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ABSTRACT
Shapley values have become increasingly popular in the machine learning literature,
thanks to their attractive axiomatisation, flexibility, and uniqueness in satisfying certain
notions of ‘fairness’. The flexibility arises from the myriad potential forms of the
Shapley value game formulation. Amongst the consequences of this flexibility is that
there are now many types of Shapley values being discussed, with such variety being
a source of potential misunderstanding. To the best of our knowledge, all existing
game formulations in the machine learning and statistics literature fall into a category,
which we name the model-dependent category of game formulations. In this work, we
consider an alternative and novel formulation which leads to the first instance of what
we call model-independent Shapley values. These Shapley values use a measure of non-
linear dependence as the characteristic function. The strength of these Shapley values is
in their ability to uncover and attribute non-linear dependencies amongst features.
We introduce and demonstrate the use of the energy distance correlations, affine-
invariant distance correlation, and Hilbert–Schmidt independence criterion as Shapley
value characteristic functions. In particular, we demonstrate their potential value for
exploratory data analysis and model diagnostics. We conclude with an interesting
expository application to a medical survey data set.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Data Science
Keywords Shapley values, Statistics, Distance correlation, Explainable AI, Multiple correlation

INTRODUCTION
There are many different meanings of the term ‘‘feature importance’’, even in the context
of Shapley values. Indeed, the meaning of a Shapley value depends on the underlying
game formulation, referred to byMerrick & Taly (2019) as the explanation game. Although,
this is so far rarely discussed explicitly in the existing literature. In general, Shapley value
explanation games can be distinguished as either belonging to the model-dependent
category or the model-independent category. The latter category is distinguished by an
absence of assumptions regarding the data generating process (DGP). Here, the term
model-dependent refers to when the Shapley value depends on a choice of fitted model
(such as the output of a machine learning algorithm), or on a set of fitted models (such as
the set of sub-models of a linear model).
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Shapley values that uncover non-linear dependencies (Sunnies) is, to the best of our
knowledge, the only Shapley-based feature importance method that falls into the model-
independent category. In this category, feature importance scores attempt to determine
what is a priori important, in the sense of understanding the partial dependence structures
within the joint distribution describing the DGP. We show that these methods that
generate model-independent feature importance scores can appropriately be used as
model diagnostic procedures, as well as procedures for exploratory data analysis.

Existing methods in the model-dependent category, on the other hand, seek to uncover
what is perceived as important by the model (or class of models), either with regards to a
performance measure (e.g., a goodness-of-fit measure) or for measuring local influences
on model predictions. Model-dependent definitions of feature importance scores can
be distinguished further according as to whether they depend on a fitted (i.e., trained)
model or on an unfitted class of models. We refer to these as within-model scores and
between-model scores, respectively. This distinction is important, since the objectives are
markedly different.

Within-model Shapley values seek to describe how the model reacts to a variety of
inputs, while, e.g., accounting for correlated features in the training data by systematically
setting ‘‘absent’’ features to a reference input value, such as a conditional expectation.
There are many use cases for within-model Shapley values, such as providing transparency
to model predictions, e.g. for explaining a specific credit decision or detecting algorithmic
discrimination (Datta, Sen & Zick, 2016), as well as understanding model structure,
measuring interaction effects and detecting concept drift (Lundberg et al., 2020).

All within-model Shapley values that we are aware of fall into the class of single reference
games, described by Merrick & Taly (2019). These include SAGE (Covert, Lundberg
& Lee, 2020); SHAP (Lundberg & Lee, 2017); Shapley Sampling Values (Štrumbelj &
Kononenko, 2013); Quantitative Input Influence (Datta, Sen & Zick, 2016); Interactions-
based Method for Explanation(IME) (Štrumbelj, Kononenko & Šikonja, 2009); and
TreeExplainer (Lundberg et al., 2020). Note that some within-model feature importance
methods, such as SHAP, can be described as model agnostic methods, since they may be
applied to any trained model. Regardless, such values are dependent on a prior choice of
fitted model.

In contrast to within-model Shapley values, between-model Shapley values seek to
determine which features influence an outcome of the model fitting procedure, itself, by
repeatedly refitting the model to compute each marginal contribution. Such scores have
been applied, for example, as a means for feature importance ranking in regression models.
These include Shapley Regression Values (Lipovetsky & Conklin, 2001), ANOVA Shapley
values (Owen & Prieur, 2017), and our prior work (Fryer, Strumke & Nguyen, 2020). The
existing between-model feature importance scores are all global feature importance scores,
since they return a single Shapley value for each feature, over the entire data set. Sunnies is
also a global score, though not a between-model score.

A number of publications and associated software have been produced recently to
efficiently estimate or calculate SHAP values. Tree SHAP, Kernel SHAP, Shapley Sampling
Values, Max Shap, Deep Shap, Linear-SHAP and Low-Order-SHAP are all methods
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for either approximating or calculating SHAP values. However, these efficient model-
dependent methods for calculating or approximating SHAP values are developed for
local within-model scores, and are not suitable for Sunnies, which is a global and model-
independent score. While Sunnies does not fit under the model-dependent frameworks for
efficient estimation, Shapley values in general can be approximated via a consistent
Monte Carlo algorithm introduced by Song, Nelson & Staum (2016). While efficient
approximations do exist, computational details are not the focus of this paper, where
we focus on the concept and relevance of Sunnies.

In ‘‘Shapley Decomposition’’, we introduce the concept of the Shapley value and its
decomposition. We then introduce the notion of attributed dependence on labels (ADL),
and briefly demonstrate the behaviour of the R2 characteristic function on a data set with
non-linear dependence, to motivate our alternative measures of non-linear dependence in
place of R2. In ‘‘Measures of non-linear dependence’’, we describe three such measures:
the Hilbert Schmidt Independence Criterion (HSIC), the Distance Correlation (DC) and
the Affine-Invariant Distance Correlation (AIDC). We use these as characteristic functions
throughout the remainder of the work, although we focus primarily on the DC.

