FReeP allowed evaluating the algorithm’s proposal. The proposal showed relevant623

results after initial tests (presented in next section), so efforts were focused on improving its performance624

and utility. In particular, the following problems have been identified:625

1. User has some restriction to set his/her parameters preferences;626

2. The categorical domain parameters when used as a class variable;627

3. Machine Learning models used in FReeP to represent the hypotheses created, classifier and ranker628

are used only for categorical class parameters;629

4. All partitions generated by workflow parameters powerset present in user preferences are used as630

partitioning rules for the algorithm.631

Regarding problem 1, in Algorithm 1, the user was limited to define his preferences with the equality632

operator. Depending on the user’s preferences, the equality operator is not enough. With this in mind, the633
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second version of FReeP allows for the user to have access to the relational operators: ==,>,>=,<,<=634

and ! = to define his/her preferences. In addition, two logical operators are also supported in setting635

preferences: | and &. Preferences with combination of supported operators is also allowed, for example:636

(a > 10)|(at < 5).637

However, by allowing users to define their preferences in this way we create a problem when setting638

up the instances for recommendation step. As seen, PW represents all workflow parameters set , PP are639

workflow parameters that preference values have been set; PA the parameters present in the partitioning640

rules of an iteration over the partition rules; and PV = (PW −PP)∪ (PP∩PA)∪{y}. Thus, there may be641

parameters p ∈ PV | p /∈ PP, and for those parameters p, there are no values defined a priori. As in this642

second algorithm version, since the user’s preferences can be expressed in a more relaxed way, and it is643

necessary to create the instances used in the step recommendation that include a range (or set of values).644

To handle these cases, all possible instances from preference values combinations were generated. In case645

the preference is related to a numerical domain parameter and is defined in terms of values range, like646

a≤ 10.5, FReeP uses all values present in the source provenance database that follows the preference647

restriction. It is important to note that for both numerical and categorical parameters, the combination of648

possible values are those present in the provenance database and respect the user’s preferences. Then,649

predictions are made for a set of instances using the hypothesis learned during the training phase.650

Regarding problem 2, the provenance database, which is one algorithm input data, in general, present651

attributes with numerical and categorical domains. As before, it is FReeP converts categorical values to652

numerical ones.653

This pre-processing step was included in Algorithm 2 as preprocessing classes step. The preprocess-654

ing consists in exchange each distinct categorical value for a distinct integer. Note that the encoding of655

the parameter used as a class variable in the model generation is different from the encoding applied to656

the parameters used as attributes represented by the step preprocessing.657

Concerning problem 3, using Machine Learning models developed for the classification task for658

continuous numerical domain class variables degrades the performance results. This problem happens659

when classifier and ranker are used in the first version of FReeP. Performance degradation is because the660

numerical class variables are considered as categorical. For continuous numerical domain class variables,661

the Machine Learning models suggested are Regressors (Myers and Myers, 1990). In this way, the662

second version of FReeP checks the parameter y domain, which is the recommendation target parameter,663

represented as model select step in Algorithm 2.664

To analyze problem 4, it is important to note that after converting categorical attributes One-Hot665

encoding in preprocessing step, the provenance database will have a considerable increase in the number666

of attributes. Also, after categorical attributes encoding in preprocessing step, the parameters extracted667

from the user’s preferences, are also encoded for partitions generation step. In Algorithm 1, the668

partitioning rules powerset is calculated on all attributes derived from the original parameters after One-669

Hot encoding. If FReeP uses the powerset generated from the parameters present in the user’s preferences670

set as partitioning rules (in the partitions generation step), it can be very costly. Thus, using the powerset671

makes the complexity of the algorithm becomes exponential according to the parameters present in the672

user’s preferences set. Alternatives to select the best partitioning rules and handle the exponential cost are673

represented in Algorithm 2 as optimized partitions generation step. The two strategies proposed were674

based on Principal Components Analysis (PCA) (Garthwaite et al., 2002) and the Analysis of variance675

(ANOVA) (Girden, 1992) statistical metric.676

The strategy based on the PCA consists of extracting x principal components from all provenance677

database, pcaD, and for each pt ∈ partitions, pcai
pt , which are pt partition principal components. Then,678

the norms are calculated
∥∥∥pcaD− pcai

pt

∥∥∥ , and from that are selected n partitioning rules that generated679

pcai
pt such that

∥∥∥pcaD− pcai
pt

∥∥∥ resulted in the lowest calculated values. Note that both x and n680

are defined parameters when executing the algorithm. In summary, the PCA strategy will select the681

partitions where the main components extracted are the closest to the principal components of the original682

provenance dataset.683

ANOVA strategy seeks the n partitioning rules that best represent D, selecting those that generate684

partitions where the data variance is closest to D data variance. In short, original data variance and data685

variance for each partition are calculated using the ANOVA metric, then partitions with most similar686

variance to the original provenance data are selected. Here, the n rules are defined in terms of the data687
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percentage required to represent the entire data set, and that parameter must also be defined in algorithm688

execution. Using PCA or ANOVA partitioning strategies means that the partitioning rules used by FReeP689

can be reduced, depending on the associated parameters that need to be defined.690

