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ABSTRACT
A generative model is a statistical model capable of generating new data instances
from previously observed ones. In the context of business processes, a generative
model creates new execution traces from a set of historical traces, also known as an
event log. Two types of generative business process models have been developed
in previous work: data-driven simulation models and deep learning models.
Until now, these two approaches have evolved independently, and their relative
performance has not been studied. This paper fills this gap by empirically comparing
a data-driven simulation approach with multiple deep learning approaches for
building generative business process models. The study sheds light on the relative
strengths of these two approaches and raises the prospect of developing hybrid
approaches that combine these strengths.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Scientific Computing and
Simulation, Software Engineering
Keywords Process mining, Deep learning, Data-driven simulation

INTRODUCTION
Process mining is a family of techniques that allow users to interactively analyze data
extracted from enterprise information systems in order to derive insights to improve one
or more business processes. Process mining tools extract business process execution data
from an enterprise system and consolidate it in the form of an event log.

In this setting, an event log is a collection of execution traces of a business process.
Each trace in an event log consists of a sequence of event records. An event record captures
an execution of one activity, which takes place as part of one execution of a business
process. For example, in an order-to-cash process, each execution of the process (also
known as a case) corresponds to the handling of one purchase order. Hence, in an event
log of this process, each trace contains records of the activities that were performed in
order to handle one specific purchase order (e.g. purchase order PO2039). This trace
contains one event record per activity execution. Each event record contains the identifier
of the case (PO2039), an activity label (e.g. “Dispatch the Products”), an activity start
timestamp (e.g. 2020-11-06T10:12:00), an activity end timestamp (e.g. 2020-11-
06T11:54:00), the resource who performed the activity (e.g. the identifier of a clerk at
the company’s warehouse), and possibly other attributes, such as ID of the client.

How to cite this article Camargo M, Dumas M, González-Rojas O. 2021. Discovering generative models from event logs: data-driven
simulation vs deep learning. PeerJ Comput. Sci. 7:e577 DOI 10.7717/peerj-cs.577

Submitted 24 November 2020
Accepted 12 May 2021
Published 12 July 2021

Corresponding author
Manuel Camargo,
manuel.camargo@ut.ee

Academic editor
Chiara Ghidini

Additional Information and
Declarations can be found on
page 21

DOI 10.7717/peerj-cs.577

Copyright
2021 Camargo et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.577
mailto:manuel.�camargo@�ut.�ee
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.577
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/


A generative model of a business process is a statistical model constructed from an
event log, which is able to generate traces that resemble those observed in the log as well as
other traces of the process. Generative process models have several applications in the field
of process mining, including anomaly detection (Nolle, Seeliger & Mühlhäuser, 2018),
predictive monitoring (Tax et al., 2017), what-if scenario analysis (Camargo, Dumas &
González-Rojas, 2020) and conformance checking (Sani et al., 2020). Two families of
generative models have been studied in the process mining literature: Data-Driven
Simulation (DDS) and Deep Learning (DL) models.

DDS models are discrete-event simulation models constructed from an event log.
Several authors have proposed techniques for discovering DDS models, ranging from
semi-automated techniques (Martin, Depaire & Caris, 2016) to automated ones (Rozinat
et al., 2009; Camargo, Dumas & González-Rojas, 2020). A DDS model is generally
constructed by first discovering a process model from an event log and then fitting a
number of parameters (e.g. mean inter-arrival rate, branching probabilities, etc.) in a way
that maximizes the similarity between the traces that the DDS model generates and those
in (a subset of) the event log.

On the other hand, DL generative models are machine learning models consisting of
interconnected layers of artificial neurons adjusted based on input-output pairs in order to
maximize accuracy. Generative DL models have been widely studied in the context of
predictive process monitoring (Tax et al., 2017; Evermann, Rehse & Fettke, 2017; Lin,
Wen &Wang, 2019; Taymouri et al., 2020), where they are used to generate the remaining
path (suffix) of an incomplete trace by repeatedly predicting the next event. It has been
shown that these models can also be used to generate entire traces (Camargo, Dumas &
González-Rojas, 2019) (not just suffixes).

To date, the relative accuracy of these two families of generative process models has not
been studied, barring a study that compares DL models vs automatically discovered
process models that generate events without timestamps (Tax, Teinemaa & Van Zelst,
2020). This paper fills this gap by empirically comparing these approaches using eleven
event-logs, which vary in terms of structural and temporal characteristics. Based on the
evaluation results, the paper discusses the relative strengths and potential synergies of these
approaches.

The paper is organized as follows. “Generative Data-Driven Process SimulationModels”
and “Generative Deep Learning Models of Business Processes” review DDS and DL
generative modeling approaches, respectively. “Evaluation” presents the empirical
evaluation setup while “Findings” presents the findings. “Discussion” discusses the
conceptual trade-offs between DDS and DL approaches in terms of expressiveness and
interpretability and relates these trade-offs to the empirical findings. Finally, “Conclusion”
concludes and outlines future work.

GENERATIVE DATA-DRIVEN PROCESS SIMULATION
MODELS
Business Process Simulation (BPS) is a quantitative process analysis technique in which a
discrete-event model of a process is stochastically executed a number of times, and the
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resulting simulated execution traces are used to compute aggregate performance measures
such as the average waiting times of activities or the average cycle time of the process
(Dumas et al., 2018).

Typically, a BPS model consists of a process model enhanced with time and resource-
related parameters such as the inter-arrival time of cases and its associated Probability
Distribution Function (PDF), the PDFs of each activity’s processing times, a branching
probability for each conditional branch in the process model, and the resource pool
responsible for performing each activity type in the process model (Dumas et al., 2018).
Such BPS models are stochastically executed by creating new cases according to the
inter-arrival time PDF, and by simulating the execution of each case constrained to the
control-flow semantics of the process model and to the following activity execution rules:
(i) If an activity in a case is enabled, and there is an available resource in the pool associated
to this activity, the activity is started and allocated to one of the available resources in
the pool; (ii) When the completion time of an activity is reached, the resource allocated to
the activity is made available again. Hence, the waiting time of an activity is entirely
determined by the availability of a resource. Resources are assumed to be eager: as soon as a
resource is assigned to an activity, the activity is started.