The DC, HSIC and AIDC do not constitute an exhaustive list of the available measures
of non-linear dependence. We do not provide here a comparison of their strengths and
weaknesses. Instead, our objective is to propose and demonstrate a variety of use cases for
the general technique of computing Shapley values for model-independent measures of
statistical dependence.

In ‘‘Exploration’’, we demonstrate the value of ADL for exploratory data analysis, using
a simulated DGP that exhibits mutual dependence without pairwise dependence. We
also leverage this example to compare ADL to popular pairwise and model-dependent
measures of dependence, highlighting a drawback of the pairwise methods, and of the
popular XGBoost built-in ‘‘feature importance’’ score. We also show that SHAP performs
favourably here. In ‘‘Diagnostics’’, we introduce the concepts of attributed dependence on
predictions (ADP) and attributed dependence on residuals (ADR). Using simulated DGPs,
we demonstrate the potential for ADL, ADP and ADR to uncover and diagnose model
misspecification and concept drift. For the concept drift demonstration (‘‘Demonstration
with concept drift’’), we see that ADL provides comparable results to SAGE and SHAP,
but without the need for a fitted model. Conclusions are drawn in Section ‘‘Discussion and
Future Work’’.

SHAPLEY DECOMPOSITION
In approaching the question: ‘‘How do the different features X = (X1,...,Xd) in this data
set affect the outcome Y ?’’, the concept of a Shapley value is useful. The Shapley value has
a long history in the theory of cooperative games, since its introduction in Shapley (1953),
attracting the attention of various Nobel prize-winning economists (cf. Roth, 1988), and
enjoying a recent surge of interest in the statistics and machine learning literature. Shapley
(1953) formulated the Shapley value as the unique game theoretic solution concept,
which satisfies a set of four simple and apparently desirable axioms: efficiency, additivity,
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symmetry and the null player axiom. For a recent monograph, defining these four axioms
and introducing solution concepts in cooperative games, consult Algaba, Fragnelli &
Sánchez-Soriano (2019).

As argued by Lipovetsky & Conklin (2001); Israeli (2007); Huettner & Sunder (2012), we
can think of the outcome C(S) of a prediction or regression task as the outcome of a
cooperative game, in which the set S={X1,...,Xd} of data features represent a coalition of
players in the game. The function C is known as the characteristic function of the game. It
maps elements S, in the power set 2[d] of players, to a set of payoffs (or outcomes) and thus
fully describes the game. Let d be the number of players. The marginal contribution of a
player v ∈ S to a team S is defined as C(S∪{v})−C(S). The average marginal contribution
of player v , over the set Sk of all teams of size k that exclude v , is

Ck(v)=
1
|Sk |

∑
S∈Sk

[C(S∪{v})−C(S)], (1)

where |Sk | =
(d−1

k

)
. The Shapley value of player v , then, is given by

φv(C)=
1
d

d−1∑
k=0

Ck(v), (2)

i.e., φv(C) is the average of Ck(v) over all team sizes k.

Attributed dependence on labels
The characteristic function C(S) in Eq. (1) produces a single payoff for the features with
indices in S. In the context of statistical modelling, the characteristic function will depend
on Y and X . To express this we introduce the notation X |S = (Xj)j∈S as the projection
of the feature vector onto the coordinates specified by S, and we write the characteristic
functionCY (S) with subscript Y to clarify its dependence on Y as well as X (via S). Now, we
can define a new characteristic function RY in terms of the popular coefficient of multiple
correlation R2, as

RY (S)=R2(Y ,X |S)= 1−
|Cor(Y ,X |S)|
|Cor(X |S)|

, (3)

where | · | and Cor(·) are the determinant operator and correlation matrix, respectively (cf.
Fryer, Strumke & Nguyen, 2020).

The set of Shapley values of all features in X , using characteristic function C , is known
as the Shapley decomposition of C amongst the features in X . For example, the Shapley
decomposition of RY , from Eq. (3), is the set {φv(RY ) : v ∈ [d]}, calculated via Eq. (2).

In practice, the joint distribution of (Y ,XT) is unknown, so the Shapley decomposition
of C is estimated via substitution of an empirical characteristic function Ĉ in Eq. (1). In this
context, we work with an n×|S| data matrix X|S, whose ith row is the vector x|S= (xij)j∈S,
representing a single observation from X |S. As a function of this observed data, along with
the vector of observed labels y= (yi)i∈[n], the empirical characteristic function Ĉy produces
an estimate of CY that, with Eq. (1), gives the estimate φv(Ĉy), which we refer to as the
Attributed Dependence on Labels (ADL) for feature v .
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Recognising dependence: Example 1
For example, the empirical R2 characteristic function R̂y is given by

R̂y(S)= 1−
|ρ(y,X|S)|
|ρ(X|S)|

, (4)

where ρ is the empirical Pearson correlation matrix.
Regardless of whether we use a population measure or an estimate, the R2 measures only

the linear relationship between the response (i.e., labels) Y and features X . This implies
the R2 may perform poorly as a measure of dependence in the presence of non-linearity.
The following example from a non-linear DGP demonstrates this point.

Suppose the features Xj,j ∈ [d] are independently uniformly distributed on [−1,1].
Given a diagonal matrix A= diag(a1,...,ad), let the response variable Y be determined by
the quadratic form

Y =XTAX = a1X 2
1 + ...+adX

2
d . (5)

Then, the covariance Cov(Y ,Xj)= 0 for all j ∈ [d]. This is because

Cov(XTAX ,Xj)=
d∑

j=1

Cov(X 2
j ,Xj)= 0,

since E[Xj] = 0 and E[X 3
j ] = 0. In Fig. 1, we display the X4 cross section of 10,000

observations generated from Eq. (5) with d = 5 and A= diag(0,2,4,6,8), along with
the least squares line of best fit and associated R2 value. We visualize the results for the
corresponding Shapley decomposition in Fig. 2. As expected, we see that the R2 is not able
to capture the non-linear dependence structure of Eq. (5), and thus neither is its Shapley
decomposition.

