
Submitted 13 November 2020
Accepted 20 May 2021
Published 11 June 2021

Corresponding author
Amir Masoud Rahmani,
Rahmani@srbiau.ac.ir

Academic editor
Abdel Hamid Soliman

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj-cs.589

Copyright
2021 Goudarzi and Rahmani

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

An efficient filter with low memory usage
for multimedia data of industrial Internet
of Things
Parisa Goudarzi1 and Amir Masoud Rahmani2

1Department of Computer Engineering, Islamic Azad University of Dezful, Dezful, Iran
2 Future Technology Research Center, National Yunlin University of Science and Technology, Douliou,
Yunlin, Taiwan

ABSTRACT
One of the essential concerns of Internet of Things (IoT) is in industrial systems or data
architecture to support the evolutions in transportation and logistics. Considering the
Industrial IoT (IIoT) openness, the need for accessibility, availability, and searching
of data has rapidly increased. The primary purpose of this research is to propose an
Efficient Two-Dimensional Filter (ETDF) to store multimedia data of IIoT applications
in a specific format to achieve faster response and dynamic updating. This filter consists
of a two-dimensional array and a hash function integrated into a cuckoo filter for
efficient use ofmemory. This study evaluates the scalability of the filter by increasing the
number of requests from 10,000 to 100,000. To assess the performance of the proposed
filter, wemeasure the parameters of access time and lookupmessage latency. The results
show that the proposed filter improves the access time by 12%, compared to a Fast Two-
Dimensional Filter (FTDF). Moreover, it improves memory usage by 20% compared
to FTDF. Experiments indicate a better access time of the proposed filter compared
to other filters (i.e., Bloom, quotient, cuckoo, and FTD filters). Insertion and deletion
times are essential parameters in comparing filters, so they are also analyzed.

Subjects Data Science, Databases, Mobile and Ubiquitous Computing, Multimedia, Real-Time
and Embedded Systems
Keywords Industrial Internet of Things, Efficient Two-Dimensional Filter, Multimedia data,
Cuckoo filter, Memory efficiency , Quotient filter, Bloom filter, False positive rate, Chord
architecture

INTRODUCTION
The industrial Internet of Things (IoT) consists of embedded smart devices that can collect
and exchange data using digital technologies growing and expanding rapidly. As a result,
IoT includes a wide range of different technologies such as Radio Frequency Identification
(RFID) tags, communication protocols, data mining, and machine learning that enable
users to query data. Objects have unique identifiers with unlike numeric or alphanumeric
strings that can be used for various applications. Therefore, it is expected that many devices
with network connectivity will be able to connect to Wireless Sensor Network (WSN),
Wireless Local Area Network (WLAN), Mobile Ad Hoc Network (MANET), mobile

How to cite this article Goudarzi P, Rahmani AM. 2021. An efficient filter with low memory usage for multimedia data of industrial In-
ternet of Things. PeerJ Comput. Sci. 7:e589 http://doi.org/10.7717/peerj-cs.589

https://peerj.com/computer-science
mailto:Rahmani@srbiau.ac.ir
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.589
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.589

networks, and the Internet. The IoT makes it possible to develop programs in various
fields, such as healthcare (Silvano & Marcelino, 2020; Din et al., 2019; Garg et al., 2019).

Wireless Multimedia Sensor Networks (WMSNs) can receive multimedia data from
the environment using low-cost hardware, such as Complementary Metal-Oxide-
Semiconductor (CMOS) cameras. WMSNs can retrieve higher sensor information levels or
richer information types, such as audio, video, and image. Thus they provide more accurate
information about the environment. Sensors usually have directional sensing models in
Wireless Directional Sensor Networks (WDSNs). Each sensor in a WDSN, including a
camera sensor, radio sensor, ultrasound sensor, or radar sensor, has distinctive features.
However, WDSNs have unique features, such as limited sensing angles, directional sensing,
communication amplitude, and line-of-sight communication. Because of these features,
the existing coverage control methods and theories of traditional omni-directional WSNs
cannot be used for WDSNs (Akyildiz, Melodia & Chowdhury, 2007; Guvensan & Gokhan
Yavuz, 2011).

If all intelligent objects (objects that use sensors or processors to communicate with users
and computer systems) are collected in a centralized system, the system will not be scalable.
As a result, one of the possible solutions for collecting, filtering, and integrating data is to
use distributed systems. One of the most popular data structures in distributed systems
is a Bloom Filter (BF), which is widely used in these systems. Reducing the management
cost of huge multimedia data, security challenges, and resistance to various attacks have
justified using BFs in heterogeneous multimedia data. Several types of BFs, such as
Quotient Filter (QF), have an improved performance using a single hash function. Unlike
a BF, the Cuckoo Filter (CF) can detect, insert, and display elements without increasing
storage. Consequently, these excellent features justify the use of CFs in various applications
(Ramezanian et al., 2020; Singh et al., 2018; Singh et al., 2020; Xiong et al., 2018).

In this article, a new type of Approximated Membership Query (AMQ) data structure
for one of the industrial IoT applications called Efficient Two-Dimensional Filter (ETDF)
is introduced. The proposed filter is a possible data structure that examines an element’s
membership in a set by efficiently using the available space. A query for an element
determines whether the element is not in the set or more likely is in the set. Deletion and
fast query operations are possible in the proposed filter with a low false-positive rate. The
proposed filter uses a hash function and is integrated into a CF to respond more quickly to
requests. In general, the goals of the proposed filter are: easier access to elements with low
false positives compared to BF, QF, and Fast Two- Dimensional Filter (FTDF), as well as
lower memory usage, faster response to requests, and the capability of deletion.