A key ingredient for BPS is the availability of a BPS model that accurately reflects
the actual dynamics of the process. Traditionally, BPS models are created manually by
domain experts by gathering data from interviews, contextual inquiries, and on-site
observation. In this approach, the accuracy of the BPS model is limited by the accuracy of
the process model used as a starting point.

Several techniques for discovering BPS models from event logs have been proposed
(Martin, Depaire & Caris, 2016; Rozinat et al., 2009). These approaches start by
discovering a process model from an event log and then enhance this model with
simulation parameters derived from the log (e.g. arrival rate, branching probabilities).
Below, we use the term DDS model to refer to a BPS model discovered from an event log.

Existing approaches for discovering a DDS from an event log can be classified in
two categories. The first category consists of approaches that provide conceptual guidance
to discover BPS models. For example, Martin, Depaire & Caris (2016) discusses how PM
techniques can be used to extract, validate, and tune BPS model parameters, without
seeking to provide fully automated support. Similarly, Wynn et al. (2008) outlines a series
of steps to construct a DDS model using process mining techniques. The second category
of approaches seek to automate the extraction of simulation parameters. For example,
Rozinat et al. (2009) proposes a pipeline for constructing a DDS using process mining
techniques. However, in this approach, the tuning of the simulation model (i.e., fitting the
parameters to the data) is left to the user.

In this research, we use Simod (Camargo, Dumas & González-Rojas, 2020) as a
representative DDS method because, to the best of our knowledge, it is the only fully
automated method for discovering and tuning business process simulation models from
event logs. The use of methods with automated tuning steps, such as that of Rozinat et al.
(2009), would introduce two sources of bias in the evaluation: (i) a bias stemming from
the manual tuning of simulation parameters, which would have to be done separately for
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each event log using limited domain knowledge; and (ii) a bias stemming from the fact
that the DDS model would be manually tuned while the deep learning models are
automatically tuned as part of the model training phase. By using Simod, we ensure a fair
comparison, insofar as we compare a DDS method with automatic data-driven tuning of
model parameters with deep learning methods that, likewise, tune their parameters
(weights) to fit the data. Figure 1 depicts the steps of the Simod method, namely Structure
discovery and Time-related parameters discovery.

In the structure discovery stage, Simod extracts a BPMN model from data and
guarantees its quality and coherence with the event log. The first step is the Control Flow
Discovery, using the SplitMiner algorithm (Augusto et al., 2019b), which is known for
being one of the fastest, simple, and accurate discovery algorithms. Next, Simod applies
Trace alignment to assess the conformance between the discovered process model and each
trace in the input log. The tool provides options for handling non-conformant traces via
removal, replacement, or repair to ensure full conformance, which is needed in the
following stages. Then Simod discovers the model branching probabilities offering two
options: assign equal values to each conditional branch or computing the conditional
branches’ traversal frequencies by replaying the event log over the process model. Once all
the structural components are extracted, they are assembled into a single data structure
that a discrete event simulator can interpret (e.g., Bimp). The simulator is responsible for
reproducing the model at discrete moments, generating an event log as a result. Then
Simod uses a hyperparameter optimization technique to discover the configuration that
maximizes the Control-Flow Log Similarity (CFLS) between the produced log and the
ground truth.

In the time-related parameters discovery stage, Simod takes as input the structure
of the optimized model, extracts all the simulation parameters related to the times
perspective, and assembles them in a single BPS model. The extracted parameters
correspond to the probability density function (PDF) of Inter-arrival times, the Resource
pools involved in the process, the Activities durations, the instances generation calendars
and the resources availability calendars. The PDFs of inter-arrival times and activities
durations are discovered by fitting a collection of possible distribution functions to the data
series, selecting the one that yields the smallest standard error. The evaluated PDFs

Structure discovery

• Control Flow Discovery
• Trace alignment
• Branching probabili�es 

defini�on

Assessment and 
structural op�miza�on 

(DL distance)

Assessment and �mes 
op�miza�on 

(EMD distance)

• Interarrival dist.
• Ac�vi�es dist.
• Roles extrac�on

• Instances calendars
• Resource avail calendars

Time-related parameters discovery

Figure 1 Pipeline of Simod to generate process models. Full-size DOI: 10.7717/peerj-cs.577/fig-1
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correspond to those supported by the BIMP simulator (i.e., normal, lognormal, gamma,
exponential, uniform, and triangular distributions). The resource pool is discovered using
the algorithm proposed by Song & Van der Aalst (2008); likewise, the resources are
assigned to the different activities according to the frequency of execution. Finally, Simod
discovers calendar expressions that capture the resources’ time availability restricting the
hours they can execute tasks. Similarly, the tool discovers case creation timetables that
limit when the process instances can be created. Once all these simulation parameters are
compiled, Simod again uses the hyperparameter optimization technique to discover the
configuration that minimizes the Earth Mover’s Distance (EMD) distance between the
produced log and the ground truth.

The final product of the two optimization cycles is a model that reflects the structure
and the simulation parameters that best represent the time dynamics observed in the
ground truth log.

GENERATIVE DEEP LEARNING MODELS OF BUSINESS
PROCESSES
A Deep Learning (DL) model is a network composed of multiple interconnected layers of
neurons (perceptrons), which perform non-linear transformations of data (Hao, Zhang &
Ma, 2016). These transformations allow training the network to learn the behaviors/
patterns observed in the data. Theoretically, the more layers of neurons there are in the
system, the more it becomes possible to detect higher-level patterns in the data thanks to
the composition of complex functions (LeCun, Bengio & Hinton, 2015). A wide range of
neural network architectures have been proposed in the literature, e.g., feed-forward
networks, Convolutional Neural Networks (CNN), Variational Autoencoders (VAE), and
Recurrent Neural Networks (RNN). The latter type of architecture is specifically designed
for handling sequential data.

DL models have been applied in several sub-fields of process mining, particularly in the
context of predictive process monitoring. Predictive process monitoring is a class of process
mining techniques that are concerned with predicting, at runtime, some property about
the future state of a case, e.g. predicting the next event(s) in an ongoing case or the
remaining time until completion of the case.

