
QoS-aware service composition based on
context-free grammar and skyline in
service function chaining using genetic
algorithm
Pouya Khosravian1, Sima Emadi1, Ghasem Mirjalily2 and
Behzad Zamani3

1 Department of Computer Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
2 Department of Electrical Engineering, Yazd University, Yazd, Iran
3 Department of Computer Engineering, Shahrekord Branch, Islamic Azad University,
Shahrekord, Iran

ABSTRACT
Service function chaining (SFC) is a mechanism that allows service providers to
combine various service functions and exploit the available virtual infrastructure. The
best selection of virtual services in the network is essential for meeting user
requirements and constraints. This paper proposes a novel approach to generate the
optimal composition of the service functions. To this end, a genetic algorithm based
on context-free grammar (CFG) that adheres to the Internet Engineering Task
Force (IETF) standard and Skyline was developed to use in SFC. The IETF uses cases
of the data center, security, and mobile network filtered out the invalid service chains,
which resulted in reduced search space. The proposed genetic algorithm found
the Skyline service chain instance with the highest quality. The genetic operations
were defined to ensure that the service function chains generated in the algorithm
process were standard. The experimental results showed that the proposed service
composition method outperformed the other methods regarding the quality of
service (QoS), running time, and time complexity metrics. Ultimately, the proposed
CFG could be generalized to other SFC use cases.

Subjects Artificial Intelligence, Computer Networks and Communications
Keywords Service function chaining, Context-free grammar, Skyline method, Service composition,
Genetic algorithm

INTRODUCTION
Service function chaining is a composition of various service functions that must have
crossed by network flows in a specific order (Yi et al., 2018). The commonplace method for
such a service is a linear chain of at least one service function between two determined
endpoints in the network. With appending service functions that divide network flows into
different paths, the service construction can be made more complicated than an ordinary
chain (Mirjalily & Lou, 2018). Since the copyright belongs to the designer, these
services can be represented as directed graphs, including service functions (ETSI N, 2018).
The service functions represent graph nodes, and the paths between the service functions
represent graph links. These graphs are referred to as forwarding graphs according to the

How to cite this article Khosravian P, Emadi S, Mirjalily G, Zamani B. 2021. QoS-aware service composition based on context-free
grammar and skyline in service function chaining using genetic algorithm. PeerJ Comput. Sci. 7:e603 DOI 10.7717/peerj-cs.603

Submitted 16 November 2020
Accepted 31 May 2021
Published 26 July 2021

Corresponding author
Sima Emadi, emadi@iauyazd.ac.ir

Academic editor
Muhammad Tariq

Additional Information and
Declarations can be found on
page 21

DOI 10.7717/peerj-cs.603

Copyright
2021 Khosravian et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.603
mailto:emadi@�iauyazd.�ac.�ir
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.603
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

ETSI NFV (the Network Function Virtualization concept of the European Telecommunications
Standards Institute).

In regard to resource allocation and network optimization plans, network operators
require specific and compressed designs for the graphs that display the service structure
and their procurement. After the joining process, the functions are defined and delivered
correctly, and the regular graph presentation might be used to manifest the services
(Bhamare et al., 2016). However, these presentations can rapidly become worthless when
the particular process of joining the functions is not organized or is not appropriate for the
functionality of the service (Rotsos et al., 2017). For instance, since there are no direct
relations between the two functions used for the flow, the network can benefit from a
resilience service presentation that enables an operator to combine the essential services
more effectively. Also, IETF scenarios can be used to reduce network service compositions
and essential services more effectively. Khosravian et al. (2020) propose the IETF-based
Finite Automaton (FA) model to limit the space of the optimal service chain composition
problem by considering the practical scenarios.

Classification term is defined as locally instantiated matching of traffic flows against
policy for subsequent application of the required network service functions. The policy
may be customer, network, or service-specific. The Internet Engineering Task Force
(IETF) defines SFC as an ordered or partially ordered set of service functions and the
ordering constraints that must be applied to the packets, frames, or flows selected as a
result of classification (Quinn & Nadeau, 2015). The success of the service function
chaining process is due to this definition. Disregard of the partial or total order
established between the various virtual network functions (VNFs) during the chaining
process can lead to the service delivery not requested by the user or nonsense services.
Also, if the system takes too long to chain the service functions, even though the time to
map and schedule the chained service is well managed, the QoS constraints may not be
satisfied. Therefore, reducing the number of service compositions can be effective in
this regard.

In this study, The IETF-based context-free grammar as a descriptive model is defined to
evaluate the correctness of the service function chain structure. The IETF-based CFG
application reduces the number of compositions by removing the invalid SFCs (Linz,
2011), and the Skyline method removes service with low QoS. The skyline reduces the
search space and only focuses on interesting service functions not dominated by any other
service. Recently, Skyline has been recognized as a new and popular paradigm to find
the most relevant services (Bhamare et al., 2016). It is a promising method that reduces
user decisions by offering only the most exciting services, and as a result, simplifies the
selection process. However, Skyline allows for returning incomparable and conflicting
results, and the user often encounters some difficulties in selecting a good service with a
better compromise between the criteria of interest.

In this phase, the Skyline method concentrates on service QoS alone without the direct
relations between the two services. So, the GA is utilized to select the best service
compositions, considered the QoS of all the possible services. The GA initializes the
candidates using a random method that ensures the service compositions accept by

Khosravian et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.603 2/23

http://dx.doi.org/10.7717/peerj-cs.603
https://peerj.com/computer-science/

employing CFG and maintains that correctness by employing restricted genetic operators
throughout the evolutionary process.

In summary, the contributions of this paper are as follows:

� Defining a context-free grammar model based on the data center, mobile, and security
use cases defined by the IETF SFC working group to check the service chain validity.

� Using a Skyline method to select the proper service instance.

� Defining a genetic algorithm to select the best service chain instance.

� Analysis of the QoS, running time, and time complexity of the proposed method and
comparing it with other methods.

This paper includes the following sections. A brief review of related work and researches
is explained in the related work section. The optimum SFC selection problem section
describes the problem of finding optimum SFC and QoS parameters. The SFC context-free
grammar is defined by the Skyline method in the proposed meta-heuristic algorithm
section. The performance evaluation of the proposed method is presented in the evaluation
section. Finally, the conclusions are shown in the conclusions section.

RELATED WORK
Quinn and Nadeau reviewed the rules of service functions (SFs), such as firewalls and load
balancers, in SFC (Quinn & Nadeau, 2015). Their paper also showed SFC applications with
group functionality and provided documentation for the architecture. Halpern et al.
proposed an architecture document for the specification, creation, and maintenance of
SFC in a network (Halpern & Pignataro, 2015). They also included the architectural
concepts, principles, rules, and components used in the construction of compound services
through SFCs deployment, emphasizing standardization in the IETF. Mehraghdam et al.
formulized the virtualization of network functions by grammar. They processed the
deployment request and built virtual network function graphs that can be mapped to the
network. They also discussed the deployment of SFCs with a focus on standardization in
the IETF (Mehraghdam, Keller & Karl, 2014). Mehraghdam and Karl have shown that
distributed cloud services were usually characterized by the custom functions chain
(Mehraghdam & Karl, 2015). They created complex structures between the paths by
specific types of streams. Next, a grammar was presented to describe the functional
structures based on the data modeling language, which could easily translate them into a
specific configuration of SFs.

