
Submitted 2 November 2020
Accepted 15 May 2021
Published 1 June 2021

Corresponding author
Nima Jafari Navimipour,
jnnima@yuntech.edu.tw

Academic editor
Daniel Katz

Additional Information and
Declarations can be found on
page 14

DOI 10.7717/peerj-cs.580

Copyright
2021 Azhir et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

A technique for parallel query optimization
using MapReduce framework and a
semantic-based clustering method
Elham Azhir1, Nima Jafari Navimipour2, Mehdi Hosseinzadeh3, Arash Sharifi1

and Aso Darwesh4

1Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Future Technology Research Center, National Yunlin University of Science and Technology, Douliou,
Yunlin, Taiwan, R.O.C.

3Pattern Recognition and Machine Learning Lab, Gachon University, 1342 Seongnamdaero, Sujeonggu, Seong-
nam, Republic of Korea

4Department of Information Technology, University of Human Development, Sulaymaniyah, Iraq

ABSTRACT
Query optimization is the process of identifying the best Query Execution Plan (QEP).
The query optimizer produces a close to optimal QEP for the given queries based on
the minimum resource usage. The problem is that for a given query, there are plenty
of different equivalent execution plans, each with a corresponding execution cost. To
produce an effective query plan thus requires examining a large number of alternative
plans. Access plan recommendation is an alternative technique to database query
optimization, which reuses the previously-generated QEPs to execute new queries. In
this technique, the query optimizer uses clusteringmethods to identify groups of similar
queries. However, clustering such large datasets is challenging for traditional clustering
algorithms due to huge processing time. Numerous cloud-based platforms have been
introduced that offer low-cost solutions for the processing of distributed queries such as
Hadoop, Hive, Pig, etc. This paper has applied and tested a model for clustering variant
sizes of large query datasets parallelly using MapReduce. The results demonstrate the
effectiveness of the parallel implementation of query workloads clustering to achieve
good scalability.

Subjects Algorithms and Analysis of Algorithms, Databases, Distributed and Parallel Computing
Keywords Query optimization, Access plan recommendation, Cluster computing, Parallel
Processing, MapReduce, DBSCAN Algorithm

INTRODUCTION
Today, IT and distributed environments have facilitated whatever you can imagine:
communication, managing, and businesses. The critical goal of distributed environments
is to deliver remote services residing at disparate sites to users. As a novel form of
distributed environment, the goal of cloud technology is to provide remote services with
high dependability, dynamicity, and scalability using virtualization technology (Buyya,
Broberg & Goscinski, 2010; Ebadi & Jafari Navimipour, 2019; Cheng, 2021; Angela Jennifa
Sujana, Revathi & Joshua Rajanayagam, 2020). Cloud technology provides numerous kinds
of virtualized services such as storage services, healthcare services, operating systems, and

How to cite this article Azhir E, Jafari Navimipour N, Hosseinzadeh M, Sharifi A, Darwesh A. 2021. A technique for parallel query op-
timization using MapReduce framework and a semantic-based clustering method. PeerJ Comput. Sci. 7:e580 http://doi.org/10.7717/peerj-
cs.580

https://peerj.com/computer-science
mailto:jnnima@yuntech.edu.tw
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.580
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.580
http://doi.org/10.7717/peerj-cs.580


networks; it draws upon distributed computing concepts to offer consumers on-demand
services (Vivekrabinson & Muneeswaran, 2021; Sharma & Kalra, 2019).

In large-scale distributed databases such as distributed cloud databases, the query
optimization issue can not be solved efficiently (Singh, 2016;Han, Youn & Lee, 2017;Panahi
& Navimipour, 2019). The cost model of a distributed query involves local computing costs
and node-to-node communication ones. Therefore, the space of alternative execution plans
can become large, depending on the query’s complexity and the opportunity to execute
subqueries at any node. There are many execution plans, each with a corresponding
cost for a particular query. Therefore, the query optimizer needs to find an optimal
plan with minimum cost. However, the optimizer cannot search the space of all possible
execution plans efficiently. The access plan recommendation approach has been presented
to reduce the query optimization costs by reusing execution plans produced for previous
queries (Ghosh et al., 2002; Zahir & El Qadi, 2016; Zahir, El Qadi & Mouline, 2014). The
query optimizer uses the pre-executed query plans to execute new incoming queries that
are similar to previous queries in the proposed approach.

The primary goal of the access plan recommendation approach is to reuse the previous
query plans based on the likeness of query statements. However, clustering such large
datasets is a challenge for traditional clustering algorithms due to its huge processing
times. This can be addressed by using MapReduce, a scalable and distributed processing
technique (Shabestari et al., 2019). It is a programming paradigm used for parallel
distributed processing of large datasets (Dean & Ghemawat, 2008). Query clustering
involves large datasets for which MapReduce is an attractive means to reach a solution
with high-quality results within an acceptable amount of time. This paper presents a
scalable model for the access plan recommendation approach using MapReduce. The
Term Frequency (TF) method (Makiyama, Raddick & Santos, 2015) and cosine measure
are applied with a feature representation of Structured Query Language (SQL) to detect
the similarity of the queries. The article also employs the popular density-based clustering
technique Density-Based Spatial Clustering of Applications with Noise (DBSCAN) (Ester et
al., 1996). Finally, the MapReduce technique is used to parallelize the query preprocessing
and clustering operations. The specific contributions of this paper are:
(i) Implementing an efficient access plan recommendation method for query plan

recommendation using a MapReduce workflow.
(ii) Evaluating the proposed approach on multiple-query datasets based on different

structures.
The following classification will be discussed in the rest of the paper. In ‘‘Overview

and background’’, the DBSCAN clustering algorithm and the MapReduce model are
introduced. Previous studies are reviewed in ‘‘Related work’’. The next section presents the
introduced method for query plan recommendation in the distributed systems. The section
related to the ‘‘Results’’ illustrates the simulation outcomes. In ‘‘Discussion’’, the findings
of this study are discussed. Finally, the last section summarizes the paper and offers some
indications for the upcoming studies.