Algorithm 2 Second Version of FReeP691

Require:

y : recommendation target parameter
P : {(param,val) | param is a workflow parameter, val is the preference value for param}
D : {{(param1

1,val1
1), ...,(paraml

1,vall
1), ...(paramm

l ,valm
l )} | l is the workflow parameters number,

m is the provenance dataset length}

1: procedure FREEP(y, P, D)692

2: D′← classes preprocessing(D)693

3: partitions← optimized partitions generation(P,D′)694

4: votes← /0695

5: for each partition ∈ partitions do696

6: data← horizontal f ilter(D′, partition)697

7: data← vertical f ilter(data, partition)698

8: model type← model select(data,y)699

9: data′← preprocessing(data)700

10: model← hypothesis generation(data′,y,model type)701

11: vote← recommend(model,y)702

12: votes← votes∪{vote}703704

13: recommendation← elect recommendation(votes)705

14: return recommendation706707

Recommendation for n Parameters at a time708

Algorithms 1 and 2 aims at producing single parameter recommendation at a time. However, in a real709

usage scenario of scientific workflows, the WfMS will probably need to recommend more than one710

parameter at a time. A naive alternative to handle this problem is to execute Algorithm 2 for each of the711

target parameters, always adding the last recommendation to the user’s preference set. This alternative712

assumes that the parameters to be recommended are independent random variables. One way to implement713

this strategy is to use a classifiers chain (Read et al., 2011).714

Nevertheless, this naive approach neglects that the order in which the target parameters are used during715

algorithm interactions can influence the produced recommendations. The influence is due to parameter716

dependencies that can be found between two (or more) workflow activities (e.g., two activities consume a717

parameter produced by a third activity of the workflow). In Figure 9, the circles represent the activities of718

workflow, so it can be seen that activities 2 and 3 are preceded by activity 1 (e.g., they consume the output719

of activity 1). Using this example, we can see that it is possible that there is a dependency relationship720

between the parameters param2 and param3 with the parameter param1. In this case, the values of721

param2 and param3 parameters can be influenced by parameter param1 value.722

In order to deal with this problem, FReeP leverages the Classifiers Chains Set (Read et al., 2011)723

concept. This technique allows for estimating the joint probability distribution of random variables based724

on a Classifiers Chains Set. In this case, random variables are the parameters for which values are to725

be recommended, and the joint probability distribution concerns the possible dependencies between726

these parameters. The Classifiers Chains and Classifiers Chains Set are techniques from Multi-label727

Classification (Tsoumakas and Katakis, 2007) Machine Learning task.728

An architecture overview for the proposed algorithm named as Generic FReeP that recommends729

n parameters simultaneously is shown in Figure 10. The architecture presented in Figure 10 shows730

that the solution developed to make n parameter recommendations at a time is a packaging of FReeP731

algorithm to one parameter. This final approach is divided into five steps: identification of parameters732

for the recommendation, generation of ordered sequences of these parameters, iteration over each of the733

sequences generated with the addition of each recommendation from FReeP to the user preferences set,734

separation of recommendations by parameter and finally the choice of value recommendation for each735

target parameters. The formalization can be seen in Algorithm 3.736
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Figure 9. A generic workflow representation: circles represent activities, arrows between the circles
represent the link between activities, and the labels for each circle represent the configuration parameters
for each activity.
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Algorithm 3 Generic FReeP737

Require:

P : {(param,val) | param is a workflow parameter, val is the preference value for param}
D : {{(param1

1,val1
1), ...,(paraml

1,vall
1), ...(paramm

l ,valm
l )} | l is the workflow parameters number,

m is the provenance dataset length}
N :number of random sequences orders to be generated

1: procedure GENERIC FREEP(P, D, N)738

2: target parameters← parameters extractor(P,D)739

3: votes← /0740

4: for each param ∈ target parameters do741

5: votes← votes∪{(param, [])}742743

6: ordered sequences← sequence generator(target parameters,N)744

7: for each sequence ∈ ordered sequences do745

8: pre f erences tmp← P746

9: for each param ∈ sequence do747

10: recommendation← FReeP(param, pre f erences tmp,D)748

11: votes[param]← votes[param]∪ recommendation749

12: new pre f erence← generate pre f erence(param,recommendation)750

13: pre f erences tmp← pre f erences tmp∪new pre f erence751752753

14: response← /0754

15: for each (param,values) ∈ votes do755

16: response[param]← most voted(values)756757

17: return response758759

The first step parameters extractor extracts the workflow parameters that are not present in the760

users’ preferences and will be the targets of the recommendations. Thus, all other parameters that are not761

in the user’s preferences will have recommendation values.762
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Lines 4 and 5 of the algorithm comprise the initialization of the variable responsible for storing763

the different recommendations for each parameter during the algorithm execution. Then, the list of764

all parameters that will be recommended is used for generating different ordering of these parameters,765

indicated by sequence generators step. For example, w be a workflow with 4 p parameters and let u be766

an user with pr1 and pr3 preferences for the p1 and p3 parameters respectively. The parameters to be767

recommended are p2 and p4, in this case two possible orderings are: {p2, p4} and {p4, p2}. Note that the768

number of sorts used in the algorithm are not all possible sorts, in fact N of the possible sorts are selected769

at random.770

Then, the algorithm initializes an iteration over each of the sorts generated by the step sequence generators.771