Khosravian et al. (2019) use regular expressions and finite automata to create a
grammar-based use case in the IETF. They proposed a regular grammar that can be used to
eliminate the invalid SFCs. Subsequently, the grammar evaluation was performed via the
Cocke–Younger–Kasami algorithm, and the number of service chain compositions was
significantly reduced (Khosravian et al., 2019). Khosravian et al. proposed a finite
automaton model that limits the solution space of the service composition problem by
considering the practical use cases. Since the chaining rules depend on the substrate
physical platform, their model acts based on the data center, mobile, and security use cases

Khosravian et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.603 3/23

http://dx.doi.org/10.7717/peerj-cs.603
https://peerj.com/computer-science/

introduced by IETF. The finite automaton matcher showed that the model was a suitable
tool for validating the composed service chain correctness (Khosravian et al., 2020).
Mehraghdam & Karl (2016) proposed an innovative solution to select a set of compounds
from different services based on the required resources. Their evaluation results showed
that the selected composition was an example of possible structures, which could be
optimally located on the network. However, SFC requires the assessment of a chain's
correctness and reducing the number of service compositions. Dräxler & Karl (2017)
proposed a heuristic selection method, which gives a Pareto optimal set of the possible
compositions of services, and the feasible combinations of various services with respect to
several optimization purposes. They also introduced a heuristic algorithm for the
placement of service function composition. The algorithm focuses on locating the service
elements with the shortest path and enough space to accommodate the services.

Yu & Bouguettaya (2011) recommended using dominance association between the
service providers to locate a set of the best possible services assigned as a Skyline service.
They presented suitable algorithms to prepare the Skyline service with a decreased
searching area rather than investigating all the possible service compositions. Wang et al.
(2020) proposed a fast and safe service composition method to combine the physical
network, cyberspace, and social network. In this method, the skyline element computation
was performed to decrease the solution area. Then, the variation ratio was applied to refine
the elements with greater QoS variation. Ultimately, based on the user end-to-end QoS
requirements, the optimal elements were chosen by maximizing the compatibility
function. Ouadah et al. (2019) offered the composite method to rank-order the Skyline
services. Their method combined many approaches used in multi-criteria decision making.
The Skyline method was applied to decrease the search space and highlight the attractive
services that were not governed by any other services. Kumar & Purohit (2016) used a
two-layer architecture for web service selection, prefiltering followed by skyline selection.
The K-means clustering technique is used for grouping the web services with similar
Quality of Service (QoS). To finding the best answer to the QoS-based service composition
problem, some methods can be used, such as Integer linear programming (ILP)
techniques, called an optimization algorithm (Liang et al., 2019; Lodi & Nagarajan, 2019;
Wang et al., 2019). But some heuristic methods like a genetic algorithm (GA) can be used,
known as an approximation algorithm (Dwiardhika & Tachibana, 2019).

The composition of services can be performed manually. However, most candidates
would cause this to be a very time-consuming process, especially when it is necessary to
select the most suitable option among many services that offer the same functionality.
This fundamental problem remains open, and it has been the focus of a growing body of
research that aims to propose suitable techniques for performing automat service selection
and composition. All of the available methods do not offer a rule-based structure.
Also, service compositions include many compositions, most of which have the wrong
arrangement and need to be reduced.

Khosravian et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.603 4/23

http://dx.doi.org/10.7717/peerj-cs.603
https://peerj.com/computer-science/

OPTIMUM SFC SELECTION PROBLEM
Assuming that S is a set of all SFs, cn = (s1, s2, …, sn) and si ϵS is a service chain length n
when si represents service in the set S in the ith service chain position. Various qualitative
characteristics have also been defined for each service. Different initializations of the
features lead to the creation of service instances. According to the IETF SFC working
group, service chains can be defined by a mobile network (Napper et al., 2018), a data
center network (Surendra et al., 2017), and a secure network (Wang et al., 2017), as shown
in Eqs. (1) to (3), respectively.

Cn;mobile ¼ ðfbng; cmts; pgw; tlsg; cn�1Þ (1)

Cn;datacenter ¼ðfðe� fwÞ; ðe� fw;adcÞ; ðe� fw;adc;a� fwÞ; ðwoc; e� fw;adc;a� fwÞ;
ðwoc; e� fw;mon;adc;a� fwÞ; ðwoc; e� fw;mon; s� fw;adc;mon;a� fwÞg;
cn�6Þ (2)

Cn;security ¼ ðfðfw; lb; ipsÞ; ðfw; tls; avcÞg; cn�2Þ (3)

Where Cn,mobile, Cn,datacenter, and Cn,security represent the sets of all service chains length n
in the mobile, data center, and security networks, respectively. The CFG generates all
service chain instances based on IETF use cases. The service function chaining, SFCn,

represents a set of service chains length n under the CFG:

SFCn ¼ fCn;mobile;Cn;datacenter;Cn;securityg (4)

Different service chain's lengths n can be created by considering the service instances in
the graph nodes. Different service compositions are made in the form of the chain Ispii;ji

where Ispii;ji represents the service instance si
th in the ji

th node of the network, provided by
the service provider spi and i = 1, 2,…, n. Therefore, there are several service chain
instances for the service chain request cn where SI

spi
si represents the set of service instances

equivalent to the service si
th provided by the spi

th service provider, and Nspi
si shows the

number of ith service instances for the spi
th service provider in the network. Then, the total

number of requests for the service instance equals
Qn

i¼1
Pspi

spi¼1N
spi
si ; and the total

number of service instances is SI ¼ Un
i¼1 SI

spi
Si . The request for the p

th service instance is
equivalent to the request for the service chain cs and is determined as follows:

rpi ¼ ðIsp11;j1 ; I
sp2
2;j2 ; . . . : ; I

spn
n;jnÞ; ji ¼ 1; 2;…;Nspi

si (5)

The goal is also to find a service chain instance that has the highest Goal:

r�i ¼ max
rpi

Goalp (6)

ri* is the best service chain instance, and Goalp shows the quality of service chain
instance p. Three qualitative parameters, namely service provider similarity, cost, and
capacity for each service instance, are considered to select an appropriate service instance.
The service provider similarity is defined as the ratio of the service chain provider

Khosravian et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.603 5/23

http://dx.doi.org/10.7717/peerj-cs.603
https://peerj.com/computer-science/

similarity to all the service providers in the network. The service provider similarity of the
service chain instance request, ri

p, is obtained from Eq. (7):

Similarityp ¼ 1�
unic Isp11;j1 ; I

sp2
2;j2 ; . . . : ; I

spn
n;jn

n o� ���� ���
NSP

(7)

Where Similarityp is the similarity with the pth service instance provider, Ispii;ji is the sj
th

service instance in the node Vji of the service provider spi, unic(a) represents the set of
unique elements a, and NSP is the total number of service providers in the network.
The capacity that a service chain needs to transfer data is the capacity of the service chain.
The capacity of the service chain instance ri

p is obtained from Eq. (8):

Capacityp ¼
Xn
i¼1

CapacityspiIi;ji
(8)

Where CapacityspiIi;ji
is the capacity of sj

th service instance in the node Vjiof the service
provider spi. The service chain is the cost required for assigning service to a service chain.
The cost of the service chain instance, ri

p, is obtained from Eq. (9):

Costp ¼
Xn
i¼1

CostspiIi;ji
(9)

Where CostspiIi;ji
is the cost of the si

th service instance in the node Vji of the service provider
spi.Goal

p explains a size for the effectiveness of services in the service chain that is obtained
from Eq. (10) for the service chain instance ri

p:

Goalp ¼ Normal
Similarityp

Costp þ Capacityp

� �
(10)

All notations and their descriptions are introduced in Table 1.