Azhir et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.580 2/17

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.580


OVERVIEW AND BACKGROUND
Clustering is a technique to group some related objects using similarity or location
information (Sadrishojaei et al., 2021). Partitioning, hierarchical (Solihah, Azhari &
Musdholifah, 2020), grid, density (Mehdi Cherrat, Alaoui & Bouzahir, 2020), graph, and
model-based algorithms are different clustering methods. The performance of these
methods is assessed by several factors such as the number of input parameters, data size,
cluster shapes, and noise. Moreover, considering the fast growth of IT and the huge data
generated daily by millions of people (Rahmani et al., 2021), there is no doubt that a single
device may not be able to handle such quantities of data. So, novel technologies are needed
to store and extract information.

First, the DBSCAN clustering method is proposed in the ‘‘Density-based Clustering
Algorithm’’. Then, the MapReduce workflow is briefly introduced to process large datasets
with parallel distributed algorithms in ‘‘MapReduce Overview’’.

Density-based clustering algorithm
DBSCAN is a key method for clustering unlabeled datasets. It is a density-based clustering
method that can generate random shape clusters. The main idea is to generate a cluster
from any point with a minimum number of points inside an assumed radius. A few crucial
descriptions of DBSCAN are Ester et al. (1996):

• Eps neighborhood: The Eps neighborhood of a point p, expressed as NEps(p)= {q ∈
D|dis(p,q)� Eps}, where D contains points within distance Eps from point p.
• Directly density-reachable: p is directly density-reachable from q if p is in the Eps
neighborhood of q (i.e., p∈NEps(q)) and q is a core point (i.e., |NEps(q)|�Minpts).
• Density-reachable: If a set of points exists {ri|i= 0,...,n} where each ri is directly
density-reachable from ri+1, then ri is density-reachable from a point o where
o∈ {pj |j = i+1,...,n}.

The algorithm begins by picking a random point p, then retrieving all density-reachable
points from p. If p is a core point, the algorithm creates a cluster. If p is a border point and
none of the points is density-reachable from p, then the algorithm picks the next point of
the dataset. This procedure is repeated for all points.

MapReduce overview
MapReduce (Dean & Ghemawat, 2008) is a model for large-scale and distributed data
processing. MapReduce can be scaled to thousands of nodes. The input data is divided
into smaller chunks and kept on a distributed file system. In MapReduce, data should be
indicated as (key, value) pairs. Figure 1 shows the MapReduce data flow. Map, Shuffle, and
Reduce are three main phases of MapReduce (White, 2012). The map function takes the
input pair (k1,v1) and produces one or more intermediate key/value pairs (k2, v2). The
shuffle stage partitions the intermediate pairs and sends them to reduce functions. The
‘‘reduce function’’ groups pair values with an identical key (k2, list(v2)) and generate the
ultimate output pair list (k3, v3) for all of them (Khezr & Navimipour, 2015).

Azhir et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.580 3/17

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.580


Figure 1 Data flow inMapReduce.
Full-size DOI: 10.7717/peerjcs.580/fig-1

Related work
Most studies have focused on query optimization methods for various systems due
to the significance of the query optimization problems. In this section, access plan
recommendation mechanisms are studied to optimize the query.

Query optimization is a method to provide low-cost answers to queries. The purpose
of a query optimizer is to evaluate alternative query plans to determine the best query
plan. The major query optimization techniques can be divided into seven main classes
in the cloud: cost-based query plan enumeration, agent-based, schema-based, security-
based, Multiple Query Optimization (MQO), adaptive query optimization, and access plan
recommendation (Azhir et al., 2019b;Azhir et al., 2019a). The access plan recommendation
mechanisms (Ghosh et al., 2002; Zahir & El Qadi, 2016; Zahir, El Qadi & Mouline, 2014)
use similarity-based machine learning methods to recommend an old query execution plan
to the optimizer. Here we describe work related to query optimization using access plan
recommendation mechanisms.

Azhir et al. (2021) proposed an automatic hybrid query plan recommendation method
based on incremental DBSCAN and NSGA-II. Dunn and Davies–Bouldin indices were
used to evaluate the goodness of clusters. The results of the proposed algorithm were
compared to incremental DBSCAN and K-means. According to the experimental results,
the introduced algorithm outperforms the other well-known approaches in terms of
accuracy.

Ghosh et al. (2002) developed a plan recycling tool, named Plan Selection Through
Incremental Clustering (PLASTIC), to cluster queries using their structures and statistics.
The PLASTIC was developed based on the Leader clustering algorithm presented by
Hartigan (1975). Based on the trial outcomes, the proposed tool can predict the right query
plan in the majority of cases. Furthermore, according to the experimental results, high
precision, short time, and low space overhead are the advantages of PLASTIC. To enhance
the usability of PLASTIC, Sarda & Haritsa (2004) improved the queries’ feature vector.
Also, a decision-tree classifier is included in PLASTIC for effective cluster assignments.