We note that improvements on the results in Figs. 1 and 2 can be obtained by choosing
a suitable linearising transformation of the features or response prior to calculating R2, but
such a transformation is not known to be discernible from data in general, except in the
simplest cases.
Measures of non-linear dependence
In the following, we describe three measures of non-linear dependence that, when used as
a characteristic function C , have the following properties.

• Independence is detectable (in theory), i.e., if C(S)= 0, then the variables Y and X |S
are independent. Equivalently, dependence is visible, i.e., if Y and X |S are dependent,
then C(S) 6= 0.
• C is model-independent. Thus, no assumptions are made about the DGP and no
associated feature engineering or transformation of X or Y is necessary. Note that, since
the Shapley values sum, by efficiency, to the distance correlation, we do get the guarantee
that dependence on [d] is visible in the sum of Shapley values, by virtue of equalling
C([d]). However, each individual Shapley value is not a distance correlation, but a linear
combination of distance correlations, and thus cannot itself generally be interpreted as a
distance correlation. The same is true for any sum of a strict subset of the Shapley values,
since efficiency applies to the sum of all Shapley values, and not a strict subset of them.
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Figure 1 Feature X4, from Eq. (5), cross section with 100 least squares lines of best fit, each produced
from a random sample of size 1,000, from the simulated population of size 10,000. The estimate of R2 is
0.0043, with 95% bootstrap confidence interval (0.001, 0.013) over 100 fits. The R2 is close to 0 despite the
presence of strong (non-linear) dependence.

Full-size DOI: 10.7717/peerjcs.582/fig-1
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Figure 2 Shapley decompositions using the four measures of dependence described in ‘‘Measures of
non-linear dependence’’, normalised for comparability, with sample size 1,000 over 1,000 iterations.

Full-size DOI: 10.7717/peerjcs.582/fig-2
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1In this context, we refer to the
characteristic function of a probability
distribution. We would like to make the
reader aware that this is a different use of
the term ‘‘characteristic function’’ than
that used to describe a cooperative game in
the context of Shapley values, as in Eq. (1).

Distance correlation and affine invariant distance correlation
The distance correlation, and its affine invariant adaptation, were both introduced by
Székely, Rizzo & Bakirov (2007). Unlike the Pearson correlation, the distance correlation
between Y and X is zero if and only if Y and X are statistically independent. However, the
distance correlation is equal to 1 only if the dimensions of the linear spaces spanned by Y
and X are equal, almost surely, and Y is a linear function of X .

First, the population distance covariance between the response Y and feature vector
X is defined as a weighted L2 norm of the difference between the joint characteristic
function1 , fYX and the product of marginal characteristic functions fY fX . In essence, this is
a measure of squared deviation from the assumption of independence, i.e., the hypothesis
that fYX = fY fX .

The empirical distance covariance V 2
n is based on Euclidean distances between sample

elements, and can be computed from data matrices Y,X as

V̂ 2(Y,X)=
n∑

i,j=1

A(Y)ijA(X)ij, (6)

where the matrix function A(W) for W∈ {Y,X} is given by

A(W)ij =B(W)ij−
1
n

n∑
i=1

B(W)ij−
1
n

n∑
j=1

B(W)ij+
1
n2

n∑
i,j=1

B(W)ij ,

where || · || denotes the Euclidean norm, and B(W) is the n×n distance matrix with
B(W)ij = ||wi−wj ||, wherewi denotes the ith observation (row) ofW. Here, Y is in general
a matrix of observations, with potentially multiple features. Notice the difference between
Y and y, where the latter is the (single column) label vector introduced in ‘‘Attributed
dependence on labels’’.

The empirical distance correlation R̂ is given by

R̂2(Y,X)=
V̂ 2(Y,X)√

V̂ 2(Y,Y)V̂ 2(X,X)
, (7)

for V̂ 2(Y,Y)V̂ 2(X,X) 6= 0, and R̂(Y,X)= 0 otherwise. For our purposes, we define the
distance correlation characteristic function estimator

D̂y(S)= R̂2(y,X|S). (8)

A transformation of the form x 7→ Ax+ b for a matrix A and vector b is called affine.
Affine invariance of the distance correlation is desirable, particularly in the context of
hypothesis testing, since statistical independence is preserved under the group of affine
transformations. When Y and X are first scaled as Y′ = YS−1/2Y and X′ = XS−1/2X , the
distance correlation V̂ (Y′,X′), becomes invariant under any affine transformation of Y
and X (Székely, Rizzo & Bakirov, 2007, Section 3.2). Thus, the empirical affine invariant
distance correlation is defined by

R̂ ′(Y,X)= R̂(YS−1/2Y ,XS−1/2X ), (9)

and we define the associated characteristic function estimator D̂′y in the same manner
as Eq. (8). Monte Carlo studies regarding the properties of these measures are given by
Székely, Rizzo & Bakirov (2007).
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Hilbert–Schmidt independence criterion
The Hilbert Schmidt Independence Criterion (HSIC) is a kernel-based independence
criterion, first introduced by Gretton et al. (2005a). Kernel-based independence detection
methods have been adopted in a wide range of areas, such as independent component
analysis (Gretton et al., 2007). The link between energy distance-based measures, such as
the distance correlation, and kernel-based measures, such as the HSIC, was established by
Sejdinovic et al. (2013). There, it is shown that the HSIC is a certain formal extension of the
distance correlation.