Figure 2 depicts the main phases for the construction and evaluation of DL models
for predictive process monitoring. In the first phase (pre-processing) the events in the
log are transformed into (numerical) feature vectors and grouped into sequences, each
sequence corresponding to the execution of a case in the process (a trace). Next, a model
architecture is selected depending on the prediction target. In this respect, different
architectures may be used for predicting the type of the next event, its timestamp, or
both. Not surprisingly, given that event logs consist of sequences (traces), various studies
have advocated the use of RNNs in the context of predictive process monitoring. The
model is then built using a certain training method. In this respect, a distinction can be
made between classical generative training methods, which train a single neural network to
generate sequences of events, and Generative Adversarial Network (GAN) methods,
which train two neural networks by making them play against each other: one network
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trained to generate sequences and a second network to discriminate between sequences
that have been observed in the dataset and sequences that are not present in the dataset.
GAN methods have been shown in various applications to outperform classical training
methods when a sufficiently large dataset is available, at the expense of higher
computational cost.

Evermann, Rehse & Fettke (2017) proposed an RNN-based architecture with a classical
training method to train models that generate the most likely remaining sequence of
events (suffix) starting from a prefix of an ongoing case. However, this architecture cannot
handle numerical features, and hence it cannot generate sequences of timestamped events.
The approaches of Lin, Wen & Wang (2019), and other approaches benchmarked in
Tax, Teinemaa & Van Zelst (2020), also lack of this ability to predict timestamps and
durations.

In this paper, we tackle the problem of generating traces consisting not only of event
types (i.e. activity labels) but also timestamps. One of the earliest studies to tackle this
problem in the context of predictive process monitoring was that of Tax et al. (2017),
who proposed an approach to predict the type of the next event in an ongoing case, as well
as its timestamp, using RNNs with a type of architecture known as Long-Short-Term
Memory (LSTM). The same study showed that this approach can be effectively used to
generate the remaining sequence of timestamped events, starting from a given prefix of a
case. However, this approach cannot handle high dimensional inputs due to its reliance on
one-hot encoding of categorical features. As a result, its accuracy deteriorates as the
number of categorical features increases. This limitation is lifted in the DeepGenerator
approach (Camargo, Dumas & González-Rojas, 2019), which extends the approach of Tax
et al. (2017) with two mechanisms to handle high-dimensional input, namely n-grams
and embeddings, and integrates a mechanism for avoiding temporal instability namely
Random Choice next-event selection. A more recent study, Taymouri et al. (2020),
proposes to use a GAN method to train an LSTM model capable of predicting the type of
the next event and its timestamp. The authors show that this GAN approach outperforms
classical training methods (for the task of predicting the next event and timestamp) on
certain datasets.

In the empirical evaluation reported in this paper, we retain the LSTM approach of
Camargo, Dumas & González-Rojas (2019) and the GAN approach of Taymouri et al.
(2020) as representative methods for training generative DL models from event logs.
We selected these methods because they have the capability of generating both the type
of the next event in a trace and its timestamp. This means that if we iteratively apply
these methods starting from an empty sequence, via an approach known as hallucination,
we can generate a sequence of events such that each event has one timestamp (the end

Figure 2 Phases and steps for building DL models. Full-size DOI: 10.7717/peerj-cs.577/fig-2
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timestamp). Hence, these methods can be used to produce entire sequences of
timestamped events and therefore they can be used to generate event logs that are
comparable to those that DDS methods generate, with the difference that the above DL
training methods associate only one timestamp to each event whereas DDS methods
associate both a start and an end timestamp to each event. Accordingly, for full
comparability, we need to adapt the above two DL methods to generate two timestamps
per event. In the following sub-sections we describe each of these approach and how
we adapted them to fit this requirement.

DeepGenerator approach
The DeepGenerator approach trains a generative model by using attributes extracted
from the original event log, specifically activities, roles, relative times (start and end
timestamps), and contextual times (day of the week, time during the day). These generative
models are able to produce traces consisting of triplets (event type, role, timestamp).
A role refers to a group of resources who are able to perform a given activity (e.g. “Clerk” or
“Sales Representative”). In this paper, we adapt DeepGenerator to generate sequences of
triplets of the form (event-type, start-timestamp, end-timestamp). Each triplet captures
the execution of an activity of a given type (event-type) together with the timeframe
during which the activity was executed. In this paper, we do not attach roles to events, in
order to make the DeepGenerator method fully comparable to Simod as discussed in
“Conclusion”.

In the pre-processing phase (cf. Fig. 2), DeepGenerator applies encoding and scaling
techniques to transform the event log depending on the data type of each event attribute
(categorical vs continuous). Categorical attributes (activities and roles) are encoded
using embeddings in order to keep the data dimensionality low, as this property enhances
the performance of the neural network. Meantime, start and end timestamps are
relativized and scaled over a range of [0, 1]. The relativization is carried out by
first calculating two features: the activities duration and the time-between-activities.
The duration of an activity (a.k.a. the processing time) is the difference between its
complete timestamp and its start timestamp. The time-between-activities (a.k.a. the
waiting time) is the difference between the start timestamp of an activity and the end
timestamp of the immediately preceding activity in the same trace. All relative times are
scaled using normalization or log-normalization depending on the variability of the times
in the event log. Once the features are encoded, DeepGenerator executes the sequences
creation step to extract n-grams which allow better handling of long sequences. One
n-gram is generated for each step of the process execution and this is done for each
attribute independently. Hence, DeepGenerator uses four independent inputs: activity
prefixes, role prefixes, relativized durations, and relativized time-between-activities.

In the model training phase, one of two possible architectures is selected for training.
These architectures, depicted in Fig. 3, vary depending on whether or not they share
intermediate layers. The use of shared layers sometimes helps to better differentiate
between execution patterns. DeepGenerator uses LSTM layers or GRU layers. Both of
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these types of layers are suitable for handling sequential data, with GRU layers sometimes
outperforming LSTM layers (Mangal, Joshi & Modak, 2019; Chung et al., 2014).

