
FogFrame: a framework for IoT
application execution in the fog
Olena Skarlat and Stefan Schulte

Distributed Systems Group, Technische Universität Wien, Vienna, Austria

ABSTRACT
Recently, a multitude of conceptual architectures and theoretical foundations for
fog computing have been proposed. Despite this, there is still a lack of concrete
frameworks to setup real-world fog landscapes. In this work, we design and
implement the fog computing framework FogFrame—a system able to manage and
monitor edge and cloud resources in fog landscapes and to execute Internet of Things
(IoT) applications. FogFrame provides communication and interaction as well as
application management within a fog landscape, namely, decentralized service
placement, deployment and execution. For service placement, we formalize a system
model, define an objective function and constraints, and solve the problem
implementing a greedy algorithm and a genetic algorithm. The framework is
evaluated with regard to Quality of Service parameters of IoT applications and the
utilization of fog resources using a real-world operational testbed. The evaluation
shows that the service placement is adapted according to the demand and the
available resources in the fog landscape. The greedy placement leads to the maximum
utilization of edge devices keeping at the edge as many services as possible, while the
placement based on the genetic algorithm keeps devices from overloads by balancing
between the cloud and edge. When comparing edge and cloud deployment, the
service deployment time at the edge takes 14% of the deployment time in the cloud. If
fog resources are utilized at maximum capacity, and a new application request arrives
with the need of certain sensor equipment, service deployment becomes impossible,
and the application needs to be delegated to other fog resources. The genetic
algorithm allows to better accommodate new applications and keep the utilization
of edge devices at about 50% CPU. During the experiments, the framework
successfully reacts to runtime events: (i) services are recovered when devices
disappear from the fog landscape; (ii) cloud resources and highly utilized devices are
released by migrating services to new devices; (iii) and in case of overloads, services
are migrated in order to release resources.

Subjects Distributed and Parallel Computing, Emerging Technologies, Mobile and Ubiquitous
Computing, Real-Time and Embedded Systems, Software Engineering
Keywords Fog computing, Internet of Things, Service placement, Resource provisioning

INTRODUCTION
The Internet of Things (IoT) leads to the pervasion of business and private spaces with
ubiquitous computing devices, which are able to act autonomously and provide network
connectivity (Botta et al., 2016). Together with cloud technologies, the IoT enables
small- and large-scale applications for smart cities (Gharaibeh et al., 2017), healthcare
(Catarinucci et al., 2015), manufacturing (Compare, Baraldi & Zio, 2020), etc.

How to cite this article Skarlat O, Schulte S. 2021. FogFrame: a framework for IoT application execution in the fog. PeerJ Comput. Sci.
7:e588 DOI 10.7717/peerj-cs.588

Submitted 19 February 2021
Accepted 20 May 2021
Published 5 July 2021

Corresponding author
Olena Skarlat,
o.skarlat@infosys.tuwien.ac.at

Academic editor
Markus Endler

Additional Information and
Declarations can be found on
page 40

DOI 10.7717/peerj-cs.588

Copyright
2021 Skarlat and Schulte

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.588
mailto:o.�skarlat@�infosys.�tuwien.�ac.�at
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.588
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

IoT data in such applications is mostly produced in a distributed way, sent to a
centralized cloud for processing, and then delivered to distributed stakeholders or other
distributed IoT devices, often located close to the initial data sources. This centralized
processing approach results in high communication latency and low data transfer rates
between IoT devices as well as the IoT devices and potential users (Bonomi et al., 2014;
Mahmud, Ramamohanarao & Buyya, 2019). Therefore, using centralized resources from
the cloud does not match the decentralized nature of the IoT with its bandwidth- and
delay-sensitivity. In addition to the centralized processing, the computational resources of
IoT devices, which can be used not only for collecting data but also for data processing, are
often neglected. Typical examples of such IoT devices which possess computational
resources and are capable to host IoT applications are gateways, routers, or sensor nodes
(Dastjerdi et al., 2016; Vaquero & Rodero-Merino, 2014; Froiz-Mísguez et al., 2018).
The combination of edge- and cloud-based computational resources in order to deploy
and execute IoT applications is also known as fog computing. Together, these resources
form a fog computing environment, or a so-called fog landscape (Skarlat et al., 2016).
Recently, the notions of fog computing were put into the OpenFog Reference Architecture,
which became an international standard (IEEE 1934, 2018).

Fog computing has been named as an enabler to provide IoT applications in many
different scenarios, especially with regard to smart systems, for example, smart cities, smart
buildings, or smart factories (Stojmenovic, 2014; Hu et al., 2017; He et al., 2018; Katona &
Panfilov, 2018). By deploying IoT applications in the fog, it is possible, for example, to
prefilter data for stream processing or to conduct IoT data processing on-site instead of
relying on cloud-based computational resources (Bonomi et al., 2014; Hochreiner et al.,
2017). This leads to lower latency in IoT scenarios (Puliafito et al., 2019).

Fog computing has been a vivid field of research in recent years, and the theoretical
principles of fog computing as well as conceptual fog architectures are already well-
established (Puliafito et al., 2019; Bellendorf & Mann, 2020; Salaht, Desprez & Lebre, 2020;
Hong & Varghese, 2019). However, there is a lack of implemented frameworks with
the functionality to manage and monitor infrastructure, to deploy and execute services,
and to dynamically react to changes in computational demand and fog computing
infrastructure.

Notably, fog computing is based on common principles from the field of cloud
computing, most importantly virtualization (Yi, Li & Li, 2015; Celesti et al., 2016): while
in the cloud, physical machines are provided in terms of virtual machines (VMs), fog
computing employs the idea that computational resources from edge devices can be
offered in a similar manner. However, since VMs are resource-intensive, they are not the
best virtualization approach for rather resource-constraint edge devices (Varghese &
Buyya, 2018). A promising solution for this issue is the utilization of containers, for
example, Docker containers, as a virtualization mechanism for edge resources (Bonomi
et al., 2014; Morabito et al., 2018). Accordingly, in order to provide a practical framework
for fog computing, it is necessary to introduce mechanisms both to manage fog landscapes
and to execute distributed IoT applications in the fog using containers. This requires

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 2/45

http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

the provisioning of mechanisms for resource allocation, decentralized service placement,
deployment, and execution in a fog landscape.

In this paper, we present the design and implementation of the fog computing
framework FogFrame. FogFrame is built to provide coordinated control over the physical
and virtual infrastructure of a fog landscape. The framework enables volatile IoT
landscapes, where the system is ever-changing, with fog nodes and data sources potentially
entering or leaving a system at any time, and the data volume to be processed changing
frequently (Varshney & Simmhan, 2017; Santos et al., 2019).

Taking into account the potentially volatile nature of fog landscapes, we define the
following main goals to be achieved by FogFrame: (i) to create and maintain a fog
landscape made up from computational resources at the edge of the network and in the
cloud, (ii) to establish communication and interaction in such a fog landscape, (iii) to
efficiently deploy and execute IoT applications in the fog by distributing the services of the
applications on the available fog resources.

Building on the challenges identified above, we formulate the following research
questions that provide the foundation for the work at hand:

� How can edge devices be utilized for the resource-efficient execution of IoT
applications?

� How can the execution of IoT applications in a fog landscape be optimized for resource
efficiency while considering predefined Quality of Service (QoS) parameters?

� How to achieve a highly available, durable, and fault-tolerant fog landscape?

Our contributions can be summarized as follows:

� We design and implement the FogFrame framework, which provides communication
and interaction of virtualized resources within a fog landscape.

� We implement functionalities for decentralized service placement, deployment and
execution in a fog landscape. Service placement is performed by two heuristic
algorithms—a greedy algorithm and a genetic algorithm. We distinguish service
deployment at the edge of the network and in the cloud and implement according
deployment mechanisms.

� We develop mechanisms to react to runtime operational events in the fog landscape,
namely, when devices appear and disappear in the fog landscape, and when devices
experience failures and overloads. The framework identifies those events and migrates
necessary services to balance workload between different resources.

� We evaluate the capabilities of FogFrame with regard to service placement, adherence to
QoS parameters, and utilization of fog resources.

The work at hand is based on our former work on conceptual fog frameworks and fog
computing resource allocation. If compared to our most recent work (Skarlat et al., 2018),
this paper reflects in-depth technical details of the architecture of the framework,
communication within the fog landscape devices, and the application management. In this
work, the framework enables mechanisms to create a fog landscape and account for its

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 3/45

http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

volatile nature, namely, it reacts to devices appearing and disappearing from the fog
landscape, and tackles overloads and failures of resources. The framework provides a
decentralized application execution in the fog and introduces a service placement problem
formulation to account for practical issues dealing with volatile fog landscapes. The
presented service placement functionalities are based on our former work (Skarlat et al.,
2016; Skarlat et al., 2017a, 2017b), where we researched fog computing environments
and different service placement approaches and evaluated them using the simulators
CloudSim and iFogSim (Gupta et al., 2017). Instead, in this work, we implement and
extensively evaluate service placement algorithms in a representative real-world Raspberry
Pi-based testbed.

Compared to other frameworks, our framework addresses the volatility of the IoT.
We explain and build a real-world fog landscape based on lightweight technologies,
and aim at fault-tolerant decentralized application execution and efficient resource
provisioning and service placement. As an additional outcome, our framework can be
freely used in the research community to develop and evaluate different resource
provisioning methods. This is enabled by providing a working software publicly
available within our GitHub repository (https://github.com/softls/FogFrame-2.0) for
reimplementing exchangeable loosely-coupled components, building and connecting a fog
computing environment, and executing IoT applications.

The remainder of this paper is organized as follows: “Fog Landscape Operation”
provides the design specifications of FogFrame. Afterwards, “Service Placement”
describes the system model for service placement and according placement algorithms.
The framework is evaluated in “Evaluation”. “Related Work” discusses the state-of-the-art
in the area of fog computing frameworks and service placement algorithms. Finally,
conclusions and insights into future work are given in “Conclusion”.

FOG LANDSCAPE OPERATION
Before describing the needed functionalities of fog computing frameworks, it is necessary
to discuss general characteristics of fog landscapes. For this, we follow the notion of the fog
as a thing-to-cloud continuum (IEEE 1934, 2018).

Accordingly, a fog landscape consists of the combined computational and storage
resource pool of cloud and edge resources (Dastjerdi et al., 2016; Hu et al., 2017). In most
state-of-the-art approaches and standardization activities, fog landscapes follow a
hierarchical structure (see Fig. 1) (Karagiannis & Schulte, 2021). At the bottom of this
hierarchy, there are sensors and actuators, which are attached to different IoT devices.
These devices have computational power and are able to host and execute arbitrary
services. Within FogFrame, we call such IoT devices fog cells. Fog cells control sensors and
actuators and are in turn managed and orchestrated by fog nodes. Fog nodes are themselves
extended fog cells which possess the capabilities to not only host services, but also to
perform management activities, such as service placement and deployment. Fog cells and
fog nodes are two specific types of fog devices.

A hierarchy of fog devices forms a fog colony: (i) sensors and actuators attached to fog
cells and (ii) fog cells connected to a fog node, which becomes a parent to those fog cells.

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 4/45

https://github.com/softls/FogFrame-2.0
http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

In each fog colony, there is exactly one head fog node that performs service placement.
Other fog nodes can be present in the fog colony, they can perform computations in the
same manner as fog cells, and as well be responsible for data communication between the
connected fog cells and other fog nodes higher in the hierarchy. Having a hierarchical
structure allows to control application deployments over a colony of devices, for example, a
fog colony may become a domain-specific execution environment or cover a certain area.

Since fog landscapes comprise computational resources from the cloud and the edge
of the network, it is necessary to mediate between fog colonies and the cloud. In FogFrame,
we foresee a fog controller for this. Head fog nodes communicate with a fog controller
in the case additional cloud resources are needed. This controller establishes
communication between fog colonies and the cloud. The fog controller also helps to
establish communication within and between fog colonies. However, the latter may also
act autonomously if the fog controller is not available. Fog colonies are connected to the
fog controller via their head fog nodes.

Fog colonies do not only interact with the cloud. Instead, the colonies also need to
interact with each other in order to delegate application requests from one colony to
another. For instance, if one fog colony does not have enough resources to execute an
application, then it may delegate the corresponding application request to a neighbor fog
colony. To do this, fog colonies are connected to each other via their corresponding head
fog nodes.

To establish coordinated control over a fog landscape, a fog computing framework has
to be able to monitor and control the available devices and computational resources in the
cloud and at the edge and to orchestrate those resources in order to deploy arbitrary

Fog
Node

Fog
Node

Fog
Node

Fog
Cell

Fog
Cell

Fog
Cell

Fog
Cell

Fog
Cell

Fog
Cell

Cloud

Edge

Fo
g

La
nd

sc
ap

e

Sensors/
 VMs

Fog
Controller

Actuators

Legend:

Fog Colony Fog ColonyFog
NodeHead Head

Fog
Node

IoT devices IoT devices

Figure 1 An overview of a fog landscape. Full-size DOI: 10.7717/peerj-cs.588/fig-1

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 5/45

http://dx.doi.org/10.7717/peerj-cs.588/fig-1
http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

services. Hence, FogFrame needs to provide the following functionalities: (i) Mechanisms
to manage and support a fog landscape, namely, to establish communication within
the fog landscape and to handle data transfers between fog colonies and the cloud;
(ii) Mechanisms to manage application execution in an efficient manner by optimizing
resource provisioning and service placement; and (iii) Methods to automatically
migrate services due to the volatile nature of the fog landscape, for example, because new
resources at the edge of the network are discovered, already existing resources become
overloaded, or even disappear from the fog landscape due to failures. In the following
subsections, we will describe how FogFrame provides these functionalities.

Communication
A fog landscape starts with instantiating a fog controller, which is an initial
communication point for fog colonies. After instantiating the fog controller, fog devices
can enter the fog landscape and start forming fog colonies. When creating the fog
landscape, we follow the assumptions that (i) all fog devices are able to provide their
location data, (ii) all fog devices are configured with the fog controller address to request
joining the fog landscape (or are able to get the fog controller IP addresses through some
bootstrapping mechanism), and (iii) all fog nodes can operate within predefined coverage
areas, can form fog colonies, and operate fog devices within their coverage area.