The HSIC makes use of the cross-covariance operator, CYX , between random vectors
Y and X , which generalises the notion of a covariance. The response Y and feature vector
X are each mapped to functions in a Reproducing Kernel Hilbert Spaces (RKHS), and
the HSIC is defined as the Hilbert–Schmidt (HS) norm ||CYX ||

2
HS of the cross-covariance

operator between these two spaces (Gretton et al., 2005b; Gretton et al., 2007; Gretton et
al., 2005a). Given two kernels `,k, associated to the RKHS of Y and X , respectively, and
their empirical evaluation matrices L,K with row i and column j elements `ij = `(yi,yj)
and kij = k(xi,xj), where yi,xi denote the ith observation (row) in data matrices X and Y,
respectively, the empirical HSIC can be calculated as

ĤSIC(Y,X)=
1
n2

n∑
i,j

kij`ij+
1
n4

n∑
i,j,q,r

kij`qr−
2
n3

n∑
i,j,q

kij`iq . (10)

As in ‘‘Distance correlation and affine invariant distance correlation’’, notice the difference
between Y and y, where the latter is the (single column) label vector introduced in
‘‘Attributed dependence on labels’’. Intuitively, this approach endows the cross-covariance
operator with the ability to detect non-linear dependence, and the HS norm measures the
combined magnitude of the resulting dependence. For a thorough discussion of positive
definite Kernels, with a machine learning emphasis, see the work of Hein & Bousquet
(2004).

Calculating the HSIC requires selecting a kernel. The Gaussian kernel is a popular choice
that has been subjected to extensive testing in comparison to other kernel methods [see,
e.g., Gretton et al., 2005a]. For our purposes, we define the empirical HSIC characteristic
function by

Ĥy(S)= ĤSIC(y,X|S), (11)

and use a Gaussian kernel. Figure 2 shows the Shapley decomposition of Ĥ amongst
the features generated from Eq. (5), again with d = 5 and A= diag(0,2,4,6,8). The
decomposition has been normalised for comparability with the other measures of
dependence presented in the figure. The HSIC can also be generalised to provide a
measure of mutual dependence between any finite number of random vectors (Pfister et
al., 2016).

EXPLORATION
In machine learning problems, complete formal descriptions of the DGP are often
impractical. However, there are advantages to gaining some understanding of the
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dependence structure. In particular, such an understanding is useful when inference
about the data generating process is desired, such as in the contexts of causal inference,
scientific inquiries (in general), or in qualitative investigations (cf. Navarro, 2018). In a
regression or classification setting, the dependence structure between the features and
response is an immediate point of focus. As we demonstrate in ‘‘Recognising dependence:
Example 2’’, the dependence structure cannot always be effectively probed by computing
measures of dependence between labels and feature subsets, even when the number of
marginal contributions is relatively small. In such cases, the Shapley value may not only
allow us to summarise the interactions from many marginal contributions, but also to
fairly distribute strength of dependence to the features.

Attributed dependence on labels (ADL) can be used for exploration in the absence of, or
prior to, a choice of model; but, ADL can also be used in conjunction with a model—for
example, to support, and even validate, model explanations. Even when a machine learning
model is not parsimonious enough to be considered explainable, stakeholders in high risk
settings may depend on the statement that ‘‘feature Xi is important for determining Y ’’ in
general. However, it is not always clear, in practice, whether such a statement about feature
importance is being used to describe a property of the model, or a property of the DGP.
In the following example, we demonstrate that ADL can be used to make statements about
the DGP and to help qualify statements about a model.

Recognising dependence: Example 2
Consider a DGP involving the XOR function of two binary random variables X1,X2, with
distributions given by P(X1= 1)= P(X2= 1)= 1/2. The response is given by

Y =XOR(X1,X2)=X1(1−X2)+X2(1−X1). (12)

Notice that P(Y = i|Xk = j)= P(Y = i), for all i,j ∈ {0,1} and k ∈ {1,2}. Thus, in this
example, Y is completely statistically independent of each individual feature. However,
since Y is determined entirely in terms of (X1,X2), it is clear that Y is statistically dependent
on the pair. Thus, the features individually appear to have little impact on the response,
yet together they have a strong impact when their mutual influence is considered.

Faced with a sample from (Y ,X1,X2), when the DGP is unknown, a typical exploratory
practice is to take a sample correlation matrix to estimate Cor(Y ,X), producing all
pairwise sample correlations as estimates of Cor(Y ,Xi), for i∈ [d]. A similar approach, in
the presence of suspected non-linearity, is to produce all pairwise distance correlations, or
all pairwise HSIC values, rather than all pairwise correlations. Both the above approaches
are model-independent. For comparison, consider a pairwise model-dependent approach:
fitting individual single-feature modelsMi, for i∈ [d], that each predict Y as a function of
one feature Xi; and reporting a measure of model performance for each of the d models,
standardised by the result of a null feature model—that is, a model with no features (that
may, for example, guess labels completely at random, or may use empirical moments of
the response distribution to inform its guesses, ignoring X entirely).

As demonstrated by the results in Table 1, it is not possible for pairwise methods to
capture interaction effects and mutual dependencies between features. However, Shapley
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Table 1 Importances of features X1 and X2 assigned by various methods, using a sample size of 10,000
fromDGP Eq. (12). For pairwise XGBoost, we take the difference in mean squared prediction error be-
tween each XGBoost model and the null model (which always guesses 1). Pairwise dependence includes
pairwise DC, HSIC, AIDC and Pearson correlation, which all give the same result of 0, due to statistical in-
dependence.