Finally, the post-processing phase uses the resulting DL model in order to generate a
set of traces (i.e. an event log). DeepGenerator takes each generated trace and uses the
classical hallucination method to repeatedly ask the DL model to predict the next event
given the events observed so far (or given the empty trace in the case of the first event).
This step is repeated until we observe the “end of trace” event. At each step, the DL
model predicts multiple possible “next events”, each one with a certain probability.
DeepGenerator selects among these possible events randomly but weighted by the
associated probabilities. This mechanism turns out to be the most suitable for the task of
generating complete event logs by avoiding getting stuck in the higher probabilities
(Camargo, Dumas & González-Rojas, 2019).

LSTM-GAN approach
The approach proposed by Taymouri et al. (2020) trains LSTM generative models
using the GAN strategy. The strategy proposed by the authors consists of two LSTM
models, one generative and one discriminative, that are trained simultaneously through a
game of adversaries. In this game, the generative model has to learn how to confuse a
discriminative model to avoid distinguishing real examples from fake ones. As the game
unfolds, the discriminative model becomes more capable of distinguishing between fake
and real examples, thus forcing the generator to improve the generated examples.
Figure 4A presents the general architecture of the GAN strategy proposed in (Taymouri
et al., 2020). We performed modifications in every phase of this approach to be able to
generate full traces and entire event logs so as to make it fully comparable with DDS
methods.

LSTM

LSTM

Dense

LSTM

Dense

LSTM

LSTM

Dense

Concatenate

Embedded Embedded

ac�vi�es 
category

role 
category

rela�ve 
�mes

contextual 
features

LSTM

LSTM

Embedded

Dense

LSTM

Embedded

Dense

LSTM

Concatenate

Dense

ac�vi�es 
category

role 
category

rela�ve 
�mes

contextual 
features

(a) Shared categorical (b) Full shared

Figure 3 Explored DeepGenerator architectures: (A) this architecture concatenates the inputs
related with activities and roles, and shares the first layer, (B) this architecture completely shares
the first layer. Despite the role’s prefixes are encoded and predicted, their accuracy is not evaluated.

Full-size DOI: 10.7717/peerj-cs.577/fig-3
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In the preprocessing phase (cf. Fig. 2), the features corresponding to the activity’s
category and relative times are encoded and transformed. The model uses one-hot
encoding for creating a binary column for each activity and returning a sparse matrix.
We adapted the model to enable the prediction of two timestamps instead of one. The
original method by Taymouri et al. (2020) only handles one continuous attribute per event
(the end timestamp). We added another continuous attribute to capture the time
(in seconds) between the the end of the previous event in the sequence and the start of the
current one. This additional attribute is herein called the inter-activity times. Next, the
inter-activity times are then rounded up to the granularity of days so as to create a so-called
design matrix composed of the one-hot encoded activities and the scaled inter-activity
times. Then, we create the prefixes and the expected events in order to train the
models. Since the original model was intended to train models starting from a k-sized
prefix, all the smaller prefixes were discarded and the prediction of the first event of a
trace was not considered. We also adapted the model to be trained to predict zero-size
prefixes. For this purpose, we extended the number of prefixes considered by including a
dummy start event before each trace and by applying right-padding to the prefixes.
This modification of the input implied updating the loss functions in order to consider the
additional attribute.

In the model training phase, Taymouri et al. (2020) trained specialized models to
predict the next event from prefixes of a predefined size. While this approach is suitable for
predicting the next event, it is not suitable for predicting entire traces of unknown size.
Therefore, we train a single model with a prefix of size five. This strategy is grounded
on the results of the evaluation reported by Sindhgatta et al. (2020), from which the authors
concluded that increasing the size of the prefix used by the LSTMmodels (beyond a size of
five events) does not substantially improve the model’s predictive accuracy.

Finally, in the post-processing phase we take the complete predicted suffix to feed
back the model instead of considering only the first event predicted by the model
(see Fig. 4B). We carry out this operation to take advantage of the fact that the original
generative model is a sequence-to-sequence model, which receives a sequence of size k and

(a) Training phase (b) Generative model inference mode

Figure 4 LSTM-GAN architechture: (A) Training strategy, (B) inference strategy.
Full-size DOI: 10.7717/peerj-cs.577/fig-4
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predicts a sequence of size k. The empirical evidence reported by Camargo, Dumas &
González-Rojas (2019) shows that concatenating only the last event predicted by the model
generates a rapid degradation in the model’s long-term precision, as the model gets
trapped in predicting always the most probable events. Accordingly, we use the random
selection to select the next type of event.

EVALUATION
This section presents an empirical comparison of DDS and DL generative process
models. The evaluation aims at addressing the following questions: what is the relative
accuracy of these approaches when it comes to generating traces of events without
timestamps? and what is their relative accuracy when it comes to generating traces of
events with timestamps?

Datasets
We evaluated the selected approaches using eleven event logs that contain both start and
end timestamps. In this evaluation we use real logs from public and private sources and
synthetic logs generated from simulation models of real processes:

� The event log of a manufacturing production (MP) process is a public log that contains
the steps exported from an Enterprise Resource Planning (ERP) system (Levy, 2014).

� The event log of a purchase-to-pay (P2P) process is a public synthetic log generated
from a model not available to the authors.1

� The event log from an Academic Credentials Recognition (ACR) process of a
Colombian University was gathered from its BPM system (Bizagi).

� The W subset of the BPIC2012 (https://doi.org/10.4121/uuid:3926db30-f712-4394-
aebc-75976070e91f) event log, which is a public log of a loan application process from a
Dutch financial institution. The W subset of this log is composed of the events
corresponding to activities performed by human resources (i.e. only activities that have a
duration).

� The W subset of the BPIC2017 (https://doi.org/10.4121/uuid:5f3067dff10b-45da-b98b-
86ae4c7a310b) event log, which is an updated version of the BPIC2012 log. We carried
out the extraction of the W-subset by following the recommendations reported by
the winning teams participating in the BPIC 2017 challenge (https://www.win.tue.nl/
bpi/doku.php?id=2017:challenge).