To enter the fog landscape, a fog device sends an asynchronous pairing request
containing the own location data to the fog controller. The fog controller has a dedicated
location service that based on the location coordinates and coverage areas of all fog nodes
in the fog landscape returns data about the fog node that becomes a parent to this fog
device. This is possible because each fog device contains data about its own device name, IP
address, and location coordinates. Other data differs according to the fog device type, for
example, fog nodes also contain a coverage area parameter defined. The coverage area
defines a geographical area each fog node is responsible for. The criteria of finding a parent
fog node could be based on different aspects, for example, the calculation of the physical
distance between fog devices, but also efficiency, ratio of successful service execution, or
latency. For the purposes of FogFrame, we have implemented searching for the closest
parent according to the location of the fog device which enters the fog landscape, but it
would be possible to extend this functionality by the criteria just mentioned.

If the request is satisfied, the fog device sends a pairing request to this fog node.
Upon successful pairing, the device is instantiated as a fog cell or as a fog node in the fog
colony and is added to the set of children of the fog node. If the request is not satisfied, we
consider two possible outcomes: (i) if the fog device is a fog cell, an error message is
returned, and (ii) if the fog device is a fog node, this fog node becomes the head of a new
fog colony as it has a unique range of location coordinates, namely, its coverage area. This
workflow is shown in Fig. 2.

To be able to delegate applications to a neighbor fog colony, each head fog node has to
be connected with the head fog node of a neighbor fog colony. This connection is also
established when a fog node is instantiated in the fog landscape. It requests the neighbor
head fog node from the fog controller. The location service of the fog controller finds the

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 6/45

http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

closest neighbor head fog node according to the provided location coordinates. If the
request is satisfied, the head fog node sends a pairing request to the closest neighbor head
fog node. If the request is not satisfied, the head fog node either connects with a fallback
neighbor fog colony, or continues to act autonomously.

Upon joining a fog colony, it is the goal that a request from a fog cell to the direct parent,
which is a fog node, can be satisfied. If a pairing request cannot be satisfied, a fallback
mechanism is applied. For that, we enable searching for a fallback parent or grandparent
fog node if the closest fog node or even the fog controller are not available. Fallback
details can be either implemented as an internal property of a device, or can be sent to the
device upon pairing. In FogFrame, fallback parent and grandparent IP addresses are
provided as properties of each fog device.

Application management
To achieve cooperative execution of IoT applications, a fog landscape has to enable
decentralization of application execution, making it possible that different parts of an IoT
application are deployed and executed close to the relevant data sources and data sinks.
Because of the benefits of containerized applications mentioned in “Introduction”, in
FogFrame, applications are built following the microservice architectural approach from
stateless services deployed and executed to achieve a certain result. An application can be
visualized as a distributed data flow (Giang et al., 2015)—a directed acyclic graph
where vertices are tasks to be executed in the flow, corresponding to services, and edges
between vertices are data shipment connections between those services (Kougka &
Gounaris, 2019) (see Fig. 3). Services are deployed and running computational software
instances which process service requests in the fog landscape. A service request is a single
computational job to be computed on fog devices. Services can be of certain service
types. Service types are bound to the capabilities of the devices in the fog landscape. For

alt

fd:FogDevice

parentDetails

requestParent(loca�on) getParent(loca�on)

pairComplete

sendPairRequest() pair()

sendPairRequest()
pairComplete

instan�ate

[parentExists()]

[!parentExists() &
 fd.isFogNode()]

[!parentExists() &
 fd.isFogCell()]

NoParentExcep�on

FogController fn:FogNode

fn:FogNode

instan�ate fc:FogCell

Figure 2 Instantiating fog cells and fog nodes in a fog landscape.
Full-size DOI: 10.7717/peerj-cs.588/fig-2

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 7/45

http://dx.doi.org/10.7717/peerj-cs.588/fig-2
http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

example, a service intended to receive temperature measurements can be deployed only on
a fog cell with a temperature sensor attached, some services can be executed either in the
cloud or in the fog, and other services can be executed only in the cloud.

The application execution starts with an application request which defines a set of
services to be placed and deployed in the fog landscape together with QoS information for
execution, for example, deadlines on application execution and processing times. It has to
be noted that an application can only be executed if all its services are deployed. The
deployment of services depends on the service placement mechanism which is applied
within each head fog node of each fog colony in the fog landscape. It is possible to integrate
arbitrary service placement algorithms into FogFrame. Within the work at hand, we
provide two particular approaches aiming at utilizing available resources of fog colonies in
the most efficient way, as presented in “Service Placement”. In the following, we describe
how the application is processed on different resources in the fog landscape: inside a
fog colony, in the cloud, or after being delegated to a neighbor fog colony (see Fig. 4).

Application deployment and execution can be done based on different settings. The first
(and simplest) setting is when each fog colony has enough own resources to execute an
application request. In this case, all the necessary services are deployed in the current
fog colony. The latency and deployment time are minimal and depend on the
computational power of the resources of the colony. As it can be seen in Fig. 4A, a user
submits an asynchronous application request to a fog node. The service placement is

Fog
Node

Fog
Node

Fog
Node

Fog
Cell

Fog
Cell

Fog
Cell

Fog
Cell

Fog
Cell

Fog
Cell

Fog
Controller

Fog
Node

Fog
Node

Sense

Store

ProcessgP

Processce

Sense Sense

Store

Process

Process

Process

Process

Sense Sense Sense

Store Process

IoT devices IoT devices

Figure 3 An example of a distributed data flow in a fog landscape.
Full-size DOI: 10.7717/peerj-cs.588/fig-3

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 8/45

http://dx.doi.org/10.7717/peerj-cs.588/fig-3
http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

performed according to the chosen service placement algorithm by the reasoning service of
the fog node. It has to be noted that an application request can also be submitted to a
fog cell (not depicted in Fig. 4). If this is the case, the fog cell forwards the request to its
parent fog node until the request reaches the head fog node of the corresponding fog
colony, which performs service placement.

Service placement is performed in a decentralized manner and is independent in each
fog colony. To perform computations, the reasoning service uses information about the
availability and utilization of all the fog cells in the fog colony. The result of the calculations
in the algorithms is a service placement plan. After the service placement plan is calculated,
the head fog node deploys the necessary services on according fog cells, and the fog
cells immediately start service execution.

The second setting of application execution is when apart from executing services in a
fog colony, it is necessary to support fog colonies with additional resources from the cloud
(Figs. 4A–4B). This applies for services which can be executed only in the cloud, for
example, big data processing, and those services which cannot be placed on fog devices
because of QoS constraints or a lack of resource capabilities, or services which can be
executed either on the edge devices or in the cloud as they do not require specific sensor
equipment. If specific services in the application request are assigned to the cloud, the fog
node sends the request to execute this service in the cloud. For this, the fog controller
authenticates itself with the cloud provider, either leases and instantiates a new VM in the
cloud or connects to an existing VM, and deploys the corresponding service container.
Specific implementation details about service deployment at the edge of the network and in
the cloud are provided in “Evaluation”.

The third setting of application execution regards if an application cannot be executed
by a fog colony. However, this application requires sensor equipment, therefore it cannot
be executed purely in the cloud. In this case, the request is delegated to a neighbor fog
colony. This is the case when the service placement plan determines that there are not
enough resource capacities in the current fog colony to execute the application, however
there is enough time indicated by the application deadline to postpone the execution.

nfn:Neighbor
FogNodeFogController

(b)

fc:FogCellfn:FogNode

(a)

(c)

device:
Sensor

User

Applica�on request

vm:CloudVM

Applica�on request
reasoning()

reasoning()

Data Data
Data

delegate() reasoning()

cloudReasoning()

process()deploy()
getData()

process()
deploy()
deploy()

Figure 4 Application request processing on different fog resources (A–C).
Full-size DOI: 10.7717/peerj-cs.588/fig-4

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 9/45

http://dx.doi.org/10.7717/peerj-cs.588/fig-4
http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

Therefore, the fog node delegates the application request to the neighbor fog colony
(Fig. 4C).

Migration of services
As has already been mentioned above, running an application is only possible when all
its services are deployed. Hence, if a fog device fails, services which have been running on
that fog device need to be redeployed on other fog devices to ensure the application
execution. If a new fog cell appears, it is beneficial to use its capacities to release other
devices that are not yet overloaded but already close to full capacity, and migrate suitable
services from the cloud to reduce additional unnecessary cost of fog landscape operation.
To address this, FogFrame can react to certain events: (i) device discovery, if a fog
device appears in the fog landscape, (ii) device failure, if a fog device is not able to provide
services any longer, and (iii) device overload, if a fog device is expected to overload,
meaning when the CPU, RAM or storage utilization is above a predefined threshold.
To handle each of these event types, FogFrame implements corresponding services.
To achieve this, each fog device is provided with a host monitor service which records CPU,
RAM and storage utilization of each device. Correspondingly, each fog node contains a
watchdog which periodically checks if the connected fog devices respond.

A common event in a fog landscape is device overload. When the CPU power is used up
to the maximum specified level, unexpected performance can take place and compromise
the execution of all deployed services. In this work, we aim for 80% CPU load to get a
balance between utilization and room for spikes, ad-hoc processes, and I/O bottlenecks.
This threshold was set up during pre-experiments to allow for uninterrupted execution
and availability of the devices. This threshold is also recommended by AWS (https://docs.
aws.amazon.com/autoscaling/ec2/userguide/as-scaling-simple-step.html and Oracle
(https://docs.oracle.com/en/cloud/get-started/subscriptions-cloud/mmocs/setting-alert-
performance-metric.html). This parameter can be easily changed in the FogFrame
monitoring component. It is a matter of future research to take into account different
thresholds for different devices according to their capabilities, namely, adaptive thresholds
as presented, for example, by Maurer, Brandic & Sakellariou (2013).

When a device is identified as overloaded by the head fog node, this event is therefore
triggered and the device overload service triggers service placement (as presented in
“Application Management”) bounded to the current fog colony, and migrates one random
container from the affected device. The device overload service migrates services one by
one until the affected device is not overloaded anymore. This migration method was
adopted according to similar techniques in cloud computing (Smimite & Afdel, 2020).
The overload policy can be easily reimplemented and substituted with other methods.
The framework architecture is loosely coupled and allows to add new implementations of
used methods. A very promising approach to predict overload of fog devices presented by
Nair & Somasundaram (2019) could be implemented in future work.

If a new fog device joins a fog colony, all its resources are analyzed to identify the current
workload. First, if applicable, the discovery service migrates the services from the cloud to
save cost. Second, all devices that operate at the maximum capacity and are overloaded,

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 10/45

https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-scaling-simple-step.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-scaling-simple-step.html
https://docs.oracle.com/en/cloud/get-started/subscriptions-cloud/mmocs/setting-alert-performance-metric.html
https://docs.oracle.com/en/cloud/get-started/subscriptions-cloud/mmocs/setting-alert-performance-metric.html
http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

are considered for migration. The discovery service triggers the placement of suitable
services from overloaded devices and migrates them to the new device either while needed,
or until it is filled to a maximum defined number of containers. The number of containers
can be adjusted according to the computational capacity of each fog device. This
mechanism allows easy horizontal scalability of the resources in the fog landscape.

It has to be noted that the vertical scalability of resources is bounded by the
computational capacities of devices in a fog landscape: If it is possible to extend CPU or
RAM on a device, then FogFrame will accordingly use those capacities. This is enabled by
the implemented host monitor service that is deployed as a satellite service to each fog cell
or fog node. This monitoring service will be described in the next subsection.

Due to the volatile nature of fog landscapes, fog devices may disappear from the fog
landscape when a physical IoT device gets out of range or disconnects. When a fog cell
disappears from a fog colony due to a failure, the head fog node checks the service
assignments to identify whether the failed fog device had any services running. The device
failure service adds all services that were running on that fog device to a migration list, and
triggers service placement as presented in “Application Management”, bounded to the
current fog colony. Failures of fog cells are identified by a parent fog node when the
fog cell is disconnected. Failures of fog cells trigger the migration service. Because fog
nodes take care of communication between their connected fog cells and other fog nodes
higher in the fog colony’s hierarchy, a failure of such an intermediary fog node not
only triggers the migration service to recover all running services, but also requires fog cells
to ask for a new parent fog node from the fog controller. In the case when the head
fog node of the fog colony fails, then either there is a mechanism in place to connect
all the fog colonies resources to a fallback head fog node, or to trigger a complete
reorganization of the fog colonies. The latter is a topic for future research, that can be
formulated as a meta control mechanism for reactive and proactive reorganization and
optimization of fog colonies to ensure system durability and fault tolerance.

System architecture
To summarize the discussion of the system design, we discuss the high-level architecture
of the main components of FogFrame, namely the fog controller, fog nodes, and fog
cells. These components consist of dedicated services and interfaces which provide
communication between the components, and within the components as well. The design
of the framework is based on lightweight technologies and loosely-coupled components
with the goal to create a stable and fault-tolerant distributed system. The extensible
modules within each component enable interoperability and a convenient substitution by
implementing the specified interface methods.

In the fog controller (see Fig. 5), the cloud service establishes the communication
with the cloud and implements necessary functionalities to manage VMs and containers.
The location service provides connection data for fog devices entering the fog
landscape. The pairing service is responsible for pairing of fog devices as described in
“Communication”. A local storage stores data about the structure of the fog landscape and
the usage of cloud resources. The local storage is operated by the storage service.

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 11/45

http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

Figures 6 and 7 depict the architectures of fog cells and fog nodes. All components are
communicating via API calls. As it can be seen, fog nodes are extended fog cells. The fog
cell consists of a storage service which operates a local storage, storing connection data,
identification data, and application execution data. The communication service is
responsible for establishing and maintaining communication with the fog controller and
the parent fog node. The compute unit executes services and is responsible for data transfer
between services. The fog action control follows the orders from the fog node of the fog
colony, and deploys necessary services by the means of the container service. Finally,
the host monitor monitors the utilization of the fog cell.