Method Result X1 Result X2

SHAP 3.19 3.19
Shapley DC 0.265 0.265
Shapley AIDC 0.265 0.265
Shapley HSIC 0.16 0.16
Pairwise XGB 0 0
Pairwise dependence 0 0
XGB feature importance 1 0

feature attributions can overcome this limitation, both in the case of Sunnies and in the case
of SHAP. By taking an exhaustive permutations based approach, Shapley values are able to
effectively deal with partial dependencies and interaction effects amongst features. Note,
all the Sunnies marginal contributions can, in this example, be derived from Table 1: the
pairwise results state that D̂Y ({1})= D̂Y ({2})= D̂′Y ({1})= D̂′Y ({2})= ĤY ({1})= ĤY ({2})=
0, and from Table 1 we can also derive D̂Y ({1,2})= D̂′Y ({1,2})= 2×0.265= 0.53 and
ĤY ({1,2})= 2×0.16= 0.32.

The discrete XOR example demonstrates that ADL captures important symmetry
between features, while pairwise methods fail to do so. The results in the final two rows
of Table 1 are produced as follows: we train an XGBoost classifier on the discrete XOR
problem in Eq. (12). Then, to ascertain the importance of each of the features X1 and X2,
in determining the target class, we use the XGBoost ‘‘feature importance’’ method, which
defines a feature’s gain as ‘‘the improvement in accuracy brought by a feature to the branches
it is on’’ (see https://xgboost.readthedocs.io/en/latest/R-package/discoverYourData.html).

Common experiences from users suggest that the XGBoost feature importance method
can be unstable for less important features and in the presence of strong correlations
between features (see e.g., https://stats.stackexchange.com/questions/279730/). However,
in the current XOR example, features X1 and X2 are statistically independent (thus
uncorrelated) and have the maximum importance that two equally important features can
share (that is, together they produce the response deterministically).

Although the XGBoost classifier easily achieves a perfect classification accuracy on a
validation set, the associated XGBoost gain for X1 is Gain(X1)≈ 0, while Gain(X2)≈ 1, or
vice versa. In other words the full weight of the XGBoost feature importance under XOR is
given to either one or the other feature. This is intuitively misleading, as both features are
equally important in determining XOR, and any single one of the two features is alone not
sufficient to achieve a classification accuracy greater than random guessing. In practice,
ADL can help identify such flaws with other model explanation methods.

Fryer et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.582 10/23

https://peerj.com
https://xgboost.readthedocs.io/en/latest/R-package/discoverYourData.html
https://stats.stackexchange.com/questions/279730/
http://dx.doi.org/10.7717/peerj-cs.582


DIAGNOSTICS
In the following diagnostics sections, we present results using the distance correlation.
However, similar results can also be obtained using the HSIC and the AIDC.

Model attributed dependence
Given a fitted model f , with associated predictions Ŷ = f (X), we seek to attribute
shortcomings of the fitted model to individual features. We can do this by calculating
the Shapley decomposition of the estimated strength of dependence between the model
residuals ε= Y − Ŷ , and the features X . In other words, feature v receives the attribution
φv(Cε); estimated by φv(Ĉe), where e= y− ŷ. We refer to this as the Attributed Dependence
on Residuals (ADR) for feature v .

A different technique, for diagnosing model misspecification, is to calculate the Shapley
decomposition of the estimated strength of dependence between Ŷ and X , so that each
feature v receives attributionφv(Ĉŷ).We call this the AttributedDependence on Predictions
(ADP), for feature v . This picture of the model generated dependence structure may
then be compared, for example, to the observed dependence structure given the ADL
{φv(Ĉy) : v ∈ [d]}. The diagnostic goal, then, may be to check that, for all v ,

|φv(Ĉŷ)−φv(Ĉy)|<δ, (13)

for some δ tolerance. In other words, a diagnostic strategy making use of ADP is to compare
estimates of feature importance under the model’s representation of the joint distribution,
to estimates of feature importance under the empirical joint distribution, and thus to
individually inspect each feature for an apparent change in predictive relevance.

We note that these techniques, ADP and ADR, are agnostic to the chosen model. All that
is needed is the model outputs and the corresponding model inputs—the inner workings
of the model are irrelevant for attributing dependence on predictions and residuals to
individual features in this way.

Demonstration with concept drift
We illustrate the ADR and ADL techniques together with a simple and intuitive synthetic
demonstration involving concept drift, where the DGP changes over time, impacting
the mean squared prediction error (MSE) of a deployed XGBoost model. The model is
originally trained with the assumption that the DGP is static, and the performance of the
model is monitored over time with the intention of detecting violations of this assumption,
as well as attributing any such violation to one or more features. A subset of the deployed
features can be selected for scrutiny, by considering removal only of those selected features
from the model. To highlight this, our simulated DGP has 50 features, and we perform
diagnostics on 4 out of those 50 features.

For comparison, we compute SAGE values of the model mean squared error (Covert,
Lundberg & Lee, 2020) and we compute the mean SHAP values of the logarithm of the
model loss function (Lundberg et al., 2020). We will refer to the latter as SHAPloss. For
SAGE and SHAPloss values, we employ a DGP similar to Eq. (14), with sample size 1000,
but with Xi ≡ 0 for all i> 4. These features were nullified for tractability of the SAGE
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computation, since, unlike for Sunnies, the authors are not aware of any established
method for selectively computing SAGE values of a subset of the full feature set. SAGE and
SHAPloss were chosen for their popularity and ability to provide global feature importance
scores.

At the initial time t = 0, we define the DGP as a function of temporal increments
t ∈N∪{0},

Y =X1+X2+

(
1+

t
10

)
X3+

(
1−

t
10

)
X4+

50∑
i=5

Xi , (14)

whereXi∼N (0,4), for i= 1,2,3,4, andXi∼N (0,0.05), for 5≤ i≤ 50. Features 1 through 4
are themost effectual to beginwith, andwe can imagine that these were flagged as important
during model development, justifying the additional diagnostic attention they enjoy after
deployment. We see from Eq. (14) that, after deployment, i.e., during periods 1≤ t ≤ 10,
the effect of X4 decreases linearly to 0, while the effect of X3 increases proportionately
over time. In what follows, these changes are clearly captured by the residual and response
dependence attributions of those features, using the DC characteristic function.

