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ABSTRACT
Sensors have been growingly used in a variety of applications. The lack of semantic
information of obtained sensor data will bring about the heterogeneity problem of
sensor data in semantic, schema, and syntax levels. To solve the heterogeneity problem
of sensor data, it is necessary to carry out the sensor ontology matching process to
determine correspondences among heterogeneous sensor concepts. In this paper, we
propose a Siamese Neural Network based OntologyMatching technique (SNN-OM) to
align the sensor ontologies, which does not require the utilization of reference alignment
to train the network model. In particular, a representative concepts extraction method
is presented to enhance the model’s performance and reduce the time of the training
process, and an alignment refining method is proposed to enhance the alignments’
quality by removing the logically conflict correspondences. The experimental results
show that SNN-OM is capable of efficiently determining high-quality sensor ontology
alignments.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Embedded Computing
Keywords Sensor Ontology Matching, Siamese Neural Networks, Alignment Refinement

INTRODUCTION
Over the past decades, sensors have been growingly used in a variety of applications,
e.g.,medical science, space observation, wildfire detection, trafficmanagement, andweather
forecasting (Yawut & Kilaso, 2011; Doolin & Sitar, 2005; Topol, Steinhubl & Torkamani,
2015; Chen, 2018; Sheth, Henson & Sahoo, 2008; Gravina et al., 2017; Du et al., 2020; Chu
et al., 2020). In order to make diverse kinds of sensors cooperate in the common task of
detecting and identifying a large number of observation data, it is necessary to combine
sensor networks with database and Web techniques, which is called Sensor Web (Corcho
& García-Castro, 2010; Xue & Chen, 2020). However, the lack of semantic information
on obtained sensor data might bring about the heterogeneity problem of sensor data
in semantic, schema, and syntax levels. In order to address this problem, the Semantic
Sensor Web (SSW) has emerged, whose kernel technique is the sensor ontology. Sensor
ontology can be used to annotate the sensor observation data and realize different sensor
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applications’ interoperability (Xue & Chen, 2020), but there also exists the heterogeneity
issue among different sensor ontologies. The sensor ontology matching technique is able to
determine the correspondences between different sensor concepts and bridge the semantic
gap between two heterogeneous sensor ontologies.

Matching sensor ontologies manually is a tedious, time-consuming, and error-prone
task. Hence, evolutionary algorithms (EAs) and the machine learning (ML) (Chen,
2020; Chen et al., 2020; Chen, Hwang & Kung, 2019; Lin et al., 2021; Lin et al., 2019)
based ontology matching techniques (OMTs) have become popular methodology for
determining the ontology alignments (Doan et al., 2004; Nezhadi, Shadgar & Osareh, 2011;
Khoudja, Fareh & Bouarfa, 2018b). As the complex nature of sensor ontology matching
process, recently, the neural network (NN) becomes the popular technique to align the
sensor ontologies (Khoudja, Fareh & Bouarfa, 2018b; Khoudja, Fareh & Bouarfa, 2018a;
Bento, Zouaq & Gagnon, 2020; Jiang & Xue, 2020; Iyer, Agarwal & Kumar, 2020). However,
the existing NN-based OMTs require the utilization of reference alignment, which is
unavailable in the real-world matching task. In addition, their model training process needs
long runtime, which also hampers their applications. To overcome these drawbacks, this
work proposes a Siamese neural network based ontology matching technique (SNN-OM)
to effectively and efficiently align the sensor ontologies. The main contributions made in
this paper are listed in the following:

• A Siamese neural network is proposed to align the sensor ontologies, which enhances
the performance without using the reference alignment.
• A representative concepts extraction method is presented to enhance the model’s
performance and reduce the time of training process.
• A feature usage method of sensor concept’s context information is proposed to improve
the alignment’s quality.
• An alignment refining method is proposed to enhance the alignment’s quality, which
makes use of the sensor ontology’s concept hierarchy to remove the logically conflict
correspondences.

The rest of the paper is organized as follows: ‘RelatedWork’ provides the related work on
state-of-the-art ML-based OMTs. ‘Preliminary’ presents the definition of sensor ontology,
sensor ontology matching, and the alignment’s evaluation metrics, and introduces the
proposed CSM. ‘Siamese Neural Network Based Ontology Matching Technique’ gives the
detail of SNN-OM, including the extraction of representative concepts, training of the
model, matching process, and alignment refinement. ‘Experiment’ shows the experiments
on OAEI’s benchmark and three pairs of sensor ontologies. ‘Conclusion’ draws the
conclusion.