A fog node consists of all the components of a fog cell as well as some additional
components. The shared storage service operates the shared storage which stores a shared
service registry of all service images to be used for deployment. The local storage on the
fog node is similar to the one in the fog cell. However, it stores additional data about fog
cells in the fog colony, service placement plans, and execution details of applications.
The shared storage service in a fog node is intentionally separated from the local storage
container to ensure flexibility and replaceability. The watchdog constantly monitors the
utilization data of all the connected fog devices, and triggers runtime events: device
discovery, overload or failure events. The reasoning service is triggered when an application

Fog Cell

Storage Service

Local Storage

Communication Service

Compute Unit
Service

Fog Action
Control Service

Container
Service

R
R

REST API

Host Monitor

R

RR

Figure 6 Fog cell architecture. Full-size DOI: 10.7717/peerj-cs.588/fig-6

Fog Node

Shared Storage
Service

Shared Storage

Reasoning Service

Watchdog Resource Provisioning Service
Discovery Service

Overload Service
Failure Service

R

REST API

Fog Cell Components

R

Figure 7 Fog node architecture. Full-size DOI: 10.7717/peerj-cs.588/fig-7

Fog Controller
Local Storage

Pairing Service Location Service

Cloud

R

Storage Service
R R

R

REST API

Cloud Service

VMVM VMVM

Figure 5 Fog controller architecture. Full-size DOI: 10.7717/peerj-cs.588/fig-5

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 12/45

http://dx.doi.org/10.7717/peerj-cs.588/fig-6
http://dx.doi.org/10.7717/peerj-cs.588/fig-7
http://dx.doi.org/10.7717/peerj-cs.588/fig-5
http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

request is submitted for execution to the fog node. The reasoning service calls the resource
provisioning service, which implements a certain service placement algorithm. We will
present two particular algorithms for this in the next section, but as pointed out above,
any arbitrary placement algorithm could be applied here. To summarize, the fog cell
and the fog node provide all necessary functionalities to establish application management
and account for the volatile nature of the fog landscape. Implementation details are
provided in “Evaluation”.

SERVICE PLACEMENT
FogFrame allows decentralized service placement, which is ensured by reasoning and
placement capabilities of each head fog node in fog colonies, as has already been
mentioned in “Fog Landscape Operation”. Fog colonies autonomously perform service
placement, even in case the fog controller or cloud-based computational resources are not
available. The underlying service placement model, which will be discussed in detail in
this section, determines an optimal mapping between services of applications and
computational resources at the edge of the network and in the cloud (if available).
The resource provisioning and service placement problem has been shown to be NP-hard
(Afzal & Kavitha, 2019). For this problem, an analogy towards the multiple knapsack
problem can be performed (Amarante et al., 2013): different fog resources are knapsacks,
single services of IoT applications are items to be inserted into knapsacks, the weight of
knapsacks corresponds to available resources of fog devices, such as CPU, RAM and
storage, and the costs of the knapsack are the defined QoS parameters. The complexity of a
multiple knapsack problem is proven to be O(n2 + nm) (Detti, 2009), where n is the
number of services to be placed and m is the number of fog resources available in a fog
colony. For service placement, the objective function is to maximize the utilization of
devices at the edge of the network while satisfying the QoS requirements of applications,
namely, satisfying deadlines on application deployment and execution time.

For this, every head fog node considers resources available in its fog colony, cloud
resources, and the closest neighbor fog colony. A mapping between applications and
computational resources determines the following subsets of service placement: (i) services
to be executed on fog devices in the fog colony, (ii) services to be executed locally on the
fog node, and (iii) services to be executed in the cloud. If at least one service of the
application cannot be placed in those subsets, the whole application request is sent to
the closest neighbor fog colony. Splitting single services from applications and delegating
them to the neighbor fog colony is not considered in order to eliminate tracking of single
services in the fog landscape and high intra-application latency and because of the
necessary coordination between fog colonies. The service placement approach is reactive,
namely, whenever application requests are submitted for execution to a fog node, the
service placement algorithm as described in “Application Management” is triggered.
Additionally, service placement is triggered each time operational runtime events happen
in the fog landscape: appearing and disappearing of resources at the edge, failures and
overloads. In the following, we formalize the according system model. Table 1 gives an
overview of the notation of fog resources and applications.

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 13/45

http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

System model
Domain definition
The decision variables xfjai, x

F
ai, x

R
ai indicate the placement of a service ai on a specific

resource in a fog landscape, namely, on a fog cell fj, fog node F, or in the cloud R. The

Table 1 Notation of the fog resources and applications.

Notation Definition

Fog resources

t Current placement time

τ Time difference of previous placement

R Cloud

F Head fog node

N Closest neighbor to F

Res(F) Fog cells connected to F

C = {U, M, S} Resource capacities of fog devices

UF CPU capacity of F

MF RAM capacity of F

SF Storage capacity of F

KF Container capacity of F

fj Fog cell

Ufj CPU capacity of fj

Mfj RAM capacity of fj

Sfj Storage capacity of fj

Kfj Container capacity of fj

dfj Latency between F and fj

dR Latency between F and R

dN Latency between F and N

Application

A Set of applications to be executed

Ak Application

DAk
Deadline of Ak

wAk
Deployment time of Ak

wt
Ak

Already passed deployment time of Ak at t

T
t
wN

Deployment time in the neighbor colony

mAk
Makespan duration of Ak

rAk
Response time of Ak

|Ak| Number of services in Ak

ai Service in an application Ak

Uai CPU demand of service ai

Mai RAM demand of service ai

Sai Storage demand of service ai

mai Makespan duration of service ai

Resai (F) Fog cells able to host service ai

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 14/45

http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

decision variable yAk
indicates that the request for the execution of the application Ak has to

be delegated to the closest neighbor fog colony, with the head fog node N. Together, the
decision variables form a service placement plan.

Let ai denote a service of the application Ak. In order to ensure that a service is
compatible with the allocated resource, Resai(F) is introduced to denote all the fog cells
capable to run service ai, with ResaiðFÞ � ResðFÞ. This formalism is necessary to account
for service types, with which resources can be compatible with, for example, sensing,
processing service types. The decision variables of the service placement problem are
provided in Eqs. (1)–(4):

x
fj
ai 2 f0; 1g; 8ai 2 Ak; 8fj 2 ResaiðFÞ (1)

xFai 2 f0; 1g; 8ai 2 Ak (2)

xRai 2 f0; 1g; 8ai 2 Ak (3)

yAk 2 f0; 1g (4)

Objective function
The objective function of the service placement is to maximize the number of service
placements in the available fog colonies, while satisfying the QoS requirements of
applications, as defined in (5). Unlike execution of all services within one fog colony,
delegation of the application to the closest neighbor fog colony or execution in the
cloud suggests additional delays, which can become a serious constraint when the response
time of the application is close its declared deadline. Hence, we use the prioritization
coefficient P(Ak) for each application. The coefficient P(Ak) represents a weight of an
application Ak determined by the the difference between the deadline DAk

of the
application and its already recorded deployment time wAk

, as defined in (6). wAk
appears in

the cases when the application was propagated from another fog colony and had to
wait until it is correctly placed on necessary resources. The priority for deployment is given
to the applications with high wAk

, and accordingly little differenceDAk
−wAk

.N(Ak) denotes
the number of services in the application request to be placed in fog colonies, as defined in
(7).

max
XA
Ak

PðAkÞNðAkÞ (5)

PðAkÞ ¼ 1
DAk � wAk

(6)

NðAkÞ ¼
XAk

ai

XResai ðFÞ
fj

x
fj
ai þ xFai

0
@

1
Aþ jAkjyAk (7)

Constraints
The first set of constraints defines the usage of available CPU, RAM, and storage of fog
resources (Uai,Mai, and Sai, respectively). The sum load of placed services should be within

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 15/45

http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

the tolerance limits of resource capacities of according fog devices, as shown in (8)–(10).
The tolerance limit of a resource is γ ∈ [0,1], for example, γ = 0.8 indicates that 80% of all
device resources can be used to execute services and the rest 20% should be kept free in
order to account for operational stability of the device. As described in “Migration of
Services”, it would also be possible to utilize an approach based on adaptive thresholds.
C = {U,M,S} denotes the corresponding capacities of CPU, RAM, and storage of fog cells
and the fog node, and the corresponding CPU, RAM, and storage demands of services
(see Table 1).

XA
Ak

XAk

ai

Caix
fj
ai � cCfj ; 8fj 2 ResaiðFÞ (8)

XA
Ak

XAk

ai

Caix
F
ai � cCF (9)

C ¼ fU ;M; Sg (10)

To execute applications according to the necessary QoS, the response time rAk
of

each application Ak has to be less that the declared deadline DAk of the application, as
defined in (11). The response time rAk

is defined as the sum of the total makespan duration
mAk

and its deployment time wAk
, as defined in (12).

rAk � DAk ;8Ak 2 A (11)

rAk ¼ mAk þ wAk (12)

The total makespan durationmAk
consists of execution times of all single services of the

application Ak accounting for the according communication delays between the head fog
node and chosen for placement resources, as defined in (13)–(14).

mAk ¼
XAk

ai

Lai (13)

Lai ¼
PResai ðFÞ

fj

dðai; fjÞxfjai þ dðai; FÞxFai þ dðai;RÞxRai (14)

d(ai,fj), d(ai,F), and d(ai,R) denote the makespan duration mai of a service ai in the
case of its placement and execution on the fog cell fj, fog node F, or cloud R respectively
((15)–(17)).

dðai; fjÞ ¼ dfj þmai (15)

dðai; FÞ ¼ mai (16)

dðai;RÞ ¼ 2dR þmai (17)

Example. Let the application A1 = {a1,a2,a3,a4} be distributed between a fog colony
and the cloud (see Fig. 8). To find the response time of an application r1, the makespan of
each service mai is added to the delay and summed as in (18). In this example, we assume
that the application had no previous deployment time, so that wA1

= 0.

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 16/45

http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

r1 ¼ dðf11Þ þma1 þma2 þ 2dðRÞ þma3 þ dðf12Þ þma4 (18)

The application deployment time wAk
from the Eq. (12) accounts for the time spent

by the application before all its services are placed on the chosen resources. In the case
when one of the services ai∈ Ak cannot be placed in the current fog colony, the whole
application needs to be delegated to the neighbor fog colony. Therefore, additional
expected deployment time T

t
wN

can appear. To define whether this additional deployment
time affects wAk

or not, we introduce the auxiliary variable yAk
. Let yAk

= 0 if all services
can be successfully placed in the current fog colony, and yAk

= 1 if at least one service
ai ∈ Ak cannot be placed in the current fog colony, and the whole application needs to be
delegated. Therefore, the application deployment time wAk

is defined as follows:

wAk ¼ wt
Ak

þ T
t
wN
yAk (19)

It is clear that T
t
wN

affects the application deployment time only when yAk
= 1.

The closest neighbor fog node has own service placement which can either place all
services ai ∈ Ak in its fog colony or further postpone the execution of the application Ak by
delegating it further in the fog landscape. To avoid a ping-pong with an application
between the two closest fog colonies, additional criteria can be considered, for example,
the rate of successful service execution, free capacities, or a percentage of load on a fog
colony. In the current work, if the application cannot be deployed in a fog colony or in a
neighbor fog colony before a stated deadline, it is either deployed in the cloud if the service

F

f11 f12fa1
12222

a4

src_a1

 d(R)

dest_a4

ma1

 ma2

4
 ma4

FFF

a22
a2

a3 ma3

Figure 8 Example of a response time calculation. Full-size DOI: 10.7717/peerj-cs.588/fig-8

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 17/45

http://dx.doi.org/10.7717/peerj-cs.588/fig-8
http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

types allow that, or not deployed at all. To calculate the expected deployment time in the
closest neighbor colony, T

t
wN

requires to view forward in time. Therefore, we estimate T
t
wN

relying on historical data. T
t
wN

is obtained as the moving average on the latest sampled
deployment time Tt�s

wN
per service delegated to the closest neighbor fog colony as defined

in (20), where 1 − α, α ∈ [0,1] denotes the discount factor of the moving average, Tt�s
wN

is the already passed deployment time of the service delegated to the neighbor fog node
N during the time t − τ , and T

t�s
wN

stands for the average deployment time inN as estimated
in t − τ.

T
t
wN

¼ aTt�s
wN

þ ð1� aÞTt�s
wN

(20)

Next, the container capacity meaning the number of deployed containers, should not be
more than Kfj containers for each of the fog cells and KF for fog nodes as defined in (21)
and (22), because that may cause overload.

XA
Ak

XAk

ai

x
fj
ai � cKfj ;8fj 2 ResaiðFÞ (21)

XA
Ak

XAk

ai

xFai � cKF (22)

We have to provide the condition that in the case when any of the services in an
application cannot be placed in the current fog colony, the application request has to be
sent to the neighbor colony as has been described in “Application Management”. For that,
we first calculate the number of services placed in the current fog colony and in the cloud:

nAk ¼
XAk

ai

XResai ðFÞ
fj

x
fj
ai þ xFai þ xRai

0
@

1
A;8Ak 2 A (23)

Next, if the total number of services placed in the current colony and in the cloud is less
than the total number of services in the application, that means if nAk

<|Ak|, then the
application request has to be sent to the closest neighbor colony, namely, yAk

= 1, else
yAk

= 0. This conditional constraint is formulated using big-M coefficients (Hooker &
Osorio, 1999), and is represented in (24) and (25), respectively:

nAk � jAkj � Mð1� yAkÞ � 1;8Ak 2 A (24)

jAkj � nAk � MyAk � 1;8Ak 2 A (25)

Finally, we define that each service ai can be placed in exactly one computational
resource fj, F, N, or in the cloud R, or the whole application request has to be sent to the
closest neighbor fog colony:

nAk þ yAk ¼ 1;8Ak 2 A (26)

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 18/45

http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

Example. To provide an estimation of the number of variables and constraints in the
service placement problem, we consider the following example: An application A1 with 10
services a1…a10 is submitted for execution to a fog colony with a head fog node F and
two fog cells f1 and f2. In this example, the assumption is that the both fog cells f1 and f2 and
the head fog node F are able to execute all service types to which the services belong. For
this setting, a service placement problem consists of making a decision for in total 41
decision variables, which are:

� Ten decision variables xf1a1…a10 corresponding to the placement decision of each of the
services a1…a10 on the fog cell f1 and accordingly another ten decision variables xf2a1…a10

of each service a1…a10 on the fog cell f2.

� Ten decision variables xFa1…a10 corresponding to the placement of each service a1…a10
placed on the head fog node F.

� Ten decision variables xRa1…a10 corresponding to a propagation decision of each service
a1…a10 to the cloud resources R.

� One decision variable yA1
denoting whether the whole application needs to be delegated

to the neighbor fog colony.