Another nested iteration over each parameter present in the current order also begins. An intuitive explana-772

tion of the algorithm between lines 9 and 13 is that each current sequence parameter is used together with773

the user’s preferences for its recommendation. At the end of the recommendation of one of the ordering774

parameters, the recommendation is incorporated into the preferences set used in the recommendation of775

the next ordering parameter. In this iteration, the recommendations are grouped by parameter to facilitate776

the election of the recommended value for each target parameter.777

The step of iterating over the generated sequences, always adding the last recommendation to the set778

of preferences, is the Classifiers Chains concept. To deal with the dependency between the workflow pa-779

rameters that can influence a parameter value recommendation, the step that generates multiple sequences780

of parameters, combined with the Classifiers Chains, is the Classifiers Chains Set concept.781

Finally, to choose the recommendation for each target parameter, a vote is taken on lines 15 and 16.782

The most voted procedure makes the majority election that defines the target parameter recommendation783

value. This section presented three algorithms that are part of the FReep approach developed for the784

parameter recommendation problem in workflows. The proposals covered two main scenarios for785

parameters value recommendation (single and multiple parameter at a time).786

EXPERIMENTAL EVALUATION787

All FreeP algorithms presented in this article were implemented using the Python programming language.788

Some of the most used Python libraries to develop Machine Learning tools were used, for example789

Scikit-Learn (Pedregosa et al., 2011), which provides several classifiers and regressors, in addition to790

tools that assist in the proposal evaluation, such as K Fold Cross Validation (Arlot et al., 2010); numpy791

(Walt et al., 2011), a numerical data manipulation library; and pandas (McKinney, 2011), which provides792

tabular data functionalities.793

To measure recommendations performance when the parameter is categorical, precision and recall794

are used as metrics. Precision and recall are metrics widely used for the quantitative assessment of795

recommender systems (Herlocker et al., 2004) (Schein et al., 2002). Equation 5 defines precision and796

Equation 6 defines recall, following the recommender vocabulary, where T R is the correct recommendation797

set and R is all recommendations set. An intuitive explanation to precision is that it represents the most798

appropriate recommendations fraction. Still, recall represents the appropriate recommendation fraction799

that was made.800

precision =
‖T R∩R‖
‖R‖

(5) recall =
‖T R∩R‖
‖T R‖

(6) MSE =
1
n

n

∑
i=1

(RV −TV )2 (7)801

When the parameter to be recommended is numerical, the performance of FReeP is evaluated with802

Mean Square Error (MSE). The MSE formula is given by Equation 7 where n is the recommendations803

number, TV is the correct recommendation values set, and RV is the recommended values set.804

Dataset805

The datasets used are provenance data extracted from past executions of the workflows SciPhy (Ocaña806

et al., 2011) and Montage (Hoffa et al., 2008). SciPhy is a Bioinformatics workflow aiming at generating807

phylogenetic trees, that is, trees that represent an organism evolutionary history. Montage is a well-known808

astronomical workflow that generates mosaics from several sky images.809

Table 2 summarizes the main characteristics of the datasets. The Total Records column shows the810

amount of data from past executions of each workflow. Each provenance dataset record can be used as an811

example for generating Machine Learning models during the algorithm’s execution. As seen, the Sciphy812

dataset is relatively small compared to Montage. The column Total Attributes shows how many activity813
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Dataset Total
Records

Total
Attributes

Categorical
Attributes

Numerical
Attributes

Sciphy 376 6 2 4
Montage 1565 8 2 6

Table 2. Dataset characteristics.

parameters are present in each workflow execution. Both workflows have the same number of categorical814

domain parameters, as can be attested by the column Categorical Attributes. Montage has more numeric815

domain parameters than Sciphy, as shown in the Numerical Attributes column.816

Parameter Minimum
Value

Maximum
Value

Standard
Deviation

num aligns 9.000000 11.000000 0.209135
length 85.000000 1039.000000 169.904263
prob1 634.673994 5753.519623 1103.431812
prob2 635.874188 5795.280758 1101.762483

Table 3. Sciphy dataset statistics.

Statistics on the Sciphy dataset numerical attributes are shown in Table 3. This table presents the817

minimum and maximum values of each attribute, in addition to the standard deviation. As can be seen,818

the attribute prob1 has the highest standard deviation, and its range of values is the largest among all819

attributes. The prob2 attribute has both a range of values and the standard deviation similar to prob1. The820

standard deviation of the values of num aligns is very small, while the attribute length has a high standard821

deviation, considering its values range.822

Parameter Minimum
Value

Maximum
Value

Standard
Deviation

cntr 0.000000 134.000000 35.335662
ra 83.118935 323.898836 91.131423

dec -27.166501 28.845708 17.903018
crval1 83.118785 323.898697 91.131426
crval2 -27.166362 28.845847 17.903018
crota2 0.000084 359.999884 178.643719

Table 4. Montage dataset statistics.