The innovations of the present study are as follows:

• Proposing a hybrid efficient two-dimensional filter as the combination of FTDF and CF
• Adding a new column called value to the proposed filter structure to insert, query, and
multimedia elements faster
• The higher performance of the proposed filter than the other filters due to the use of
multimedia data

Goudarzi and Rahmani (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.589 2/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.589

• Faster update of multimedia databases because the proposed filter supports
deletion

The rest of the article consists of the following sections. In ‘Related Works’, related
studies are reviewed. The proposed method is described in ‘The Proposed Filter’. The
simulation results and evaluations are expressed in ‘Evaluation’, and finally, ‘Conclusion’
concludes the paper.

RELATED WORKS
In this section, the published related works are reviewed. Furthermore, each group is
introduced in detail.

Using filters in IoT applications
Using a BF, the authors (Jeong et al., 2019) proposed a secure storage service for IoT
environments based on a provable data possession model. Their proposed scheme is not
based on a public key, such as Rivest-Shamir-Adleman (RSA), bilinear mapping, and
homomorphism. The advantage of their method is processing a large amount of data,
which saves time.

The authors (Hao et al., 2019) proposed a control scheme with an access policy to fully
attribute hidden for cloud-based IoT. They also designed a fuzzy attribute positioning
mechanism based on the Bloom garbled filter. Their mechanism helps the authorized
recipients effectively determine attributes, successfully decrypt an encrypted text, and
do not get help from unauthorized recipients who can access information with valuable
features in the encrypted text.

The authors (Cui et al., 2020) proposed a novel participatory filtering algorithm based
on Time Correlation Coefficient (TCC) and K-means with Cuckoo Search (CSK-means),
called (TCCF). TCCF can gather similar users (using the k-means clustering method) and
design a time factor to resolve interest drift over time for faster and more accurate advice.
Moreover, these authors proposed an effective and personalizedmodel based on Preference
Pattern (PTCCF) to improve the quality of TCCF.

The authors (Goudarzi, Tabatabaee Malazi & Ahmadi, 2016) presented the Khor-
ramshahr architecture using IoT technology for inventory management based on Chord
architecture. The main advantages of this study are scalability, fault tolerance, privacy, and
improvement of the lookup process using BF and QF.

Data structure of filters
In this subsection, the data structure is examined in the BF, QF, CF, and FTDF. The data
structures of BF, QF, CF, and FTDF are basic algorithms (data structures). In addition,
many papers have used these data structures. Consequently, some parameters of these four
data structures are examined and compared with the proposed filter in Section Results.

Goudarzi and Rahmani (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.589 3/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.589

The Bloom filter
Bloom filter was proposed by Bloom (1970) as a random data structure to investigate the
presence of an element in a set. A BF can perform two basic insertion and query operations
using an array of m-bit positions. In the insertion operation, the elements that have to be
added are given to hash functions, K hash functions then determine the positions, and
finally, the value of the positions are set to 1. During the query operation, the desired
element in a set is specified using the hash functions, which give K array positions; if all
bits at the positions are 1, the element may be in the set. The accuracy of BF depends on its
size (m), the number of elements in the filter (n), and the number of hash functions (K)
(Marandi et al., 2017; Jiang, Duan &Wang, 2018). Depending on the hash functions, BF
allows false positives (i.e., an element is reported as a BF member, but it is not in it) while
it uses storage space. The false-positive probability (Pf) is a function of m, n, and k, which
is calculated as follows:

Pf = (1−e(−k(
n
m)))K (1)

The quotient filter
The QF is a hash table that stores the b-bit fingerprint of the elements. This filter utilizes
the quotient mechanism proposed in Knuth (1973). In this mechanism, each element’s
fingerprint is divided into two parts: the q most significant bits and the r least significant
bits. The quotient and remainder are extracted from q and r, respectively. The QF uses a
quotient as a bucket index for storing the remainder. Mapping an element to a slot may
lead to a collision when two different fingerprints are mapped to the same quotient (Geil,
Farach-Colton & Owens, 2018).

The cuckoo filter
The CF can perform the usual data structure operations (insertion and query) and deletion,
resizing andmerging. An empty CF is a set of buckets. Each bucket can store K fingerprints.
A typical CF uses two hash functions to generate keys and two buckets. If the CF fails to
insert the key in the first bucket (when it already contains k keys), it will try to insert it
in the second bucket. If the second bucket is also occupied, then the CF uses a particular
function called a displacement operation to deal with such a situation (Gupta & Breitinger,
2015).

The fast two-dimensional filter
The FTDF includes a two-dimensional array that uses a single hash function and has a low
false-positive rate. This filter is composed of an m*n matrix. All matrix bits are initially set
to zero. This filter is similar to the QF in (Knuth, 1973), where a fingerprint is divided into
two parts, i.e., the qmost significant bits and the r least significant bits. This filter maps each
element only to one position inside thematrix (Shubbar & Ahmadi, 2019). In order to insert
an element in this filter, the element is given to the hash function to obtain the fingerprint.
After applying the quotient technique to the fingerprint, the filter specifies the insertion
position by considering the q and r bits; finally, the element is added to the specified position.