With regard to the constraints, the first set of constraints deal with CPU, RAM and
storage capacities of each device according to (8)–(10), meaning three constraints for each
computation device f1, f2, and F. Secondly, the response time constraint is only one
according to the calculations (11)–(20) corresponding to one application A1. Next, there
are three container capacity constraints according to (21)–(22) per each f1, f2, and F.
Afterwards, to calculate whether the application A1 can be placed in the current fog colony
or needs to be delegated to the neighbor fog colony, two additional constraints per
application, that is in our case only one application, need to be calculated according to
(23)–(25). And the last set of constraints ensures that each service can be placed only on
one resource, that means one constraint according to (26). To summarize, the number of
variables and constraints depends on the number of resources in the fog landscape, the
number of applications requested for execution, and the number of services to be deployed
in each application.

Greedy algorithm
As mentioned above, we provide two service placement algorithms as examples in
FogFrame. The greedy algorithm implemented in the framework (see Algorithm 1) is
based on finding a first fit device for each service request (Xu, Tian & Buyya, 2017).
The idea is to walk over sorted fog devices according to their service types, available
resource capacities, and incoming service requests, and check whether a fog device is able
to host and deploy a service according to the device’s utilization. If any service in the
application cannot be deployed, the whole application is delegated to the neighbor colony.
The main benefit of greedy algorithms is that they produce fast and feasible solution
(Xu, Tian & Buyya, 2017).

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 19/45

http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

The algorithm takes the set of fog devices in the fog colony and the incoming service
requests as inputs. Line 1 of Algorithm 1 initializes an empty assignments list and a
new counter parameter. This counter enables several tries to place a service in the
algorithm. This counter is necessary to account for released resources in the case when
the execution of already deployed services has been finished at the time of service
placement. Lines 2 and 3 sort according sets by service type in order to assign sensor-
related services to fog cells with the highest priority because sensor equipment is available
only there, for example, a service sensing temperature can be placed only on the device
with a temperature sensor attached. If any service can be executed both on the fog device
and in the cloud, the service is assigned to the fog device if available.

Lines 4 to 6 start the loops over the sorted fog devices and service requests. These loops
ensure the placement of equipment-specific services on fog cells first, and if they can be

Algorithm 1 Greedy Algorithm.

Input: Set<Fogdevice> fogDevices, Set<TaskRequest> requests

Output: List<TaskAssignment> assignments, List<TaskRequest> openRequests

1 assignments ← []; round = 0;

2 sortedRequests ← sortByServiceType(requests)

3 sortedFogDevices ← sortByServiceType(fogDevices)

4 for fogDevice ∈ sortedFogDevices do

5 for serviceType ∈ fogDevice.serviceTypes do

6 for request ∈ sortedRequests do

7 if serviceType == request.serviceType then

8 utilization ← getUtilization(fogDevice);

9 containers ← getContainerCount(f ogDevice);

10 if checkRules(utilization) & containers < MAX CONTAINERS then

11 container ← sendDeploymentRequest(fogDevice, request);

12 assignments.add(fogDevice, request,container);

13 sortedRequests.remove(request);

14 end

15 end

16 end

17 end

18 if !sortedFogDevices.hasNext() & round < ROUNDS & sortedRequests.size() > 0 then

19 round = round+1;

20 sortedFogDevices.reStart();

21 end

22 end

23 openRequests ← sortedRequests;

24 return assignments, openRequests

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 20/45

http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

placed, an attempt to place all other services is performed. Otherwise, the whole
application has to be delegated to the neighbor fog colony. Line 7 checks if the service type
of the service request corresponds to the service types of the fog device. This is necessary
because a constraint on matching service types of a service and device is the main
constraint in the service placement, otherwise the assignment is not possible. In Lines 8
and 9, the utilization and the number of already deployed containers is requested from
the fog device in order to check if there are enough resources in the fog device. This is done
in order to check the utilization constraints in Line 10, where the utilization parameters
and the number of deployed services are compared to predefined monitoring rules, for
example, CPU utilization <80%.

If those parameters are satisfied, a fog device is able to host a service, and a deployment
request is sent to the fog device in Line 11. In the event of successful service deployment,
the fog device sends the detailed information about the deployed container to the fog
node. In Line 12, an assignment consisting of the fog device, service request, and the
identifier of the deployed container is created. With this assignment, it becomes possible
to keep track of all the deployed services and according containers in a fog colony.
A successfully executed service request is removed from the input set in Line 13 making
sure the service is deployed exactly once.

Line 18 checks if the outer-most fog device cycle is finished, the provisioning round
counter is smaller than the maximal defined number of tries, and if there are still opened
service requests. If this is the case, the round counter is increased and the fog device
iterator is re-initialized to restart the provisioning with the remaining service requests
(Lines 19 and 20). After all the requests are handled or the maximum number of
provisioning rounds is exceeded, the created assignments and the open requests are
returned (Line 23 and 24). If the open requests list is not empty, then the according
application requests are sent to the neighbor fog colony and already deployed services from
those applications are stopped.

Genetic algorithm
The choice to use a genetic algorithm for service placement is based on the popularity
of genetic algorithms to solve similar allocation and scheduling problems in cloud
environments (Arunarani, Manjula & Sugumaran, 2019; Zhang et al., 2019; Reddy et al.,
2020), their lightweight nature, which helps to run genetic algorithms on resource-
constrained devices at the edge of the network, as well as our own positive experience with
using genetic algorithms to find solutions to service placement problems in fog computing
(Skarlat et al., 2017a).

Genetic algorithms allow to browse a large search space and provide a viable qualitative
solution in polynomial time (Yoo, 2009; Yu, Buyya & Ramamohanarao, 2009; Ye, Zhou &
Bouguettaya, 2011). One iteration of a genetic algorithm applies the genetic operators
of selection, crossover, and mutation on a generation of solutions of an optimization
problem (Whitley, 1994). In our case, the optimization problem is to make a decision
about service placement on fog resources, i.e., to produce a service placement plan.
A generation consists of individuals represented by their chromosomes. Each chromosome

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 21/45

http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

denotes one solution to the considered problem, in our case a chromosome is one service
placement plan. The genetic algorithm starts with the process of selection of individuals for
reproduction. For that the fitness function of each chromosome is calculated based on
the goal function and constraints of the service placement problem, and the best
chromosomes are selected. To create an offspring from the selected individuals, the
crossover operator swaps genes of each two chromosomes. In order not to lose the best-
performing candidate solutions, some individuals with the highest fitness values of their
chromosomes are forwarded to the next generation unaltered, they do not participate in
crossover, becoming the elite individuals. After that in order to ensure diversity of the
population, the mutation operator changes a random number of genes in some of the
chromosomes. As a result, a new generation is evolved consisting from the elite and
offspring individuals. The algorithm repeats this process until activation of defined
stopping conditions. Different approaches can be applied as stopping conditions, for
example, the total number of evolved generations, a tolerance value of the fitness function,
or elapsed time. In the following, we describe the concrete implementation of the genetic
algorithm in FogFrame.

The chromosome representation is a vector corresponding to a service placement plan
(see Fig. 9). The length of this vector equals to the total number of services in the requested
application. Each gene in a chromosome is an integer number corresponding to the
identifier of a fog device or the cloud. When a service cannot be placed at any of the
devices in the fog colony or in the cloud, it remains unassigned. In this case, the
whole corresponding application will be delegated to the closest neighbor colony.
This chromosome representation ensures the placement of all services, meaning that there
are no invalid chromosomes. Additionally, the chromosome representation stores
necessary data to estimate utilization of devices that includes CPU, RAM, and storage
resources of fog devices, and estimated response time of the application.

In the fitness function, we encourage the chromosome if it fulfills the constraints of the
system model presented in “System Model” and apply penalties if the constraints are
violated (Yeniay, 2005). The constraints of the optimization problem have been divided
into three sets which affect the fitness function to different degrees: (i) a set ψ of constraints
on capacities of CPU, RAM and storage resources of fog devices, (ii) a set γ of implicit
binary constraints derived from the goal function: conformance to service types,

3 3 4 3 ... 2 1 ... 0 1 ... 0

Application A k Application A k+1

Service ai Not assigned

Fog
Cell
id=3 id=4

Fog
Cell

Fog
Node
id=2

id=1

Fog
Cell
Fog
Cell

Fog
Cell

Figure 9 Chromosome representation. Full-size DOI: 10.7717/peerj-cs.588/fig-9

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 22/45

http://dx.doi.org/10.7717/peerj-cs.588/fig-9
http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

indications if cloud or fog colony resources have to be used, and prioritization of own fog
colony resources, and (iii) a set y causing the death penalty of the chromosome if the
service types, container capacities in devices, or deadlines are violated.

Let c denote a chromosome. For constraints ∀βp ∈ ψ, if βp(c)≤ 0, the constraints are
satisfied. If βp(c)> 0, then the constraints are not satisfied. These conditions are formalized
in (27).

dbpðcÞ ¼
0; if bpðcÞ � 0
1; if bpðcÞ. 0

�
(27)

Similarly, for the C set of constraints, if βγ(c) = 0, then the constraints are satisfied.
If βγ(c) = 1, the constraints are not satisfied. For the ϒ constraints, the penalty distance
from the satisfaction of ϒ constraints for c is defined in (28), where βy denotes a constraint,
and δβy(c) indicates whether a constraint has been violated in the current chromosome c:
δβy(c) = 1.

DðcÞ ¼
X
bt2�

dbtðcÞ (28)

The fitness function is calculated according to (29), where ωβp(c) is the weight factor of
βp ∈ ψ, ωβp(c) is the weight factor of βγ ∈ C, and ωp is the penalty weight factor for constraints
in ϒ. If constraints βp or βγ are satisfied in c, then δβp(c) and δβγ(c) become 0, and the
according values within the first and the second terms of (29) are added to the fitness
function. When the constraints are not satisfied, δβp(c) and δβγ(c) become 1, and the according
values resulting from the first and second terms are subtracted from the fitness function.
The third term in the fitness function ensures death penalty ωpD(c) for having D(c)
other than 0, where the penalty factor ωp has to be big enough to forbid participation of the
worst chromosomes to perform crossover and to create the next generation of individuals.
The weight values allow to change the impact of constraints on the fitness function.
In this work, weights equal to 1, and the death penalty weight equals to 100,000. When the
genetic algorithm is running, the fitness value of chromosomes increases. This happens
because less penalties are applied to the chromosomes (Yeniay, 2005).

FðcÞ ¼
X
bp2�

xbpð1� 2dbpðcÞÞ þ
X
bc2�

xbcð1� 2dbcðcÞÞ � xpDðcÞ (29)

The genetic operators were determined based on pre-experiments presented in (Skarlat
et al., 2017a): We use a 80%-uniform crossover because the genes are integer values, a
crossover mixing ratio of 0.5, tournament selection with the arity 2, random gene mutation
with a 2% mutation rate, a 20% elitism rate, and a population size of 1,000 individuals.

Regarding the stopping condition, different options exist. Obviously, the fitness value of
the fittest individual in the generation has to be a positive number, since a positive fitness
value means that there are no death penalties applied to the individual. Time-based
stopping conditions of a number of iterations or execution time of the algorithm are not
clear to define (Bhandari, Murthy & Pal, 2012). A stopping condition based on improving

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 23/45

http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

the variance of fitness function over generations is identified as assuring the algorithm’s
convergence.

We use a tolerance value of the fitness function as the stopping condition of the
algorithm. It is calculated by dividing the incremental variance of the fitness function
values by the maximum fitness value over generations (Bhandari, Murthy & Pal, 2012).
The tolerance value of the fitness function is set to ε = 0.01, which is enough to obtain the
solution and not to converge in local maxima.

With either of the two service placement algorithms presented in “Greedy Algorithm”

and “Genetic Algorithm” in place, we are now able to compute a service placement plan in
fog nodes in FogFrame.

EVALUATION
In this section, we perform a testbed-based evaluation of FogFrame aiming to show (i) how
deployment times of services differ at the edge and in the cloud, (ii) how the services
are distributed in the fog landscape by the service placement algorithms according to
different service request arrival patterns, and (iii) how much time is spent on producing a
service placement plan.

Implementation and experimental setup
In our evaluation scenario, Raspberry Pi computers are used as fog devices (see Fig. 10).
Raspberry Pis are based on an ARM processor architecture, which is also used in mobile
phones, smart phones, and digital television, to name just some examples. In general,
nearly 60% of all mobile devices use ARM chips (Yi et al., 2016). Therefore, Raspberry Pis
can be considered as representative when building a fog landscape (Isakovic et al., 2019).
Fog nodes and fog cells are deployed on Raspberry Pi 3b+ units (Quadcore 64-bit ARM,
1 GB of RAM), which run with the Hypriot operating system. The detailed setup
configuration of FogFrame is described in (Bachmann, 2017). The fog controller is
deployed with a Docker container in an Ubuntu 18.04 LTS virtual machine with a 2-Core
CPU, 4 GB RAM, which is running on a notebook with Intel Core i7-5600U CPU 2.6 GHz,
and 8 GB RAM. The design of the fog controller allows to deploy it in the same
manner as fog nodes and fog cells on Raspberry Pis. For public cloud resources, we use
Amazon AWS EC2 services, specifically t2.micro VMs with the CoreOS operating system
which has a Docker environment setup by default (see Fig. 11).

The FogFrame framework is implemented by means of Java 8 in combination with the
Spring Boot framework which provides a convenient persistence handling with Spring
Data and Java Persistence API. The framework is available as open source software at
Github (https://github.com/softls/FogFrame-2.0). Fog cells and fog nodes are by
themselves services running inside their own Docker containers in a Docker runtime
environment which is provided by the host operating system of Raspberry Pi units or cloud
VMs. Therefore, during service deployment, a problem appears when trying to instantiate
other Docker containers in the Docker runtime from inside the Docker containers of
the running fog cells and fog nodes. To make it possible for fog cells and fog nodes to start
and to stop further Docker containers on the host device, a Docker hook is implemented.

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 24/45

https://github.com/softls/FogFrame-2.0
http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

The Docker hook provides a communication mechanism from inside the fog cell’s and
fog node’s Docker containers into the Docker environment of the operating system of the
Raspberry Pi.

Fog nodes FN1 and FN2 are connected to the fog controller. The fog colony controlled
and orchestrated by FN1 consists of two fog cells FC1 and FC2, which are within the
coverage area of FN1. The fog colony controlled and orchestrated by FN2 has one
connected fog cell FC3. Temperature and humidity sensors are installed on the Raspberry
Pis of corresponding fog cells by the means of GrovePi sensor boards (https://www.
dexterindustries.com/grovepi/).