The results, with a sample size of n= 1000, from the DGP in Eq. (14), are presented
in Fig. 3. According to the ADL (top), X4 shows early signs of significantly reduced
importance φ4(Ĉy), as X3 shows an increase in importance φ3(Ĉy), which is roughly
symmetrical to the decrease in φ4(Ĉy). The ADR (bottom) show early significant signs that
X3 is disproportionately affecting the residuals, with high φ3(Ĉe). The increase in residual
attribution φ4(Ĉe) is also evident, though the observation φ4(Ĉe)<φ3(Ĉe) suggests that
the drift impact from X3 is the larger of the two.

The resulting SAGE and mean SHAPloss values are presented in Fig. 4. Interestingly,
the behaviours of SHAPloss and SAGE are (up to scale and translation) analogous to the
behaviour of ADL, rather than ADR, despite the model-independence of ADL. A reason
for this, in this example, is that the feature with higher (resp. lower) dependence on Y
contributes less (resp. more) to the residuals. When interpreting the SHAPloss and SAGE
outputs, it is important to note that the model loss is increasing with t , since the true
planar trend in (Y ,X3,X4) rotates away from the learned trend. So, while the SAGE and
SHAPloss results may appear to make the paradoxical suggestion that X3 is utilised better
by the model at t = 10 compared with t = 0, this is not the case: SAGE and SHAPloss are
not accounting for the change in model loss over time. The model loss may decrease more
when marginalising a feature under a misspecified model, than under a model with lower
overall loss.

Demonstration with misspecified model
To illustrate the ADL, ADP and ADR techniques, we demonstrate a case where the model
is misspecified on the training set, due to model bias. The inadequacy of this misspecified
model is then detected on the validation set. Unlike the example given in ‘‘Model attributed
dependence’’, the DGP is unchanging between the two data sets. The key technique used in
this demonstration is the comparison of differences between ADL (calculated in the absence
of any model) and ADP (calculated using the output of a fitted model), in order to identify
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Figure 3 Attributed dependence on (A) labels (ADL) and (B) residuals (ADR), using the DC character-
istic function; results for times t ∈ {0,...,10}, from a simulation with sample size 1,000 from the DGP
Eq. (14). The bootstrap confidence bands are the 95% middle quantiles (Q0.975 − Q0.025) from 100 sub-
samples of size 1,000. The ADL of features X3 and X4 appear to decay/increase over time, leading to signif-
icantly different ADL, compared to the other features. We also see that X3 and X4 have significantly higher
ADR than the other features.

Full-size DOI: 10.7717/peerjcs.582/fig-3

any differences in the attributions between dependence on labels and the dependence on
the predictions produced by the misspecified model. Such a comparison, between model
absence and model outputs, is not possible using purely model-dependent Shapley values.

To make this example intuitive, we avoid using a complex model such as XGBoost, in
favour of a linear regression model. Since the simulated DGP is also linear, this example
allows a simple comparison between the correct model and the misspecified model. The
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Figure 4 SAGE and SHAPloss values for the modified simulated DGP Eq. (14) (see ‘‘Demonstration
with concept drift’’), with sample size 1,000. The results are comparable to ADL (see Fig. 3). Features
with high SAGE value contribute less to residuals, and vice versa for the SHAPloss values.

Full-size DOI: 10.7717/peerjcs.582/fig-4

DGP in this example is

Y =X1+X2+5X3X4X5+ε, (15)

where X1,X2,X3 ∼N (0,1) are continuous, ε∼N (0,0.1) is a small random error, and
X4,X5∼Bernoulli(1/2) are binary. Hence, we can make the interpretation that the effect
of X3 is modulated by X4 and X5, such that X3 is effective, only if X4=X5= 1. For this
demonstration, we fit a misspecified linear model EY =β0+βX , where XT

= (Xi)di=1 is the
vector of features, and β0,β = (βi)di=1 are real coefficients. This is a simple case where the
true DGP is unknown to the analyst, who therefore seeks to summarise the 80 marginal
contributions from 5 features into 5 Shapley values.

Figure 5 shows the outputs for attributed dependence on labels, residuals and
predictions, via ordinary least squares estimation. From these results, wemake the following
observations:
(i) For X3 the ADP is significantly higher than the ADL.
(ii) For X4 and X5 the ADP is significantly lower than the ADL.
(iii) For X1,X2 there is no significant difference between ADP and ADL.
(iv) For X1,X2 ADR is negative, while X3,X4,X5 have positive ADR.

Observations (i) and (ii) suggest that the model EY = β0+βX overestimates the
importance of X3 and underestimates the importance of X4 and X5. Observations (iii) and
(iv) suggest that the model may adequately represent X1,X2,X3, but that X3,X4 and X5 are
significantly more important for determining structure in the residuals than X1 and X2. A
residuals versus fits plot may be useful for confirming that this structure is present and of
large enough magnitude to be considered relevant.

Having observed the result in Fig. 5, for the misspecified linear model EY = β0+βX ,
we now fit the correct model: EY = β0+βX +X3X4X5, which includes the three-way
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Figure 5 (A) Barbell plots showing differences in attributed dependence on labels (ADL), based on
the DC characteristic function between the training and test sets, for each feature, for the misspecified
model EY =β0+βX with DGP (Eq. (15)). Larger differences indicate that the model fails to capture the
dependence structure, effectively. (B) Bar chart representing attributed dependence on residuals (ADR)
for the test set. The shaded rectangles represent bootstrap confidence intervals, taken as the 95% middle
quantile (Q0.975−Q0.025) from 100 resamples of size 1,000. Non-overlapping rectangles indicate significant
differences. Point makers represent individual observations from each of the 100 resamples.