� We used three private logs of real-life processes, each corresponding to a scenario of
different sizes of data for training. The POC log belongs to an undisclosed banking
process, and the CALL log belongs to a helpdesk process. Both of them correspond
to large-size training data scenarios. The INS logs belong to an insurance claims process
corresponding to a small size training data. For confidentiality reasons, only the detailed
results of these three event logs will be provided.

� We used three synthetic logs generated from simulation models of real-life processes
(https://zenodo.org/record/4264885). The selected models are complex enough to
represent scenarios in which occur parallelism, resource contention, or scheduled

1 The log is provided as part of the Flux-
icon Disco tool—https://fluxicon.com/.
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waiting times. From these models, we generate event logs varying the number of
instances representing greater or lesser availability of training data. The CVS retail
pharmacy (CVS) event-log is a large-size training data scenario from a simulation model
of an exercise described in the book Fundamentals of Business Process Management
(Dumas et al., 2018). We generated the CFM and CFS event logs from an anonymized
confidential process. They were used to represent scenarios of large and small size
training data.

Table 1 characterizes these logs according to the number of traces and events. The
BPI17W and BPI12W logs have the largest number of traces and events, while the MP, CFS
and P2P have less traces but a higher average number of events per trace.

Evaluation measures
We use a generative process model to generate an event log (multiple times) and then
we measure the average similarity between the generated logs and a ground-truth event
log. To this end, we define four measures of similarity between pairs of logs: Control-Flow
Log Similarity (CFLS), Mean Absolute Error (MAE) of cycle times, Earth-Mover’s
Distance (EMD) of the histograms of activity processing times, and Event Log Similarity
(ELS). It is important to clarify that the generation of time and activity sequences is not a
classification task. Therefore, the precision and recall metrics traditionally used for
predicting the next event do not apply. Instead, we use symmetric distance metrics
(i.e., that penalize the differences between a and b in the same way as from b to a) that
measure both precision and recall at the same time as explained in (Sander et al., 2021).

CFLS is defined based on a measure of distance between pairs of traces: one trace
coming from the original event log and the other from the generated log. We first convert
each trace into a sequence of activities (i.e. we drop the timestamps and other attributes).
In this way, a trace becomes a sequence of symbols (i.e. a string). We then measure the
difference between two traces using the Damerau-Levenshtein distance, which is the
minimum number of edit operations necessary to transform one string (a trace in our
context) into another. The supported edit operations are insertion, deletion, substitution,
and transposition. Transpositions are allowed without penalty when two activities are
concurrent, meaning that they appear in any order, i.e. given two activities, we observe
both AB and BA in the log. Next, we normalize the resulting Damerau-Levenshtein
distance by dividing the number edit operations by the length of the longest sequence.
We then define the control-flow trace similarity as the one minus the normalized Damerau-
Levenshtein distance. Given this trace similarity notion, we pair each trace in the generated
log with a trace in the original log, in such a way that the sum of the trace similarities
between the paired traces is maximal. This pairing is done using the Hungarian algorithm
for computing optimal alignments (Kuhn, 1955). Finally, we define the CFLS between the
real and the generated log as the average similarity of the optimally paired traces.

The cycle time MAE measures the temporal similarity between two logs. The absolute
error of a pair of traces T1 and T2 is the absolute value of the difference between the
cycle time of T1 and that of T2. The cycle time MAE is the mean of the absolute errors over
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a collection of paired traces. Like for the CFLS measure, we use the Hungarian algorithm to
pair each trace in the generated log with a corresponding trace in the original log.

The cycle time MAE is a rough measure of the temporal similarity between the traces in
the original and the generated log. It does not take into account the timing of the events in
a trace—only the cycle time of the full trace. To complement the cycle time MAE, we use
the Earth Mover’s Distance (EMD) between the normalized histograms of the mean
durations of the activities in the ground-truth log vs the same histogram computed from
the generated log. The EMD between two histograms H1 and H2 is the minimum number
of units that need to be added to, removed to, or transferred across columns in H1 in
order to transform it into H2. The EMD is zero if the observed mean activity durations in
the two logs are identical, and it tends to one the more they differ.

The above measures focus either on the control-flow or on the temporal perspective.
To complement them, we use a measure that combines both perspectives, namely the ELS
as defined in Camargo, Dumas & González-Rojas (2020). This measure is defined in
the same way as CLFS above, except that it uses a distance measure between traces that
takes into account both the activity labels and the timestamps of activity labels. This
distance measure between traces is called Business Process Trace Distance (BPTD).
The BPTD measures the distance between traces composed of events that occur in time
intervals. This metric is an adaptation of the CFLS metric that, in the case of label
matching, assigns a penalty based on the differences in times. BPTD also supports
parallelism, which commonly occurs in business processes. To do this, BPTD validates the
concurrency relationship between activities applying the oracle used by the alpha
algorithm in process discovery. We have called ELS the generalization of the BPTD that
measures the distance between two event logs using the Hungarian algorithm (Kuhn,
1955).

Experiment setup
The aim of the evaluation is to compare the accuracy of DDS models vs DL models
discovered from event logs. Figure 5 presents the pipeline we followed.

Table 1 Event logs description.

Size Type of source Event log Num. traces Num. events Num. activities Avg. activities per trace Avg. duration Max. duration

LARGE REAL POC 70,512 415,261 8 5.89 15.21 days 269.23 days

LARGE REAL BPI17W 30,276 240,854 8 7.96 12.66 days 286.07 days

LARGE REAL BPI12W 8,616 59,302 6 6.88 8.91 days 85.87 days

LARGE REAL CALL 3,885 7,548 6 1.94 2.39 days 59.1 days

LARGE SYNTHETIC CVS 10,000 103,906 15 10.39 7.58 days 21.0 days

LARGE SYNTHETIC CFM 2,000 44,373 29 26.57 0.76 days 5.83 days

SMALL REAL INS 1,182 23,141 9 19.58 70.93 days 599.9 days

SMALL REAL ACR 954 4,962 16 5.2 14.89 days 135.84 days

SMALL REAL MP 225 4,503 24 20.01 20.63 days 87.5 days

SMALL SYNTHETIC CFS 1,000 21,221 29 26.53 0.83 days 4.09 days

SMALL SYNTHETIC P2P 608 9,119 21 15 21.46 days 108.31 days
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We used the hold-out method with a temporal split criterion to divide the event logs
into two folds: 80% for training and 20% for testing. Next, we use the training fold to train
the DDS and the DLmodels. The use of temporal splits is common in the field of predictive
process monitoring (from which the DL techniques included in this study are drawn from)
as it prevents information leakage (Camargo, Dumas & González-Rojas, 2019; Taymouri
et al., 2020).