RELATED WORK
Many evolutionary algorithms (EAs)-based OMTs have been proposed to tackle the
ontology matching problem, partitioned into two categories, i.e., single-objective
evolutionary algorithms (SOEAs) and multi-objective evolutionary algorithms (MOEAs).
Naya et al. (2010) proposed an SOEA-based OMT, which combines a quantity of concept

Xue et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.602 2/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.602


similarity measures (CSMs) and proposed an effective encoding mechanism. After that,
a hybrid SOEA-based OMT is further proposed (Xue & Wang, 2015), which introduced
the local search algorithm into the evolution process of genetic algorithm to improve
the performance of the algorithm. Jiang & Xue (2021) proposed a uniform compact
genetic algorithm (UCGA)-based OMT, which is able to reduce the runtime and memory
consumption. In order to meet the various needs of different decision makers, many
MOEAs have been developed to solve the ontology matching problem to provide a set
of solutions called the Pareto set. An improved nondominated sorting genetic algorithm
(iNSGA-II)-based OMT (Huang, Xue & Jiang, 2020) is proposed to improve the alignment
quality, which introduced a local perturbation algorithm (Meng & Pan, 2016) into the
evolution process of NSGA-II.

A semi-automatic ML-based OMT, GLUE (Doan et al., 2004), has been proposed, which
is able to create highly accurate alignment that Concept Similarity Measures (CSMs) are
expressed by the joint probability distribution of concepts involved. Nezhadi, Shadgar &
Osareh (2011) proposed anML-based OMT, which combined several CSMs to enhance the
matching results’ quality and regarded ontology matching as the regression problem. In
addition, for the efficiency of ontology matching, several ML algorithms have been studied
by them, i.e., decision tree (DT), AdaBoost, K-NearestNeighbor (KNN), and support vector
machine (SVM), and the results shows that the combination of DT and AdaBoost classifiers
outperforms others. The ontology matching has been deemed as a binary classification
problem (Mao, Peng & Spring, 2011), which utilized SVM to solve it by using non-instance
learning-based ontology alignment method. In recent years, several neural network (NN)
based OMTs were proposed. Khoudja, Fareh & Bouarfa (2018a) proposed a matching
approach to integrate several state-of-the-art ontology matchers by using NN for the
improvement of the alignment quality. Bento, Zouaq & Gagnon (2020) used convolutional
neural network (CNN) to align diverse ontologies, which shows good performance on
different domains. Jiang & Xue (2020) presented a long short-term memory networks
(LSTM)-based OMT to align biomedical ontologies by using the structural and semantic
information of concepts. Iyer, Agarwal & Kumar (2020) proposed an NN-based OMT,
VeeAlign, which utilized dual attention to calculate the contextualized representation of
concepts and showed excellent performance over state-of-the-art OMTs. However, most
ML-based OMTs need the usage of reference alignment, which is unavailable on actual
matching tasks. To overcome this disadvantage, the SNN-OM is proposed, which enhances
the performance without using the reference alignment.

PRELIMINARY
Sensor ontology and sensor ontology matching
Definition 1 An ontology is defined as a quadruple (Xue & Wang, 2015)

O= (IN ,OP,DP,CL) (1)

where IN is a quantity of individuals; OP is a quantity of object-type properties; DP is
a quantity of data-type properties; CL is a quantity of classes. In particular, IN , OP , DP ,
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Figure 1 The core classes and properties of SSN ontology.
Full-size DOI: 10.7717/peerjcs.602/fig-1

and CL are called concept. Figure 1 shows the core classes and properties of SSN ontology
(https://www.w3.org/2005/Incubator/ssn/ssnx/ssn) partitioned by conceptual modules.
The rounded rectangle denotes the class, e.g., ‘‘Sensor’’ and ‘‘Stimulus’’, and the dotted
arrow the property, e.g., ‘‘hasValue’’, ‘‘hasOutput’’, and ‘‘isPropertyOf’’. The solid one-way
arrow means that two concepts are the parent–child relationship.

Definition 2 An ontology alignment is a set of correspondences, and a correspondence is
defined as follows (Jiang & Xue, 2021):

Cor = (c ′,c,s,t ) (2)

where c ′ and c are the concept from two ontologies to be aligned; s is the similarity score;
and and t is the relation type of c ′ and c . Figure 2 depicts three sensor ontologies and
their alignment that the ontologies are Marine Metadata Interoperability (MMI) device
ontology ( https://mmisw.org/ont/mmi/device), Commonwealth Scientific and Industrial
Research Organisation (CSIRO) sensor ontology (Neuhaus & Compton, 2009), and SSN
ontology (Compton et al., 2012). The hollow one-way arrow means that the intermediate
concepts between the two concepts are omitted and the solid one-way arrow means that
two concepts are the parent–child relationship. The double-sided arrow links two concepts
forming a correspondence, e.g., ‘‘SensingDevice’’ in SSN ontology and ‘‘Sensor’’ in CSIRO
ontology are connected building a correspondence. Furthermore, all correspondences
constitute an alignment, and reference alignment is the golden alignment provided by the
domain experts, which is employed to evaluate OMTs’ performance.
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Figure 2 An example of sensor ontology alignment.
Full-size DOI: 10.7717/peerjcs.602/fig-2

Definition 3 The process of ontology matching is a function (Xue, Chen & Yao, 2018; Xue
& Zhang, 2021):

A=φ(O1,O2,RA,R,P) (3)

where A is the final alignment; O1 and O2 are two to-be-matched ontologies; RA is the
reference alignment (optional); R is the utilized resources; and P is the utilized parameters.