Services of FogFrame intercommunicate via REST APIs. The communication within the
testbed is done via a WLAN private network provided by a Linksys Smart WiFi 2.4GHz
access point. This access point also acts as a gateway to connect every Raspberry Pi to the

Cloud VMCloud VM

Operating
System

(CoreOS)

S
er

vi
ce

C
on

ta
in

er

S
er

vi
ce

C

on
ta

in
er

...
Operating
System

(CoreOS)

S
er

vi
ce

C
on

ta
in

er

S
er

vi
ce

C

on
ta

in
er

......

Figure 11 Deployment in the cloud. Full-size DOI: 10.7717/peerj-cs.588/fig-11

Fog Colony

Fog Controller
192.168.1.101:8282

Fog Cell FC1
192.168.1.110:8081

(2;2),[t1,t2,t3]

Fog Cell FC2
192.168.1.111:8081

(4;7),[t1,t3]

Neighbor Fog Colony

Fog Cell FC3
192.168.1.112:8081

(10;10),[t1,t2,t3]

Fog Node FN1
192.168.1.105:8080
(6;7), [(2;2),(7;7)],[]

Fog Node FN2
192.168.1.106:8080

(8;10), [(8;8),(12;12)],[t3]

Sensors Sensors

web services
amazon

Figure 10 Experimental setup. Full-size DOI: 10.7717/peerj-cs.588/fig-10

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 25/45

https://www.dexterindustries.com/grovepi/
https://www.dexterindustries.com/grovepi/
http://dx.doi.org/10.7717/peerj-cs.588/fig-11
http://dx.doi.org/10.7717/peerj-cs.588/fig-10
http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

Internet. Every component needs to be connected to the Internet since the fog services
require the ability to download Docker image data in order to create and deploy services.
The private network in which our fog landscape operates is deemed to be secure, and
all components of the fog landscape communicate via dedicated API endpoints on certain
ports and IP addresses specified in the framework. It is a matter of future work to research
other appropriate security mechanisms for fog computing (Tange et al., 2020).

Regarding the virtualization technology, cloud resources are virtualized by the means of
VMs. As discussed in “Introduction”, VMs are not a good choice for fog devices, so for
them, we use Docker containers instead. The implemented service deployment and
execution mechanisms for the cloud resources and fog colonies are different, since the
hardware used in these environments differs. In order to use Docker containers in fog
colonies, the base images of containers have to be compatible with the ARM processor
architecture of Raspberry Pis, and accordingly in order to use Docker containers in cloud
resources, the base images of those containers have to be compatible with the processor
architecture of the cloud-based VMs.

To store the images of the single services, we apply different independent storage
solutions. Service images of services to be executed in the cloud are stored in an online
repository Docker Hub (https://hub.docker.com/), which is accessible by cloud VMs.
For service images of services to be executed in fog colonies, we implement a shared
storage that contains the shared service registry (see “System Architecture”). Such
distribution is necessary because in order to be executed on specific fog devices or in the
cloud, each service image has to be compiled according to the processor architecture of
that computational resource. In the case when services need to be executed in the
cloud, they are downloaded via a link provided with a service request. This is necessary
because we do not consider having a pre-configured pool of idle cloud resources with
already stored service images. In the case when services need to be executed on fog devices,
service images are sent to a fog node together with the initial application request.
In fog colonies, applications (or more precisely: their services) are distributed between
different fog devices, therefore every device needs access to the service images. This is
ensured by the shared storage (see Fig. 12). It has to be noted that there is no limitation on
where to host a shared storage because direct IP communication is established in the
framework.

In our experimental setup, each application consists of a number of services of certain
service types, and is characterized by its makespan duration and a deadline on the
deployment and execution time, as has been formally described in “Service Placement”.
For that, we have defined and implemented three possible service types: Services of type t1
get data from temperature and humidity sensors and are executable only on fog cells
because services of this type need sensor equipment; services of type t2 and t3 simulate
processor load and are executable either on fog devices or in the cloud. We have also
developed a dedicated service to be deployed and executed in the cloud which receives
sensor readings and writes them to a cloud database.

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 26/45

https://hub.docker.com/
http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

Metrics
To assess how much time is spent on deployment in the cloud and at the edge of the
network, we calculate the service deployment time. This metric is separately evaluated for
the cloud and for fog colonies. The service deployment time in the cloud depends on
whether there have already been free VMs running, or if a new VM has to be started.
Furthermore, the deployment time depends on the availability of the required service
image. In case no free VM is available, the service deployment time in the cloud equals the
sum of the VM booting time, the time to pull the service image, and the startup time of the
Docker container in that VM. If a free VM is available but the service image has to be
pulled, the service deployment time in the cloud equals the sum of the time to pull the
service image and the startup time of the Docker container, meaning a cold start of the
container. When both a free VM and the required service image are available, the service
deployment time in the cloud equals the startup time of the Docker container.

The service deployment times in fog colonies differ from the ones in the cloud because
in the fog colonies no VMs have to be started before deploying the service containers. If a
service image is not available locally on the according fog device, the deployment time
equals the sum of the time to pull the service image and the startup time of the Docker
container. If a service image is available, the service deployment time equals the startup
time of the Docker container.

In order to show how services are distributed in the fog landscape by different service
placement algorithms, we record the number of deployed services (containers) in each
device in fog colonies and in the cloud. We also record the total deployment time of each
scenario. Furthermore, we record the computational time of producing a service placement
plan depending on the number of service requests.

Hardware (Raspberry Pi 3)

Operating System (Hypriot)

Fog
Device

Container

Local
Storage

Container

S
er

vi
ce

C
on

ta
in

er

S
er

vi
ce

C

on
ta

in
er

...

D
oc

ke
r

H
oo

k

Shared
Storage

Container

Shared storage container of every fog node

Components of every fog device

Deployed service containers

 Legend:

Figure 12 Components of fog devices. Full-size DOI: 10.7717/peerj-cs.588/fig-12

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 27/45

http://dx.doi.org/10.7717/peerj-cs.588/fig-12
http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

In order to show how services are recovered in the case of a failure or migrated in
the case of device overload, we record average metrics of recovery time per service and time
to migrate a service due to a device overload. We also record how fast the framework reacts
to a new device appearing in the fog landscape and deploys services on it.

In the area of cloud computing and accordingly in fog computing, experiments are
prone to variations due to a multitude of factors, for example, hardware differences and
network quality. Some of the factors cannot be mitigated, instead, a sufficient number of
repetitions of experiments ensures that their results are not received due to a chance, but
have a sound statistical confidence (Papadopoulos et al., 2019). In order to record the
mentioned metrics and show the distribution of results, we execute each experiment ten
times. Through ten repetitions per experiment it was noted that the results did not show
large variations, and it is a reasonable figure for the number of repetitions.

Experiments
Assessment of deployment time
In this experiment, we show how deployment times of services differ in the cloud and
fog colonies. The application used for this scenario is a cloud-edge data processing
application with an equal number of 15 service requests to be deployed in the cloud and on
the fog devices. The makespan duration of the application is 1 min. The experiment is
repeated ten times.

Service placement with different arrival patterns
In this experiment, we show how services are placed on different fog devices in time.
For this experiment, we use applications with different numbers of service requests
according to different service request arrival patterns: constant, pyramid and random walk
(see Fig. 13). Each application has a makespan duration of 1 min and a deadline on
deployment and execution times of 3 min. The arrival patterns are shown along with the
representative results of experiments. We evaluate the two service placement algorithms
presented in “Service Placement”—the greedy algorithm and the genetic algorithm.

Figure 13 Results of experiments with different placement algorithms and arrival patterns.
Full-size DOI: 10.7717/peerj-cs.588/fig-13

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 28/45

http://dx.doi.org/10.7717/peerj-cs.588/fig-13
http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

One VM and one Docker container with the service to write sensor data into the cloud
database are started before the experiment to receive sensor data. The experiment is
repeated 10 times.

Computational time
In this experiment, we submit applications with different numbers of service requests to
fog node FN1, and observe howmuch time is needed for the genetic algorithm to produce a
service placement plan in each case. The experiment is repeated ten times for 5, 10, 15,
25, 50, 100, 200 and 400 services, in order to show how the genetic algorithm’s
computational time increases if the number of services grows.

Computational times are recorded only for the genetic algorithm because, as has been
described in “Greedy Algorithm”, in the greedy algorithm the deployment happens
immediately when appropriate edge devices are checked for placement, while in the
genetic algorithm a service placement plan is generated, and only afterwards the services
are deployed.

Migration of services
In this set of experiments, we implement a set of instructions and submit them to the fog
colony with the head FN1. As a first step, an application is submitted to the fog node,
undergoes the service placement, and is deployed in the fog colony. Fog cell FC1 in the fog
colony experiences a failure and loses its connection, which is simulated by executing a
command of stopping the corresponding Docker container of the fog cell. This event
triggers the device failure service to calculate a new service placement of all services that
were deployed in the failed fog cell. Some services are redeployed on FC2 and some are
delegated to the cloud. Afterwards, FC1 is restarted as a new fog cell FC′1 to simulate device
discovery in the fog colony. When the discovery service detects this new fog cell,
it immediately triggers a new service placement to migrate all the services that are running
in the cloud and some services from the devices in the fog colony loaded to the maximum
capacity. The corresponding VM in the cloud becomes free of services and therefore is
automatically stopped. In order to simulate overload of a fog device, we open several
SSH connections to the fog cell FC2 each running resource-intensive tasks. The device
overload service detects this event and migrates one by one randomly-chosen services from
the fog cell to another resource in the fog colony (to fog cell FC′1) until the overload is
eliminated. The experiment is repeated 10 times.

Results and Discussion
Assessment of deployment time
In the application executed in this experiment (see “Assessment of Deployment Time”),
there are 30 service requests. Out of these, 15 need to be deployed in the cloud, and 15 need
to be deployed in the fog colonies. When services have to be deployed in the cloud, in
addition to the high start-up times of VMs, VMs do not have previously stored or
cached data, for example, previously used service images. Therefore, for the cloud VMs,
Docker images need to be pulled every time. In contrast, fog devices download service
images only once and then reuse them whenever needed as the images have been cached.

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 29/45

http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

As can be seen in Table 2, there is a significant difference between the measured service
deployment times at the edge and in the cloud. The average total deployment time at the
edge is at about 29.76 s (σ = 4.08), whereas the average total deployment time in the
cloud is 209.42 s (σ = 20.41). The Docker image pull times of the VMs have been also
recorded in this experiment. It takes on average 32 s (σ = 0.01) to pull and start the docker
container in the cloud (see Table 2).

To summarize the outcome of this experiment, we compared the deployment times in
the cloud and in fog colonies. The deployment time in the cloud is higher than the
deployment times in the fog colonies because of additional latency, VM start-up time, and
service image download time before instantiating according containers. In fog colonies,
the shared service registry ensures caching of all available service images at the time fog
devices enter the fog colony. In the already running VMs in the cloud all necessary service
images are already cached and can be reused. However, each additional new VM in
the cloud requires according instantiation time and service image download time and
caching time. Having a pre-configured pool of idle cloud resources with cached service
images in the same manner as the shared service registry in fog colonies would negate
the whole concept of on-demand resources of the cloud. Therefore, cloud resources can be
an on-demand addition to the fog landscape, but is not suited to be the only computational
resource for latency-sensitive IoT applications.

Service placement with different arrival patterns
If applying the greedy algorithm presented in “Greedy Algorithm” and different arrival
patterns (see Fig. 13), services are placed on fog cells to the maximum capacity according
to the available utilization parameters. If both fog cells in the first fog colony (see Fig. 10)
are loaded to the maximum capacity, and a new application request arrives with some
services which need sensor equipment, the deployment in the own fog colony becomes
impossible, and therefore such a request is delegated to the closest neighbor fog colony.

In the genetic algorithm discussed in “Genetic Algorithm”, the requested
applications are distributed in a more balanced way between fog colonies and the cloud.
Fog devices are loaded less than to the maximum capacity. By delegating applications
between the colonies and distributing single services on different fog devices, the genetic
algorithm placement spreads the load on the resources in fog colonies more efficiently,

Table 2 Assessment of deployment time (in seconds).

max min μ σ

Total (edge) 41.78 27.22 29.76 4.08

Per service (edge) 2.78 1.81 1.98 0.27

Total (cloud) 251.03 180.75 209.42 20.41

Per service (cloud) 16.74 12.05 13.96 1.36

VM startup 72 40 48 12

Image pull (start) 33 32 32 0.01

Total 278.94 210.42 239.18 18.77

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 30/45

http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

which may be crucial if additional application requests are submitted and their services
need specific equipment, for example, temperature and humidity sensors.

In the pyramid and random walk arrival patterns, both algorithms perform almost alike
due to the fact that even if the greedy algorithm loads one fog cell for all services in the
application request, in most of the application requests the workload is less than the
maximum capacity of the available fog devices. However, as can be seen in Fig. 13, the load
on fog devices is nevertheless more distributed if the genetic algorithm is used to compute
a service placement plan.

To summarize the results of this experiment, the genetic algorithm performs better with
regard to distributing service requests within fog colonies. This makes it possible for newly
requested applications to be placed on the necessary resources. While the greedy
placement does not involve cloud resources, the genetic algorithm spreads the load
between the fog colonies and the cloud. In the closest neighbor fog colony, the deployment
time per service is longer as there is only one fog cell connected, the fog node’s
resources also execute services, and services are deployed sequentially. One particular
positive aspect in the genetic algorithm’s placement plan is that the resources in the fog
landscape are not close to overload, which gives more opportunities for newly requested
services to be deployed. The results of the experiment are summarized in Table 3.

Computational time
The measurements in this experiment show that the computational time of producing a
service placement plan using the genetic algorithm is less than a second on average in all
the cases below 50 service requests (see Fig. 14). After that, an increase is observed,
however, that increase is still within reasonable boundaries: a service placement plan for

Table 3 Experiment results overview.