We use the first 80% of the training fold to construct candidate DDS models and the
remaining 20% for validation. We use Simod’s hyperparameter optimizer to tune the
DDS model (see the tool’s two discovery stages in “Generative Data-Driven Process
Simulation Models”). First, the optimizer in the structure discovery stage was set to explore
15 parameter configurations with five simulation runs per configuration. At this stage,
we kept the DDS model that gave the best results on the validation sub-fold in terms of
CFLS averaged across the five runs. Second, the optimizer in the time-related parameters
discovery stage was set to explore 20 parameter configurations with five simulation
runs per configuration. Then, we hold the DDS model that gave the best results on the
validation sub-fold in terms of EMD averaged across the five runs. As a result of the two
stages, Simod found the best model in both structure and time dynamics. We defined the
number of optimizer trials in each stage, by considering the differences in the search
space’s size in each stage (see Simod’s model parameters in Table 2).

The experimental results shows that the best possible value is reached in fewer attempts
than expected. Figure 6 shows the log P2P in which the best model was found in the
first optimization stage at the trial 10 and in the second stage at the trial 13.

Next, we apply random search for hyperparameter optimization for each family of
generative models (LSTM and GRU). Similarly to the DDS approach, we explore 40
random configurations with five runs each, using 80% of the training fold for model
construction and 20% for validation. This sample size was chosen to ensure a confidence
level of 95 % with a confidence interval of 6 (see LSTM/GRU’s model parameters in
Table 2).
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Figure 5 Experimental pipeline. Full-size DOI: 10.7717/peerj-cs.577/fig-5
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In the case of the LSTM-GAN implementation, as proposed by the authors (Taymouri
et al., 2020), we dynamically adjust the size of hidden units in each layer being twice the
input’s size. Additionally, we use 25 training epochs, a batch of size five, and a prefix size of
five.

The above led us to one DDS, one LSTM, one GRU, and one LSTM-GAN model per
log. We then generated five logs per retained model. To ensure comparability, each
generated log was of the same size (number of traces) as the testing fold of the original log.
We then compare each generated log with the testing fold using the ELS, CFLS, EMD
and MAE measures defined above. We report the mean of each of these measures across
the 5 logs generated from each model in order to smooth out stochastic variations.

Table 2 Parameter ranges and distributions used for hyperparameter optimization.

Model Stage Parameter Distribution Values

Simod Structure discovery Parallelism threshold (ε) Uniform [0…1]

Percentile for frequency threshold (η) Uniform [0…1]

Conditional branching probabilities Categorical {Equiprobable, Discovered}

Time-related parameters discovery Log repair technique Categorical {Repair, Removal, Replace}

Resource pools similarity threshold Uniform [0…1]

Resource availability calendar support Uniform [0…1]

Resource availability calendar confidence Uniform [0…1]

Instances creation calendar support Uniform [0…1]

Instances creation calendars confidence Uniform [0…1]

LSTM/GRU Training N-gram size Categorical {5, 10, 15}

Input scaling method Categorical {Max, Lognormal}

# units in hidden layer Categorical {50, 100}

Activation function for hidden layers Categorical {Selu, Tanh}

Model type Categorical {Shared Categorical, Full Shared}

(a) structure discovery stage (b) time-related params. discovery stage

Figure 6 Bayesian hyperparameter optimizer trials: (A) In CFLS units the higher the best, (B) in
EMDunits the lower the best. Full-size DOI: 10.7717/peerj-cs.577/fig-6
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FINDINGS
Figure 7 presents the evaluation results of CFLS, MAE and ELS measures grouped by event
log size and source type. Table 3 presents the exact values of all metrics sorted by metric,
event log size, and source type. The Event-log column identifies the evaluated log;
meanwhile, the GRU, LSTM, LSTM (GAN), and SIMOD columns present the accuracy
measures. Note that ELS and CFLS are similarity measures (higher is better), whereas MAE
and EMD are error/distance measures (lower is better).

Figure 7 Evaluation results: In the first column the CLFS are presented in similarity units (the
higherthe better), the second column presents the MAE results in distance units, and the third
column presents the ELS results (the higher the better). Full-size DOI: 10.7717/peerj-cs.577/fig-7
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Table 3 Detailed evaluation results. In bold best accuracy values. CLFS and ELM metrics are similarity
measures the biggest the best, MAE and EMD are distance measures the lowest the best.