Goudarzi and Rahmani (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.589 4/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.589

Table 1 Parameters of the proposed filter.

Parameters Description

S = {xi}
i={1, 2, . . . , m}
k = {0, 1, . . . , n}
n
j

Indicate the array of input elements
Indicate the number of elements
Indicate the number of column in the CF
Indicate columns in the CF
Indicate the cell number of value column in the proposed
filter

q Indicate rows in the proposed filter
r Indicate columns in the proposed filter
v Indicate Value column in the proposed filter
f Indicate fingerprint
p The number of fingerprint bits
h1 Indicate hash function 1 in the CF
h2 Indicate hash function 2 in the CF
e Indicate empty slots in bucket array
A(q,r) Indicate a two-dimensional array
bucket [i] Indicate cells in bucket array in the CF

In order to query for an element, it is fed to the hash function to get the fingerprint. Next,
the quotient technique is applied to the fingerprint to obtain the q and r bits as previously
mentioned.

THE PROPOSED FILTER
In this section, the problem statement and the proposed filter data structure are examined.

Problem statement
The set S = {x1, x2. . . xn} includes n elements that are inserted in the two-dimensional
array A (m)∗(n+1). In the proposed filter, regardless of the values of n and m (positions
for storing), the fingerprint technique is used for all elements (x) of S to obtain q and r.
Therefore, given the specified q and r, every a is inserted into the position (q, r) of the array
A. If the desired position is already occupied, a CF is used to obtain a new position for
inserting the element. In order to check whether x exists in S or not, the position specified
in A is investigated considering q and r. If the answer is No, then the positions where the
element may be located are examined using the CF. If they do not contain the desired
element, then it is not in the set. Otherwise, the element may be in the set. Due to using
a combination of quotient and cuckoo filter techniques, it is very improbable to have the
same fingerprints for two different elements. As a result, the false positives of the proposed
filter is much lower than those in other filters. Table 1 presents the parameters used in the
proposed filter.

Goudarzi and Rahmani (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.589 5/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.589

 Yes Yes

 No No

 No
 Yes

 Yes No Yes

 No

 No

 Yes
 No

 Yes No

 Yes

Start

Enter the input element

) if = fingerprint (x

0 (value column) ← jv

Apply quotienting technique on f to

get q, r

) == 0j, viIf (q

(row) quotient(q); ← iq

(column) remainder(r); ← jr

 1 ←) i, vi(q

) == 0j, riIf (q

1 ←) j,ri A(q

Find the desired cell

using the CF

If the insertion

operation?

If the query

operation?

) == 1j, riIf (q

) == 1j, riIf (q

0 ←) j, ri(q

End

Search all the cells in

)j, ri(q row

All cells

are zero?
) == 0j, vi(q

If the deletion

operation?

Figure 1 The flow chart of proposed filter.
Full-size DOI: 10.7717/peerjcs.589/fig-1

Proposed filter structure
In this subsection, the data structure of the proposed filter is analyzed. Then, we explain
how to insert, query, and delete.

The proposed filter is formed as an A(m)∗(n+1) matrix. One of the structural differences
between the proposed filter and the FTDF proposed in (Shubbar & Ahmadi, 2019) is an
additional column in the proposed filter. The columns in this filter are labeled from zero
up to n. The zero column, i.e., the value column, contains zero or one value; zero (one)

Goudarzi and Rahmani (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.589 6/20

https://peerj.com
https://doi.org/10.7717/peerjcs.589/fig-1
http://dx.doi.org/10.7717/peerj-cs.589

indicates that the row is empty (occupied). Moreover, the proposed filter is combined with
the CF.

All matrix bits are initially zero. The multimedia data that are meant to be included
in the proposed filter data structure are first introduced to the hash function defined
in the proposed filter. We use the Murmur hash function due to its high speed and
easy implementation. The output of the hash function is a fingerprint, which is used to
determine the position of an element in the proposed filter matrix. To specify the exact
position for inserting the element using the fingerprint, it is necessary to determine the
row and column in the two-dimensional structure of the proposed filter. For this reason,
the input fingerprint of an element x, fx, is partitioned into r least-significant bits, fx r

=

fx mod 2 r(remainder), and q (=p (p-bit fingerprint) – r) most-significant bits, f ϕx bfx/2rc
(quotient).

f rx = fx mod 2r (remainder) (2)

q= (p
(
p−bit fingerprint

)
− r) (3)

Quotient = f ψx bfx/2c (4)

If the position in the array is empty, the desired element is inserted into that position.
Otherwise, for uniform distribution in the array by key compression, the desired element
is dynamically inserted into the first appropriate position that is determined by the hash
functions of CF. We use Murmur and CRC hash functions as CF hash functions, which
have special features of easy implementation and high speed. The proposed filter avoids
loading duplicate elements due to its support for removing extra cells, which is an advantage
over the CF. Moreover, in the proposed filter structure, a column called value is used to
determine whether the rows in the proposed filter are full or empty. If a cell in the value
column contains zero, the proposed filter deletes extra rows; this is an advantage over CF
and reduces memory usage. Figure 1 indicates the flowchart of the proposed filter.