THE PROPOSED META HEURISTIC ALGORITHM
Skyline method
Skyline is a method that selects multiple standards based on an appropriate scoring
function. Skyline consists of all the nearest Pareto points that do not dominate by other
data points. Although the number of return points may be critical, it does not require any
elevators to return to its nearest neighbors. In the worst-case scenario, all the data are
restored. It is advisable to use more flexible and customizable extensions to meet the
diverse needs of the users. Skyline, recognized for its algorithmic or Pareto geometry in
business management, is essential for several purposes. It obtains Pareto’s optimum set,
which indicates that these points cannot be controlled elsewhere in the dataset (Yu et al.,
2019). Although the exact optimal point depends on specific criteria, Skyline can provide a
set of candidates to remove unauthorized ones from the dataset when the optimal solution
is consulted.

Khosravian et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.603 6/23

http://dx.doi.org/10.7717/peerj-cs.603
https://peerj.com/computer-science/

This section aims to select a set of services from among all services with the highest
overall efficiency in providing all the particularized restrictions. In this regard, the service
with the highest performance neglects to present a fit solution because it does not
confirm that all the limitations are provided. Therefore, it is essential to find various
compositions of services from any set. However, not all services are possible suitors for the
answer. The primary aim of the proposed method is to make a Skyline query on the
services of each group to detect the services that may be suitable for the composition.

Table 1 Notations and their descriptions.

Description Notation

The set of all SFs S

Length n

Service chain length n Cn

Sth service provider SPS

The set of Vji nodes for the service provider spi VS
sp

The service instance si
th in the ji

th node of the network, provided by the service provider spi Ispii;ji

The set of service instancezs equivalent to the service si
th provided by the spi

th service provider SIspisi

Number of ith service instances for the spi
th service provider Nspi

si

The total number of service providers Nsp

The total number of service instances SI

The request for the pth service instance is equivalent to the request for the service chain cs ri
p

The best service chain instance ri
*

The capacity of sj
th service instance in the node Vjiof the service provider spi CapacityspiIi;ji

The cost of the si
th service instance in the node Vji of the service provider spi CostspiIi;ji

Explains a size for the effectiveness of services in the service chain Goalp

Similarity with the pth service instance provider and Ispii;ji is the sj
th service instance in the node Vji of the service provider spi Similarityp

The proposed CFG CFG

The set of service chains length n in accordance with the CFG SFCn

The request for the pth Skyline service instance is equivalent to the request for the service chain cs skyi
p

The Skyline service instance si, in node ji graphs given by the service provider spi skyspii;ji

The tournament selection operator t

The maximum generation maxGeneration

The set of Skyline services Sky

The initial population size Pg

The performing crossover operator probability Pc

The performing mutation operator probability Pm

Best chromosome in the set rp based on the quality of service (Goalp) bestChromosome
(rp, Goal

p)

Generate different (random) chains by traversing various rules of the proposed CFG randomParser

The random integer between a, and b random(a, b)

The random decimal number between 0 and 1 rand

The set of unique elements a unic(a)

Khosravian et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.603 7/23

http://dx.doi.org/10.7717/peerj-cs.603
https://peerj.com/computer-science/

Next, it can narrow down the exploration area. Skyline queries are quickly defined to
explain how they are utilized in the proposed method. It can be understood that one
service dominates another service, namely Sj. If Si is appropriate or equivalent to Sj in all
dimensions, then it is strictly suitable in the smallest dimension where S is a set of services;
Si and Sj are members of this set, QoS is a set of their quality parameters:

8k Є ½1; j QoS j� : QoS kðsiÞ <¼ QoS kðsjÞ and 9k Є ½1; j QoS j� : QoS kðsiÞ , QoS kðsjÞ
(11)

Therefore, a Skyline query selects the appropriate services for all the dimensions. Later,
dominance connections are employed among the services based on their QoS properties.
They are applied to recognize and cut services that are dominated by others. It can be
noted that the Skyline services show many trade-offs among the QoS parameters;
consequently, they are not homogeneous to the others because there is no pre-defined
popular plan regarding the appropriate significance of these parameters. The use of Skyline
services of any type needs pairwise relations of the QoS vectors of the emulated
services. If there are many competing services, this process may be costly in terms of
computing time. Various practical algorithms have been suggested to perform Skyline
computation (Han, Wang & Lai, 2019; Liu et al., 2019). The process of providing Skyline
services is independent of any particular service demands or practice contexts, and it does
not need to be addressed online at demand time.

As a result, the possible techniques are applied to provide Skyline services offline until it
stimulates the service selection method later at demand time. To this end, any service
broker can handle the list of Skyline services of any type in its repository file. This file is
refreshed every time a service registers, defects, or refreshes its QoS data in the repository.
Whenever the service broker accepts a service request, the Skyline services of the
adapted services are granted on demand. If the corresponding services are dispersed in a
set of service brokers, the service request has a horizon that any broker can define. Then,
the retrieved local Skyline services must be connected to compose a universal Skyline
(Han, Wang & Lai, 2019; Liu et al., 2019).

An integer linear programming (ILP) technique can be applied to answer the QoS-based
service composition problem, called the restriction optimization problem (Liang et al.,
2019; Lodi & Nagarajan, 2019; Wang et al., 2019). Then, each ILP solver can be
appropriated for this plan; however, several variables in this model belong to multiple
service competitors, it can only be carried out efficiently for meager examples. To deal with
this restriction removing all non-Skyline services from the ILP model to limit its search
space to the shortest possible. By highlighting the only Skyline in all of the services, the
selection method is accelerated when it can still formally detect the optimal selection.
Let SFC = {S1, . . . , Sn} be the optimal solution to an addressed demand, i.e., the composing
service that passes all the detailed limitations and enlarges the total utility. After that,
all the client services of SFC will refer to the Skyline of a similar service where Si indicates
the number of services.

Khosravian et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.603 8/23

http://dx.doi.org/10.7717/peerj-cs.603
https://peerj.com/computer-science/

8si 2 SFC : si 2 SKYSi (12)

The Skyline services of any service are refined to improve the performance of the
QoS-based service selection algorithms. Although the Skyline size can be different for any
dataset, it entirely refers to the dispensing of the QoS data and the connections among the
many QoS parameters. The main emerging competition will recognize a set of Skyline
indicative services that adequately describes all the lags in the different QoS parameters. It
will be possible to find a solution that overcomes the restrictions and includes a rate of
efficiency. This competition chooses from the nominees. The number of nomination services
must be large enough to find the answer to the request, and the number of nominee services
must be small enough to provide acceptable calculations. Specific algorithms based on
Skyline and CFG are suggested in the next section to meet this challenge.