Azhir et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.580 4/17

https://peerj.com
https://doi.org/10.7717/peerjcs.580/fig-1
http://dx.doi.org/10.7717/peerj-cs.580


An efficient query plan recommendation method was introduced by Zahir, El Qadi &
Mouline (2014). The main aim of this approach is to reuse earlier query plans in executing
future queries. The method identifies the likeness between the queries (Makiyama, Raddick
& Santos, 2015; Aligon et al., 2014; Aouiche, Jouve & Darmont, 2006; Kul et al., 2018). The
clustering technique is grounded on K-Means and Expectation-Maximization (EM)
methods. The similarity of the queries was identified using the SQL queries semantics. The
method can decrease the query optimization cost.

Finally, Zahir & El Qadi (2016) introduced a query plan prediction technique by
identifying the similarity among the statements of the queries. Some primary classification
techniques like Support Vector Machine (SVM), Association Rule (AR), and Naive Bayes
(NB) were applied in this research. The outcomes revealed that the AR can offer more
precise forecasts than SVM and NB techniques.

METHODS
We have demonstrated the recommendation process on a simple random selection query
Qn.Qn is defined as:
SELECT course_id, title
FROM course
WHERE course.dept_name = ’comp. sci.’;

Results of similarity calculation have shown that the highest similarity has been detected
with a certain query Q3 defined as:
SELECT course. course_id, course. title
FROM course
WHERE dept_name = ’?’;

Hence, we have recommended the optimizer use the access plan of Q3 to execute query
Qn.

In ‘‘Access Plan Recommendation’’, we present the access plan recommendation
method for query optimization in detail. ‘‘Parallel Access Plan Recommendation’’ develops
a parallel similarity-based query optimization approach to decrease the query optimization
cost, using the MapReduce programming model.

Access plan recommendation
The main purpose of the access plan recommendation approach is to reuse previously-
used execution plans for new queries. It examines the textual similarity between the new
incoming query and the earlier queries to use previously executed query plans for new
queries. This method represents query statements as feature vectors and then compares
them to compute the similarity between them. The query optimizer uses an old query
plan for a new query if a similarity exists between them. Therefore, the proposed approach
reduces the required cost of producing a new access plan for new incoming queries.

Figure 2 shows the access plan recommendation approach to optimize the query. The
R DBSCAN package (Hahsler, Piekenbrock & Doran, 2019) is used to group the queries in
different clusters. As shown in Fig. 2, query representation and clustering are the two main
steps of the presented approach. In the query representation step, a tokenizer breaks the

Azhir et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.580 5/17

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.580


Figure 2 The access plan recommendation approach.
Full-size DOI: 10.7717/peerjcs.580/fig-2

query text into tokens. Then, a weight is assigned to each token. Query normalization and
feature weighting are performed in this phase. The assignment of queries to clusters and
the recommendation of the access plans are done in the clustering phase.
Cosine similarity (Nguyen & Amer, 2019) and Jaccard coefficient (Jaccard, 1912) are the two
most popular similaritymeasures used for text documents (Huang, 2008). The performance
of these measures has been assessed through empirical experiments. As a result, the Cosine
similarity is used to identify similar queries.

The cosine measure calculates the similarity between two vectors by calculating the
cosine of the angle created by two vectors. The Cosine similarity is calculated by Eq.
(1) (Nguyen & Amer, 2019).

cos(2)=

∑n
k=1x1kx2k√∑n

k=1x
2
1k

√∑n
k=1x

2
2k

(1)

Furthermore, the Jaccard coefficient is applied to calculate the similarity of two queries
based on the presence or absence of features. It is computed by dividing the total number
of mutual features between two queries by the total number of features in at least one of
the two queries. It is denoted as Jaccard (1912):

J =
|A
⋂
B|

|A
⋃
B|

(2)

The similarity value is between 0 and 1. If the value is 1, the two queries are identical.

Parallel access plan recommendation
In this section, the primary scheme for parallel access plan recommendation is presented. In
this regard, the parallel parts are analyzed, and how the needed processes can be formalized
as map/reduce procedures is fully described.

Azhir et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.580 6/17

https://peerj.com
https://doi.org/10.7717/peerjcs.580/fig-2
http://dx.doi.org/10.7717/peerj-cs.580


Figure 3 The parallel access plan recommendation usingMapReduce flow.
Full-size DOI: 10.7717/peerjcs.580/fig-3

As shown in Fig. 3, the input of the clustering method is the weight matrix of the queries
to access plan recommendation. Each row indicates a query vector, and each value in
the row specifies the weight of a feature. The main stage of the clustering procedure is
the calculation of the distance of query vectors. Therefore, each query is calculated for
similarity so that clustering can be easy. In this paper, the queries have been clustered using
TF values and distance measured using Cosine distance.