After inserting an element into this filter, the element is given to the hash function to
obtain a fingerprint. Then, the quotient technique is applied to the fingerprint to obtain q
and r; using q and r bits, the position of insertion to the filter is determined. The candidate
bucket is calculated based on the x-fingerprint. If any of the fingerprints in these cells
match the element’s fingerprint, the filter returns a response. Then, the corresponding
value in the value column is turned into one, and the element will be inserted into position
Aq*r . The desired element is dynamically inserted into the first appropriate position that
is determined by the hash functions of the CF. Algorithm 1 shows the element insertion in
the proposed filter.

Goudarzi and Rahmani (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.589 7/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.589

Algorithm 1: Insert in Proposed Filter

1. // A is the matrix name;
2. Input xi : element i;
3. Output: insert xi in A
4. begin
5. fingerprint = hash function (xi);
6. f = fingerprint(xi);
7. vj← 0
8. Apply quotienting technique on f to get q, r
The number of fingerprint bits equal to p, f x r= f xmod 2 r (remainder), and it is q= (p (p-bit fingerprint) –r)
most-significant bits, f x Q

bfx/2rc (quotient), Number of bits in the remainder (r <p) equals r, Number of quo-
tient equals: q= f –r;
9. qi← quotient(q);
10. rj← remainder(r);
11. if (qi, vi) = 0 then
12. (qi, vi) = 1;
13. A(qi,rj)← 1;
14. return done
15. h1 = hash (xi)
16. h2 = h1 R© hash (f)
17. if bucket [h1] or bucket [h2] has an empty slot (empty slots in an array are called entry, e, which are in the
array bucket [h1] or bucket [h2] for elements to be inserted) then
18. add f to that bucket;
19. return done
20. i = randomly pick h1 or h2;
21. k← 0;
22. for k=0; k<n; k++ do
23. randomly select an entry e from bucket (i);
24. swap f and the fingerprint stored in entry e;
25. i = i R© hash (f);
26. if bucket [i] has an empty entry then
27. add f to bucket [i];
28. return done;
29. return failure

The element is fed to the hash function to capture the fingerprint, which can be further
used to query the element. Then, the quotient technique is applied to the fingerprint to
obtain the q and r bits, as previouslymentioned. Given the positionAq*r , the corresponding
value in the value column is checked. If this value is zero, the element does not exist.
Otherwise, it is likely in the set. According to the CF, the positions with the possibility
of having the desired element are searched. If there is a position with a value of zero, the
element is not in the set. The query for the elements is shown in Algorithm 2.

Goudarzi and Rahmani (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.589 8/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.589

Algorithm 2: Query in Proposed Filter

1. Input: xi : element i;
2. Output: whether there is xi element in A or not
3. begin
4. fingerprint = hash function (xi);
5. f = fingerprint(xi);
6. vj← 0;
7. Apply quotienting technique on f to get q, r;
The number of fingerprint bits equal to p, f x r= f xmod 2 r(remainder), and it is q= (p (p-bit fingerprint) –r)
most-significant bits, f x Q

bfx/2rc (quotient), Number of bits in the remainder (r <p) equals r, Number of quo-
tient equals: q = f –r;
8. qi← quotient(q);
9. rj← remainder(r);
10. if (qi, vj)== 1 then
11. if A(qi ; rj) == 1 then
12. return True;
13. else
14. h1= hash (xi);
15. h2= h1 R© hash (f);
16. if bucket [h1] or bucket [h2] has f then
17. return True;
18. return False;
19. return False;

The proposed filter performs the deletion operation in the following steps: the quotient
technique determines the row and column numbers, and the fingerprint is then retrieved.
Next, the value at the position is changed from one to zero. If the content at that position
is already zero, the positions with the possibility of having the desired element are searched
using the CF. Next, the desired row is searched, and if all positions in that row are zero, the
value corresponding to the row in the value column is changed to zero. Element deletion
is shown in the following algorithm.

Algorithm 3: Deletion operation

1. Input: xi: element i;
2. Output: Remove xi from A
3. begin
4. fingerprint = hash function (xi);
5. f = fingerprint(xi);
6. vj← 0;
7. Apply quotienting technique on f to get q, r
The number of fingerprint bits equal to p, f x r= f xmod 2 r(remainder), and it is q= (p (p-bit fingerprint) –r)
most-significant bits, f x Q

bfx/2rc (quotient), Number of bits in the remainder (r <p) equals r, Number of quo-
tient equals: q = f –r;
8. qi← quotient(q);
9. rj← remainder(r);

Goudarzi and Rahmani (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.589 9/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.589

10. if A(qi , rj) = 1 then
11. A(qi; rj)← 0;
12. else
13. h1= hash (xi);
14. h2= h1 R© hash (f);
15. if bucket [h1] or bucket [h2] has f then
16. remove a copy of f from this bucket;
17. return True;
18. return False;
19. k← 0;
20. While k <= n-1 do
21. if A(qi, k)== 0 then
22. k←k+1;
23. else
24. break;
25. (qi, vj)←0;

Figures 2A and 2B show, respectively, the insertion and deletion operations of elements
in the proposed filter. In Fig. 2A, the location of inserting a new element is specified using
q and r values. However, as shown in this figure, the location specified for inserting the
new element is already occupied. Consequently, the new element is inserted into the first
empty location specified by the CF (two hash functions defined in the CF). In Fig. 2B, the
location of the element to be deleted is specified by q and r. However, as shown in this
figure, the specified location is empty. Therefore, using the CF, other locations that may
have stored the desired element need to be considered. Finally, the location of the desired
element is found and its value is changed from one to zero.