The proposed algorithm
The purpose of service composition is to select a set of services that can maximize
productivity and meet all specified limitations. Note that choosing the highest value from
each service class does not provide the right solution, as it does not prove that all
constraints will be satisfied. Hence, various service compositions from each class should be
maintained. Nonetheless, not all services may be possible candidates for the solution. Thus,
instead of selecting all the service instances, only service instances through the Skyline
technique are given to the algorithm. In this paper, inter-service dimensions are defined
and exploited based on their QoS features, which are utilized to identify and prune services
in one service class dominated by other services in the same class. Fig. 1 shows the block
diagram of the proposed method.

Regarding the selection of service through the Skyline technique, Si is better than Sj if all
of the quality parameters of service Si are better than those of service Sj and better in at least
one parameter in QoS (Eq. (11)). The QoS(si) is obtained from Eq. (13) as follows:

QoS ðSiÞ ¼ Normalð½AvailabilityðSiÞ þ ReliabilityðSiÞ þ ThroughputðSiÞ
þ ReputationðSiÞ þ BandwidthðSiÞ þ DeliveryðSiÞ�=½LatencyðSiÞ
þ ResponseTimeðSiÞ þ PriceðSiÞ�Þ (13)

Where Availability(Si) is the availability of the service Si, Reliability(Si) is the reliability
of the service Si, Throughput(Si) is the throughput of the service Si, Reputation(Si) is the
reputation of the service Si, ResponseTime(Si) is the response time of the service Si, Price(Si)
is the price of the service Si, Bandwidth(Si) is the bandwidth of the service Si, Delivery(Si) is
the delivery of the service Si, and Latency(Si) is the latency of the service Si. The Skyline
service request p, which is equivalent to the Cn service chain request, is determined by the
following equation:

SkyS ¼ fsi Є Sj9 sj Є S : sj < sig; skypi
¼ ðskysp11;j1 ; sky

sp2
2;j2 ; . . . : ; sky

spn
n;jnÞ; ji ¼ 1; 2;…;Nspi

si (14)

Khosravian et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.603 9/23

http://dx.doi.org/10.7717/peerj-cs.603
https://peerj.com/computer-science/

Where skyspii;ji means the Skyline service instance si, in node ji graphs given by the service
provider spi when i = 1, 2, 3, …, n. The goal is to find a service chain instance that has the
highest Goal:

sky�i ¼ max
skypi

Goalp (15)

Furthermore, skyi* is the best Skyline service chain instance, and Goalp is the quality of
the Skyline service chain instance p.

Since this is an optimization problem, the GA can be employed to solve it. Also, the
grammar can reduce the number of service compositions and search space by removing
the invalid SFCs (Khosravian et al., 2019; Khosravian et al., 2020). Therefore, the GA is
used along with the CFG to create service chain instances. The proposed method is shown
as Algorithm 1, in which S, n, CFG, Pm, Pc, Pg, Sky, maxGeneration, and NSP are the
input parameters, and sky* is the algorithm output. Nsp is the total number of service
providers equal to

Pn
i¼1

Pspi
spi¼1 N

spi
si , and t is the tournament selection operator. Also,

maxGeneration is a maximum generation, and Sky is the set of Skyline services when Pg
shows the initial population size. Pm is the performing mutation operator probability,
and Pc is the performing crossover operator probability; CFG shows the proposed CFG
when n is the service chain length, and S indicates the set of services.

The function bestChromosome(skyp, Goalp) returns the best chromosome in the set rp

based on the quality of service (Goalp). The chromosome is an array length n, in which
each entry represents a service instance. The initPopulation in Algorithm 2 generates the

Figure 1 The proposed method block diagram. Full-size DOI: 10.7717/peerj-cs.603/fig-1

Khosravian et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.603 10/23

http://dx.doi.org/10.7717/peerj-cs.603/fig-1
http://dx.doi.org/10.7717/peerj-cs.603
https://peerj.com/computer-science/

initial population. In all the steps of the genetic algorithm, the population contains
chromosomes (Which each chromosome is equal to the service instance chain) accepted
by the CFG. The function randomParser in this algorithm is employed to generate
different (random) chains by traversing the various rules of the proposed CFG.

Algorithms 3 and 4 show crossover and mutation operators in genetic algorithms,
respectively. In the proposed crossover operator, the one-point crossover is repeated until
the CFG accepts the generated chromosomes. Repeat the crossover operator until the
Pg new chromosomes are generated. The randomly selected index in the mutation operator
is equivalent to the service instance. Then, this service instance is replaced by another
service instance of the same service to ensure that the CFG still accepts the service chain
instance and that there is no need to control the chain. The function random (a, b) in
Algorithm 4 generates a random integer between a and b, and the variable rand is a
random decimal number between 0 and 1.

Algorithm 1 Genetic-CFG-Service Chain composition.

Input: S, n, CFG, Pm, Pc, Pg, Sky, maxGeneration, NSP, t

Output: sky*

skyp ← initPopulation(CFG, n, Pg)

itter ← 0

Goalp ← fitnessFunction(skyp, NSP)

while (itter < maxGeneration) do

skytemp
← crossover(skyp, Pc, CFG, S, n)

skytemp
← mutation (skytemp, Pm, Sky, n)

Goaltemp
← fitnessFunction(skytemp, Nsp)

[skyp, Goalp] ← selection(skyp, Goalp, skytemp, Goaltemp, t)

itter ← itter + 1

endwhile

sky*← bestChromosome(skyp, Goalp)

return sky*

Algorithm 2 initPopulation.

Input: CFG, n, Pg, Sky

Output: skyp

skyp ←ø

for i = 1 to Pg

skyp skyp [randomParser CFG; n; Skyð Þendfor
return skyp

Khosravian et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.603 11/23

http://dx.doi.org/10.7717/peerj-cs.603
https://peerj.com/computer-science/

The tournament method is used as an operator in the proposed genetic algorithm. The
fitness function is defined as Algorithm 5, which is used to evaluate the quality of the
service chain equivalent to the chromosome.

SFC context-free grammar
The CFG is discussed in this section. These CFGs can give a resilience description of the
service function paths connected to provide services. For the sake of clarity, all functions
that prompt services are virtualized, and then the SFs and replaceable service functions
are modified. A composition with a clear sample is a single SF or an endpoint of a service
flow, although it can also be complicated like a multipath structure. All CFG rules are
based on mobile, data center, and security IETF use cases (Napper et al., 2018; Surendra
et al., 2017; Wang et al., 2017).

The proposed CFG has four members. These members include NN, TT, II and RR
where NN is a non-terminal set containing {SFC, C, Mobile, Datacenter, Security, P, TYPE,
Q, R, W, FW, LB, R, W, X, DECOMPOSITION, COMPOSITION, H, G, SF, A, B, Z}; TT is a
terminal set that includes a set of all SFs in SFC {pgw, bng, olt, cmts, nat, dpi, mwd,
part, ctrl, li, opt, tcp, opt, video, enr, head, ddos, tls, proxy, avc, ids, woc, edge, mon, adc,
mon, app, seg, fw, lb, sf1, sf2, : : : , sfn}; II is an initial symbol and equal to {SFC}; and RR is a
set of rules that include

Algorithm 3 Crossover.