Metric Size Type of source Event log GRU LSTM LSTM–GAN SIMOD

CLFS LARGE REAL POC 0.63141 0.67176 0.28998

BPI17W 0.63751 0.71798 0.36629 0.58861

BPI12W 0.58375 0.70228 0.35073 0.53744

CALL 0.82995 0.83043 0.24055 0.62911

SYNTHETIC CVS 0.83369 0.85752 0.20898 0.71359

CFM 0.81956 0.60224 0.11412 0.77094

SMALL REAL INS 0.50365 0.51299 0.25619 0.61034

ACR 0.78413 0.78879 0.18073 0.67959

MP 0.27094 0.23197 0.06691 0.34596

SYNTHETIC CFS 0.69543 0.66782 0.10157 0.76648

P2P 0.41179 0.65904 0.13556 0.45297

MAE LARGE REAL POC 801147 778608 603105

BPI17W 868766 603688 828165 961727

BPI12W 701892 327350 653656 662333

CALL 160485 174343 159424 679847

SYNTHETIC CVS 859926 667715 952004 1067258

CFM 25346 15078 956289 252458

SMALL REAL INS 1586323 1516368 1302337 1090179

ACR 344811 341694 296094 230363

MP 335553 321147 210714 298641

SYNTHETIC CFS 30327 33016 717266 15297

P2P 2407551 2495593 2347070 1892415

ELS LARGE REAL POC 0.58215 0.65961 0.28503

BPI17W 0.63643 0.70317 0.35282 0.58412

BPI12W 0.57862 0.67751 0.33649 0.52555

CALL 0.79336 0.81645 0.19123 0.59371

SYNTHETIC CVS 0.65160 0.70355 0.16854 0.70154

CFM 0.68292 0.43825 0.09505 0.66301

SMALL REAL INS 0.49625 0.50939 0.23070 0.57017

ACR 0.75635 0.45737 0.15884 0.71977

MP 0.25019 0.21508 0.04570 0.31024

SYNTHETIC CFS 0.54433 0.57392 0.07930 0.67526

P2P 0.22923 0.39249 0.09968 0.43202

EMD LARGE REAL POC 0.00036 0.00011 0.00001

BPI17W 0.00060 0.01010 0.00072 0.00057

BPI12W 0.00077 0.00061 0.00006 0.00002

CALL 0.00084 0.15794 0.00090 0.00072

SYNTHETIC CVS 0.61521 0.57217 0.40006 0.13509

CFM 0.00472 0.00828 0.03529 0.06848

SMALL REAL INS 0.03343 0.00308 0.33336 0.00001

ACR 0.49996 0.68837 0.25012 0.58674

MP 0.12609 0.33375 0.28577 0.31411

SYNTHETIC CFS 0.08253 0.10784 0.06924 0.03461

P2P 0.25306 0.33747 0.23898 0.03888
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The results show a clear dependence of training data size on the models’ accuracy.
For small logs, Simod presents a greater similarity in the control flow generation in three of
the five evaluated logs as shown by the CFLS results. In the remaining two logs, the
measure is not far from the best-reported values. In terms of MAE, Simod obtains the
smallest errors in four of the five logs, which leads to greater ELS similarity in four of the
five logs. However, for large logs, the LSTM model presents the best CFLS results in five of
the six evaluated logs wheres the GRU model approaches better in the remaining one.
In terms of MAE, the LSTMmodel obtains the lowest errors in four of the six logs, whereas
the LSTM-GAN model approaches better in the remaining two. The difference between
the DL and Simod models for the MAE mesure is constant, and dramatic in some
cases such as the CALL log. In this log, Simod generates a difference almost forty times
greater than that reported by the DL models. This can be the result of a contention of
resources that is non-existent in the ground truth.

When analyzing the ELS measure, which joins the two perspectives of control flow
and time distance, the LSTMmodel obtains the greatest similarity in five out of six models
and the GRUmodel in the remaining one. The LSTM-GANmodel does not obtain a better
result in this metric due to its poor performance in control flow similarity. The LSTM-
GAN model’s low performance is because the temporal stability of the models’ predictions
declines rapidly, despite having a higher precision in predicting the next event as
demonstrated in (Taymouri et al., 2020). This result also indicates overfitting on the
models preventing the generalization of this approach for this predictive task.

On the one hand, the results indicate that DDS models perform well when capturing the
occurrence and order of activities (control-flow similarity), and that this behavior is
independent of the training dataset size. A possible explanation for this result is that event
logs of business processes (at least the ones included in this evaluation) follow certain
normative pathways captured sufficiently by automatically discovered simulation models.
However, Deep Learning models and especially LSTM models outperform the DDS
models if a sufficiently large training dataset is available.

On the other hand, Deep Learning models are more accurate when it comes to
capturing the cycle times of the cases in the large logs (cf. the lower MAE for DL models vs
DDS models). Here, we observe that both DDS and DL models achieve similar EMD
values, which entails that both types of models predict the processing times of activities
with similar accuracy. Therefore, we conclude that the differences in temporal accuracy
(cycle time MAE) between DL and DDS models come from the fact that DL models can
better predict the waiting times of activities, rather than the processing times.2

The inability for DDS models to accurately capture the waiting times can be attributed
to the fact that these models rely on the assumption that the waiting times can be fully
explained by the availability of resources. In other words, DDS models assume that
resource contention is the sole cause of waiting times. Furthermore, DDS models operate
under the assumption of eager resources as discussed in “Generative Data-Driven Process
Simulation Models” (i.e., resources start an activity as soon as it is allocated to them).
Conversely, DL models try to find the best possible fit for observed waiting times without
any assumptions about the behavior of the resources involved in the process.

2 The cycle time of a process instance adds
the processing times (activity durations)
and the waiting times (Dumas et al.,
2018).
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DISCUSSION
The results of the empirical evaluation reflect the trade-offs between DDSmodels and deep
learning models. Indeed, these two families of models strike different tradeoffs between
modeling capabilities (expressive power) on the one hand, and interpretability on the
other.

The results specifically put into evidence the limitations in modeling capabilities of DDS
models. Such limitations arise both along the control-flow level perspective (sequences of
events) and along the temporal perspective (timestamps associated to each event).

From a control-flow perspective, DDS models can only generate sequences that can be
fully parsed by a business process model. In the case of Simod, this model is a BPMN
model. The choice of modeling notation naturally introduces a representational bias (Van
der Aalst, 2011). For example, free-choice workflow nets—which have the expressive
power of BPMN models with XOR and AND gateways (Favre, Fahland & Völzer, 2015)—
have limitations that prevent them from capturing certain synchronization constructs
(Kiepuszewski, Ter Hofstede & Van der Aalst, 2003). Adopting a more expressive notation
may reduce this representational bias, possibly at the expense of interpretability.
Furthermore, any DDS approach relies on an underlying automated process discovery
algorithm. For example, Simod relies on the Split Miner algorithm (Augusto et al., 2019b)
to discover BPMN models. Every such algorithm is limited in terms of the class of process
models that it can generate. For example the Split Miner and other algorithms based
on directly-follows graphs (e.g. Fodina) cannot capture process models with duplicate
activity labels (i.e. multiple activity nodes in the model sharing the same label). Meanwhile,
the Inductive Miner algorithm cannot capture non-block-structured process models
(Augusto et al., 2019a). In contrast, deep learning models for sequence generation rely on
non-linear functions that model the probability that a given activity occurs after a
given sequence prefix. Depending on the type of architecture used and the parameters
(e.g. the number of layers, the type of activation function, learning rate), these models may
be able to learn dependencies that cannot be captured by the class of BPMN models
generated by a given process discovery algorithm such as Split Miner.