The Montage dataset numerical attributes, in most of the cases, have smaller standard deviation than823

the Sciphy dataset. On average, Montage attributes also have a smaller values range than Sciphy dataset824

attributes. Also, in Montage dataset, the crota2 attribute has the largest values range and the largest825

standard deviation. The dec and crval2 attributes have close statistics and are the attributes with the826

smallest data range and the smallest Montage data standard deviation.827

In Figure 11, it is possible to check the correlation between the different attributes in the datasets.828

It is notable in both Figure 11a and Figure 11b that the attributes (i.e., workflow parameters) present a829

weak correlation. All those statistics are relevant to understand the results obtained by the experiments830

performed from each version of FReeP algorithm.831

Discrete Domain Recommendation Evaluation832

This experiment was modeled to evaluate FReeP’s algorithm key concepts using the first version presented833

in Algorithm 1, that was developed to recommend one discrete domain parameter at a time. This834

experiment aims at evaluating and comparing the performance of FReeP when its hypothesis generation835

step instantiates either a single classifier or a ranker. The ranker tested as a model was implemented836

using the Pairwise Label Ranking technique. K Nearest Neighbors (Keller et al., 1985) classifier is used837
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(a) Montage dataset attributes Correlation Matrix.
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(b) Sciphy dataset attributes Correlation Matrix.

Figure 11. Datasets Attributes Correlation matrices.

as the classifier of this ranker implementation. The k parameter of K Nearest Neighbors classifier was set838

as 3,5,7 for both the ranker and classifier. The choice of k ∈ {3,5,7} is because small datasets are used,839

and thus k values greater than 7 do not return any neighbors in the experiments.840

Experiment 1. Algorithm 1 Evaluation Script.

1. The algorithm is instantiated with the classifier or ranker and a recommendation target workflow
parameter.

2. The provenance database is divided using K-Fold Cross Validation (Kohavi, 2001), which consists
of dividing the data set into k parts, and at each step k−1 parts for model training and 1 parts for
model prediction. In this experiment was used k = 5.

3. Each workflow parameter is used as recommendation target parameter.

4. Each provenance record in test data is used to retrieve target parameter real value.

5. Parameters that are not the recommendation target are used as preferences, with values from current
test record.

6. Then, algorithm performs recommendation and both the result and the value present in the test
record for the recommendation target parameter are stored.

7. Precision and recall values are calculated based on all K-Fold Cross Validation iterations.

Results841

Experiment 1 results are presented and analyzed based on the values of precision and recall, in addition to842

the execution time. Figure 12a shows that Algorithm 1 execution with Sciphy provenance database, using843

both the classifier and the ranker. Only KNN classifier with k = 3 gives a precision greater than 50%.844

Also, a high standard deviation is noticed. Even with unsatisfactory performance, Figure 14b shows that845

KNN classifier presented better recall results than those for precision, both in absolute values terms and846

standard deviation, which had a slight decrease. In contrast, the ranker recall was even worse with the847

precision results and still present a very high standard deviation.848

Figure 13 shows the execution time spent, in seconds, to obtain the experiment’s recommendations849

for SciPhy. The execution time of ranker is much more significant when compared to the time spent by850

the classifier. This behavior can be explained by the fact that the technique used to generate the ranker851

creates multiple binary classifiers. Another point to note is that the execution time standard deviation852
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(a) Precision results with Sciphy data.
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(b) Recall results with Sciphy data.

Figure 12. precision and Recall results with Sciphy data.
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Figure 13. Experiment recommendation execution time with Sciphy data.

from ranker is also very high. It is important to note that when FReeP uses KNN, it is memory-based,853

since each recommendation needs to be loaded into main memory.854

Analyzing Figure 14a (Montage) one can conclude that with the use of k = 3 for the classifier and855

for the ranker produces relevant results. The precision for this case reached 80%, and the standard856

deviation was considerably smaller compared to the precision results with Sciphy dataset in Figure 12a.857

For k ∈ {5,7}, the same results behavior was observed, considerably below those expected.858

Considering the precision, Figure 14b shows that the results for k = 3 were the best for both the859

classifier and for ranker, although for this case they did not reach 80% (although it is close). It can860

be noted that the standard deviation was smaller when compared to the standard deviations found for861

precision. One interesting point about the execution time of the experiment with Montage presented862

in Figure 15 is that for k ∈ {3,7} the ranker spent less time than the classifier. This behavior can be863

explained because the ranker, despite being generated by a process where several classifiers are built,864

relies on binary classifiers. When used alone, the classifier needs to handle all class variables values,865

in this case, parameter recommendation values, at once. However, it is also important to note that the866

standard deviation for ranker is much higher than for the classifier.867

In general, it was possible to notice that the use of ranker did not bring encouraging results. In all868

cases, ranker precision and recall were lower than those presented by the classifier. Besides, the standard869

deviation of ranker in the execution time spent results was also very high. Another point to be noted870

is that the best precision and recall results were obtained with the data from Montage workflow. These871

results may be linked to the fact that the Montage dataset has more records than the Sciphy dataset.872

Discrete and Continuous Domain Recommendation Evaluation873

Experiment 1 was modified to evaluate the Algorithm 2 performance, yielding Experiment 2. Algorithm874

2 was executed with variations in the choice of classifiers and regressors, partitions strategies, and records875
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(a) Precision results with Montage data.
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(b) Recall results with Montage data.