Input: skyp, Pc, CFG, S, n

Output: skytemp

skytemp
←ø

for h = 1 to Pg/2

i = random(1, Pg)

while (i <> j) do

j = random(1, Pg)

endwhile

if rand < Pc then

[skyti , sky
t
j] ← onePointCrossover(skypi , sky

p
j)

while ((not accept(CFG, skyti)or(not accept(CFG, sky
t
j)) do

[skyti , sky
t
j] ← onePointCrossover(skypi , sky

p
j)

endwhile

skytemp skytemp [skyti ; sky
t
j

n o
else

skytemp skytemp [skytemp
i ; skytemp

j

n o
endif

endfor

return skytemp

Khosravian et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.603 12/23

http://dx.doi.org/10.7717/peerj-cs.603
https://peerj.com/computer-science/

1. SFC → C SFC | C

2. C → MOBILE | SECURITY | DATACENTER

3. MOBILE → pgw P |bng P | olt P | cmts P

4. P → Q P|R P|W P|QR P|QW P|RW P|QRW P| λ

5. Q → dpi TYPE Q | LB TYPE Q |FW TYPE Q |nat TYPE Q | dpi LB TYPE Q | dpi FW
TYPE Q | dpi nat TYPE Q | LB FW TYPE Q | LB nat TYPE Q | FW nat TYPE Q | dpi LB
FW TYPE Q | dpi LB nat TYPE Q | dpi FW nat TYPE Q | LB FW nat TYPE Q | dpi LB
FW nat TYPE Q | λ

6. R → li TYPE R | part:ctrl TYPE R | mwd TYPE R | li part:ctrl TYPE R | li mwd TYPE R |
part:ctrl mwd TYPE R | li part:ctrl mwd TYPE R | λ

7. W → enr:head TYPEW | opt:video TYPEW | opt:tcp TYPEW | enr:head opt:video TYPE
W| enr:head opt:tcp TYPE W | opt:video opt:tcp TYPE W | enr:head opt:video opt:tcp
TYPE W | λ

8. SECURITY → FW-ddos TYPE | FW- tls: proxy -avc TYPE | FW-ids-ddos TYPE

9. DATACENTER → woc FW:edge mon adc FW:app TYPE | woc FW:edge mon FW:seg X

10. X → adc mon FW:app TYPE X | adc mon FW:app TYPE

11. TYPE→ COMPOSITION | DECOMPOSITION | SF

12. COMPOSITION → SF- COMPOSITION | SF-SF

13. DECOMPOSITION → SF: DECOMPOSITION | SF:SF

14. FW → fw H

15. H → TYPE | H TYPE

16. LB → lb G

17. G → TYPE | G TYPE

18. SF→ λ|sf1 A | sf2 B | sf3 C | … | sfn Z

19. A → λ| sf2 B | sf3 C | … | sfn Z

20. B → λ| sf1 A | sf3 C | … | sfn Z

Algorithm 4 Mutation.

Input: skytemp, Pm, Sky, n

Output: skyt

skyt ←ø

foreach skyi ∈ skytemp

if rand < Pm then

index = random(1, n)

replace randomly skyspindexindex;jindex
in skyi by new service instance from Skyspindexindex set

endif

skyt skyt [skyiendforeach

return skyt

Khosravian et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.603 13/23

http://dx.doi.org/10.7717/peerj-cs.603
https://peerj.com/computer-science/

21. C → λ| sf1 A | sf2 B | … | sfn Z

22. …

23. Z → λ| s1 A | s2 B | s3 C | … | sn-1 Y

This CFG includes capitalized words that represent non-terminals and lowercase words
that describe terminals. On the first and second lines of the CFG, you can select one of
the three chains of the mobile, data center, and network security. The third, fourth, fifth,
sixth, and seventh lines show how to create a mobile chain with the services. The eighth
line indicates how to create a security chain with the services. The ninth and tenth lines
show how to create a data center chain with the services. The eleventh, twelfth, and
thirteenth lines denote how to select a service composition or decomposition. The
fourteenth and fifteenth lines show how to create a firewall service. The sixteenth and
seventeenth lines indicate how to create a load balancer service. In the eighteenth line up to
the end, there is a structure to create a unique cycle for generating various services. All of
the symbols are bng(Broadband Network Gateway), p-gw(Packet Gateway), olt(Optical
Line Termination), cmts(Cable Modem Termination System), ids(Intrusion Detection
System), ips(Intrusion Prevention System), e-fw(Edge Firewall), s-fw(Segment Firewall),
a-fw(Application Firewall), adc(Application Delivery Controller), woc(Web Optimization
Control), mon(Monitoring), fw(Firewall), lb(Load Balancing), ddos(Distributed Denial of
Service), avc(Application Visibility and Control), tls(Transport Layer Security), and
λ(Indicates zero occurrences of the preceding SFs).

EVALUATION
The proposed CFG-based genetic algorithm that generates the Skyline service composition
(SGGA) is compared with other methods in this section. Three synthetically generated
datasets were tested via the proposed method by a massive number of services and various
distributions.

Algorithm 5 Fitness function.

Input: NSP , skyp

Output: Goalp

sky*i← ø

foreach skyi
p ∈ skyp

Costp←0 , Capacityp←0

foreach Ispii;ji ∈ skyi
p

Costp← Costp+CostIspii;jiCapacityp ← Capacityp+CapacityIspii;ji

Similarityp←1-|unic(Ispii;ji)|/NSP

endforeach

Goali
p
← Normal(Similarityp/(Costp+ Capacityp))

endforeach

return Goalp

Khosravian et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.603 14/23

http://dx.doi.org/10.7717/peerj-cs.603
https://peerj.com/computer-science/

Each method has different behavior in different data distribution. Therefore, the
performance of these methods can be evaluated in correlated, anti-correlated, and
independent distributions (Morse, Patel & Jagadish, 2007). For this purpose, a usual
generator was used to generate three datasets via randdataset-1.1.0:

� correlated dataset for correlated QoS

� anti-correlated dataset for anti-correlated QoS

� independent dataset for independent QoS

The following QoS-based composition methods were compared by performance:

� ILP (integer linear programming model): This is the typical global optimization method
with all service competitors represented in it (Lodi & Nagarajan, 2019).

� GA: In this method, service compositions are generated by the GA with all services
(Dwiardhika & Tachibana, 2019).

� KS: This signifies the K-means method used with Skyline service candidates (Kumar &
Purohit, 2016).

� SGGA: This is the proposed method, which uses Skyline, CFG, and a GA, as described in
the previous section.

All the measures were executed on an HP ProLiant DL380 G9 computer with 18
Intel Xeon 2.80GHz processors and 32 GB of RAM. Every single experiment was repeated
30 times, and then calculate the average value. A set of the method parameters are
maximum generation 100, population size 80, crossover probability 0.85, and mutation
probability 0.15. The proposed method is evaluated in the following.

QoS assessment
Figures 2A, 2B and 2C show the QoS of different methods with anti-correlated, correlated,
and independent data, respectively. The vertical axis shows the QoS value according to
Eq. (11), and the horizontal axis represents the number of services (|S|) and the length of
the service chain (n).

The ILP method delivers the best quality of service because it makes all possible
compositions. Therefore, this method has a higher QoS than the other three methods.
The proposed method outperforms the GA and KS methods because the SGGA method
follows the IETF-based standardization procedure and attempts to select the service
chain with the highest QoS. Moreover, as the chain length increases, the variety of problem
states increases. The proposed method reduces the service chain QoS. Increasing the chain
length also reduces the number of the chains of the services matching the CFG.
Simultaneously, increasing the number of available services increases the chances of
creating CFG-based service compositions.