Alignment’s evaluation metrics
Generally, precision (P), recall (R), and f-measure (F) are utilized to test the matching
results’ quality (Xue, 2020; Xue et al., 2021b; Xue et al., 2021a):

R=
correct_found_correspondences
all_possible_correspondences

(4)

P =
correct_found_correspondences
all_found_correspondences

(5)

F =
2×R×P
R+P

(6)

where P and R respectively indicate the accuracy and completeness of the results. P equals
1 denoting all found correspondences are correct, while R equals 1 representing that all
correct correspondences are found; F is the harmonic mean of P and R to balance them.

Concept similarity measure
CSM is the kernel technique in the ontologymatching domain, which outputs a real number
in [0,1] by considering the two input concepts’ information (Xue & Chen, 2019). Generally,
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CSM can be divided into three categories: string-based CSM, linguistics-based CSM, and
structure-based CSM. Furthermore, string-based CSM computes the edit distance by using
entities’ identifier, label or comment, linguistics-based CSM outputs the similar value
through the external dictionaries or corpora, e.g., WordNet, and structure-based CSM
outputs two concepts’ similarity value by taking their adjacent concepts into consideration.

In this work, the CSM is adopted to determine the anchor correspondences from two
to-be-matched ontologies, which gets rid of the limitation that most NN-based OMTs
rely on reference alignment. The anchor correspondences are utilized to build the training
data for the model’s training. In particular, for the effectiveness and efficiency of matching
process, the hybrid CSM is used that combines the n-gram similarity (string-based CSM),
and the WordNet-based similarity (linguistics-based CSM), since they are greatly effective
CSMs in the ontology matching field. The structure-based CSM often owns high time
complexity, hence it is not advisable to employ it for building the training data, which
could increase the time. Given two tokens t1 and t2, n-gram similarity and WordNet-based
similarity are respectively defined as follows:

n−gram(t1,t2)=
|f (t1,n)∩ f (t2,n)|

min(|t1|,|t2|)−n+1
(7)

WordSim(t1,t2)= max
w1∈sen(t1),w2∈sen(t2)

[sim(w1,w2)] (8)

where |t1| and |t2| are respectively the length of t1 and t2, f (t1,n) represents a set of
substrings of ti with length n.sen(ti) denotes a set of possible meanings of the token ti. Here,
n is empirically set as 3.

For the quality of used training data, given two concepts c ′ and c , theirs’ labels and
comments are lowercased, replaced underlines with spaces, and stripped of stop-words,
respectively. Finally, four token sets T ′label , T

′

comment , Tlabel , and Tcomment are generated for
the similarity computing. As the diverse heterogeneity situation of the testing cases that
some of the labels or comments are garbled or missed, so the designed CSM is as follows:

sim(c ′,c)=max(simlabel(c ′,c),simcomment (c ′,c)) (9)

where simlabel(c ′,c) and simcomment (c ′,c) are respectively the label-based and comment-
based similarity value by using concepts’ labels, and comments. To be specific, given two
label token sets T ′label and Tlabel , represented by T1 and T2, then label-based CSM can be
computed:

simlabel(c ′,c)=

∑|T1|
i=1max{n−gram(T1,i,T2,j),WordSim(T1,i,T2,j)}

|T2|
j=1

T1
(10)

where T1,i and T2,j respectively represent the |T1|’s ith token and |T2|’s jth token. The
comment-based CSM is also calculated in this way only the input token sets is different.

SIAMESE NEURAL NETWORK BASED ONTOLOGY
MATCHING TECHNIQUE
The framework of SNN-OM is shown in Fig. 3. First, the representative concepts
are extracted from two input ontologies. Then, the anchor correspondences are
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Figure 3 The framework of the siamese neural network based ontology matching technique.
Full-size DOI: 10.7717/peerjcs.602/fig-3

determined by using the CSM. After that, the training data set (positive and
negative samples) are constructed to train the SNN model, which does not require
the utilization of reference alignment. With the trained SNN, we can determine
sensor concepts’ similarity by considering their semantic information. Finally,
the alignment refinement method is utilized to further improve the alignment
quality.