Figure 14. precision and Recall results with Montage data.
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Figure 15. Experiment recommendation execution time with Montage data.

percentage from provenance database. All values per algorithm parameter are presented in Table 5.876

Classifiers Regressors Partition Strategy Percentage
KNN Linear Regression PCA 30
SVM KNR ANOVA 50

Multi-Layer Perceptron SVR 70
Multi-Layer Perceptron

Table 5. Algorithm 2 values per parameter used in Experiment 2

Results877

Experiment 2 results are presented using precision, recall, and execution time for categorical domain878

parameters recommendations, while numerical domain parameters recommendations are evaluated using879

MSE and the execution time. Based on the results obtained in Experiment 1, only classifiers were used as880

Machine Learning models in Experiment 2, i.e., we do not consider rankers.881

The first observation when analyzing the precision data in Figure 16a is that ANOVA partitioning882

strategy obtained better results than PCA. ANOVA partitioning strategy precision in absolute values is883

generally more significant, and variation in precision for each attribute considered for recommendation is884

lower than PCA strategy. The classifiers have very similar performance for all percentages of partitions in885

the ANOVA strategy. On the other hand, the variation in the percentages of elements per partition also886

reflects a more significant variation in results between the different classifiers. The Multi Layer Perceptron887

(MLP) classifier, which was trained using the Stochastic Descending Gradient (Bottou, 2010) with a888

single hidden layer, presents the worst results except in the setup that it follows the PCA partitioning889
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Experiment 2. Algorithm 2 Evaluation Script.

1. Algorithm 2 is instantiated with a classifier or regressor, a partitioning strategy, percentage data to
be returned by partitioning strategy, and a target workflow parameter.

2. Provenance database is divided using K-Fold Cross Validation, k = 5

3. Each provenance record on test data is used to retrieve the target parameter’s real value.

4. A random number x between 2 and parameters number present in provenance database is chosen to
simulated preference number used in recommending target parameter.

5. x parameters are chosen from the remaining test record to be used as preferences.

6. Algorithm performs recommendation, and both result and test record value for the target parameter
are stored.

7. Precision and recall, or MSE values are calculated based on all K-Fold Cross Validation iterations.
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(a) Precision results with categorical domain Sciphy
data.
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(b) Recall results with categorical domain Sciphy data.

Figure 16. Precision and Recall results with Sciphy data.

strategy with a percentage of 70% elements in the partitioning. The MLP model performance degradation890

may be related to the fact that the numerical attributes are not normalized before algorithm execution.891

Recall results, in Figure 16b were very similar to precision results in absolute values. A difference892

is the smallest variation, in general, of recall results for each attribute used in the recommendation893

experiment. The Multi Layer Perceptron classifier presented a behavior similar to the precision results,894

with a degradation in the setup that includes ANOVA partitioning with 70% of the elements in the895

partitioning.896

Figure 17 shows the average execution time in seconds during the experiment with categorical domain897

parameters in each setup used. Execution time of ANOVA partitioning strategy was, on average, half898

the time used with the PCA partitioning strategy. The execution time using different classifiers for each899

attribute is also much smaller and stable for ANOVA strategy than for PCA, regardless of element partition900

percentage.901

Analyzing precision, recall, and execution time spent data jointly, ANOVA partitioning strategy showed902

the best recommendation performance for the categorical domain parameters of the Sciphy provenance903

database. Going further, the element partition percentage generated by the strategy has no significant904

impact on the results. Another interesting point is that a simpler classifier like KNN presented results very905

similar to those obtained by a more complex classifier like SVM.906

Figure 18a brings the data from results obtained for the numerical domain parameter Sciphy provenance907

database. The data shows zero MSE in all cases, except for the use of Multi Layer Perceptron in the908
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Figure 17. Experiment recommendation execution time with categorical domain Sciphy data.
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(a) MSE results with categorical domain Sciphy data.
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(b) Experiment recommendation execution time with
numerical domain Sciphy data.

Figure 18. MSE results and recommendation execution time with Sciphy data.

regression. This result can be explained by the small database and the few different values for each909

numerical domain parameter. Small values difference per parameter suggests that the regressors have no910

work to generate a result equal to what is already present in the database.911

Looking at Figure 18b, one can notice that, similar to the categorical domain parameters results,912

the execution time of ANOVA partitioning strategy is much less than the time used by the PCA strategy.913

Another similar point with categorical domain parameter results is the smaller and more stable ANOVA914

strategy results variation.915

From all results obtained in the Experiment 2 using Sciphy provenance database, it can be noticed that916

the ANOVA partitioning strategy had the best performance. Further precision, recall, and MSE results,917

for the Algorithm 2 setup with ANOVA partitioning strategy also proved to be the one that performed918

the recommendations in the shortest time, generally in half the time that the PCA partitioning strategy.919

Note that the recommendation time can be treated as training time since the proposed algorithm has a920

memory-based approach. Finally, the choice of the generated partition size and the classifier or regressor921

used have no significant impact on the final result unless the classifier or regressor is based on Multi922

Layer Perceptron with the same parametrization used in this work.923

Analyzing Figure 19a, precision results obtained with categorical domain parameters from Montage924

workflow provenance database is observed that in almost all the experiment setup variations evaluated,925

maximum performance is reached. As seen in Table 2, the Montage workflow provenance database used926

in the experiments has only two categorical domain parameters. The small variation in possible values in927

the database is an explanation for the precision results. The recall results in Figure 19b are similar to the928

precision ones.929
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(a) Precision results with categorical domain Montage
data.
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(b) Recall results with categorical domain Montage
data.