Along the temporal perspective, DDS models make assumptions about the sources of
waiting times of activities. Chiefly, DDS models assume that waiting times are caused
exclusively by resource contention and they assume that as soon as a resource is available
and assigned to an activity, the resource will start the activity in question (robotic
behavior) (Van der Aalst, 2015). Furthermore, DDS models generally fail to capture inter-
dependencies between multiple concurrent cases (besides resource contention) such as
batching or prioritization between cases (some cases having a higher priority than others)
(Van der Aalst, 2015). Another limitation relates to the assumption that resources perform
one activity at a time, i.e. no multi-tasking (Estrada-Torres et al., 2020). In contrast,
deep learning models simply try to learn the time to the next-activity in a trace based on
observed patterns in the data. As such, they may learn to predict delays associated with
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inter-case dependencies as well as delays caused by exogenous factors such as workers
being busy performing work not related to the simulated process. These observations
explain why deep learning models outperform DDSmodels when it comes to capturing the
time between consecutive activities (and thus the total case duration). DDS models are
prone to underestimating waiting times, and hence cycle times, because they only take into
account waiting times due to resource contention. Meanwhile, deep learning models learn
to replicate the distributions of waiting times regardless of their origin.

On the other hand, that DDS models are arguably more interpretable than deep
learning models, insofar as they rely on a white-box representation of the process that
analysts typically use in practice. This property implies that DDS models can be modified
by business analysts to capture what-if scenarios, such as what would happen is a task was
removed from the model. Also, DDS models explicitly capture one of the possible causes of
waiting times, specifically resource contention, while deep learning models do not
explicitly capture any such mechanism. As such, DDS models are more amenable to
capture increases or reductions in waiting or processing times that arise when a change is
applied to a process. Specifically DDS models are capable of capturing the additional
waiting time (or the reduction in waiting time) that result from higher or lower
resource contention, for example due to an increase in the number of cases created per
time unit.

CONCLUSION
In this paper, we compared the accuracy of two approaches to discover generative models
from event logs: Data-Driven Simulation (DDS) and Deep Learning (DL). The results
suggest that DDS models are suitable for capturing the sequence of activities of a process.
On the other hand, DL models outperform DDS models when predicting the timing of
activities, specifically the waiting times between activities. This observation can be
explained by the fact that the simulation models used by DDS approaches assume that
waiting times are entirely attributable to resource contention, i.e. to the fact that all
resources that are able to perform an enabled activity instance are busy performing other
activity instances. In other words, these approaches do not take into account the multitude
of sources of waiting times that may arise in practice, such as waiting times caused by
batching, prioritization of some cases relative to others, resources being involved in other
business processes, or fatigue effects.

A natural direction for future work is to extend existing DDS approaches in order to
take into account a wider range of mechanisms affecting waiting times, so as to increase
their temporal accuracy. However, the causes of waiting times in business processes

Table 4 Source code of the approaches used in the evaluation.

Approach Repository

Simod tool https://github.com/AdaptiveBProcess/Simod.

DeepGenerator https://github.com/AdaptiveBProcess/GenerativeLSTM.

Adapted LSTM(GAN) https://github.com/AdaptiveBProcess/LSTM-GAN.
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may ultimately prove to be so diverse, that no DDS approach would be able to capture
them in their entirety. An alternative approach would be to combine DDS approaches with
DL approaches so as to take advantage of their relative strengths. In such a hybrid
approach, the DDS model would capture the control-flow perspective, while the DL model
would capture the temporal dynamics, particularly waiting times. The DSS model would
also provide an interpretable model that users can change in order to define “what-if”
scenarios, e.g. a what-if scenario where an activity is removed or a new activity is added.

Two challenges need to be overcome to design such a hybrid DDS-DL approach: (i) how
to integrate the DDS model with the DL model; and (ii) how to incorporate the
information of a what-if scenario into the DL model.

A possible approach to tackle the first of these challenges is to generate sequences of
events using a DDS model, or more specifically a stochastic model trained to generate
distributions of sequences of activities (Sander et al., 2021). In a second stage, the traces
generated by such a stochastic model can be extended to incorporate timestamps via a deep
learning model, trained to predict waiting times, i.e. the time between the moment an
activity is enabled and the time it starts. Processing times can then be added using either a
deep learning model, or a temporal probability distribution as in DDS approaches.

To tackle the second of the above challenges, we need a mechanism to adjust the
predictions made by a deep learning model in order to capture a change in the process,
e.g. the fact that an activity has been deleted. A possible approach is to adapt existing
techniques to incorporate domain knowledge (e.g. the fact that an activity will not occur in
a given suffix of a trace) into the output of a DL model (Di Francescomarino et al., 2017).

In this paper, we focused on comparing DDS and DL approaches designed to predict
sequences of activities together with their start and end timestamps. An event log may
contain other attributes, most notably the resource who performs each activity and/or the
role of this resource. A possible direction for future work is to compare the relative
performance of DDS and DL approaches for the task of generating event logs with
resources and/or roles. While there exist deep learning approaches to generate sequences
of events with resources (Camargo, Dumas & González-Rojas, 2019), existing DDS
approaches, including Simod, are not able to discover automatically tuned simulation
models covering the resource perspective. To design such a DDS approach, we need to first
define a loss function that takes into account both the control-flow and the resource
perspectives. We also need to incorporate a mechanism to assign a specific (individually
identified) resource to each activity instance, while ensuring that the associations between
activity instances and resources in the simulated log are reflective of those observed in the
original log. In other words, a possible direction for future work is to design a DDS
technique that handles roles and resources as first-class citizens and to compare the relative
performance of such a DDS technique against equivalent DL techniques.

Reproducibiltiy package: Table 4 links to the repositories of the approaches used in the
evaluation. The datasets, generative models, and the raw and summarized results can be
found at: DOI 10.5281/zenodo.4699983.
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