The determination of representative concepts
The Degree Centrality (DC) is a measure to compute the significance of nodes in a graph,
which is determined by the quantity of connections of the nodes (Bonacich, 2007; Bródka
et al., 2011; Algergawy et al., 2015). A node with high DC is more significant than others
(Algergawy et al., 2015; Pouriyeh et al., 2018). In order to build effective training data set
and improve the matching efficiency, we extract representative concepts (nodes with the
high numbers out-degree and int-degree in the class hierarchy graph) from the ontologies
to be aligned. All concepts are first sorted using the DC and concepts with high rank will be
selected to build the training data set. Empirically, we select the top 30% concepts, which is
able to enhance the alignment’s quality and the matching efficiency. It can be seen in Fig. 4,
the concepts ‘‘Device’’ and ‘‘Sensor’’, whose DC are high, are more important than other
concepts.

Training data set construction
In this work, the positive samples are build by determining anchor correspondences
through the proposed CSM rather than using the reference alignment. The proposed
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Figure 4 An example of MMI ontology’s class hierarchy graph.
Full-size DOI: 10.7717/peerjcs.602/fig-4

CSM (see Eqs. (9) and (10)) is used to calculate the similarity value among representative
concepts. The correspondence with the similarity score higher than the threshold 0.95 is
regarded as candidate anchor correspondence and their set is denoted as Cc . However,
the threshold based filtering strategy is not able to guarantee that all anchors are correct
correspondences. Therefore, a logic reasoning based filtering method (see also ‘Alignment
refinement’) is employed on the candidate anchors Cc to enhance the result’s confidence,
then, the final anchor correspondence set Cf is obtained. The correspondence in Cf is the
positive sample and the correspondence in Cc \Cf is the negative sample. To balance the
dataset to prevent biasing the training process, it is necessary to make the same number
of positive and negative samples. Given an anchor correspondence Cor = (c ′,c,s,t )∈Cf

that c ′ from ontologies O1, the negative sample is produced by replacing c ′ with a concept
c ′′ randomly selected from O1. Finally, the built data set is employed to train the SNN
model.

Matching ontologies through siamese neural network
SNN is a type of NN that inputs two different vectors into two same structure and
weights networks and it is used to find the similarity of the inputs by comparing its
feature vectors. It can learn semantic similarity as it focuses on learning embedding,
bringing the same concepts closely together (Melekhov, Kannala & Rahtu, 2016; Mueller
& Thyagarajan, 2016). According to previous research (Bento, Zouaq & Gagnon, 2020;
Iyer, Agarwal & Kumar, 2020; Jiang & Xue, 2020), the ancestry nodes are more suitable
for ontology matching rather than other nodes. To capture the sensor concepts’ context
information, two concepts and their two super-classes, respectively denoted by Concept1
and Concept2, are used as two the input. Figure 5 shows an example of the positive
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Figure 5 An example of the positive sample considering the context information of the concepts.
Full-size DOI: 10.7717/peerjcs.602/fig-5

sample that semantically consistent concepts ‘‘ProcessInput’’ and ‘‘Input’’ and their
two sup-classes are utilized to input. To feed the SNN the numeric representation
vectors, the character embeddings (https://github.com/minimaxir/char-embeddings)
is utilized whose possible character is a representation vector in 300 dimensions,
and the value in each dimension is normalized in the interval [0,1]. In this work,
the used structure of networks is an Attention-based Bidirectional Long Short-Term
Memory Network (Zhou et al., 2016), which is able to connect future and past contexts
of sensor concept pairs while catch the significant part to enhance the model’s
performance, and capture the semantic relationships and features of input concept
pairs.

Input two context vectors Concept1 and Concept2 of c ′ and c to the trained SNN,
the similarity value is calculated by the distance-based CSM, which is defined as
follows:

simdistance(c ′,c)= 1−
||Feature1−Feature2||
||Feature1||+||Feature2||

(11)

where || · || denotes the Euclidean norm, Feature1 and Feature2 are the output feature
vectors, ||Feature1−Feature2||

||Feature1||+||Feature2||
is the normalized distance, denoted as d . The similarity value

can be obtained according to the principle that the smaller the distance, the greater the
similarity score. In addition, an effective optimization algorithm, Adam optimizer (Kingma
& Ba, 2014; Yi, Ahn & Ji, 2020; Ruder, 2016), and the most commonly used contrastive loss
(Koch, Zemel & Salakhutdinov, 2015) for SNN are employed to optimize the weights of
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Figure 6 An example of inconsistent correspondences.
Full-size DOI: 10.7717/peerjcs.602/fig-6

networks:

Lcontrastive =
N∑
i=0

yi×di+ (1−yi)×max{m−di,0}
2N

(12)

where N is the number of samples; d is the distance of two output feature vectors; yi is the
sample type that yi equals 0 denoting the negative sample and 1 representing the positive
sample; m is a margin value.