The ILPmethod generates all the possible cases and offers a higher QoS compared to the
other methods. As the number of services, |S|, increases, a service chain with a higher
QoS can be created due to the increased diversity of the available services. In practice, the
QoS experiences a substantial decrease by decreasing and increasing the chain length.

Khosravian et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.603 15/23

http://dx.doi.org/10.7717/peerj-cs.603
https://peerj.com/computer-science/

However, the increase in |S| can be compensated for by increasing the chain length,
consequently allowing the QoS to remain unaffected.

The K-means method attempts to create a chain service with a higher QoS by classifying
the services into two separated clusters and making a heap tree. In this method, similar
services are placed in the cluster. The service with the highest utility service is located at the
root with two clusters as its children form a heap tree recursively. As |S| increases, the
diversity of the services increases. Therefore, services with a higher utility service are placed
in the heap tree, allowing for a service chain with a higher QoS. However, the QoS of

Figure 2 The logarithmic running time and QoS of service chain compositions in different method with anti-correlated, correlated, and
independent data (A–F). Full-size DOI: 10.7717/peerj-cs.603/fig-2

Khosravian et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.603 16/23

http://dx.doi.org/10.7717/peerj-cs.603/fig-2
http://dx.doi.org/10.7717/peerj-cs.603
https://peerj.com/computer-science/

the service chain decreases as n increases since more services leave the heap tree and result
in a reduction in their QoS.

The GA is an optimization algorithm for finding the global optimum. The search space
in this algorithm is increased by increasing n and |S|. In this case, the probability of finding
the global optimum at a given number of iterations decreases, making it more likely to
be trapped in a local optimum. As shown in Figs. 2A, 2B and 2C, the QoS decreases by
increasing n. As |S| increases, due to the increased diversity of the services, the QoS of the
service chain is expected to increase, contrasting the increase in search space and the
reduced probability of finding a global optimum. However, from a theoretical perspective
and based on the experimental results, the GA performance improves by increasing |S|.

By employing grammar to reduce the search space, the proposed method finds those
service chains that comply with the IETF standards compared to the GA. Although the
QoS of these service chains is not necessarily higher, employing the Skyline technique
and reducing the search space causes the services with a higher QoS to be used in the
grammar-based GA, finally cause to increase QoS of the generated service chain.

Since the ILP method checks all possible scenarios, it has a higher execution time and
has the best ones. The proposed SGGA method has a higher QoS than KS and GA.
In the proposed method, the QoS using GA and the services filtering with the Skyline
method was higher than the GA method. Due to the GA algorithm, the proposed method
is expected to perform better than the KS method. In three methods of SGGA, KS, and
GA, the QoS decreases with increasing chain length. As the chain length increases, the
problem space becomes more complex, so each method's service chain is further away
from the ideal chain. The proposed method, SGGA, performs better than the other two
methods. As the number of services increases, the number of choices for each service in the
service chain increases, which has led to the service chains with higher QoS in the GA
and SGGA methods. As observed, the SGGA method's performance in various data
distribution types is better than the other two methods. The behavior of the SGGAmethod
is equivalent in different data distribution types, while the KS method depends on the data
distribution.

Running time assessment
Figures 2D, 2E and 2F illustrate the implementation of the durations of different
methods with the anti-correlated, correlated, and independent data, respectively. The
vertical axis shows the running time in seconds on a logarithm scale, and the horizontal
axis represents the number of services (|S|) and the length of the service chain (n).

Since the ILP method assesses all the possible compositions, it has a greater runtime
than the other methods and increases exponentially (refer to the order of the method) as
the service chain length increases. When running the algorithm, the impact of increasing
the chain length is greater than the number of services. The proposed method has a
shorter execution time than the KS and ILP methods because it only examines the
IETF-based compositions and reduces the problem space, reducing the algorithm runtime.
According to the results, when the chain length increases, the number of services
corresponding to the reduced CFG is compensated for by increasing the runtime. The

Khosravian et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.603 17/23

http://dx.doi.org/10.7717/peerj-cs.603
https://peerj.com/computer-science/

runtime does not change significantly. However, when the number of available services
increases, the chance of creating syntax-based service compositions increases, which is
something that increases the runtime.

Since the execution time of the ILP algorithm is much longer than the other three
methods, so to better show the execution time of the methods and compare them, the
logarithm of the execution time in seconds has been used. The ILP method investigates all
possible cases that have the time complexity of O(|S|n) were increasing with the increasing
of |S| and n. The execution time of the other three methods increases with increasing
the chain length in the number of fixed services. As the number of services increases, the
execution time also increases related to the increasing problem space. It can be concluded
that the number of service chains in each method depends on the chain’s length and
the number of services. Also, the evaluated methods show similar behavior in different
data distributions.

Time complexity assessment
Given that O(|S|n) is the time complexity of the ILP method, increasing the n parameter
causes the runtime to scales exponentially, as demonstrated in Figs. 2D, 2E and 2F.
The time complexity of the K-means method is directly related to |S|, such that an increase
in this parameter increases the runtime to a significant extent. Although the runtime
increases by increasing n, it can be reduced to a shorter duration by modifying |S|.

Since the GA runtime is directly related to the chromosome length, n, an increase in n
will increase the runtime. However, the algorithm runtime is not significantly affected by
changing |S|. The proposed method has a longer runtime than the GA as it employs the
Skyline technique and the grammar-based GA. However, compared to the GA, the
proposed algorithm experiences the same trend by changing |S| and n. The time Big-O
complexities of the methods are shown in Table 2. Our method’s time complexity included
GA with the Skyline phase. According to Table 2, GA and SGGA have a similar time
complexity and lower time complexity than the other methods.

SFC context-free grammar assessment
With passing a service chain, various SFs must be used in the network, and they need to
route the associating flows in a specific arrangement, resulting in different service
compositions. This section presents the instances of use cases of service function chaining

Table 2 Time complexities of the methods.

Method Time complexity

ILP O(|S|n)

GA O(maxGeneration *n*Pg)

KS O(n*k*Itermax)

SGGA O(|S|)+O(maxGeneration *n*Pg)

Note:
k is denotes the number of cluster and Itermax is equal to maximum iteration in the KS method.

Khosravian et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.603 18/23

http://dx.doi.org/10.7717/peerj-cs.603
https://peerj.com/computer-science/

in mobile networks (Napper et al., 2018), data center networks (Surendra et al., 2017), and
security networks (Wang et al., 2017), where the service function chain can be mixed.