Figure 19. precision and Recall results with Montage data.
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Figure 20. Experiment recommendation execution time with categorical domain Montage data.

Concerning the results about the experiment time with categorical domain parameters from the930

Montage provenance database, presented in Figure 20, one can see that the KNN classifier, k = 3,931

with PCA partitioning strategy was the most time-consuming. On the other hand, with the same PCA932

partitioning strategy, the Multi Layer Perceptron classifier used less time, but with a wide variation in933

recommendation times for different parameters. The ANOVA partitioning strategy continued to be a934

partitioning strategy that delivers the fattest recommendations. Still analyzing ANOVA partitioning strategy935

results, it is possible to see that the KNN classifier, with k ∈ {5,7}, was the fastest in recommending936

Montage workflow categorical domain parameters.937

Making a general analysis of results in Figure 19 and 20, the setup that uses ANOVA partitioning938

strategy with the KNN classifier, k = 7 it’s the best. This setup was the one that obtained the best results939

for precision, recall, and execution time spent simultaneously. MSE results for Montage numerical domain940

parameters presented in Figure 21a show that, in general, the MSE was very close to zero for all cases,941

except in algorithm setup using PCA partitioning strategy with 30% elements in the generated partition942

and the regressor implemented by Multi Layer Perceptron. The MSE and its variation were very close to943

zero.944

Regarding the execution time of Experiment 2 for numerical domain parameters recommendations for945

Montage data, Figure 21b indicates the same behavior shown by results with SciPhy provenance database.946

Using ANOVA partitioning strategy and KNR regressors with k ∈ {5,7} as setup for Algorithm 2 produced947

the fastest recommendations.948

The experiment execution time of Montage provenance database was much greater than the time used949

with the data from the workflow Sciphy. The explanation is the difference in the database size. Another950
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(a) MSE results with categorical domain Montage data.
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(b) Experiment recommendation execution time with
numerical domain Montage data.

Figure 21. MSE results and recommendation execution time with Montage data.

observation is that the ANOVA partitioning strategy produces the fastest recommendations. Another point951

is that the percentage of the elements in partitioning generated by each partitioning strategy has no impact952

on the algorithm performance. Finally, it was possible to notice that the more robust classifiers and953

regressors had their performance exceeded by simpler models in some cases for the data used.954

Generic FReeP Recommendation Evaluation955

A third experiment was modeled to evaluate Algorithm 3 performance. As in Experiment 2, different956

variations, following Table 5 values, were used in algorithm execution. Precision, recall, and MSE are957

also the metrics used to evaluate the recommendations made by each algorithm instance.958

Experiment 3. Algorithm 3 Evaluation Script.

1. n Records from the provenance database were chosen as random examples.

2. m≥ 2 random parameters were chosen for each example record as preferences, and their values are
the same as those present in the example record.

3. Algorithm 3 was instantiated with a classifier or a regressor, a partitioning strategy, the partitions
percentage to be returned by the partitioning strategy, and the selected m preferences.

4. Each returned recommendation is separated into numeric and categorical and is stored.

5. Precision and recall values were calculated for categorical recommendations and Mean Square
Error (MSE) for numerical recommendations.

Results959

Results showed here were obtained by fixing parameter n = 10 in Experiment 3, and using only SciPhy960

provenance database. Based on Experiment 2 results, it was decided to use the ANOVA partitioning961

strategy with 50% recovering elements from the provenance database. This choice is because the ANOVA962

partitioning strategy was the one that obtained the best results in previous experiment. As the percentage963

of data recovered by the strategy was not an impacting factor in the results, an intermediate percentage964

used in the previous experiment is selected. In addition, only KNN, with k ∈ {5,7}, and SVM were kept965

as classifiers, whereas only KNR, with k ∈ {5,7}, and SVR was chosen as regressors. These choices are966

supported by, in general, are the ones that present the best precision, recall, and MSE results in Experiment967

2.968

Table 6 presents the results obtained with the Algorithm 3 instance variations. Each row in the table969

represents an Algorithm 3 instance setup. The column that draws the most attention is the Failures. What970
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Classifier Regressor Partitioning Strategy MSE precision recall Failures
KNN 5 KNR 5 ANOVA 50 0.0 1.0 1.0 6
KNN 5 KNR 7 ANOVA 50 0.0 1.0 1.0 6
KNN 5 SVR ANOVA 50 1.1075 1.0 1.0 6
KNN 7 KNR 5 ANOVA 50 4279.2240 1.0 1.0 5
KNN 7 KNR 7 ANOVA 50 0.0 1.0 1.0 5
KNN 7 SVR ANOVA 50 0.444 1.0 1.0 5
SVM KNR 5 ANOVA 50 1148.1876 0.75 0.75 6
SVM KNR 7 ANOVA 50 0.0 1.0 1.0 7
SVM SVR ANOVA 50 0.0 1.0 1.0 7