Asmentioned, the preparation of query vectors and the computation of Cosine similarity
between the generated vectors can be performed in parallel withMap functions and Reduce
functions in 4 stages to perform the clustering. The details of Map functions and Reduce
ones are as follows (Fig. 3):

The JSQL parser (http://jsqlparser.sourceforge.net/) parses the SQL statements and
provides the ability to manipulate them. First, a custom JSQL parser library and various
standardization rules are employed to improve clustering quality (Azhir et al., 2021). The
rewriting module parses the queries’ text to eliminate string literals, constants, temporary
names of tables and columns, syntactic sugar, and database namespaces (Kul et al., 2018).
In addition, the parser attempts to tokenize the query and qualify each token with the
select, from, group-by, and order-by statements.
1. In the first step, the occurrences of each token in every query are calculated:

• Map: in the Map phase, each query is converted into a key-value form. In this phase,
the term and queryID are chosen as the key. Also, the number 1 is assigned to each
term as the value.
• Reduce: here, the sum of occurrences of each term is computed. The key is set as
the term and queryID and the value is set as the number of occurrences.

Azhir et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.580 7/17

https://peerj.com
https://doi.org/10.7717/peerjcs.580/fig-3
http://jsqlparser.sourceforge.net/
http://dx.doi.org/10.7717/peerj-cs.580


2. In the second stage, the produced features are weighted according to their frequency.
Therefore, the total number of terms of each query can be calculated by:

• Map: all the terms of each query are grouped in this step. The queryID is assigned
as the key and the term. The occurrence of each term in every query is assigned as
the value.
• Reduce: here, the sum of terms in each query is counted. The key-value sets are
returned with the tuples (queryID, N) as the key, and the tuples (term, o) are
returned as the value, where o is the total occurrence of each term in every query,
and N is the sum of terms in the query.

3. In the third step, the frequency of each term in a query is computed. The TF method
evaluates the term’s or phrase’s importance in an assumed query. This measure can be
computed by Eq. (3) (Makiyama, Raddick & Santos, 2015).
tf (q,f ): Frequency of feature f in query q; (3)

• Map: here, the term is set as the key and the tuple (queryID, o, N) as the value.
• Reduce: the term frequency is calculated.

4. In the final stage, the Cosine similarity of query vectors is computed (Victor, Antonia
& Spyros, 2014).

• Map: in the Map phase, the key/value pair is produced. The query IDs are set for
the key, and the term frequency vectors are set for the value.
• Reduce: here, the Cosine similarity for each query pair is computed.

At last, the clustering segmentation of DBSCAN is performed based on the Cosine
similarity results.

RESULTS
Here, the effectiveness of the introduced method is assessed to solve the query access plan
problem. Also, several experiments are performed to assess the proposed parallel approach.
The performance metrics and experiments are described in this section.

The experiments in this study are performed on a Hadoop cluster with various numbers
of virtual machines (nodes). The environment was configured on a physical machine with
a 2.8 GHz Intel Core i7 processor with 16 GB of memory. Table 1 shows a summary
of the arrangement of the Hadoop clusters. Hadoop 2.8.0 was installed, and necessary
adjustments were made on each node. One of the nodes was selected as master, and the
other nodes were selected as workers.

A query template shows a query where the bind variables have substituted several
constants (or all of them). The IIT Bombay dataset (Chandra et al., 2015) is used to
generate 5121 queries in fifteen query sets with diverse structures like simple selection
query logs, selection/ join query logs, and query logs consisting of selection/join and nested
sub-queries. In addition, various values are allocated to the bind variables. Table 2 shows
the nature of the generated SQL datasets.

Azhir et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.580 8/17

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.580


Table 1 The Hadoop cluster setup.

Nodes OS Configurations No. of cores Processor
base frequency

Configuration

Master machine (Name node) Red Hat (64bit)-Linux 8 GB RAM 4 2.53 GHZ Intel Core i7
Slave machines (Data nodes) Red Hat (64bit)-Linux 3 GB RAM 2 2.53 GHZ Intel Core i7
Hadoop version Hadoop-2.8.0 –
Virtual machine management Virtualbox 6.1.16

Table 2 The description of datasets.

Features Dataset name No. of classes No. of individuals

S1 3 95
S2 7 235
S3 10 389
S4 12 481

Selection

S5 14 593
SJ1 4 60
SJ2 7 199
SJ3 10 389
SJ4 12 481

Selection/join, from, group-by and
order-by

SJ5 14 593
SJN1 4 108
SJN2 6 140
SJN3 9 325
SJN4 11 440

Selection/join, from, group-by and
order-by alongsidenested sub-queries

SJN5 14 593

When a query is performed in the Oracle database, a unique value is assigned to its
query plan. To determine the real clusters, each set of queries is categorized manually using
the unique value of their execution plans. As shown in Table 2, SJN5 contains 593 queries,
including subqueries with diverse execution plans in 14 classes.

Performance metrics
It is problematic to state when a clustering result can be suitable. So, many clustering
validation methods have been presented. The introduced technique’s results are confirmed
using Dunn Index (DNI), Silhouette Coefficient, and the Adjusted Rand Index (ARI).

The Dunn Index calculates the smallest distance among clusters and the largest interval
between data objects from a similar cluster. It recognizes compressed and distinct clusters.
The Dunn index is defined by Eq. (4) (Zaki, Meira Jr & Meira, 2014):

Dk =mini=1,...,k

{
minj=i+1,...,k(

d(ci,cj)
maxr=1,...,kdiam(cr )

)
}

(4)

where d(ci,cj) is the dissimilarity between clusters. ci and cj are defined as d
(
ci,cj

)
=

minx∈ci,y∈cj (d
(
x,y

)
).diam(c) is the diameter of the cluster. It is defined as diam(c)=

maxx,y∈c(d
(
x,y

)
).