Full-size DOI: 10.7717/peerjcs.582/fig-5

interaction effect X3X4X5. The results, shown in Fig. 6, show no significant difference
between the ADL and ADP for any of the features, and no significant difference in ADR
between the features.

APPLICATION TO DETECTING GENDER BIAS
We analyse a mortality data set produced by the US Centers for Disease Control (CDC) via
the National Health and Nutrition Examination Survey (NHANES I) and the NHANES I
Epidemiologic Follow-up Study(NHEFS) (Cox, 1998). The data set consists of 79 features

Fryer et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.582 15/23

https://peerj.com
https://doi.org/10.7717/peerjcs.582/fig-5
http://dx.doi.org/10.7717/peerj-cs.582


Figure 6 (A) Barbell plots showing differences in attributed dependence on labels (ADL), based on the
DC characteristic function between the training and test sets, for each feature, for the correctly speci-
fied model with DGP (Eq. (15)). The shaded rectangles represent bootstrap confidence intervals, taken
as the 95%middle quantile (Q0.975−Q0.025) from 100 resamples of size 1,000. Overlapping rectangles in-
dicate non-significant differences, suggesting no evidence of misspecification. Point markers represent
individual observations from each of the 100 resamples. (B) Bar chart representing attributed depen-
dence on residuals (ADR) for the test set. Compare to Fig. 5.

Full-size DOI: 10.7717/peerjcs.582/fig-6

from medical examinations of 14,407 individuals, aged between 25 and 75 years, followed
between 1971 and 1992. Amongst these people, 4,785 deaths were recorded before 1992. A
version of this data set was also recently made available in the SHAP package (Lundberg &
Lee, 2017). The same data were recently analysed in Section 2.7, Lundberg et al. (2020) (see
also https://github.com/suinleelab/treeexplainer-study/tree/master/notebooks/mortality).

We use a Cox proportional hazards objective function in XGBoost, with learning rate
(eta) 0.002, maximum tree depth 3, subsampling ratio 0.5, and 5,000 trees. Our training set
containt 3,370 observations, balanced via random sampling to contain an equal number of
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Table 2 The 16 features used for fitting a Cox proportional hazards model to NHANES I and NHEFS
data.

Feature name Feature name

Age Sex
Race Serum albumin
Serum cholesterol Serum iron
Serum magnesium Serum protein
Poverty index Physical activity
Red blood cells Diastolic blood pressure
Systolic blood pressure Total iron binding capacity
Transferrin saturation Body mass index

males and females. We then test the model on three different data sets: a all male test set of
size 1686, containing all males not in the training data; an all female test set of size 3,547,
containing all females not in the training data; and a gender balanced test set of size 3,372.
The data are labelled with the observed time-to-death of each patient during the follow-up
study. For model fitting, we use the 16 features given in Table 2.

Of the features in Table 2, we focus on the Shapley values for a subset of well-established
risk factors for mortality: age, physical activity, systolic blood pressure, cholesterol and
BMI. Note that the results presented here are purely intended as a proof of concept—the
results have not been investigated in a controlled study and none of the authors are experts
in medicine. We do not intend for our results to be treated as a work of medical literature.

We decompose dependence on the labels, model predictions and residuals, amongst the
three features: age, systolic blood pressure (SBP) and physical activity (PA), displaying the
resulting ADL, ADP and ADR for each of the three test data sets in Fig. 7(using the DC
characteristic function). From this analysis we make the following observations.
(i) Age has a significantly higher attributed dependence on residuals compared with each

of the other features, across all three test sets. This suggests that age may play an
important role in the structure of the model’s residuals. This observation is supported
by the dumbbells for age, which suggest a significant and sizeable difference between
attributed dependence on prediction and attributed dependence on labels; that is, we
have evidence that the model’s predictions show a greater attributed dependence on
age than the labels do.

(ii) For SBP, we observe no significant difference between ADL and ADP for the balanced
and all male test sets. However, in the all female test set, we do see a significant and
moderately sized reduction in the attributed dependence on SBP for the model’s
predictions compared with that of labels. This suggests that the model may represent
the relationship between SBP and log relative risk of mortality less effectively on the
all female test set than on the other two test sets. This observation is supported by
the attributed dependence on residuals for SBP, which is significantly higher in the all
female test set compared to the other two sets.

(iii) For PA, we see a low attributed dependence on residuals, and a non-significant
difference between ADL and ADP, for all three test sets. Thus we do not have any
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Figure 7 (A) Shapley decomposition of attribution dependence on labels (ADL, pink) and predictions
(ADP, blue), and (B) residuals (ADR, orange) for the three features age, physical activity (PA) and sys-
tolic blood pressure (SBP), on three different test data sets consisting of an equal proportion of females
andmales (‘‘balanced’’), only male (‘‘all male’’) and only females (‘‘all female’’). . Attributes were based
on the DC characteristic function.

Full-size DOI: 10.7717/peerjcs.582/fig-7

reason, from this investigation, to suspect that the effect of physical activity is being
poorly represented by the model.
The results regarding potential heterogeneity due to gender and systolic blood pressure

are not suprising given that we expect, a priori, there to be a relationship between systolic
blood pressure and risk of mortality (Port et al., 2000), and that studies also indicate this
relationship to be non-linear (Boutitie et al., 2002), as well as dependent on age and gender
(Port, Garfinkel & Boyle, 2000). Furthermore, the mortality risk also depends on age and
gender, independently of blood pressure (Port, Garfinkel & Boyle, 2000). We also expect
physical activity to be important in predicting mortality risk (Mok et al., 2019).
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DISCUSSION AND FUTURE WORK
After distinguishing between model-dependent and model-independent Shapley values,
in ‘‘Measures of non-linear dependence’’, we introduce energy distance-based and kernel-
based characteristic functions, for the Shapley game formulation, as measures of non-linear
dependence. We assign the name ‘Sunnies’ to Shapley values that arise from suchmeasures.