Table 6. Experiment 3 results with Sciphy dataset

happens is that, for some cases, the algorithm was not able to carry out the recommendation together and971

therefore did not return any recommendations. It is important to remember that each algorithm setup972

was tested on a set with 10 records extracted randomly from the database. The random record selection973

process can select records in which parameter values can be present only in the selected record. For this974

experiment, the selected examples are removed from the dataset, and therefore there is no other record975

that allows the correct execution of the algorithm.976

Analyzing Table 6 results, focusing on the column Failures and taking into account that 10 records977

were chosen for each setup, it is possible to verify that in most cases, the algorithm was not able to978

make recommendations. However, considering only the recommendations made, it can be seen that979

the algorithm had satisfactory results for the precision and recall metrics. The values presented for the980

MSE metric were mostly satisfactory, differing only in the configurations of lines 4 and 7, both using981

the regressor KNR with k = 5. Another point to note is that the algorithm had more problems to make982

recommendations when the SVM classifier was used. Furthermore, it is possible to note that algorithm983

setups with more sophisticated Machine Learning models such as SVM and SVR do not add performance984

to the algorithm, specifically for Sciphy provenance dataset used.985

RELATED WORK986

Previous literature works had already relied on recommender systems to support scientific workflows. In987

general, the works that seek to assist scientists with some type of recommendation involving scientific988

workflow are focused on the composition phase. Zhou et al. (2018) uses a graph-based clustering technique989

to recommend workflows that can be reused in the composition of a developing workflow. De Oliveira990

et al. (2008) uses workflow provenance to extract connection patterns between components in order to991

make recommendations of new components for a workflow in composition. For each new component992

used in the composition of workflow, new components are recommended. Halioui et al. (2016), uses993

Natural Language Processing combined with specific ontologies in the field of Bioinformatics to extract994

concrete workflows from works in the literature. After the reconstruction of concrete workflows, tool995

combinations patterns , its parameters, and input data used in these workflows are extracted. All this data996

extracted can be used as assistance for composing new ones workflows that solve problems related to the997

mined workflows.998

Yet concerned with assistance during the workflow composition phase, Mohan et al. (2015) proposes999

the use of Folksonomy (Gruber, 2007) to enrich the data used for the recommendation of others workflows1000

similar to a workflow under development. A design workflow tool was developed that allows free1001

specification tags to be used in each component, making it possible to use not only the recommendation1002

strategy through the workflow syntax, but also component semantics. Soomro et al. (2015) uses domain1003

ontologies as a knowledge base to incorporate semantics into the recommendation process. A hybrid1004

recommender system was developed using ontologies to improve the already known recommendation1005

strategy based on the extraction of standards from other workflows. Zeng et al. (2011) uses data and1006

control dependencies between activities, stored in the workflow provenance to build a causality table and1007

another weights table. Subsequently, a Petri network (Zhou and Venkatesh, 1999) is used to recommend1008

other components for the composition of workflow.1009

The works that uses recommender system methods to support the scientific process are closely linked1010
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to the experiment’s composition phase. The execution phase, where there is a need to adjust parameters,1011

still lacks alternatives. This work proposes a hybrid recommendation algorithm capable of making1012

value recommendations for one or n parameters of a scientific workflow, taking into account the user’s1013

preferences.1014

A very similar problem to the recommendation of parameters in scientific workflows is Machine1015

Learning algorithms hyperparameters tuning. A Machine Learning model can perform poorly with a set1016

of hyperparameters, but a simple adjustment of the values can significantly improve the results. Then,1017

the use of information from similar use cases can also help in the arduous task of looking for additional1018

parameters to execute a Machine Learning model training process. In order to improve the search for the1019

best sets of hyperparameters, some initiatives (Hutter et al., 2011) (Bergstra et al., 2011) sought to do a1020

combination of manual search and Grid Search (Hsu et al., 2003).1021

Another approach that has shown relevant results and influenced other variants’ development is1022

Sequential Model-Based Bayesian Optimization. Brochu et al. (2010) proposed the method of optimizing1023

a function f through an iterative process. The process needs to define a function f , a set T : {t0, t1, ..., tn}1024

of hyperparameters, θ , a set of values for T , θ the search space for θ and probabilistic model µ . The1025

process starts by calculating f for each of the θi and the pairs < θi, f (θi)> are stored. That done, there1026

is an iteration over three steps: 1) Training the mu model with the pairs < θi, f (θi) >; 2) Use of the1027

mu model to select the next θ ′ set that is promising; 3) New calculation for the pairs < θ ′i , f (θ ′i ) >.1028

In step 2, the new set θ ′ is chosen with the help of a function called acquisition function that seeks a1029

balance between the choice in the search space and the quality of the improvement obtained. Through this1030

acquisition function, the number of evaluations by the search space decreases dramatically.1031

To further assist the use of Machine Learning algorithms, Thornton et al. (2013) proposed a work1032

that aims to indicate which hyperparameters and which Machine Learning model to use for a dataset.1033