Azhir et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.580 9/17

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.580


The Silhouette Coefficient (Rousseeuw, 1987) is another approach to assess the clustering.
This index considers cohesion and separation in measuring the quality of clustering. The
Silhouette Coefficient is defined as:

s(i)=
b(i)−a(i)

max{a(i),b(i)}
(5)

where for each point i, a(i) indicates the average distance between the point and other
points within a similar cluster, and b(i) is the minimum value concerning all other clusters.

Rand Index (RI) calculates the similarity of two solutions. This index has been designed
to exploit the similarity of the partitioning with their original class labels. The RI is between
0 and 1. When two partitions are consistent, the RI reaches 1. This index can be calculated
by Yeung & Ruzzo (2001):

RI=
a+d

a+b+c+d
(6)

where,

• a: two data objects in both partitions are allocated to a similar cluster,
• b: two dissimilar data objects are allocated to the similar cluster,
• c: two similar data objects are allocated to different clusters,
• d: two different data objects are allocated to different clusters.

Hubert and Arabie Zaki, Meira Jr & Meira (2014) presented the ARImeasure to enhance
RI. We suggest ARI for measuring the correspondence between the two partitions. The
ARI is calculated using Eq. (7).

ARI=

(n
2

)
(a+d)− [(a+b)(a+ c)+ (c+d)(b+d)](n
2

)2
− [(a+b)(a+ c)+ (c+d)(b+d)]

(7)

Experiments
In the first step, diverse methods are investigated to measure the similarity of queries.
The performance of various similarity measurements has been evaluated by comparing the
generated outcomes to those of the original partitions. Given a group of queries categorized
according to their plan’s hash values, it is important to comprehend how well different
measures can group queries (having identical plan’s hash values) and separate those with
dissimilar plan’s hash values. The Jaccard and Cosine indexes are measures of similarity
often used to measure the similarity among documents by comparing their feature vectors.

The experiments are applied to query clustering on some query input sets with diverse
query structures. After standardizing and generating query vectors, the pairwise distance
matrix among each query pair has been calculated using Cosine and Jaccard similarity
measures. These two measures’ effectiveness has been assessed via a pairwise distance
matrix of feature vectors and a query dataset specified with the real plan’s hash values. Each
similarity measure has been evaluated using its consistency with the real cluster labels. The
Dunn index and Silhouette coefficient clustering validation methods have been used to
recognize the efficiency of a similarity measurement in a different set of queries.

Azhir et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.580 10/17

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.580


 
 

(a) Dunn index (b) Silhouette Coefficient 
 

0

0.05

0.1

0.15

0.2

0.25

0.3

95 235 389 481 593

D
u

n
n

 In
d

ex

No. of Queries

Cosine

Jaccard

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

95 235 389 481 593

A
vg

. S
ilh

o
u

et
te

  

No. of Queries

Cosine

Jaccard

Figure 4 The clustering quality validation for the selection queries datasets (S1–S5). (A) Dunn index;
(B) Silhouette coefficient.

Full-size DOI: 10.7717/peerjcs.580/fig-4

Figures 4–6 show a comparison between two quality measures for the selection query
logs (S1–S5), the selection/join queries (SJ1–SJ5), and the selection/join alongside nested
sub-queries (SJN1–SJN5). The low average Silhouette coefficients and Dunn index have
been considered incorrect clustering directly affecting the ground-truth quality.

As shown in Figs. 4–6, on most datasets, Jaccard measures have made the Dunn index
and average Silhouette coefficient measure worse. However, the Cosine measure seems to
work best with the average Silhouette coefficient measure and Dunn index. Therefore, it
is concluded that the proposed algorithm will give the same estimated number of clusters
with Cosine similarity, which is identical to the real number of clusters.

In the next step, the proposed parallel algorithm has been applied to the representations
of the produced query datasets of Table 2 with the Cosine similaritymeasure. Figure 7 shows
the introduced method’s execution time for different data nodes with varying numbers
of queries. Figure 7 shows that when the number of queries increases, the introduced
technique’s execution time increases, too. It was found that 4, 6, 8, and 10 Hadoop node
always outperform the standalone implementations.

Lastly, the clustering segmentation of DBSCAN was carried out based on the Cosine
similarity results. Several experiments have been conducted with variable Epsilon
(Eps= 0.02,...,0.18) in steps of 0.02. The Minpts is = 0,...,19.

Figure 8 and Table 3 present the proposed algorithm’s results using ARI (Eq. (7)).
The table indicates values for Eps and MinPts for different datasets to reach the ideal
performance. The presented DBSCAN had higher accuracy in the selection queries’
dataset. For example, in the selection queries’ dataset (k= 14), Eps= 0.12 andMinpts= 16
satisfies the ground-truth clustering accuracy. Table 3 indicates that as the complexity and
the number of queries increase, clustering efficiency decreases.