Metrics Algorithm Constant Pyramid Random

Deployment time per scenario (sec) Greedy 694.10 643.50 663.67

(σ = 70.92) (σ = 9.54) (σ = 19.99)

Genetic 684.00 644.88 654.90

(σ = 16.34) (σ = 9.00) (σ = 7.06)

Service deployment time (sec) Greedy 3.67 2.18 2.90

(σ = 1.85) (σ = 0.25) (σ = 1.43)

Genetic 2.08 2.12 2.00

(σ = 0.32) (σ = 0.27) (σ = 0.21)

Service deployment time in the
neighbor fog colony (sec)

Greedy 2.52 2.50 2.98

(σ = 0.60) (σ = 0.24) (σ = 0.30)

Genetic 2.12 2.23 2.38

(σ = 0.13) (σ = 0.27) (σ = 0.56)

Service deployment time, cloud (sec) Genetic 3.25 3.97 3.19

(σ = 0.18) (σ = 0.13) (σ = 0.92)

Number of services delegated Greedy 18 (σ = 4) 24 (σ = 4) 16 (σ = 6)

Genetic 24 (σ = 9) 22 (σ = 4) 13 (σ = 4)

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 31/45

http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

200 and 400 service requests is produced on average in 2.26 s (σ = 0.16) and 3.64 s (σ =
0.19), respectively.

The relatively small spread of whiskers and box sizes in Fig. 14 show that the
computational time is rather stable for the specified number of services. The results
mean that increasing considerably the number of services to be deployed affects the
computational time, as the genetic algorithm calculates fitness values for each
chromosome in each population as well as estimations to response times of applications
and fog landscape resource utilization.

Migration of services
In this scenario, we consider four distinct events: (1) successful deployment and operation
of an experimental application consisting of 15 services: Five services of each type t1, t2
and t3, (2) failure of FC1 and as a consequence recovery of all the services which were
running on FC1 to FC2 and cloud, (3) discovery of the new fog cell FC′1 and migration of
services from the cloud and FC2 to FC′1, and (4) overload of FC2 and as a consequence
migration of services from FC2 to other resources one by one until the overload is
eliminated. The execution of the scenario is shown in Fig. 15. During the execution, we
recorded the average time-to-recover after failure per service, time-to-redeploy during the
overload, and time of device discovery of how fast the device is detected in the fog colony
and necessary services are migrated onto this device. The insights received from this
experiment show that the main setback in the scenarios relying on the cloud is the
could itself, namely as a result of request timeouts: connection timeout, request timeout,
and read timeout. These parameters of requests to the cloud and the number of retries
need to be fine-tuned according to the application needs. When such timeouts occur, the
time for leasing and releasing of cloud resources can be affected. These problems have
been mitigated in the fog controller’s cloud connector. The results of the execution are:
After the failure of FC1, all 10 services that were deployed there are successfully recovered

5 10 15 25 50 100 200 400

1.
0

1.
5

2.
0

2.
5

3.
5

Number of service requests

C
om

pu
ta

tio
na

l t
im

e,
 s

ec

Figure 14 Computational time of producing a service placement plan by the genetic algorithm.
Full-size DOI: 10.7717/peerj-cs.588/fig-14

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 32/45

http://dx.doi.org/10.7717/peerj-cs.588/fig-14
http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

in the cloud and in FC2. The average total time-to-recover of 10 services is 23.652 s (σ =
1.49). The average of the time-to-recover per service after the failure is 2.35 s (σ = 0.14).
The average discovery time of a new fog cell from the point of time it is detected by
the discovery service until all necessary services are migrated is 18.79 s (σ = 2.78).
The average time-to-redeploy a service after the device overload is 5.37 s (σ = 2.07).

Opportunities for future work
While the conducted experiments have shown that FogFrame is able to serve its purpose to
provide coordinated control for a fog landscape and to execute applications, there are
nevertheless some limitations with regard to the evaluation and the framework itself.

Currently, we do not consider delegating a single service from an application to a
neighbor fog colony. This is done in order to avoid high intra-application latency and
because of the necessary coordination between fog colonies on the level of service requests.
It remains a matter of future work to identify approaches to perform service execution
tracking in a complete fog landscape.

In the evaluation, we implemented the types of services to be executable in the
framework as described in “Implementation and Experimental Setup”. In reality, service
types can be different depending on their purpose and necessary equipment. Nevertheless,
the applied service types already show how different types can be deployed in the cloud
and in the fog by applying FogFrame.

A considerable limitation is that software to be executed on fog devices, meaning that
both internal services of FogFrame and applications submitted by the users, have to be
adapted or reimplemented according to the processor architecture of the according

(1)
Successfull
deployment

FC1 FC2Cloud

(2)
Failure of
FC1

FC1 FC2Cloud

(3)
Discovery
of FC'1

FC'1 FC2Cloud

(4)
Overload
of FC2

FC'1 FC2Cloud

N
um

be
r o

f s
er

vi
ce

s

Events
10

5

Operational
Service

Service to be recovered
and redeployed

Successfully recovered
and redeployed service

Fog colony
resources

Figure 15 Deployment and migration of services to different resources due to the runtime events.
Full-size DOI: 10.7717/peerj-cs.588/fig-15

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 33/45

http://dx.doi.org/10.7717/peerj-cs.588/fig-15
http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

hardware, for example, according to the ARM processor architecture in a Raspberry Pi. For
example, dynamic programming solvers which can be used in service placement, for
example, IBM CPLEX solver, JAVA ILP, or Gurobi, do not provide library distributions
runnable on the devices with the ARM processor architecture so far. This problem is not
specific to our work, but is a common problem when using fog infrastructure.

In this work, we have considered one fog landscape and communication and application
execution within and between its fog colonies and the cloud. However, it is a promising
research topic to investigate a meta control layer in the fog to allow not only
communication between fog colonies, but also between multiple fog landscapes. This
would allow optimization of the topologies of the fog landscapes with regard to proximity,
efficiency, and volatility of fog resources.

According to state-of-the-art surveys (Kashani, Ahmadzadeh &Mahdipour, 2020; Afzal
& Kavitha, 2019), other methods for service placement and migration could be
implemented to tackle the volatility of the fog landscape (Nair & Somasundaram, 2019).

Since fog computing is still a quite recent and developing research area, proper
security mechanisms remain a challenge. In this particular work, the private network in
which the fog landscape operates is deemed to be secure, and all components of the fog
landscape communicate via dedicated API endpoints on certain ports and IP addresses
specified in the framework. Additionally, ingress and egress rules can be set up on
each device allowing only specific framework-related interactions. Other software and
hardware security mechanisms for fog computing need to be further investigated (Tange
et al., 2020).

Another promising improvement is adopting the recent ETSI standard on context
information management and NSGI-LD API metadata (ETSI GS CIM 009, 2019) within
the implemented API of the FogFrame framework. This would allow to unambiguously
use geographic location queries, temporal data, and linked data coming from different
sources.

RELATED WORK
To the best of our knowledge, already existing contributions in the area of fog computing
are often evaluated by the means of simulators along with artificially generated data,
since there is still a lack of research testbeds which could be used to evaluate different
mechanisms in fog computing. Also, with regard to service placement, many existing
approaches simply assume that a fog landscape is already available and can be used.
Therefore, in this section, we focus on the works which provide concrete implementations
of fog architectures. After that, we devote our attention to different service placement
methods.

Architectures
Battulga, Miorandi & Tedeschi (2020) introduce the FogGuru platform for fog computing
implemented via a real-world testbed. Their representative fog landscape is built out of
five Raspberry Pis united in a cluster cloud tier. The cloud is utilized to host a static service
to process sensor data. Their system utilizes a publish-subscribe mechanism to push sensor

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 34/45

http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

data through a stream processing system and further into the cloud tier. For orchestration
purposes, Docker Swarm is used, and one of the five Raspberry Pi units is used as a Swarm
Manager. Unlike our work, the work of Battulga et al. shows how to utilize a publish-
subscribe mechanism in fog computing. Their testbed is static, unlike ours, where we
explicitly tackle runtime operation events in the fog landscape and migrate necessary
services when needed.

In the work of Mahmud, Ramamohanarao & Buyya (2019), alongside with a simulated
environment via iFogSim, the authors implement a small static testbed of eight
smartphones as IoT devices and five standard computers that act together as a fog cluster
of resources interconnected with LAN. This fog cluster operates within their framework
called FogBus. Service placement is based on a time-optimized QoS-based policy and
follows application deadlines. For this, a heuristic evolutionary algorithm to create a
placement map of applications onto available resources in the fog cluster is applied. To
address possible failures of resources within the fog cluster, in their work a replication
mechanism is provided. Compared to their work, our proposed framework ensures
cooperation between different fog colonies. The fog landscape automatically detects if
devices appear or disappear from the fog landscape, and places, migrates, and optimizes
services accordingly.

Another Raspberry Pi-based testbed called piFogBed is presented by Xu & Zhang (2019).
Their system has a coordinator deployed on a standard computer that contains user
management functionality, a device allocator for service placement of user applications, a
container manager to save service images to DockerHub, a network simulator and an
application execution controller. Fog nodes are deployed on four Raspberry Pi units
and execute applications. Service placement is implemented in a set of policies that ensure
the utilization of closest fog nodes until their capacities reach a certain threshold and
taking into account bandwidth and delay constraints. Their work is a good example of
holistic and detailed experiments. Compared to the work of Xu and Zhang, we consider
multiple fog colonies that utilize a decentralized service placement for application
execution.

An interesting combination of blockchain and fog computing technologies is proposed
in the work of Cech, Großmann & Krieger (2019). Their decentralized architecture is
based on MultiChain nodes embedded in more powerful fog cells and a P2P network.
This P2P network overlay provides a distributed data store to share sensor data
between resources in the fog landscape. The authors implemented a testbed with three
Raspberry Pi units connected to a standard computer. Docker Swarm was used for
orchestration of applications. Blockchain functionality is implemented by a Docker image
of blockchain based on the MultiChain framework. In our work, we focus on the fog
landscape itself, on how it is formed, how the communication is performed between
different fog colonies, and how the volatility is tackled. The promising mechanism of Cech
and Krieger could be applied for a distributed data store, as well as to enable tracking of
application execution around the fog landscape.

He et al. (2018) propose a simulated fog computing model introducing static dedicated
and volatile opportunistic fog landscapes as well as fog masters and fog workers as the main

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 35/45

http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

entities in fog landscapes resembling our fog nodes and fog cells. Similarly to our approach,
the presented model enables multiple fog masters in one fog environment. In the pairing
mechanism, He et al. consider invitations from fog workers in order to enter the fog
landscape, while in our work fog cells and fog nodes perform self-announcement. Even
though their system is simulated, He et al. provide very interesting insights on interactions
within different fog environments.

Tsai et al. (2017) implement a distributed analytics platform based on Raspberry Pis
using TensorFlow and Kubernetes. Their testbed consists of a centralized server and up to
four fog devices connected by an Ethernet switch. The applications are split into small
operators by TensorFlow, which is comparable to the way we assume applications to be
composed out of services. Kubernetes controls and monitors the fog landscape, checks
the available resources, and deploys Docker containers of operators on-demand. In
contrast, in our work, we have developed an own distributed management system for
the fog landscape which is not centralized like Kubernetes. Fog nodes are lightweight
compared to Kubernetes, nevertheless they perform all necessary functionalities in own fog
colonies, namely, monitoring, management and orchestration of own fog colonies.

Yigitoglu et al. (2017) introduce the fog computing framework Foggy. Comparable to
FogFrame, the according testbed is implemented based on four Raspberry Pi units.
Compared to our work, Yigitoglu et al. do not consider multiple fog colonies and a
hierarchical fog landscape. Resource provisioning in their work is performed by an
orchestration server, which runs on every node in the network, and implements a first fit
provisioning method. In our work, we consider forming decentralized fog colonies and
communication between them, and adjust service placement to account for the volatile
nature of the fog landscape, for example, device discovery, failures and overloads.

We provide a summary of the findings from the related fog computing architectures in
Table 4. This table provides the insights for each considered work of whether it is
implemented or simulated, makes use of VMs and containers, is a centralized solution or

Table 4 Overview of implementations of fog architectures.

Work Implemented VMs Containers Centralized
reasoning

Distributed
reasoning

Intra-fog
communication

Inter-fog
communication

Battulga, Miorandi & Tedeschi
(2020)

✓ ✓ ✓ ✓ ✓

Mahmud, Ramamohanarao &
Buyya (2019)

✓ ✓ ✓ ✓

Xu & Zhang (2019) ✓ ✓ ✓ ✓ ✓

Cech, Großmann & Krieger
(2019)

✓ ✓ ✓ ✓

He et al. (2018) ✓ ✓

Tsai et al. (2017) ✓ ✓ ✓ ✓

Yigitoglu et al. (2017) ✓ ✓ ✓ ✓ ✓

FogFrame ✓ ✓ ✓ ✓ ✓ ✓

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 36/45

http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

distributed, accounts for the communication within the dedicated fog computing
environment, and considers the communication between multiple fog landscapes.

Service placement
So far, we have discussed contributions to the management and communication in fog
landscapes. In the following, we consider related work in the area of resource provisioning
and service placement in the fog. Notably, literally hundreds of studies on service
placement in the fog have been presented in recent years (Bellendorf &Mann, 2020; Salaht,
Desprez & Lebre, 2020; Hong & Varghese, 2019). An interesting systematic review has
recently been presented by Kashani, Ahmadzadeh & Mahdipour (2020). It provides
comprehensive descriptions, advantages and disadvantages of approximate, exact,
fundamental, and hybrid methods of load balancing in fog computing. Most of the
methods mentioned in the survey are simulated, and it is promising to implement the
mentioned methods in a real-world fog computing environment. Also, some of the cloud
computing resource provisioning methods can be adapted onto fog computing. In another
recent survey by Afzal & Kavitha (2019), advantages and limitations of existing load
balancing methods in cloud computing are considered. These methods can be
implemented within the fog controller’s reasoning mechanisms to manage additional
cloud resources for fog colonies. Because of the large number of existing approaches, we
will focus on the content-wise closest work in the next paragraphs.

Brogi & Forti (2017) introduce the FogTorch tool which aims to perform resource
provisioning in fog landscapes. FogTorch accepts a fog landscape infrastructure and
application specifications as inputs, and calculates a deployment model. The basis for the
deployment is QoS-aware service placement. The placement approach preprocesses all
input requests to search a map of available resources for each service in each request,
backtracks the results of preprocessing to guarantee the deployment of all services, and
applies a heuristic fail-first algorithm to ensure the deployment of those services having
fewer compatible nodes and more demands in resources. In contrast, in our work, we
implement FogFrame along with our own resource provisioning mechanisms, and apply it
in a real-world Raspberry Pi testbed. The integration of FogFrame with FogTorch may
become a good opportunity in the future to deal with the reoptimization of network
topologies of fog landscapes.