The top-down traversal algorithm was employed to evaluate the proposed CFG (Reus,
2016). At each recursion level, it will visit the node first to come up with some values
and pass these values to its children when calling the function recursively. So the “top-
down” solution can be considered as a kind of preorder traversal (Reus, 2016). A chain was
taken from the IETF mobile network to assess the proposed CFG (Fig. 3A). The result of
running the TDT algorithm by the mobile chain is shown in the following expression:

SFC → C → MOBILE → pgw P → pgw Q P → pgw LB TYPE Q P → pgw lb G TYPE Q P →

pgw lb TYPE TYPE Q P → pgw lb SF TYPE Q P → pgw lb s1 A TYPE Q P → pgw lb tcp-opt.
A TYPE Q P → pgw lb tcp-opt. λ TYPE Q P → pgw lb tcp-opt. λ SF Q P → pgw lb
tcp-opt. λ λ Q P → pgw lb tcp-opt. λ λ LB TYPE Q P → pgw lb tcp-opt. λ λ lb G TYPE Q P→
pgw lb tcp-opt. λ λ lb TYPE TYPE Q P → pgw lb tcp-opt. λ λ lb SF TYPE Q P → pgw lb tcp-opt.
λ λ lb λ TYPE Q P → pgw lb tcp-opt. λ λ lb λ SF Q P → pgw lb tcp-opt. λ λ lb λ λ Q P →

pgw lb tcp-opt. λ λ lb λ λ FW TYPE Q P → pgw lb tcp-opt. λ λ lb λ λ fw H TYPE Q P → pgw lb
tcp-opt. λ λ lb λ λ fw TYPE TYPE Q P → pgw lb tcp-opt. λ λ lb λ λ fw SF TYPE Q P → pgw lb
tcp-opt. λ λ lb λ λ fw λ TYPE Q P → pgw lb tcp-opt. λ λ lb λ λ fw λ SF Q P → pgw lb
tcp-opt. λ λ lb λ λ fw λ λ Q P → pgw lb tcp-opt. λ λ lb λ λ fw λ λ nat TYPE Q P → pgw lb tcp-
opt. λ λ lb λ λ fw λ λ nat SF Q P → pgw lb tcp-opt.λ λ lb λ λ fw λ λ nat s2 B Q P → pgw lb tcp-
opt. λ λ lb λ λ fw λ λ nat https B Q P → pgw lb tcp-opt. λ λ lb λ λ fw λ λ nat https

Figure 3 A typical service chain for mobile network (Napper et al., 2018), data center network
(Surendra et al., 2017), and security network (Wang et al., 2017) defined by IETF.

Full-size DOI: 10.7717/peerj-cs.603/fig-3

Khosravian et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.603 19/23

http://dx.doi.org/10.7717/peerj-cs.603/fig-3
http://dx.doi.org/10.7717/peerj-cs.603
https://peerj.com/computer-science/

λ Q P → pgw lb tcp-opt. λ λ lb λ λ fw λ λ nat https λ λ P → pgw lb tcp-opt. λ λ lb λ λ fw λ λ nat
https λ λ λ

The results indicate that the entry service chain is assumed correct and acceptable
because it has reached the mobile chain from the SFC symbol. A chain was also taken from
the IETF data center network to assess the proposed CFG with the data center chain
(Fig. 3B). The result of running the TDT algorithm by a data center chain can be seen in
the following expression:

SFC → C →DATACENTER →woc FW:edge mon adc FW:app TYPE →woc fw H:edge mon
adc FW:app TYPE → woc fw TYPE:edge mon adc FW:app TYPE → woc fw SF:edge mon
adc FW:app TYPE → woc fw λ:edge mon adc FW:app TYPE → woc fw λ:edge mon adc fw H:
app TYPE → woc fw λ:edge mon adc fw SF:app TYPE → woc fw λ:edge mon adc fw λ:app
TYPE → woc fw λ:edge mon adc fw λ:app SF → woc fw λ:edge mon adc fw λ:app s1 A → woc fw
λ:edge mon adc fw λ:app tcp-opt. A → woc fw λ:edge mon adc fw λ:app tcp-opt. λ

The results indicate that the entry service chain is considered correct and acceptable
because it has reached the data center chain from the SFC symbol. A chain was selected
from the IETF security network to evaluate the proposed CFG with a security chain
(Fig. 3C). The result of running the TDT algorithm by a security chain is presented in the
following expression:

SFC → C → SECURITY → FW- tls: proxy -avc TYPE → fw H - tls: proxy -avc TYPE → fw
TYPE - tls: proxy -avc TYPE → fw SF - tls: proxy -avc TYPE → fw λ - tls: proxy -avc
TYPE → fw λ - tls: proxy -avc SF → fw λ - tls: proxy -avc s1 A → fw λ - tls: proxy -avc tcp-opt.
A → fw λ - tls: proxy -avc tcp-opt. λ

According to the results, the entry service chain is correct and acceptable because it has
reached the chain from the SFC symbol.

CONCLUSIONS
This paper proposes a novel approach to generating the optimal composition of the service
functions. The methods outlined in this paper create a service chain regardless of the
standards defined in the network. The QoS-based input services were first filtered using the
Skyline method to create service compositions. Then, the CFG-based genetic algorithm
and the IETF generated the instance service chains. According to the presented context,
the results showed that the offered CFG could significantly decrease the runtime and
increase the QoS of service compositions compared to other methods. The experimental
results showed that the proposed method outperforms previous methods concerning the
service quality, running time, and time complexity. Ultimately, the proposed CFG can
be generalized to other SFC use cases.

In the proposed method, due to the use of grammar, compared with other methods, the
number of service compositions is reduced so that the execution speed of the algorithm
increases. The obtained service compositions are also valid. In the case of QoS, however,
there is no guarantee that the proposed method will work better, as there may be invalid
service compositions with high QoS, but these have been removed by grammar.

Khosravian et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.603 20/23

http://dx.doi.org/10.7717/peerj-cs.603
https://peerj.com/computer-science/

FUTURE WORKS
Other formal language types, such as the Turing machine, can filter out invalid chains for
future work. Also, different IETF types use cases can be used to select the appropriate
chains. The proposed method can also be developed for the social network using
communities.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Pouya Khosravian conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables, and
approved the final draft.
� Sima Emadi conceived and designed the experiments, performed the computation work,
prepared figures and/or tables, and approved the final draft.
� Ghasem Mirjalily analyzed the data, authored or reviewed drafts of the paper, and
approved the final draft.
� Behzad Zamani performed the experiments, analyzed the data, authored or reviewed
drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Raw data and code are available as Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.603#supplemental-information.

REFERENCES
Bhamare D, Jain R, Samaka M, Erbad A. 2016. A survey on service function chaining. Journal of

Network and Computer Applications 75(4):138–155 DOI 10.1016/j.jnca.2016.09.001.

Dräxler S, Karl H. 2017. Specification, composition, and placement of network services with
flexible structures. International Journal of Network Management 27(2):e1963
DOI 10.1002/nem.1963.

Dwiardhika D, Tachibana T. 2019. Optimal construction of service function chains based on
security level for improving network security. IEEE Access 7:145807–145815
DOI 10.1109/ACCESS.2019.2944982.

ETSI N. 2018. Network functions virtualisation (NFV); terminology for main concepts in NFV.
Group Specification 3:1–10.

Khosravian et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.603 21/23

http://dx.doi.org/10.7717/peerj-cs.603#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.603#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.603#supplemental-information
http://dx.doi.org/10.1016/j.jnca.2016.09.001
http://dx.doi.org/10.1002/nem.1963
http://dx.doi.org/10.1109/ACCESS.2019.2944982
http://dx.doi.org/10.7717/peerj-cs.603
https://peerj.com/computer-science/

Halpern J, Pignataro C. 2015. RFC 7665: service function chaining (sfc) architecture. Fremont:
Internet Engineering Task Force. Available at https://datatracker.ietf.org/doc/html/rfc7665
(accessed on 9 July 2021).