Alignment refinement
By means of the trained SNN, the M ×N similarity matrix can be obtained that M
and N are the numbers of input concepts of O1 and O2, respectively. In particular, the
concepts corresponding to the anchor are not inputted into the model for calculation,
which decreases the matching time. Each element in the similarity matrix is the similarity
score calculated through the (11). After that, an alignment refining method is proposed to
enhance the quality of the alignment, which makes use of the sensor ontology’s concept
hierarchy to remove the logically conflict correspondences. The alignment refinement
method is shown in ?? and the detailed process is as follows: (1) the correspondences are
sorted by descending, (2) to ensure the precision of the final alignment, a threshold is
adopted to filter the correspondences (3) the correspondence with the greatest similarity
is selected, (4) finally, the rest correspondences are chosen one by one if it does not
conflict with previous correspondences. To be specific, in Fig. 6, two correspondences
(c ′1,c1) and (c ′2,c3) conflict that c

′

1 is the subclass of c ′2 and c3 is the subclass of c1,
then the correspondence with the lower similarity score will be discarded. Finally, the
anchor correspondences and the above correspondences without filtration form the final
alignment.
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Algorithm 1 Alignment Refinement
1: Input: The similarity matrix with row=M , column =N ; the correspondences set Cs=

{Cor1,Cor2,...,CorM×N }, Cork = (c ′i ,cj,s), k ∈ {1,2,...,M ×N }, i ∈ {1,2,...,M }, j ∈
{1,2,...,N };

2: Output: the final alignment;
3: Sort correspondences in descending order according to similarity score, then the

sorted correspondences set C ′s ={Cor
′

1,Cor
′

2,...,Cor
′

M×N };
4: A threshold is adopted on C ′s to remove a number of correspondences;
5: for h= 1 :C ′s .Length do
6: if Cor ′h then
7: if h== 1 then
8: Reserve the correspondence Cor ′h= (c ′i ,cj,s);
9: Remove the correspondences in C ′s if its row or column is same with the corre-

spondence Cor ′h= (c ′i ,cj,s);
10: else
11: if Correspondence Cor ′h does not conflict with previous correspondences then
12: Reserve the correspondence Cor ′h= (c ′i ,cj,s);
13: Remove the correspondences in C ′s if its row or column is same with the cor-

respondence Cor ′h= (c ′i ,cj,s);
14: else
15: Remove the correspondence Cor ′h= (c ′i ,cj,s) in C ′s ;
16: end if
17: end if
18: end if
19: end for

EXPERIMENT
In the conducted experiment, the benchmark of Ontology Alignment Evaluation
Initiative (OAEI) (http://oaei.ontologymatching.org/2016/benchmarks/index.html)
and three pairs of sensor ontologies are utilized to test our approach’s performance.
The succinct statement of OAEI’s benchmark and three sensor ontologies, i.e., MMI
(http://marinemetadata.org/community/teams/cog), CSIRO (Neuhaus & Compton, 2009),
and SSN (Compton et al., 2012), are shown in Tables 1 and 2. OAEI’s OMTs and four
state-of-the-art sensor OMTs, i.e., CODI (Noessner et al., 2010), ASMOV (Jean-Mary,
Shironoshita & Kabuka, 2009), SOBOM (Xu et al., 2010), and FuzzyAlign (Fernandez et al.,
2013), are compared with the proposed approach.

Tables 3–5 show the comparison among SNN-OM and OAEI’s OMTs on Benchmark
in terms of precision, recall, and f-measure respectively. Table 6 compares SNN-OM with
the state-of-the-art OMTs in terms of the matching efficiency. Figures 7–9 present the
performance comparison of SNN-OM and the state-of-the-art sensor OMTs on sensor
OM tasks.
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Table 1 The succinct statement on benchmark testing cases.

ID Succinct Statement

1XX Two identical ontologies.
2XX Two ontologies with different lexical, linguistic or structural characters.
3XX The real ontologies.

Table 2 The succinct statement on sensor ontologies.

Ontology Succinct Statement

CSIRO Describing sensors and deployments.
MMI Device Describing oceanographic devices, sensors and samplers.
SSN Describing sensors, deployments, observations, measurement processes, and capabilities.

It can be seen in Table 3, the SNN-OM is able to obtain high precision in diverse
heterogeneous situations, which performs much better than most OMTs denoting most of
the found correspondences are correct. Table 4 demonstrates that the proposed matching
technique is effective as well, which can be competent for a variety of heterogeneous
problems indicating most of the correct correspondences are found. About f-measure, the
superiority of our method is shown again. In particular, SNN-OM is capable of gaining
high-quality alignment over other OMTs that the average values of precision, recall, and
f-measure are the highest. As regards matching efficiency, Table 6 shows that, by using the
representative concepts, SNN-OM owns the minimum value of runtime (i.e., 90s), and
maximum values of f-measure per second (0.0103) and f-measure. Our similarity measure
takes string, semantic, and context information of concepts into account. And hence the
SNN-OM’s f-measure value is higher than other OAEI’s OMTs that only consider one
or two types of CSM, such as XMap, Pheno family, LogMap family, and CroMatcher. In
summary, SNN-OM has the capability of determining the superior correspondences and
the experimental results illustrate the both effectiveness and efficiency of our method on
the benchmark.