System description
The proposed filter is implemented on the architecture presented in (Goudarzi, Tabatabaee
Malazi & Ahmadi, 2016). The pieces of information read by IoT sensors and cameras are
sent to the computers in the warehouse and stored in the database (DHT). A user can
search for goods information only through the DS in the application layer. Then, the
searched information is converted into an ID in the ONS module in the application layer.
The ONS in the application layer identifies the warehouses that can hold the searched
goods and sends a request to the ONS in the relevant warehouse. Then, the DHT searches
the relevant warehouse for product information, and by simultaneously using the physical
layer, it traces the desired product in the warehouse. If the goods have been displaced or
taken out of stock, the DHT in that warehouse updates its information and notifies the
ONS in the warehouse. Finally, the search result is presented to the user. Khorramshahr
architecture consists of a physical layer, middleware layer, and application layer.

(A) Physical layer: In the physical layer of the architecture presented in (Goudarzi,
Tabatabaee Malazi & Ahmadi, 2016), only tags and readers are used to control the
products/goods. There are several goods such as food and groceries that need to be

Goudarzi and Rahmani (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.589 10/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.589

 A (q, r)

 h1(a) h2(a) r

 Value 0 1 … n-1

 q

(A)

 A (q,r)

 h1(a) h2(a) r

 Value 0 1 … n-1

 q

 (B)

0

 1

 2
.
.
.

m-1

1 1 1 0 0 1 0

1 1 1 1 1 0 1

1 0 1 0 1 1 0

1 1 0 0 0 1 0

1 0 1 0 1 0 1

1 0 0 1 1 0 0

0 0 0 0 0 0 0

1 1 0 1 0 0 1

0

 1

 2
.
.
.

m-1

1 1 1 0 0 1 0

1 1 1 1 1 0 1

1 0 1 0 1 1 0

1 1 0 0 0 0 0

1 0 1 0 1 0 1

1 0 0 1 1 0 0

0 0 0 0 0 0 0

1 1 0 1 0 0 1

Figure 2 Add and remove an element in the proposed filter. (A) add an element, (B) remove an ele-
ment.

Full-size DOI: 10.7717/peerjcs.589/fig-2

constantly checked. As a result, cameras and WSDN sensors are needed to track these
goods in the proposed architecture. Consequently, the physical layer of the proposed
architecture includes RFID tags, Readers, WSDN sensors, and cameras.

(B) Middleware layer: There are two components (the middleware and the Distributed
HashTable (DHT) to store the goods information) in themiddleware layer. Themiddleware
is responsible for processing the information from readers and cameras. This means that
it collects, filters, and prioritizes the incoming event streams from physical layer and
generates the report by filtering, aggregating, and prioritizing the results and sending them
to the DHT component. The second component of this layer is the DHT, which has the

Goudarzi and Rahmani (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.589 11/20

https://peerj.com
https://doi.org/10.7717/peerjcs.589/fig-2
http://dx.doi.org/10.7717/peerj-cs.589

Figure 3 Proposed architecture inGoudarzi, Malazi Tabatabaee & Ahmadi (2016).
Full-size DOI: 10.7717/peerjcs.589/fig-3

responsibility of organizing the goods types and the goods information from numerous
warehouses.

(C) Application layer: There are two components (Object Name Service (ONS) and
Discovery Service (DS)) in the application layer. The ONS is responsible for looking up the
goods types from a Chord-based DHT. In the proposed design, the ONS is the service used
to provide a list of warehouses in which a certain goods type can be stored. Moreover, if any
warehouse needs information about goods in other warehouses, it should send a request
to the ONS in the warehouse and then that request is sent to the ONS of the destination
warehouse. In addition, the DS is defined in the application layer to search for goods inside
and outside the port and to send requests from other (outside) warehouses.

Two databases are defined in this architecture (DHT database in the middleware layer
and ONS database in the application layer). Consequently, the authors use Double-Chord
approach. Figure 3 shows the architecture proposed in (Goudarzi, Tabatabaee Malazi &
Ahmadi, 2016).

Each of the warehouses is considered as a node. In each warehouse there is a computer
that stores the data of the goods. In fact, the warehouses are considered as chord nodes.
Getting data at these nodes engages at least two nodes for IoT operations. Goods data
are collected using cameras and readers and sent to the computer in the warehouse. The
displacement of goods (transfer to another warehouse) is reported to the computer in the
warehouse. After updating its database, the DHT node delivers the updated information
to the ONS (available in the same warehouse). The ONS provides updated information
to other warehouses, so that the information of all goods to be updated at the port level.
The ONS in the application layer contains information about the type of goods and the
warehouses where they are stored. However, the DHT in themiddleware layer only contains
the product information (i.e., name, arrival date, expiration date, etc.). In general, the ONS
in the application layer contains more details than the DHT in the middleware layer.