DISCUSSION
It is difficult to solve the query optimization problem in large-scale and distributed
databases. Unfortunately, the optimizer’s complexity grows with the increase in the number
of relations and joins. In this regard, the query optimizer needs to investigate the large space
of possible query plans to produce optimal query execution plans. Recommendation-based
approaches are developed to help the query optimizer recognize the similarity between old

Azhir et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.580 11/17

https://peerj.com
https://doi.org/10.7717/peerjcs.580/fig-4
http://dx.doi.org/10.7717/peerj-cs.580


 
 

(a) Dunn index (b) Silhouette Coefficient 
 

0

0.05

0.1

0.15

0.2

0.25

0.3

60 199 389 481 593

D
u

n
n

 In
d

ex

No. of Queries

Cosine

Jaccard

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

60 199 389 481 593

A
vg

. S
ilh

o
u

et
te

  

No. of Queries

Cosine

Jaccard

Figure 5 The clustering quality validation for the selection/join queries datasets (SJ1–SJ5). (A) Dunn
index; (B) Silhouette coefficient.

Full-size DOI: 10.7717/peerjcs.580/fig-5

  
(a) Dunn index (b) Silhouette Coefficient 

 

0

0.04

0.08

0.12

0.16

0.2

108 140 325 440 593

D
u

n
n

 In
d

ex

No. of Queries

Cosine
Jaccard

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

108 140 325 440 593

A
vg

. S
ilh

o
u

et
te

  
No. of Queries

Cosine

Jaccard

Figure 6 The clustering quality validation factor for the selection/join/nested sub-queries datasets
(SJN1–SJN5). (A) Dunn index; (B) Silhouette coefficient.

Full-size DOI: 10.7717/peerjcs.580/fig-6

Figure 7 MapReduce processing time variation for the selection queries’ datasets (S1–S5).
Full-size DOI: 10.7717/peerjcs.580/fig-7

and upcoming ones. This paper presents an efficient MapReduce-based parallel processing
method to improve the time-efficiency of the access plan recommendation approach to
optimize the query.

In a Hadoop cluster, the MapReduce algorithm was executed with different query
datasets. The experiment results demonstrated that the presented parallel access plan

Azhir et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.580 12/17

https://peerj.com
https://doi.org/10.7717/peerjcs.580/fig-5
https://doi.org/10.7717/peerjcs.580/fig-6
https://doi.org/10.7717/peerjcs.580/fig-7
http://dx.doi.org/10.7717/peerj-cs.580


 

 

S1
S2

S3
S4

S5

SJ1

SJ2

SJ3

SJ4

SJ5

SJN1
SJN2

SJN3 SJN4 SJN5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5
A

d
ju

st
ed

 R
an

d
 In

d
ex

Selection Selection/Join Selection/Join/Nested sub-queries

Figure 8 The clustering quality validation using ARI.
Full-size DOI: 10.7717/peerjcs.580/fig-8

Table 3 Epsilon andMinpts best values for the proposed algorithm.

Dataset ARI No. of Clusters Minpts Eps

Selection queries log
S1 0.6997 3 8 0.03
S2 0.7504 7 16 0.1
S3 0.6956 10 16 0.08
S4 0.7348 12 16 0.12
S5 0.7011 14 16 0.12

Selection/join queries log
SJ1 0.4905 1 8 0.06
SJ2 0.7361 5 8 0.06
SJ3 0.4859 12 8 0.09
SJ4 0.6084 12 8 0.06
SJ5 0.5062 14 8 0.09

Selection/join with nested sub-queries log
SJN1 0.0310 2 12 0.06
SJN2 0.0923 2 12 0.06
SJN3 0.0482 3 12 0.02
SJN4 0.0310 5 12 0.06
SJN5 0.0324 7 12 0.06

recommendation approach could deal with large query logs and improve time efficiency.
After comparing the curves in Fig. 7, it is clear that as the number of queries increases, the
distance among the curves increases, as well. So the parallel computing efficiency is higher.
Particularly with the growing number of queries, this benefit becomes clearer. The results
show that the speedup factor increases alongside the number of queries in the MapReduce
framework.

On the other hand, as shown in Fig. 8, the proposed algorithm can find the real number
of clusters for the selection queries’ dataset. On this basis, it is concluded that the parallel
access plan recommendation approach on the Hadoop platform can tackle the large-scale
selection queries with higher accuracy and acceptable processing time.

Azhir et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.580 13/17

https://peerj.com
https://doi.org/10.7717/peerjcs.580/fig-8
http://dx.doi.org/10.7717/peerj-cs.580


CONCLUSIONS
This paper aimed to improve semantic-based query clustering efficiency in the access plan
recommendation regarding the recommendation time. In this paper, we assessed semantic
similarities among queries. First, we normalized the query semantics and calculated token
occurrences to make the query vectors. Then, we used the access plan recommendation
workflow with Cosine measure to produce the queries’ weight matrix. Also, we sped up the
clustering process using the MapReduce parallel programming model. The speedup factor
increases linearly with the number of Hadoop nodes and dataset size. We obtained the
highest speedup of 1. 36× using 10 Hadoop nodes over the standalone implementation.

It is suggested that the efficiency of other clustering algorithms and query representations
methods be examined for plan recommendations in future work. Also, further experiments
will be useful to investigate the performance of the proposed technique in various datasets.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Elham Azhir conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
describing the method, and approved the final draft.
• Nima Jafari Navimipour conceived and designed the experiments, performed the
experiments, performed the computation work, prepared figures and/or tables, authored
or reviewed drafts of the paper, investigation of common works, and approved the final
draft.
• Mehdi Hosseinzadeh conceived and designed the experiments, performed the
computation work, authored or reviewed drafts of the paper, and approved the final
draft.
• Arash Sharifi conceived and designed the experiments, analyzed the data, performed the
computation work, authored or reviewed drafts of the paper, and approved the final
draft.
• Aso Darwesh analyzed the data, authored or reviewed drafts of the paper, and approved
the final draft.