Xiao & Krunz (2017) consider an offloading problem in fog computing. Optimization is
performed based on power consumption and Quality of Experience (QoE) parameters.
Their approach is called offload forwarding. In contrast to our work, the authors use
different criteria for optimization, namely, QoE and power consumption. This is an
interesting approach, and our model may be extended to take into account power
efficiency of the fog landscape and QoE inputs from users.

Ni et al. (2017) propose a resource allocation technique for fog computing which is
based on Priced Timed Petri nets. In the application model used in their work, a fog
application is orchestrated from single services. The time and price for execution of these
services differ for each device. The resources for allocation are chosen by the users
depending on the information received from the Petri net and their own demands. In our

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 37/45

http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

approach, users are not involved in the orchestration component, and the reasoning
service reacts to application requests automatically.

Saurez et al. (2016) propose to allocate resources and migrate services in the fog based
on two possible triggers: (i) meeting latency constraints and (ii) resolving resource
pressure. In contrast, in our work, apart from latency and resource constraints, we take
into account QoS parameters, namely, deadlines on deployment and execution of
applications.

Nardelli et al. (2019) introduce several heuristic approaches to efficiently identify service
placement considering the volatility of computing resources. They simulate different
network topologies and sizes of fog infrastructure. In their work, several meta-heuristic
algorithms are implemented: a greedy first fit, tabu search and local search algorithms.
According to findings of Nardelli et al., the greedy first fit algorithm is the fastest, however
with the worst quality, whereas the local search heuristics shows the best performance
trade-off. In our work, we apply two heuristic algorithms – a greedy and a genetic
algorithm, for service placement in a real-world fog landscape. We also introduce different
placement mechanisms to account for device discovery, failures and overloads.

Mseddi et al. (2019) introduce service placement implemented by the means of particle-
swarm optimization, a greedy algorithm, and an exact optimization. The goal of their
placement is to maximize the number of executed applications adhering to their time
constraints. According to their results, Mseddi et al. state that the particle-swarm
optimization yields high resolution times and is not viable in fog computing environments.
Their greedy algorithm aims to minimize the distance and delay between used fog
resources taking into account their utilization. In contrast, our greedy algorithm aims
to maximally utilize a fog colony adhering to QoS and capacities of available resources as
well as to the types of services. In general, the service placement approach in our work
differs from the work of Mseddi et al.: it considers multiple fog colonies and offloading of
applications as well as contains separate policies to tackle operational events in a fog
landscape.

In the work of Abedi & Pourkiani (2020), the authors introduce a service placement
algorithm based on an artificial neural network aimed to minimize response times of
applications while distributing them in the fog landscape. Their approach is simulated with
MATLAB, and therefore it is not clear how long it takes to produce such a neural network
in the real world. It has to be noted, that this approach, as well as any other machine
learning (ML) model, requires considerable volume of training data. This means that
before any neural network can be created, other placement algorithms or service
placement policies have to be used to historically record those placement decisions to
receive a viable training dataset.

Mostafa, Ridhawi & Aloqaily (2018) also implement an artificial neural network in a
simulated environment to make placement predictions based on historical placement data.
The algorithms in our work could provide a basis for training data and eventually be
substituted by ML models. An interesting recent survey (Abdulkareem et al., 2019)
discusses these problems and in general areas where ML can be applied in fog computing:

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 38/45

http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

ML for specific IoT service implementations and ML for decision making in resource
provisioning.

In general, the considered contributions differ from our work in terms of the system
model for service placement in the fog landscape, parameters which are included in this
model, and algorithms to provide a solution for this model.

In our previous work (Skarlat et al., 2016; Skarlat et al., 2017a, Skarlat et al., 2017b),
we model a conceptual fog landscape and an IoT application to be executed by the means
of fog resources. Based on these preliminaries, we formulate the fog service placement
problem, which aims to maximize the utilization of fog resources and the adherence to
QoS parameters. We simulate a fog landscape by the means of CloudSim and iFogSim
(Gupta et al., 2017) and solve the fog service placement problem by a first fit algorithm, a
genetic algorithm, and an exact optimization method. In more recent work (Skarlat et al.,
2018), a high-level overview of the architecture of FogFrame is presented.

In contrast, in this paper, we provide the design details and the workflows in a fog
landscape, eliminate the usage of simulators and implement a representative real-world
Raspberry Pi-based testbed with the FogFrame framework. The framework (i) introduces
mechanisms to create a fog landscape and account for its volatile nature, (ii) provides
decentralized application execution in multiple fog colonies, (iii) discusses communication
mechanisms between different fog colonies, (iv) introduces a service placement problem
formulation to account for practical issues dealing with delegating and deployment of
applications, (v) implements a greedy algorithm and a genetic algorithm to solve the
service placement problem, and (vi) reacts to runtime events in the fog landscape and
migrates necessary services to balance workload between resources. We extensively
evaluate the framework with regard to deployment times of services and utilization of
resources.

CONCLUSION
In this work, we have designed and developed the fog computing framework FogFrame.
The foundation for the framework are lightweight container technologies and loosely-
coupled components to provide a stable and fault-tolerant distributed system. In the
course of the implementation, we identified and resolved technical issues of how to
create a real-world fog landscape based on Raspberry Pi units, which are considered as
representative devices for fog computing. We investigated how to instantiate containers in
different computing environments and how to store images of services and share those
images within the available infrastructure. A considerable part of this work has been
devoted to the problem of how to effectively distribute services in a fog landscape.
Therefore, we formalized a system model, and implemented a genetic algorithm as well as
a greedy algorithm for service placement.

Experiments were conducted to assess deployment times of applications, behavior of
service placement algorithms with different arrival patterns of service requests, and
computational time depending on the workload to be processed. The genetic algorithm
placement distributes services in a balanced way, while the greedy algorithm loads each of

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 39/45

http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

the fog devices with the maximum available resource capacity. If there are no sufficient
resources in the current fog colony, applications are delegated to the closest neighbor
fog colony. The computational time of the genetic algorithm is stable for the specified
number of services, however with the considerably increasing number of services to be
deployed, the genetic algorithm performs accordingly more computational operations to
evaluate each possible solution. Services are successfully recovered and redeployed when
fog cells fail or experience overload. Device discovery ensures efficient balancing and
horizontal scalability in the fog landscape as well as allows to release cloud resources and
other fog cells, which may be intensively used in the fog colony, by migrating necessary
services onto discovered devices.

In this paper, we instantiate and work with one arbitrary fog landscape. However, it
is a promising research topic to investigate a meta control layer to allow not only
communication between fog colonies, but also between multiple fog landscapes. In future
work, various components of FogFrame can be substituted or extended, for example, the
resource provisioning and service placement methods, or pairing methods. FogFrame has
intentionally been designed and implemented in a loosely-coupled manner in order to
allow for this. A particular issue to address in the future work is how to scan and
reconfigure the fog landscape structure based on different runtime events: device
discovery, overloads, and failures. When devices appear and disappear in the fog
landscape, the resulting network constellation may become not optimal in terms of latency,
bandwidth, network hops, location mapping, and connection preservation. Therefore,
optimizing fog landscape topologies is another research challenge. For this, different
resource provisioning methods can be developed and integrated into FogFrame. The
framework is publicly available (https://github.com/softls/FogFrame-2.0), and is provided
to the research community for further extensions and experiments.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Austrian Research Promotion Agency (FFG) via the
“Austrian Competence Center for Digital Production” (CDP) under the contract number
854187 and by Technische Universität Wien. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Austrian Research Promotion Agency (FFG).
Austrian Competence Center for Digital Production (CDP): 854187.
Technische Universität Wien.

Competing Interests
Stefan Schulte is an Academic Editor for PeerJ.

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 40/45

https://github.com/softls/FogFrame-2.0
http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

Author Contributions
� Olena Skarlat conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

� Stefan Schulte conceived and designed the experiments, authored or reviewed drafts of
the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code and configuration files are available at GitHub:
https://github.com/softls/FogFrame-2.0.

REFERENCES
Abdulkareem KH, Mohammed MA, Gunasekaran SS, Al-Mhiqani MN, Mutlag AA, Mostafa

SA, Ali NS, Ibrahim DA. 2019. A review of fog computing and machine learning: concepts,
applications, challenges, and open issues. IEEE Access Journal 7:153123–153140
DOI 10.1109/ACCESS.2019.2947542.

Abedi M, Pourkiani M. 2020. Resource allocation in combined fog-cloud scenarios by using
artificial intelligence. In: 5th IEEE International Conference on Fog and Mobile Edge Computing
(FMEC’20). Paris, France: IEEE, 218–222.

Afzal S, Kavitha G. 2019. Load balancing in cloud computing: a hierarchical taxonomical
classification. Journal of Cloud Computing 8(22):1–24 DOI 10.1186/s13677-019-0146-7.

Amarante SRM, Roberto FM, Cardoso AR, Celestino J. 2013. Using the multiple knapsack
problem to model the problem of virtual machine allocation in cloud computing. In: 16th IEEE
International Conference on Computational Science and Engineering (CSE’13). Syndey, Australia:
IEEE, 476–483.

Arunarani A, Manjula D, Sugumaran V. 2019. Task scheduling techniques in cloud computing: A
literature survey. Future Generation Computer Systems 91(4):407–415
DOI 10.1016/j.future.2018.09.014.

Bachmann K. 2017. Design and implementation of a fog computing framework. TUWien, Master
thesis. Available at http://www.infosys.tuwien.ac.at/staff/sschulte/paper/Bachmann_Master.pdf.

Battulga D, Miorandi D, Tedeschi C. 2020. FogGuru: a fog computing platform based on Apache
Flink. In: 23rd IEEE Conference on Innovation in Clouds, Internet and Networks and Workshops
(ICIN’20). Paris, France: IEEE, 156–158.

Bellendorf J, Mann ZA. 2020. Classification of optimization problems in fog computing. Future
Generation Computer Systems 107(5):158–176 DOI 10.1016/j.future.2020.01.036.

Bhandari D, Murthy C, Pal S. 2012. Variance as a stopping criterion for genetic algorithms with
elitist model. Fundamenta Informaticae 120(2):145–164 DOI 10.3233/FI-2012-754.

Bonomi F, Milito R, Natarajan P, Zhu J. 2014. Fog computing: a platform for Internet of Things
and analytics. In: Bessis N, Dobre C, eds. Big Data and Internet of Things: A Roadmap for Smart
Environments—Studies in Computational Intelligence. Vol. 546. Cham: Springer, 169–186.

Botta A, De Donato W, Persico V, Pescape A. 2016. Integration of cloud computing and Internet
of Things: a survey. Future Generation Computer Systems 56(7):684–700
DOI 10.1016/j.future.2015.09.021.

Brogi A, Forti S. 2017. QoS-aware deployment of IoT applications through the fog. IEEE Internet
of Things Journal 4(5):1185–1192 DOI 10.1109/JIOT.2017.2701408.

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 41/45

https://github.com/softls/FogFrame-2.0
http://dx.doi.org/10.1109/ACCESS.2019.2947542
http://dx.doi.org/10.1186/s13677-019-0146-7
http://dx.doi.org/10.1016/j.future.2018.09.014
http://www.infosys.tuwien.ac.at/staff/sschulte/paper/Bachmann_Master.pdf
http://dx.doi.org/10.1016/j.future.2020.01.036
http://dx.doi.org/10.3233/FI-2012-754
http://dx.doi.org/10.1016/j.future.2015.09.021
http://dx.doi.org/10.1109/JIOT.2017.2701408
http://dx.doi.org/10.7717/peerj-cs.588
https://peerj.com/computer-science/

Catarinucci L, De Donno D, Mainetti L, Palano L, Patrono L, Stefanizzi ML, Tarricone L. 2015.
An IoT-aware architecture for smart healthcare systems. IEEE Internet of Things Journal
2(6):515–526 DOI 10.1109/JIOT.2015.2417684.

Cech HL, Großmann M, Krieger UR. 2019. A fog computing architecture to share sensor data by
means of blockchain functionality. In: IEEE International Conference on Fog Computing
(ICFC’19). Prague, Czech Republic: IEEE, 31–40.

Celesti A, Mulfari D, Fazio M, Villari M, Puliafito A. 2016. Exploring container virtualization in
IoT clouds. In: 2th IEEE International Conference on Smart Computing (SMARTCOMP’16).
Missouri: St.-Louis, 1–6.

Compare M, Baraldi P, Zio E. 2020. Challenges to IoT-enabled predictive maintenance for
industry 4.0. IEEE Internet of Things Journal 7(5):4585–4597 DOI 10.1109/JIOT.2019.2957029.

Dastjerdi A, Gupta H, Calheiros R, Ghosh S, Buyya R. 2016. Fog computing: principles,
architectures, and applications. In: Internet of Things: Principles and Paradigms, Chapter 4.
Burlington: Morgan Kaufmann, 61–75. Available at https://arxiv.org/abs/1601.02752.

Detti P. 2009. A polynomial algorithm for the multiple knapsack problem with divisible item sizes.
Information Processing Letters 109(11):582–584 DOI 10.1016/j.ipl.2009.02.003.

ETSI GS CIM 009. 2019. ETSI GS CIM 009 V1.1.1—context information management (CIM);
NGSI-LD API. Available at https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.01.01_60/
gs_CIM009v010101p.pdf.

Froiz-Mísguez I, Fernández-Caramés TM, Fraga-Lamas P, Castedo L. 2018. Design,
implementation and practical evaluation of an iot home automation system for fog computing
applications based on mqtt and zigbee-wifi sensor nodes. IEEE Sensors Journal 18(2660):1–42
DOI 10.1109/JSEN.2018.2870228.

Gharaibeh A, Salahuddin MA, Hussini SJ, Khreishah A, Khalil I, Guizani M, Al-Fuqaha A.
2017. Smart cities: a survey on data management, security, and enabling technologies. IEEE
Communications Surveys & Tutorials 19(4):2456–2501 DOI 10.1109/COMST.2017.2736886.

Giang NK, Blackstock M, Lea R, Leung VC. 2015. Developing IoT applications in the fog: a
distributed dataflow approach. In: 5th IEEE International Conference on the Internet of Things
(IoT’15). Seoul, Korea: IEEE, 155–162.