Goudarzi and Rahmani (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.589 12/20

https://peerj.com
https://doi.org/10.7717/peerjcs.589/fig-3
http://dx.doi.org/10.7717/peerj-cs.589

According to theKhorramshahr architecture, an identification code (label/ID) is attached
to each product. This ID has three sections. The first section is the warehouse prefix to
indicate the warehouse ID (W) in which the product is stored. The second section is the
product type (T). The product type is a unique ID in all the import/export warehouses and
is based on the standard defined by the country. To access the product record in the node
table, a 160 bits key is used. The achieved result for the assigned ID is depicted in Fig. 4.

EVALUATION
In this section, tools, evaluation scenarios, and simulation settings are introduced, and the
measured parameters are then analyzed.

Simulation tools and evaluation method
We used the 4.1 release of the OMNet++ platform. This platform was enhanced by INet
Version 20101019 and OverSim 20101103.

The main purpose of this study is to evaluate the proposed filter, and analyze its
performance and scalability by comparing with other filters, based on the data collected
from one of the largest ports in Iran (Khorramshahr port). To analyze the scalability of the
proposed filter, we increased the number of requests from 10,000 to 100,000. The number
of terminals was changed from 100 to 500. We set the simulation time, Test TTL, and
Ethernet channel delay to 18,000 s, 300 s, and 100 Mbps, respectively.

Performance comparison
We compared the efficiency of the proposed filter with the success rate criteria for different
types of filters. The number of terminals was set to 500. Figure 5 evaluate this metric. In
Fig. 5, theX- and Y -axis represent the number of requests and the success rate, respectively.
The success rate is equal to the number of requests with correct responses divided by the
total number of requests multiplied by 100. The graph shows the responses to 50,000
requests, which are 100% and 98% for the proposed filter and the FTDF, respectively; that
is, the proposed filter is faster in responding to the requests. As the number of requests
increases, the performance gap becomes significantly large; for example, the corresponding
values become 93% and 79% for 100,000 requests. When the number of requests increases,
the requests move slower among the nodes, and they arrive at the destination node with
some delay. As a result, the decrease in the success rate for BF, QF, CF, and FTDF is very
noticeable. However, the proposed filter has a higher success rate compared to other filters,
which indicates the more correct response to requests. For large amounts of data, the
deletion speed of extra positions increases, so the search operation is slowed down.
From success rate, it can be concluded that the proposed filter has a higher efficiency
compared to other filters in responding to requests correctly in IIoT applications such as
warehouse management in ports. The basic network requirements of ports, which can be
met by the proposed filter, include fast response to requests, fast access to goods data and
sufficient goods data storage space. However, for large amounts of data, the deletion speed
of extra positions increases, so the search operation is slowed down.

Table 2 compares the access time of the proposed filter with that of other filters.
According to the success rate and latency parameters, the efficiency of the proposed

Goudarzi and Rahmani (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.589 13/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.589

Product Serial Number(16bit) Product Type(16bit) Warehouse Prefix (16bit)

(A)

Assigned ID 48 bit

Product ID (up to 111 bit)

(B)

Warehouse Prefix (16bit) Product Type(16bit) Product Serial Number(16bit)

Value column+ FTDF+ CF Value column+ FTDF+ CF Value column+ FTDF+ CF

Proposed filter of product ID

(C)

Figure 4 Building the proposed filter. (A) ID format for each product in the port, (B) the format of
product ID, (C) the proposed filter.

Full-size DOI: 10.7717/peerjcs.589/fig-4

Figure 5 Success ratio (%) with different requests.
Full-size DOI: 10.7717/peerjcs.589/fig-5

filter has increased by 15%, 27%, 35%, and 42% compared to FTDF, CF, QF, and BF,
respectively, so the proposed filter is more efficient than other filters.

False positive rate
BF, QF, CF, FTDF, and the proposed filter were evaluated concerning the scalability of
the number of requests and the number of terminals. The false-positive rate was chosen

Goudarzi and Rahmani (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.589 14/20

https://peerj.com
https://doi.org/10.7717/peerjcs.589/fig-4
https://doi.org/10.7717/peerjcs.589/fig-5
http://dx.doi.org/10.7717/peerj-cs.589

Table 2 Comparing the access time of various filters.

Access time Comparison FTDF CF QF BF

Proposed Filter 15% 27% 35% 42%

Figure 6 False positive rate with different requests.
Full-size DOI: 10.7717/peerjcs.589/fig-6

as a metric to compare these filters used in Khorramshahr architecture to analyze the pros
and cons of using these filters. In this scenario, the number of terminals was set to 500,
while the number of received requests ranged from 10,000 to 100,000. Figure 6 shows the
simulation results. In this figure, the horizontal and vertical axes show, respectively, the
number of requests and the false-positive rate in percent. Due to similar structures of the
proposed filter and FTDF, the false positive rates of these two filters are close to each other
and almost the same (with a difference of less than 0.02). The correct response to requests
in various IIoT applications, especially in ports, is very important. Due to its low false
positive rate, the proposed filter can better meet the needs of port than other filters.