The proposal was developed based on the classification task and consisted of using the algorithm as an1034

input hyperparameter in a Sequential Model-Based Bayesian Optimization algorithm. The good results1035

obtained were due to the use of the implementation of Sequential Model-Based Optimization (Hutter et al.,1036

2011) and Tree-Structured Parzen Estimator (Bergstra et al., 2011) that allow the search for values of1037

parameters with restriction related to the Machine Learning model taken into question during an iteration.1038

Also based on Sequential Model-Based Bayesian Optimization, Bardenet et al. (2013) makes a1039

replacement for the f function used in Sequential Model-Based Bayesian Optimization by an f ′ function.1040

This f ′ function is such that it will not be influenced by the different orders of quantities present in1041

different databases, allowing a choice of an initial set of hyperparameters in a more generalized way,1042

called Surrogate-Based Collaborative Tuning.1043

However, the works presented do not consider that the user may prefer values for a subset of parameters.1044

The present work proposes an algorithm that considers the user’s preferences to make recommendations1045

for one or n parameters for which there is no defined preference.1046

CONCLUSION1047

The scientific process is mostly responsible for several advances in human knowledge. The process1048

involves observing phenomena from different areas, formulating hypotheses, testing, and refining them.1049

Arguably, this is an arduous job for the responsible scientist. With the advances in computational1050

resources, there is a growing concern about helping scientists in scientific experimentation. A significant1051

step towards a more robust aid was the adoption of scientific workflows as a model for representing1052

scientific experiments. From the representation of workflows, several tools emerged to support the1053

management of experiment executions, storage of the data generated during the execution, and analysis of1054

the data, called Scientific Workflow Management Systems.1055

Computational execution of the experiments represented as scientific workflows relies on the use of1056

computer programs that play the role of each stage of the experiment. In addition to input data, these1057

programs often need additional configuration parameters to be adjusted to simulate the experiment’s1058

conditions. The scientist responsible for the experiment ends up developing an intuition about the sets of1059

parameters that lead to satisfactory results. However, another scientist who runs the same experiment will1060

not have the same experience, which may lead him/her to define a set of parameters that will not result in1061

a successful experiment.1062

Several proposals in the literature have aimed at supporting the composition phase of the experiments,1063

but recommending parameter values for the experiment execution phase is still an open field. This article1064
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presented an algorithm for recommending values for parameters in scientific workflows considering the1065

user’s preferences. The goal was to allow a new user to express their preferences of values for a subset1066

of workflow parameters and recommend values for the parameters that had no preference defined. The1067

developed algorithm was called FReeP: Feature Recommender From Preferences, and has three versions,1068

all of them relying on Machine Learning concepts and techniques. Two approaches focused on the value1069

recommendation for one parameter at a time. The third instance addresses recommending values for all1070

the other parameters of a workflow for which a user preference was not defined.1071

The first approach was developed as a proof of concept. The second approach addressed the problems1072

perceived by the first approach and increases the performance of the algorithm. Finally, the third approach1073

is a proposal for recommending n parameters at once. A different experiment evaluated each approach.1074

The first experiment showed that a classifier came out as a better option than a ranker for a Machine1075

Learning model in the algorithm. The second experiment was carried out under several variants of the1076

second version of the algorithm, using different classifiers, regressors, and partitioners. The second1077

experiment results showed that the algorithm’s first approach’s changes had the desired effects, increasing1078

the algorithm’s performance. The third experiment clarifies that the algorithm approach for recommending1079

simultaneously n parameters still needs to be refined to obtain satisfactory results. Empirically, the FReeP1080

algorithm was able to make valuable recommendations for one scientific workflow parameter at a time,1081

especially the second approach presented.1082

The proposed algorithm proved to be useful for recommending one parameter, indicating a path for1083

the recommendation of n parameters. Nevertheless, there are some limitations, such as:1084

• FReeP, as a memory-based algorithm, faces scalability issues as its implementation can consume a1085

lot of computational resources.1086

• The recommendations of FReeP are limited to the existence of examples on the provenance dataset.1087

This means that the algorithm cannot make any “default” recommendations if there are no examples1088

for the algorithm’s execution or recommend values that are not present in the provenance dataset.1089

• The recommendation algorithm may have a longer processing time than the experiment itself.1090

• All the instances have the same weight during the recommendation process. The algorithm does not1091

consider the user’s expertise that performed the previous execution to adjust an example’s weight.1092

• The algorithm considers only the set of parameters of the workflow; however, a set of parameters1093

may be more or less relevant according to the input data.1094

• The recommendation algorithm may end up recommending a set of values present in the provenance1095

base that causes a workflow execution failure.1096

Based on those limitations, some proposals for future work are:1097

• Parallelizing the processing of the generated partitions, which should decrease the time spent on1098

the recommendation1099

• Evaluating FReeP on data from other domains.1100

• Evaluating the tradeoff between the recommendation time and the algorithm execution time.1101

• Associating weights with examples from the provenance dataset according to the user’s profile.1102

• Using instances from the provenance dataset that failed to execute the workflow as a constraint to1103

improve the recommendations’ results.1104
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