It can be seen from Figs. 7–9 that SNN-OM is the most competent method to address
the sensor data heterogeneous problem, whose precision, recall, and f-measure are better
than four state-of-the-art sensor OMTs on three sensor matching tasks. The top 2 OMT
is the FuzzyAlign, which outperforms the ASMOV, CODI, and SOBOM in terms of
precision and recall as it takes semantic, linguistics, and structure information of concepts
into account. However, FuzzyAlign adopted too many CSMs that bring about conflicting
correspondences, which reduces the recall value. To sum up, by considering the concepts’
semantic and context information and introducing the logical reasoning method to
promote the quality of correspondences, SNN-OM is able to handle diverse sensor ontology
matching problems.

CONCLUSION
To solve the heterogeneity problem of sensor data, it is necessary to carry out the sensor
ontology matching process to determine the correspondences among different sensor
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Table 3 Comparison of SNN-OM and OAEI’s OMTs in terms of precision on benchmark.

Test edna AgrMaker AROMA ASMOV CODI Ef2Match Falcon GeRMeSMB MapPSO SOBOM TaxoMap SNN-OM

101 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
103 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
104 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
201 0.04 0.98 1.00 1.00 0.88 1.00 0.97 0.95 0.47 1.00 1.00 0.97
203 1.00 0.96 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.97 1.00
204 0.93 0.98 1.00 1.00 0.79 1.00 0.96 0.99 0.98 1.00 1.00 1.00
205 0.34 0.96 1.00 1.00 0.68 0.95 0.97 1.00 0.82 1.00 1.00 0.98
206 0.54 0.98 1.00 1.00 0.81 1.00 0.94 0.94 0.90 1.00 1.00 1.00
221 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
222 0.96 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.88 1.00
223 1.00 0.92 0.95 1.00 1.00 1.00 1.00 0.99 0.98 0.99 0.88 1.00
224 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
225 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
228 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
230 0.74 0.84 0.93 0.95 1.00 0.94 0.94 1.00 0.97 0.94 0.83 1.00
231 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
232 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
233 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
236 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
237 0.96 0.97 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.88 1.00
238 1.00 0.92 0.94 1.00 0.99 1.00 1.00 0.98 0.97 0.98 0.88 1.00
239 0.33 0.97 0.97 0.97 0.97 0.97 1.00 0.97 0.97 0.97 0.88 0.97
240 0.38 0.89 0.82 0.97 0.94 0.97 1.00 0.85 0.91 0.97 0.88 1.00
241 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
246 0.33 0.97 0.97 0.97 0.97 0.97 1.00 0.97 0.97 0.93 0.88 0.97
250 0.01 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.04 0.67 0.00 1.00
257 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.08 0.83 0.00 1.00
258 0.04 0.98 1.00 0.97 1.00 1.00 0.00 0.51 0.08 0.94 1.00 1.00
259 0.02 0.92 1.00 0.96 1.00 1.00 0.00 0.60 0.05 0.89 1.00 1.00
260 0.00 0.93 0.00 0.92 0.00 0.67 0.00 0.00 0.14 0.33 0.00 0.93
261 0.00 0.87 0.00 0.88 0.00 0.67 0.00 0.50 0.04 0.22 0.00 0.91
301 0.47 1.00 0.86 0.91 0.93 0.92 0.91 0.92 0.68 0.90 0.69 0.91
302 0.32 1.00 0.73 0.86 1.00 0.93 0.90 0.81 0.50 0.86 0.76 0.95
303 0.00 0.83 0.69 0.78 0.92 0.85 0.77 0.00 0.00 0.46 0.48 0.93
304 0.74 0.86 0.91 0.94 0.94 0.95 0.96 0.91 0.76 0.91 0.90 0.97
mean 0.63 0.95 0.85 0.97 0.85 0.96 0.80 0.88 0.75 0.90 0.82 0.98
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Table 4 Comparison of SNN-OM and OAEI’s OMTs in terms of recall on benchmark.