Memory usage
Figure 7 shows thememory usage. TheX -axis represents the number of terminals from 100
to 500, and the Y -axis shows thememory requirement. The double Chord for the proposed
filter uses less memory than other filters. The value column defined in the proposed filter
causes the rows that do not contain product information to be removed from the memory,
reducing the memory size. The double Chord for the FTDF requires less memory than
the other three filters. When the number of nodes increases, more requests are exchanged

Goudarzi and Rahmani (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.589 15/20

https://peerj.com
https://doi.org/10.7717/peerjcs.589/fig-6
http://dx.doi.org/10.7717/peerj-cs.589

Figure 7 Memory consumption with different number of terminals.
Full-size DOI: 10.7717/peerjcs.589/fig-7

among nodes, the amount of memory usage increases, and the graph exhibits an ascending
trend. The proposed filter improves memory usage compared to other filters. Due to the
large amount of data available in IIoT applications, the memory level parameter is a very
critical factor in these systems. The low memory usage of the proposed filter compared to
other filters indicates the efficiency of the proposed filter in warehouse management (e.g.,
in ports).

Insertion time
Figure 8 shows the changes in insertion times of the filters. In this scenario, the number of
terminals is set to 500 and the number of elements starts from 1 ∗ 106 and increases to 8
∗ 106. Insertion into the proposed filter is faster than other filters. The proposed filter has
less displacement to find the right position for insertion, so it requires less time compared
to other filters. The QF has more overhead for insertion than the BF, which increases the
insertion time of the QF.

Deletion time
Figure 9 shows the change in the deletion time of the filters. In this figure, the X- and Y -axis
represent the number of elements and the deletion time, respectively. In this scenario, the
number of terminals is set to 500, and the number of elements ranges from 1 ∗ 106 to
8 ∗ 106. Deletion in the proposed filter is done in a shorter time than other filters. The
main reason for the shorter deletion time in the proposed filter is its hybrid structure.
This structure uses q and r to search the cell of the desired element, and if it is empty, it
will search the cells that may hold that item using the CF and delete the desired element.

Goudarzi and Rahmani (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.589 16/20

https://peerj.com
https://doi.org/10.7717/peerjcs.589/fig-7
http://dx.doi.org/10.7717/peerj-cs.589

Figure 8 Insertion time with different elements.
Full-size DOI: 10.7717/peerjcs.589/fig-8

However, for deleting elements in the FTDF, only those cells are searched that are specified
according to q and r. This will increase the deletion time and may even lead to failure in
finding the element to delete.
BF lacks scalability for transport protocols, QF is highly inefficient in applications with
non-flow data, FTDF Lacks scalability in multimedia applications, and CF has a low
speed for multimedia applications due to reduced occupancy and linear reduction of false
positives.

In general, the proposed filter supports deletion due to the use of a two-dimensional
structure and the combination of FTDF and CF structures. Moreover, the proposed filter
can insert and search faster a large number of requests compared to BF, CF, and QF. As
a result, it can respond to more requests with lower false positive rates than other filters.
In addition, the proposed filter can remove extra rows due to the use of an extra column
compared to FTDF, and this improves memory consumption.

CONCLUSION
We designed a new filter for IIoT applications, which reduces the amount access time. This
new filter supports insert and delete operations with low false-positive rates and reduced
memory usage. The test results showed that this filter performs more efficiently than other
filters in managing warehouses data in ports. We also concluded that this filter can be
used in applications such as data management in ports. As a result of this study, the new
filter with appropriate speed and structure can meet network requirements in ports. The
proposed filter can meet the basic network requirements of ports including fast response to

Goudarzi and Rahmani (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.589 17/20

https://peerj.com
https://doi.org/10.7717/peerjcs.589/fig-8
http://dx.doi.org/10.7717/peerj-cs.589

Figure 9 Deletion time with different elements.
Full-size DOI: 10.7717/peerjcs.589/fig-9

requests, fast access to data, correct response to requests, and sufficient data storage space.
However, for large amounts of data, the deletion speed of extra positions increases, so the
search operation is slowed down.

Limitations: for a large number of requests, the query takes a longer time, so the response
time increases, some requests are expired, and the overall performance of the proposed
filter is adversely affected.

Future works: It is possible to study a new structure in which the proposed filter
is combined with an artificial intelligence algorithm that can significantly increase the
scalability and efficiency of the system in the case of a large amount of data.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Parisa Goudarzi and Amir Masoud Rahmani conceived and designed the experiments,
performed the experiments, analyzed the data, performed the computation work,

Goudarzi and Rahmani (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.589 18/20

https://peerj.com
https://doi.org/10.7717/peerjcs.589/fig-9
http://dx.doi.org/10.7717/peerj-cs.589

prepared figures and/or tables, authored or reviewed drafts of the paper, and approved
the final draft.

Data Availability
The following information was supplied regarding data availability:

The raw measurements, data, and code are available as a Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.589#supplemental-information.

REFERENCES
Akyildiz IF, Melodia T, Chowdhury KR. 2007. A survey on wireless multimedia sensor

networks. Computer Networks 51(4):921–960 DOI 10.1016/j.comnet.2006.10.002.
Bloom BH. 1970. Space/time trade-offs in hash coding with allowable errors. Communi-

cations of the ACM 13(7):422–426 DOI 10.1145/362686.362692.
Cui Z, Xu X, Fei XUE, Cai X, Cao Y, ZhangW, Chen J. 2020. Personalized recommenda-

tion system based on collaborative filtering for IoT scenarios. IEEE Transactions on
Services Computing 13(4):685–695 DOI 10.1109/TSC.2020.2964552.

Din IU, Almogren A, Guizani M, Zuair M. 2019. A decade of Internet of Things:
analysis in the light of healthcare applications. IEEE Access 7:89967–89979
DOI 10.1109/ACCESS.2019.2927082.