Data Availability
The following information was supplied regarding data availability:

We used the Apache Mahout open-source library for creating the TF vectors and
calculating pairwise similarities using cosine distance. The associated codes and query
datasets are available as Supplemental Files.

Azhir et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.580 14/17

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.580#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.580


Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.580#supplemental-information.

REFERENCES
Aligon J, Golfarelli M, Marcel P, Rizzi S, Turricchia E. 2014. Similarity mea-

sures for OLAP sessions. Knowledge and Information Systems 39:463–489
DOI 10.1007/s10115-013-0614-1.

Angela Jennifa Sujana J, Revathi T, Joshua Rajanayagam S. 2020. Fuzzy-based security-
driven optimistic scheduling of scientific workflows in cloud computing. IETE
Journal of Research 66:224–241 DOI 10.1080/03772063.2018.1486740.

Aouiche K, Jouve P-E, Darmont J. 2006. Clustering-based materialized view selection
in data warehouses. In: East European conference on advances in databases and
information systems. 81–95.

Azhir E, Jafari Navimipour N, HosseinzadehM, Sharifi A, Darwesh A. 2019a. De-
terministic and non-deterministic query optimization techniques in the cloud
computing. Concurrency and Computation: Practice and Experience 31:e5240
DOI 10.1002/cpe.5240.

Azhir E, Navimipour NJ, HosseinzadehM, Sharifi A, Darwesh A. 2019b. Query opti-
mization mechanisms in the cloud environments: a systematic study. International
Journal of Communication Systems 32:e3940 DOI 10.1002/dac.3940.

Azhir E, Navimipour NJ, HosseinzadehM, Sharifi A, Darwesh A. 2021. An auto-
matic clustering technique for query plan recommendation. Information Sciences
545:620–632 DOI 10.1016/j.ins.2020.09.037.

Buyya R, Broberg J, Goscinski AM. 2010. Cloud computing: principles and paradigms.
Vol. 87. Hoboken, New Jersey: John Wiley & Sons.

Chandra B, Chawda B, Kar B, Reddy KM, Shah S, Sudarshan S. 2015. Data gen-
eration for testing and grading SQL queries. The VLDB Journal 24:731–755
DOI 10.1007/s00778-015-0395-0.

Cheng Y-M. 2021. Can tasks and learning be balanced? A dual-pathway model of cloud-
based e-learning continuance intention and performance outcomes. Kybernetes
DOI 10.1108/K-07-2020-0440.

Dean J, Ghemawat S. 2008. MapReduce: simplified data processing on large clusters. In:
Communications of the ACM. 51. New York, ACM, 107–113.

Ebadi Y, Jafari Navimipour N. 2019. An energy-aware method for data replication
in the cloud environments using a Tabu search and particle swarm optimization
algorithm. Concurrency and Computation: Practice and Experience 31:e4757
DOI 10.1002/cpe.4757.

Ester M, Kriegel H-P, Sander J, Xu X. 1996. A density-based algorithm for discovering
clusters in large spatial databases with noise. In: Proceedings of second international
conference on knowledge discovery and data mining, Oregon, Portland. New York,
ACM, 226–231.

Azhir et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.580 15/17

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.580#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.580#supplemental-information
http://dx.doi.org/10.1007/s10115-013-0614-1
http://dx.doi.org/10.1080/03772063.2018.1486740
http://dx.doi.org/10.1002/cpe.5240
http://dx.doi.org/10.1002/dac.3940
http://dx.doi.org/10.1016/j.ins.2020.09.037
http://dx.doi.org/10.1007/s00778-015-0395-0
http://dx.doi.org/10.1108/K-07-2020-0440
http://dx.doi.org/10.1002/cpe.4757
http://dx.doi.org/10.7717/peerj-cs.580


Ghosh A, Parikh J, Sengar VS, Haritsa JR. 2002. Plan selection based on query clus-
tering. In: VLDB’02: Proceedings of the 28th international conference on very large
databases. New York: ACM, 179–190.

Hahsler M, PiekenbrockM, Doran D. 2019. dbscan: fast density-based clustering with r.
Journal of Statistical Software 91:1–30 DOI 10.18637/jss.v091.i01.

HanM, Youn J, Lee S-G. 2017. Efficient query processing on distributed stream pro-
cessing engine. In: Proceedings of the 11th international conference on ubiquitous
information management and communication. New York: ACM, 29.

Hartigan JA. 1975. Clustering algorithms. Hoboken, New Jersey: John Wiley & Sons, Inc..
Huang A. 2008. Similarity measures for text document clustering. In: Proceedings of

the sixth new zealand computer science research student conference (NZCSRSC2008),
Christchurch, New Zealand. 9–56.

Jaccard P. 1912. The distribution of the flora in the alpine zone. 1. New phytologist
11:37–50 DOI 10.1111/j.1469-8137.1912.tb05611.x.

Khezr SN, Navimipour NJ. 2015.MapReduce and its application in optimization
algorithms: a comprehensive study.Majlesi Journal of Multimedia Processing 4.