In ‘‘Recognising dependence: Example 1’’ and ‘‘Exploration’’, we demonstrate that the
resulting model-independent Shapley values provide reasonable results compared to a
number of alternatives on certain DGPs. The alternatives investigated are the XGBoost
built-in feature importance score, pairwise measures of non-linear dependence, and the
R2 characteristic function. The investigated DGPs are a quadratic form, for its simple
non-linearity; and an XOR functional dependence, for its absence of pairwise statistical
dependence. These examples are simple but effective, as they act as counter-examples to
the validity of the targeted measures of dependence to which we draw comparison.

In ‘‘Diagnostics’’, we demonstrate how the Shapley value decomposition, with these non-
linear dependence measures as characteristic function, can be used for model diagnostics.
In particular, we see a variety of interesting examples, where model misspecification and
concept drift can be identified and attributed to specific features. We approach model
diagnostics from two angles, by scrutinising two values: the dependence attributed on
predictions by the model (ADP), and the dependence between the model residuals and
the input features (ADR). These are proofs of concept, and the techniques of attributed
dependence on labels (ADL), ADP and ADR require development to become standard
tools. However, the examples highlight the techniques’ potential, and we hope that this
encourages greater interest in them.

We provide two demonstrations of the diagnostic methods: in ‘‘Demonstration with
concept drift’’, we use a data generating process which changes over time, and where
the deployed model was trained at one initial point in time. Here, Sunnies successfully
uncovers changes in the dependence structures of interest, and attributes them to the correct
features, early in the dynamic process. The second demonstration, in ‘‘Demonstration with
misspecified model’’, shows how we use the attributed dependence on labels, model
predictions and residuals, to detect which features’ dependencies or interactions are not
being correctly captured by the model. Implicit in these demonstrations is the notion that
the information from many marginal contributions is being summarised into a human
digestible number of quantities. For example, in ‘‘Demonstrationwithmisspecifiedmodel’’,
the 80 marginal contributions from 5 features are summarised as 5 Shapley values, in each
of ADL, ADP and ADR, facilitating the simple graphical comparison in Fig. 5.

There is a practical difference between model-independent and model-dependent
methods, highlighted in ‘‘Demonstration with misspecified model’’, when comparing the
dependence structure in a data set, to the dependence structure captured by a model.
Model-independent methods can be applied to model predictions and residuals, but
can also be applied to data labels as well. Thus, techniques using model-independent
Shapley values will be markedly different from model-dependent methods in both design
and interpretation. Indeed, consider that there is a different interpretation between (a)
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the decomposition of a measure of statistical dependence, e.g., as a measure of distance
between the joint distribution functions, with and without the independence assumption,
and (b) the attribution of a measure of the functional dependence of a model on the value
of its inputs.

While the DC does provide a population level (asymptotic) guarantee that dependence
will be detected, it must be noted that, as discussed in ‘‘Distance correlation and affine
invariant distance correlation’’, the DC tends to be greater for a linear association than
for a non-linear association. These are not strengths, or weaknesses, of using a measure
of non-linear statistical dependence as the Shapley value characteristic function (i.e., the
method we call Sunnies) but rather of the particular choice of characteristic function
in this method. Work is needed to investigate other measures of statistical dependence
in place of DC, HSIC or AIDC, and to provide a comparison between these methods,
including a detailed analysis of strengths, limitations and computational efficiency. In this
paper, we have not focused on such a detailed experimental evaluation and comparison,
but on the exposition of the Sunnies method itself. A potential alternative to our use of
energy correlation and HSIC is the class of maximal information based non-parametric
exploration (MINE) statistics, or other mutual information based measures (Kinney &
Atwal, 2014; Reshef et al., 2011).

Finally, in ‘‘Application to Detecting Gender Bias’’, we apply Sunnies to a study on
mortality data, with the aim of detecting effects caused by gender differences. We find that,
when the model is trained on a gender balanced data set, a significant difference is detected
between the model’s representation of the dependence structure via its predictions (ADP)
and the dependence structure on the labels (ADL); a difference which is significant for
females and not for males, even though the training data was gender balanced. Although
we do not claim that our result is causal, it does provide evidence regarding the potential
of Sunnies to uncover and attribute discrepancies that may otherwise go unnoticed, in real
data.

A well-known limitation when working with Shapley values, is their exponential
computational time complexity. Ideally, in ‘‘Application to Detecting Gender Bias’’, we
would have calculated Shapley values of all 17 features. However, it is important to note
that we do not need to calculate Shapley values of all features, if there is prior knowledge
available regarding interesting or important features, or if features can be partitioned into
independent blocks. To illustrate the idea of taking advantage of independent blocks,
suppose we have a model with 15 features. If we know in advance that these features
partition into 3 independent blocks of 5 features, then we can decompose the pairwise
dependence of each block into 5 Shapley values. In this way, 15 Shapley values are
computed from 240 within-block marginal contributions, rather than the full number
of 32,768 marginal contributions. In the future, it may be interesting to also consider
the computational efficiencies that may arise in scenarios where the sparsity structures of
marginal contributions can be directly exploited, as well as the potential for examining
such marginal contributions directly (e.g., via visualisation).

Finally, note that we have made the distinction that Shapley feature importance methods
may or may not be model-dependent, but this distinction holds for model explanation
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methods in general. We believe that complete and satisfactory model explanations should
ideally include a description from both categories.

All code and data necessary to produce the results in this manuscript are available on
github.com/ex2o/sunnies.
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