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BACKGROUND

A generative model is a statistical model capable of generating new

data instances from previously observed ones. In business processes, a
generative model creates new execution traces from a set of historical
traces, also known as an event log. Two types of generative business
process models have been developed in previous work: data-driven
simulation (DDS) models and deep learning (DL) models.
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RESULTS

The results suggest that DDS
models are suitable for capturing
the sequence of activities of a
process.
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CONCLUSION

A natural direction for future work is to extend existing DDS approaches
to take into account a wider range of mechanisms affecting waiting
times to increase their temporal accuracy.

An alternative approach would be to combine DDS and DL approaches to
take advantage of their relative strengths. In such a hybrid approach,
the DDS model would capture the control-flow perspective, while the DL
model would capture the temporal dynamics, particularly waiting times.

% UNIVERSITY TR
= OF TARTU . | | |
’ Colombia This research is funded by the European Research Council.

This is an open access graphic
distributed under the terms of the

SR e . Creative Commons Attribution License.
Discovering generative models from event logs:

data-driven simulation vs deep learning.
Peer] Computer Science 7:e577

DOI: 10.7717/peerj-cs.577
http://peerj.com/articles/cs-577/