Test edna AgrMaker AROMA ASMOV CODI Ef2Match Falcon GeRMeSMB MapPSO SOBOM TaxoMap SNN-OM

101 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.34 1.00
103 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.34 1.00
104 1.00 1.00 0.98 1.00 0.98 1.00 1.00 1.00 1.00 1.00 0.34 1.00
201 0.04 0.86 0.90 1.00 0.07 0.62 0.97 0.94 0.38 0.91 0.34 0.97
203 1.00 1.00 0.66 1.00 0.76 1.00 1.00 0.97 1.00 1.00 0.33 1.00
204 0.93 0.97 0.95 1.00 0.69 0.98 0.96 0.98 0.98 0.99 0.34 0.99
205 0.34 0.88 0.90 0.99 0.18 0.75 0.97 0.98 0.66 0.93 0.34 0.98
206 0.54 0.88 0.91 0.99 0.26 0.77 0.94 0.90 0.80 0.93 0.34 0.93
221 1.00 1.00 0.98 1.00 0.96 1.00 1.00 1.00 1.00 1.00 0.34 1.00
222 1.00 1.00 0.98 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.31 1.00
223 1.00 0.98 0.92 1.00 1.00 1.00 1.00 0.94 0.98 0.99 0.30 1.00
224 1.00 1.00 0.95 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.34 1.00
225 1.00 1.00 0.98 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.34 1.00
228 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
230 1.00 0.97 0.93 1.00 0.97 1.00 1.00 0.89 1.00 1.00 0.35 1.00
231 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.34 1.00
232 1.00 1.00 0.94 1.00 0.94 1.00 0.99 1.00 1.00 1.00 0.34 1.00
233 1.00 1.00 1.00 1.00 0.88 1.00 1.00 0.97 1.00 1.00 1.00 1.00
236 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
237 1.00 1.00 0.94 1.00 0.99 1.00 0.99 1.00 1.00 1.00 0.31 1.00
238 1.00 0.96 0.91 1.00 0.99 1.00 0.99 0.95 0.97 0.98 0.3 1.00
239 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
240 1.00 0.94 0.85 1.00 0.97 1.00 1.00 0.85 0.94 1.00 0.88 1.00
241 1.00 1.00 0.97 1.00 0.88 1.00 1.00 0.97 1.00 1.00 1.00 1.00
246 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.00 1.00
250 0.03 0.39 0.00 0.45 0.00 0.06 0.00 0.03 0.03 0.12 0.00 1.00
257 0.00 0.39 0.00 0.33 0.00 0.06 0.00 0.03 0.06 0.15 0.00 1.00
258 0.04 0.65 0.01 0.78 0.01 0.04 0.00 0.19 0.06 0.31 0.01 0.83
259 0.02 0.67 0.01 0.78 0.01 0.04 0.00 0.19 0.04 0.35 0.01 0.80
260 0.00 0.45 0.00 0.41 0.00 0.07 0.00 0.00 0.10 0.03 0.00 0.83
261 0.00 0.39 0.00 0.42 0.00 0.06 0.00 0.03 0.03 0.06 0.00 0.88
301 0.78 0.42 0.64 0.81 0.24 0.58 0.68 0.58 0.61 0.78 0.31 0.82
302 0.65 0.19 0.23 0.63 0.42 0.58 0.58 0.27 0.02 0.65 0.27 0.62
303 0.00 0.73 0.52 0.88 0.50 0.81 0.77 0.00 0.00 0.54 0.29 0.82
304 0.95 0.86 0.78 0.97 0.61 0.95 0.93 0.66 0.68 0.92 0.37 0.91
mean 0.72 0.84 0.73 0.89 0.66 0.78 0.79 0.75 0.72 0.81 0.40 0.95
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Table 5 Comparison of SNN-OM and OAEI’s OMTs in terms of f-measure on benchmark.

Test edna AgrMaker AROMA ASMOV CODI Ef2Match Falcon GeRMeSMB MapPSO SOBOM TaxoMap SNN-OM