Han X, Wang B, Lai G. 2019. Dynamic skyline computation on massive data. Knowledge and
Information Systems 59(3):571–599 DOI 10.1007/s10115-018-1193-y.

Khosravian P, Emadi S, Mirjalily G, Zamani B. 2019. Service function chaining based on
grammar in software defined networks. Journal of Modeling in Engineering 17:187–199.

Khosravian P, Emadi S, Mirjalily G, Zamani B. 2020. IETF‐based finite automaton for service
composition in service function chaining. Wireless Personal Communications 114:1235–1247.

Kumar S, Purohit L. 2016. Exploring K-means clustering and skyline for web service selection. In:
11th International Conference on Industrial and Information Systems (ICIIS). 603–607.

Liang X, Qin K, Tang K, Tan K. 2019. QoS-aware web service composition with internal
complementarity. IEEE Transactions on Services Computing 12:1–14.

Linz P. 2011. An introduction to formal languages and automata. Burlington: Jones & Bartlett
Learning.

Liu J, Yang J, Xiong L, Pei J, Luo J, Guo Y, Ma S, Fan C. 2019. Skyline diagram: efficient space
partitioning for skyline queries. IEEE Transactions on Knowledge and Data Engineering
33(1):271–286 DOI 10.1109/TKDE.2019.2923914.

Lodi A, Nagarajan V. 2019. Integer programming and combinatorial optimization. In: 20th
International Conference, IPCO 2019, Ann Arbor, MI, USA, May 22-24, 2019, Proceedings.
Berlin: Springer.

Mehraghdam S, Karl H. 2015. Specification of complex structures in distributed service function
chaining using a YANG data model. arXiv preprint. Available at http://arxiv.org/abs/150302442.

Mehraghdam S, Karl H. 2016. Placement of services with flexible structures specified by a YANG
data model. In: 2016 IEEE NetSoft Conference and Workshops (NetSoft): IEEE. 184–192.

Mehraghdam S, Keller M, Karl H. 2014. Specifying and placing chains of virtual network
functions. In: Lou Z, ed. 2014 IEEE 3rd International Conference on Cloud Networking
(CloudNet). 7–13.

Mirjalily G, Lou Z. 2018. Optimal network function virtualization and service function chaining: a
survey. Chinese Journal of Electronics 27(4):704–717 DOI 10.1049/cje.2018.05.008.

Morse M, Patel JM, Jagadish HV. 2007. Efficient skyline computation over low-cardinality
domains. In: 33rd International Conference on Very Large Data Bases. 267–278.

Napper J, Haeffner W, Stiemerling M, Lopez D, Pignataro C. 2019. Service function chaining use
cases in mobile networks, IETF, Fremont, CA, USA, Tech. Rep. draft-ietf-sfc-use-case-mobility-
09. [online]. Available at https://datatracker.ietf.org/doc/html/draft-ietf-sfc-use-case-mobility-09
(accessed on 9 July 2021).

Ouadah A, Hadjali A, Nader F, Benouaret K. 2019. SEFAP: an efficient approach for ranking
skyline web services. Journal of Ambient Intelligence and Humanized Computing 10(2):709–725
DOI 10.1007/s12652-018-0721-7.

Quinn P, Nadeau T. 2015. Problem Statement for Service Function Chaining, RFC Editor, RFC
7498. [online]. Available at https://datatracker.ietf.org/doc/html/rfc7498 (accessed on 9 July
2021).

Reus B. 2016. Limits of computation. Berlin: Springer.

Rotsos C, King D, Farshad A, Bird J, Fawcett L, Georgalas N, Gunkel M, Shiomoto K, Wang A,
Mauthe A. 2017.Network service orchestration standardization: a technology survey. Computer
Standards & Interfaces 54(8):203–215 DOI 10.1016/j.csi.2016.12.006.

Khosravian et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.603 22/23

https://datatracker.ietf.org/doc/html/rfc7665
http://dx.doi.org/10.1007/s10115-018-1193-y
http://dx.doi.org/10.1109/TKDE.2019.2923914
http://arxiv.org/abs/150302442
http://dx.doi.org/10.1049/cje.2018.05.008
https://datatracker.ietf.org/doc/html/draft-ietf-sfc-use-case-mobility-09
http://dx.doi.org/10.1007/s12652-018-0721-7
https://datatracker.ietf.org/doc/html/rfc7498
http://dx.doi.org/10.1016/j.csi.2016.12.006
http://dx.doi.org/10.7717/peerj-cs.603
https://peerj.com/computer-science/

Surendra MT, Majee S, Captari C, Homma S. 2017. Service function chaining use cases in data
centers. Working Draft, IETF Secretariat, Internet-Draft draft-ietf-sfc-dc-use-cases-06. [online].
Available at https://datatracker.ietf.org/doc/html/draft-ietf-sfc-dc-use-cases (accessed on 9 July
2021).

Wang H, GuM, Yu Q, Tao Y, Li J, Fei H, Yan J, ZhaoW, Hong T. 2019. Adaptive and large-scale
service composition based on deep reinforcement learning. Knowledge-Based Systems
180(10):75–90 DOI 10.1016/j.knosys.2019.05.020.

Wang S, Guo Y, Li Y, Hsu C-H. 2020. Cultural distance for service composition in cyber–
physical–social systems. Future Generation Computer Systems 108(4):1049–1057
DOI 10.1016/j.future.2018.06.012.

Wang E, Leung K, Felix J, Iyer J. 2017. Service Function Chaining Use Cases for Network Security.
Internet-Draft draft-wang-sfc-ns-use-cases-03.Internet Engineering Task Force, 2017. Work in
Progress. Available at https://datatracker.ietf.org/doc/html/draft-wang-sfc-ns-use-cases-03
(accessed on 9 July 2021).

Yi B, Wang X, Li K, Huang M. 2018. A comprehensive survey of network function virtualization.
Computer Networks 133(2):212–262 DOI 10.1016/j.comnet.2018.01.021.

Yu Q, Bouguettaya A. 2011. Efficient service skyline computation for composite service selection.
IEEE Transactions on Knowledge and Data Engineering 25(4):776–789
DOI 10.1109/TKDE.2011.268.

Yu W, Liu J, Pei J, Xiong L, Chen X, Qin Z. 2019. Efficient contour computation of group-based
skyline. IEEE Transactions on Knowledge and Data Engineering 32(7):1317–1332
DOI 10.1109/TKDE.2019.2905239.

Khosravian et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.603 23/23

https://datatracker.ietf.org/doc/html/draft-ietf-sfc-dc-use-cases
http://dx.doi.org/10.1016/j.knosys.2019.05.020
http://dx.doi.org/10.1016/j.future.2018.06.012
https://datatracker.ietf.org/doc/html/draft-wang-sfc-ns-use-cases-03
http://dx.doi.org/10.1016/j.comnet.2018.01.021
http://dx.doi.org/10.1109/TKDE.2011.268
http://dx.doi.org/10.1109/TKDE.2019.2905239
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.603

	QoS-aware service composition based on context-free grammar and skyline in service function chaining using genetic algorithm
	Introduction
	Related work
	Optimum sfc selection problem
	The proposed meta heuristic algorithm
	Evaluation
	Conclusions
	Future works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