Kul G, Luong DTA, Xie T, Chandola V, Kennedy O, Upadhyaya S. 2018. Similarity met-
rics for sql query clustering. In: IEEE Transactions on Knowledge & Data Engineering.
30. Piscataway: IEEE, 2408–2420.

Makiyama VH, Raddick J, Santos RD. 2015. Text mining applied to SQL queries: a case
study for the SDSS SkyServer. In: SIMBig. 66–72.

Mehdi Cherrat E, Alaoui R, Bouzahir H. 2020. Convolutional neural networks
approach for multimodal biometric identification system using the fusion
of fingerprint, finger-vein and face images. PeerJ Computer Science 6:e248
DOI 10.7717/peerj-cs.248.

Nguyen L, Amer AA. 2019. Advanced cosine measures for collaborative filtering. In:
Adapt Personalization (ADP). 1. 21–41.

Panahi V, Navimipour NJ. 2019. Join query optimization in the distributed database
system using an artificial bee colony algorithm and genetic operators. Concurrency
and Computation: Practice and Experience 31:e5218 DOI 10.1002/cpe.5218.

Rahmani AM, Azhir E, Ali S, Mohammadi M, Ahmed OH, Yassin GhafourM, Hasan
Ahmed S, HosseinzadehM. 2021. Artificial intelligence approaches and mech-
anisms for big data analytics: a systematic study. PeerJ Computer Science 7:e488
DOI 10.7717/peerj-cs.488.

Rousseeuw PJ. 1987. Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. Journal of Computational and Applied Mathematics 20:53–65
DOI 10.1016/0377-0427(87)90125-7.

Sadrishojaei M, Navimipour NJ, Reshadi M, HosseinzadehM. 2021. A new preven-
tive routing method based on clustering and location prediction in the mobile
internet of things. In: IEEE Internet of Things Journal. Piscataway: IEEE, 1–1
DOI 10.1109/JIOT.2021.3049631.

Azhir et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.580 16/17

https://peerj.com
http://dx.doi.org/10.18637/jss.v091.i01
http://dx.doi.org/10.1111/j.1469-8137.1912.tb05611.x
http://dx.doi.org/10.7717/peerj-cs.248
http://dx.doi.org/10.1002/cpe.5218
http://dx.doi.org/10.7717/peerj-cs.488
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1109/JIOT.2021.3049631
http://dx.doi.org/10.7717/peerj-cs.580


Sarda P, Haritsa JR. 2004. Green query optimization: taming query optimization
overheads through plan recycling. In: Proceedings of the thirtieth international
conference on very large data bases-volume 30. 1333–1336.

Shabestari F, Rahmani AM, Navimipour NJ, Jabbehdari S. 2019. A taxonomy of
software-based and hardware-based approaches for energy efficiency management
in the Hadoop. Journal of Network and Computer Applications 126:162–177
DOI 10.1016/j.jnca.2018.11.007.

Sharma G, Kalra S. 2019. A lightweight user authentication scheme for cloud-iot based
healthcare services. Iranian Journal of Science and Technology, Transactions of
Electrical Engineering 43:619–636 DOI 10.1007/s40998-018-0146-5.

Singh V. 2016.Multi-objective parametric query optimization for distributed database
systems. In: Proceedings of fifth international conference on soft computing for problem
solving. 219–233.

Solihah B, Azhari A, Musdholifah A. 2020. Enhancement of conformational B-
cell epitope prediction using CluSMOTE. PeerJ Computer Science 6:e275
DOI 10.7717/peerj-cs.275.

Victor G-S, Antonia P, Spyros S. 2014. Csmr: a scalable algorithm for text clustering
with cosine similarity and mapreduce. In: IFIP international conference on artificial
intelligence applications and innovations. 211–220.

Vivekrabinson K, Muneeswaran K. 2021. Fault-tolerant based group key servers with
enhancement of utilizing the contributory server for cloud storage applications. IETE
Journal of Research 1–16 DOI 10.1080/03772063.2021.1893842.

White T. 2012.Hadoop: the definitive guide. Sebastopol: O’Reilly Media, Inc..
Yeung KY, RuzzoWL. 2001. An empirical study on principal component analysis for

clustering gene expression data. Bioinformatics 17:763–774
DOI 10.1093/bioinformatics/17.9.763.

Zahir J, El Qadi A. 2016. A recommendation system for execution plans using machine
learning.Mathematical and Computational Applications 21:23–35
DOI 10.3390/mca21020023.

Zahir J, El Qadi A, Mouline S. 2014. Access plan recommendation: a clustering based
approach using queries similarity. In: Complex Systems (WCCS), 2014 second world
conference on. 55–60.

Zaki MJ, Meira JrW,MeiraW. 2014.Data mining and analysis: fundamental concepts and
algorithms. Cambridge: Cambridge University Press.

Azhir et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.580 17/17

https://peerj.com
http://dx.doi.org/10.1016/j.jnca.2018.11.007
http://dx.doi.org/10.1007/s40998-018-0146-5
http://dx.doi.org/10.7717/peerj-cs.275
http://dx.doi.org/10.1080/03772063.2021.1893842
http://dx.doi.org/10.1093/bioinformatics/17.9.763
http://dx.doi.org/10.3390/mca21020023
http://dx.doi.org/10.7717/peerj-cs.580