Garg S, Singh A, Kaur K, Aujla GS, Batra S, Kumar N, Obaidat MS. 2019. Edge
computing-based security framework for big data analytics in VANETs. IEEE
Network 33(2):72–81 DOI 10.1109/MNET.2019.1800239.

Geil A, Farach-ColtonM, Owens JD. 2018. Quotient filters: approximate membership
queries on the GPU. In: 2018 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). Vancouver: IEEE, 451–462.

Goudarzi P, Tabatabaee Malazi H, Ahmadi M. 2016. Khorramshahr: a scalable peer to
peer architecture for port warehouse management system. Journal of Network and
Computer Applications 76:49–59 DOI 10.1016/j.jnca.2016.09.015.

Gupta V, Breitinger F. 2015. How cuckoo filter can improve existing approximate
matching techniques. In: Joshua IJ, Frank B, eds. 7th International Conference,
ICDF2C 2015, Seoul, South Korea, October 6-8, 2015. Revised Selected Papers. Cham:
Springer, 39–52.

GuvensanMA, Gokhan Yavuz A. 2011. On coverage issues in directional sensor net-
works: a survey. Ad Hoc Networks 9(7):1238–1255 DOI 10.1016/j.adhoc.2011.02.003.

Hao J, Huang C, Ni J, Rong H, XianM, Sherman Shen X. 2019. Fine-grained data
access control with attribute-hiding policy for cloud-based IoT. Computer Networks
153:1–10 DOI 10.1016/j.comnet.2019.02.008.

Jeong J, Joo JWJ, Lee Y, Son Y. 2019. Secure cloud storage service using bloom filters for
the internet of things. IEEE Access 7:60897–60907
DOI 10.1109/ACCESS.2019.2915576.

Goudarzi and Rahmani (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.589 19/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.589#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.589#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.589#supplemental-information
http://dx.doi.org/10.1016/j.comnet.2006.10.002
http://dx.doi.org/10.1145/362686.362692
http://dx.doi.org/10.1109/TSC.2020.2964552
http://dx.doi.org/10.1109/ACCESS.2019.2927082
http://dx.doi.org/10.1109/MNET.2019.1800239
http://dx.doi.org/10.1016/j.jnca.2016.09.015
http://dx.doi.org/10.1016/j.adhoc.2011.02.003
http://dx.doi.org/10.1016/j.comnet.2019.02.008
http://dx.doi.org/10.1109/ACCESS.2019.2915576
http://dx.doi.org/10.7717/peerj-cs.589

Jiang S, DuanM,Wang L. 2018. Toward privacy-preserving symptoms matching in
SDN-based mobile healthcare social networks. IEEE Internet of Things Journal
5(3):1379–1388 DOI 10.1109/JIOT.2018.2799209.

Knuth DE. 1973. The art of computer programming: sorting and searching, volume 3.
Pearson Education, Boston: Addison Wesley.

Marandi A, Braun T, Salamatian K, Thomos N. 2017. BFR: a bloom filter-based routing
approach for information-centric networks. In: 2017 IFIP Networking Conference
(IFIP Networking) and Workshops. Stockholm: IEEE, 1–9.

Ramezanian S, Meskanen T, NaderpourM, Junnila V, Niemi V. 2020. Private member-
ship test protocol with low communication complexity. Digital Communications and
Networks 6(3):321–332 DOI 10.1016/j.dcan.2019.05.002.

Shubbar R, Ahmadi M. 2019. Efficient name matching based on a fast two-dimensional
filter in named data networking. International Journal of Parallel, Emergent and
Distributed Systems 34(2):203–221 DOI 10.1080/17445760.2017.1363202.

SilvanoWF, Marcelino R. 2020. Iota Tangle: A cryptocurrency to communicate
Internet-of-Things data. Future Generation Computer Systems 112:307–319
DOI 10.1016/j.future.2020.05.047.

Singh A, Garg S, Batra S, Kumar N, Rodrigues JJPC. 2018. Bloom filter based opti-
mization scheme for massive data handling in IoT environment. Future Generation
Computer Systems 82:440–449 DOI 10.1016/j.future.2017.12.016.

Singh A, Garg S, Kaur R, Batra S, Kumar N, Zomaya AY. 2020. Probabilistic data
structures for big data analytics: A comprehensive review. Knowledge-Based Systems
188:104987 DOI 10.1016/j.knosys.2019.104987.

Xiong J, Zhang Y, Li X, LinM, Yao Z, Liu G. 2018. RSE-PoW: A role symmetric
encryption PoW scheme with authorized deduplication for multimedia data.Mobile
Networks and Applications 23(3):650–663 DOI 10.1007/s11036-017-0975-x.

Goudarzi and Rahmani (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.589 20/20

https://peerj.com
http://dx.doi.org/10.1109/JIOT.2018.2799209
http://dx.doi.org/10.1016/j.dcan.2019.05.002
http://dx.doi.org/10.1080/17445760.2017.1363202
http://dx.doi.org/10.1016/j.future.2020.05.047
http://dx.doi.org/10.1016/j.future.2017.12.016
http://dx.doi.org/10.1016/j.knosys.2019.104987
http://dx.doi.org/10.1007/s11036-017-0975-x
http://dx.doi.org/10.7717/peerj-cs.589