101 1.00 0.99 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00
103 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00
104 1.00 0.99 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.50 1.00
201 0.04 0.91 0.94 1.00 0.12 0.76 0.97 0.94 0.42 0.95 0.50 0.97
203 1.00 0.98 0.79 1.00 0.86 1.00 1.00 0.97 1.00 1.00 0.49 1.00
204 0.93 0.97 0.97 1.00 0.73 0.98 0.96 0.98 0.98 0.99 0.50 0.99
205 0.34 0.91 0.94 0.99 0.28 0.83 0.97 0.98 0.73 0.96 0.50 0.98
206 0.54 0.92 0.95 0.99 0.39 0.87 0.94 0.91 0.84 0.96 0.50 0.96
221 1.00 0.97 0.99 1.00 0.98 1.00 1.00 1.00 1.00 1.00 0.50 1.00
222 0.98 0.98 0.99 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.45 1.00
223 1.00 0.94 0.93 1.00 1.00 1.00 1.00 0.96 0.98 0.99 0.44 1.00
224 1.00 0.98 0.97 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.50 1.00
225 1.00 0.98 0.98 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.50 1.00
228 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
230 0.85 0.90 0.93 0.97 0.98 0.96 0.96 0.94 0.98 0.96 0.49 1.00
231 1.00 0.98 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00
232 1.00 0.97 0.96 1.00 0.96 1.00 0.99 1.00 1.00 1.00 0.50 1.00
233 1.00 1.00 1.00 1.00 0.93 1.00 1.00 0.98 1.00 1.00 1.00 1.00
236 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
237 0.98 0.98 0.96 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.45 1.00
238 1.00 0.93 0.92 1.00 0.99 1.00 0.99 0.96 0.97 0.98 0.44 1.00
239 0.49 0.98 0.98 0.98 0.98 0.98 1.00 0.98 0.98 0.98 0.93 0.98
240 0.55 0.91 0.83 0.98 0.95 0.98 1.00 0.85 0.92 0.98 0.88 1.00
241 1.00 1.00 0.98 1.00 0.93 1.00 1.00 0.98 1.00 1.00 1.00 1.00
246 0.49 0.98 0.97 0.98 0.98 0.98 1.00 0.98 0.98 0.94 0.93 0.98
250 0.01 0.56 0.00 0.62 0.00 0.11 0.00 0.05 0.03 0.20 0.00 1.00
257 0.00 0.56 0.00 0.49 0.00 0.11 0.00 0.05 0.06 0.25 0.00 1.00
258 0.04 0.78 0.01 0.86 0.01 0.07 0.00 0.27 0.06 0.46 0.01 0.91
259 0.02 0.77 0.01 0.86 0.01 0.07 0.00 0.28 0.04 0.50 0.01 0.89
260 0.00 0.60 0.00 0.56 0.00 0.12 0.00 0.00 0.11 0.05 0.00 0.88
261 0.00 0.53 0.00 0.56 0.00 0.11 0.00 0.05 0.03 0.09 0.00 0.89
301 0.58 0.59 0.73 0.85 0.38 0.71 0.77 0.71 0.64 0.83 0.42 0.86
302 0.42 0.31 0.34 0.72 0.59 0.71 0.70 0.40 0.03 0.74 0.39 0.75
303 0.00 0.77 0.59 0.82 0.64 0.82 0.77 0.00 0.00 0.49 0.36 0.87
304 0.83 0.86 0.84 0.95 0.73 0.95 0.94 0.76 0.71 0.91 0.52 0.94
mean 0.65 0.87 0.75 0.91 0.69 0.80 0.79 0.77 0.72 0.83 0.49 0.96

Xue
etal.(2021),PeerJ

C
om

put.Sci.,D
O
I10.7717/peerj-cs.602

15/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.602


Table 6 Comparison onmatching efficiency among SNN-OM and OAEI’s OMTs on benchmark.

OMT f-measure Runtime (second) f-measure per second

XMap 0.56 123 0.0045
PhenoMP 0.01 1833 0.0000
PhenoMM 0.01 1743 0.0000
PhenoMF 0.01 1632 0.0000
LogMapBio 0.32 54439 0.0000
LogMapLt 0.46 96 0.0048
LogMap 0.55 194 0.0028
Lily 0.89 2211 0.0004
CroMatcher 0.89 1100 0.0008
AML 0.38 120 0.0031
SNN-OM 0.93 90 0.0103

ASMOV CODI SOBOM FuzzyAlign SNN OM

precision

f measure

recall

Figure 7 Comparison of SNN-OM and the state-of-the-art sensor OMTs onMMI-SSNmatching task.
Full-size DOI: 10.7717/peerjcs.602/fig-7

concepts with the same semantic annotation. In this paper, the SNN-OM is proposed
to align the sensor ontologies. Before the matching, to get rid of the limitation that most
NN-basedOMTs’ training requires the utilization of reference alignment, the representative
concepts extraction method is used to build the effective training data set, which is able
to enhance the model’s performance and reduce the time of training process. In addition,
to determine the heterogeneous sensor concepts, a confidence calculation method is
utilized by using the SNN, which takes sensor concepts’ semantic and context information
into account to improve the sensor ontology alignment. After the matching, an alignment
refiningmethod is proposed to enhance the quality of the alignment, whichmakes use of the
sensor ontology’s concept hierarchy to remove the logically conflict correspondences. The
experimental results present that SNN-OM is capable of determining superior alignment
which is better than the state-of-the-art OMTs.
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Figure 8 Comparison of SNN-OM and the state-of-the-art sensor OMTs on CSIRO-SSNmatching
task.

Full-size DOI: 10.7717/peerjcs.602/fig-8
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Figure 9 Comparison of SNN-OM and the state-of-the-art sensor OMTs onMMI-CSIROmatching
task.

Full-size DOI: 10.7717/peerjcs.602/fig-9

In the future, we will focus on the improvement of the effectiveness and efficiency of
SNN-OM. For the effectiveness, the training data set is vital, hence, the determination
of anchor correspondences should be refined, and the output feature is crucial as well,
therefore, we will be interested in capturing the semantic feature of concepts by using
more concepts’ context information. In addition, alignment refinement method could be
improved, e.g., using the constraints. For efficiency, we will be devoted to reducing the
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matching time by utilizing the evolutionary algorithm to determine the correspondences
rather than the simple enumeration approach.
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