Gupta H, Dastjerdi A, Ghosh S, Buyya R. 2017. iFogSim: a toolkit for modeling and simulation of
resource management techniques in the Internet of Things, edge and fog computing
environments. Software: Practice and Experience 47(9):1275–1296 DOI 10.1002/spe.2509.

He J, Wei J, Chen K, Tang Z, Zhou Y, Zhang Y. 2018. Multitier fog computing with large-scale
IoT data analytics for smart cities. IEEE Internet of Things Journal 5(2):677–686
DOI 10.1109/JIOT.2017.2724845.

Hochreiner C, Voegler M, Schulte S, Dustdar S. 2017. Cost-efficient enactment of stream
processing topologies. PeerJ Computer Science 3:e141 DOI 10.7717/peerj-cs.141.

Hong C-H, Varghese B. 2019. Resource management in fog/edge computing: a survey on
architectures, infrastructure, and algorithms. ACM Computing Surveys 52(5):1–37
DOI 10.1145/3326066.

Hooker J, Osorio M. 1999. Mixed logical-linear programming. Discrete Applied Mathematics
96-97:395–442 DOI 10.1016/S0166-218X(99)00100-6.

Hu P, Dhelim S, Ning H, Qiu T. 2017. Survey on Fog Computing: Architecture, Key Technologies,
Applications and Open Issues. Journal of Network and Computer Applications 98(3):27–42
DOI 10.1016/j.jnca.2017.09.002.

IEEE 1934. 2018. IEEE 1934–2018—IEEE standard for adoption of OpenFog reference
architecture for fog computing. Available at https://standards.ieee.org/standard/1934-2018.html.

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 42/45

http://dx.doi.org/10.1109/JIOT.2015.2417684
http://dx.doi.org/10.1109/JIOT.2019.2957029
https://arxiv.org/abs/1601.02752
http://dx.doi.org/10.1016/j.ipl.2009.02.003
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.01.01_60/gs_CIM009v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.01.01_60/gs_CIM009v010101p.pdf
http://dx.doi.org/10.1109/JSEN.2018.2870228
http://dx.doi.org/10.1109/COMST.2017.2736886
http://dx.doi.org/10.1002/spe.2509
http://dx.doi.org/10.1109/JIOT.2017.2724845
http://dx.doi.org/10.7717/peerj-cs.141
http://dx.doi.org/10.1145/3326066
http://dx.doi.org/10.1016/S0166-218X(99)00100-6
http://dx.doi.org/10.1016/j.jnca.2017.09.002
https://standards.ieee.org/standard/1934-2018.html
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.588

Isakovic H, Ratasich D, Hirsch C, Platzer M, Wally B, Rausch T, Nickovic D, Krenn W,
Kappel G, Dustdar S, Grosu R. 2019. Cps/iot ecosystem: a platform for research and education.
In: Chamberlain R, Taha W, Törngren M, eds. Cyber Physical Systems: Model-Based Design—
CyPhy 2018, WESE 2018—Lecture Notes in Computer Science. Cham: Springer, 206–213
DOI 10.1007/978-3-030-23703-5_12.

Karagiannis V, Schulte S. 2021. Comparison of alternative architectures in fog computing. In: 4th
IEEE International Conference on Fog and Edge Computing (ICFEC’20). Melbourne, Australia:
IEEE, 19–29.

Kashani MH, Ahmadzadeh A, Mahdipour E. 2020. Load balancing mechanisms in fog
computing: a systematic review. arXivAvailable at https://arxiv.org/abs/2011.14706.

Katona A, Panfilov P. 2018. Building predictive maintenance framework for smart environment
application systems. In: 29th International DAAAM Symposi Intelligent Manufacturing and
Automation. 29:Zadar, Croatia: DAAAM International, 460–470.

Kougka G, Gounaris A. 2019. Optimization of data flow execution in a parallel environment.
Distributed and Parallel Databases Journal 37(3):385–410 DOI 10.1007/s10619-018-7243-3.

Mahmud R, Ramamohanarao K, Buyya R. 2019. Edge affinity-based management of applications
in fog computing environments. In: 12th IEEE/ACM International Conference Utility and Cloud
Computing (UCC’19). Auckland, New Zealand: ACM, 61–70.

Maurer M, Brandic I, Sakellariou R. 2013. Adaptive resource configuration for Cloud
infrastructure management. Future Generation Computer Systems 29(2):472–487
DOI 10.1016/j.future.2012.07.004.

Morabito R, Cozzolino V, Ding A, Beijar N, Ott J. 2018. Consolidate IoT edge computing with
lightweight virtualization. IEEE Network 32(1):102–111 DOI 10.1109/MNET.2018.1700175.

Mostafa N, Ridhawi IA, Aloqaily M. 2018. Fog resource selection using historical executions. In:
3rd IEEE International Conference on Fog and Mobile Edge Computing (FMEC’18). Barcelona,
Spain: IEEE, 272–276.

Mseddi A, Jaafar W, Elbiaze H, Ajib W. 2019. Joint container placement and task provisioning in
dynamic fog computing. IEEE Internet of Things Journal 6(6):10028–10040
DOI 10.1109/JIOT.2019.2935056.

Nair B, Somasundaram MSB. 2019. Overload prediction and avoidance for maintaining optimal
working condition in a fog node. Computers & Electrical Engineering 77(1):147–162
DOI 10.1016/j.compeleceng.2019.05.011.

Nardelli M, Cardellini V, Grassi V, Presti FL. 2019. Efficient operator placement for distributed
data stream processing applications. IEEE Transactions on Parallel and Distributed Systems
30(8):1753–1767 DOI 10.1109/TPDS.2019.2896115.

Ni L, Zhang J, Jiang C, Yan C, Yu K. 2017. Resource allocation strategy in fog computing based on
priced timed petri nets. IEEE Internet of Things Journal 4(5):1216–1228
DOI 10.1109/JIOT.2017.2709814.

Papadopoulos AV, Versluis L, Bauer A, Herbst N, Von Kistowski J, Ali-eldin A, Abad C,
Amaral JN, Tůma P, Iosup A. 2019. Methodological principles for reproducible performance
evaluation in cloud computing. In: IEEE Transactions on Software Engineering
DOI 10.1109/TSE.2019.2927908.

Puliafito C, Mingozzi E, Longo F, Puliafito A, Rana O. 2019. Fog computing for the Internet of
Things: a survey. ACM Transactions on Internet Technology 19(2):18:1–18:41
DOI 10.1145/3301443.

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 43/45

http://dx.doi.org/10.1007/978-3-030-23703-5_12
https://arxiv.org/abs/2011.14706
http://dx.doi.org/10.1007/s10619-018-7243-3
http://dx.doi.org/10.1016/j.future.2012.07.004
http://dx.doi.org/10.1109/MNET.2018.1700175
http://dx.doi.org/10.1109/JIOT.2019.2935056
http://dx.doi.org/10.1016/j.compeleceng.2019.05.011
http://dx.doi.org/10.1109/TPDS.2019.2896115
http://dx.doi.org/10.1109/JIOT.2017.2709814
http://dx.doi.org/10.1109/TSE.2019.2927908
http://dx.doi.org/10.1145/3301443
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.588

Reddy KHK, Luhach AK, Pradhan B, Dash JK, Roy DS. 2020. A genetic algorithm for energy
efficient fog layer resource management in context-aware smart cities. Sustainable Cities and
Society 63:102428 DOI 10.1016/j.scs.2020.102428.

Salaht FA, Desprez F, Lebre A. 2020. An overview of service placement problem in fog and edge
computing. ACM Computing Surveys 53(3):1–35 DOI 10.1145/3391196.

Santos J, Wauters T, Volckaert B, De Turck F. 2019. Resource provisioning in fog computing:
from theory to practice. Sensors 19(10):1–25 DOI 10.3390/s19102238.

Saurez E, Hong K, Lillethun D, Ramachandran U, Ottenwaelder B. 2016. Incremental
deployment and migration of geo-distributed situation awareness applications in the fog. In:
10th ACM International Conference on Distributed and Event-based Systems (DEBS’16). Irvine,
California: ACM, 258–269.

Skarlat O, Karagiannis V, Rausch T, Bachmann K, Schulte S. 2018. A framework for
optimization, service placement, and runtime operation in the fog. In: 11th IEEE/ACM Int. Conf.
on Utility and Cloud Computing (UCC’18). Zurich, Switzerland: IEEE, 164–173.

Skarlat O, Nardelli M, Schulte S, Borkowski M, Leitner P. 2017a. Optimized IoT service
placement in the fog. Service Oriented Computing and Applications 11(4):1–17
DOI 10.1007/s11761-017-0219-8.

Skarlat O, Nardelli M, Schulte S, Dustdar S. 2017b. Towards QoS-aware fog service placement.
In: 1st IEEE International Conference on Fog and Edge Computing (ICFEC’17). Madrid, Spain:
IEEE, 89–96.

Skarlat O, Schulte S, Borkowski M, Leitner P. 2016. Resource provisioning for IoT services in the
fog. In: 9th IEEE International Conference on Service Oriented Computing and Applications
(SOCA’16). Hong Kong, China: IEEE, 32–39.

Smimite O, Afdel K. 2020. Containers placement and migration on cloud system. International
Journal of Computer Applications 176(35):9–18 Available at https://arxiv.org/abs/2007.08695.

Stojmenovic I. 2014. Fog computing: a cloud to the ground support for smart things and machine-
to-machine networks. In: Australasian Telecommunication Networks and Applications
Conference (ATNAC’14). Melbourne, Australia: IEEE, 117–122.

Tange K, De DonnoM, Fafoutis X, Dragoni N. 2020. A systematic survey of industrial Internet of
Things security: requirements and fog computing opportunities. IEEE Communications Surveys
& Tutorials 22(4):2489–2520 DOI 10.1109/COMST.2020.3011208.

Tsai P, Hong H, Cheng A, Hsu C. 2017. Distributed analytics in fog computing platforms using
Tensorflow and Kubernetes. In: 19th Asia-Pacific Network Operations and Management Symposi
(APNOMS’17). Seoul, Korea: IEEE, 145–150.

Vaquero L, Rodero-Merino L. 2014. Finding your way in the fog: towards a comprehensive
definition of fog computing. ACM SIGCOMM Computer Communication Review 44(5):27–32
DOI 10.1145/2677046.2677052.

Varghese B, Buyya R. 2018.Next generation cloud computing: new trends and research directions.
Future Generation Computer Systems 79(6):849–861 DOI 10.1016/j.future.2017.09.020.

Varshney P, Simmhan Y. 2017. Demystifying fog computing: characterizing architectures,
applications and abstractions. In: 1st IEEE International Conference on Fog and Edge Computing
(ICFEC’17). Madrid, Spain: IEEE, 115–124.

Whitley D. 1994. A genetic algorithm tutorial. Statistics and Computing 4(2):65–85
DOI 10.1007/BF00175354.

Xiao Y, Krunz M. 2017. QoE and power efficiency tradeoff for fog computing networks with fog
node cooperation. In: IEEE Conference on Computer Communications (INFOCOM’17). Atlanta,
GA, USA: IEEE, 1–9.

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 44/45

http://dx.doi.org/10.1016/j.scs.2020.102428
http://dx.doi.org/10.1145/3391196
http://dx.doi.org/10.3390/s19102238
http://dx.doi.org/10.1007/s11761-017-0219-8
https://arxiv.org/abs/2007.08695
http://dx.doi.org/10.1109/COMST.2020.3011208
http://dx.doi.org/10.1145/2677046.2677052
http://dx.doi.org/10.1016/j.future.2017.09.020
http://dx.doi.org/10.1007/BF00175354
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.588

Xu M, Tian W, Buyya R. 2017. A survey on load balancing algorithms for virtual machines
placement in cloud computing. Concurrency and Computation: Practice and Experience
29(12):1–16 DOI 10.1002/cpe.4123.

Xu Q, Zhang J. 2019. piFogBed: a fog computing testbed based on raspberry pi. In: 38th IEEE
International Performance Computing and Communications Conference (IPCCC’19). London,
England: IEEE, 1–8.

Ye Z, Zhou X, Bouguettaya A. 2011. Genetic algorithm based QoS-aware service compositions in
cloud computing. In: 16th International Conference on Database Systems for Advanced
Applications (DASFAA’11). 6588:Hong Kong, China: Springer, 321–334.

Yeniay O. 2005. Penalty function methods for constrained optimization with genetic algorithms.
Mathematical and Computational Applications 10(1):45–56 DOI 10.3390/mca10010045.

Yi S, Li C, Li Q. 2015. A survey of fog computing: concepts, applications and issues. In: 16th ACM
International Simposium on Mobile Ad Hoc Networking and Computing (MobiHoc’15).
Hangzhou, China: ACM, 37–42.

Yi Q, Shi M, Chen M, Wang G. 2016. Research and design of embedded microprocessor based on
ARM architecture. In: 13th International Conference on Wavelet Active Media Technology and
Information Processing (ICCWAMTIP’16). Chengdu, China: IEEE, 463–467.

Yigitoglu E, Mohamed M, Liu L, Ludwig H. 2017. Foggy: a framework for continuous automated
IoT application deployment in fog computing. In: IEEE International Conference on AI Mobile
Services (AIMS’17). Honolulu, Hawaii, USA: IEEE, 38–45.

Yoo M. 2009. Real-time task scheduling by multiobjective genetic algorithm. Journal of Systems
and Software 82(4):619–628 DOI 10.1016/j.jss.2008.08.039.

Yu J, Buyya R, Ramamohanarao K. 2009. Workflow scheduling algorithms for grid computing.
Studies in Computational Intelligence 146:173–214 DOI 10.1007/978-3-540-69277-5_7.

Zhang D, Haider F, St-Hilaire M, Makaya C. 2019.Model and algorithms for the planning of fog
computing networks. IEEE Internet of Things Journal 6(2):3873–3884
DOI 10.1109/JIOT.2019.2892940.

Skarlat and Schulte (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.588 45/45

http://dx.doi.org/10.1002/cpe.4123
http://dx.doi.org/10.3390/mca10010045
http://dx.doi.org/10.1016/j.jss.2008.08.039
http://dx.doi.org/10.1007/978-3-540-69277-5_7
http://dx.doi.org/10.1109/JIOT.2019.2892940
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.588

	FogFrame: a framework for IoT application execution in the fog
	Introduction
	Fog landscape operation
	Service placement
	Evaluation
	Related work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

