
Predicting defects in imbalanced data
using resampling methods: an empirical
investigation
Ruchika Malhotra1 and Juhi Jain2

1 Department of Software Engineering, Delhi Technological University (former Delhi College of
Engineering), Shahbad Daulatpur, Delhi, India

2 Department of Computer Science and Engineering, Delhi Technological University (former
Delhi College of Engineering), Shahbad Daulatpur, Delhi, India

ABSTRACT
The development of correct and effective software defect prediction (SDP) models is
one of the utmost needs of the software industry. Statistics of many defect-related
open-source data sets depict the class imbalance problem in object-oriented projects.
Models trained on imbalanced data leads to inaccurate future predictions owing
to biased learning and ineffective defect prediction. In addition to this large
number of software metrics degrades the model performance. This study aims at
(1) identification of useful metrics in the software using correlation feature selection,
(2) extensive comparative analysis of 10 resampling methods to generate effective
machine learning models for imbalanced data, (3) inclusion of stable performance
evaluators—AUC, GMean, and Balance and (4) integration of statistical validation of
results. The impact of 10 resampling methods is analyzed on selected features of
12 object-oriented Apache datasets using 15 machine learning techniques.
The performances of developed models are analyzed using AUC, GMean, Balance,
and sensitivity. Statistical results advocate the use of resampling methods to improve
SDP. Random oversampling portrays the best predictive capability of developed
defect prediction models. The study provides a guideline for identifying metrics that
are influential for SDP. The performances of oversampling methods are superior to
undersampling methods.

Subjects Data Mining and Machine Learning, Software Engineering
Keywords Software defect prediction, Machine learning, Class imbalance problem, Resampling
methods, Statistical validation

INTRODUCTION
Software Defect Prediction (SDP) deals with uncovering the probable future defects.
Efficient defect prediction helps in the timely identification of areas in software that can
lead to defects in software owing to better resource utilization (Malhotra, 2016). Source
code metrics give useful insights to software quality attributes like cohesion, coupling, size,
inheritance, etc, and are extensively used in developing software defect models (Basili,
Briand & Melo, 1996; Singh, Kaur & Malhotra, 2010; Radjenović et al., 2013). Effective
models can be generated using the object-oriented (OO) metrics. With the increasing

How to cite this article Malhotra R, Jain J. 2021. Predicting defects in imbalanced data using resampling methods: an empirical
investigation. PeerJ Comput. Sci. 8:e573 DOI 10.7717/peerj-cs.573

Submitted 30 October 2020
Accepted 11 May 2021
Published 29 April 2022

Corresponding author
Juhi Jain,
juhijain_phdco2k16@dtu.ac.in

Academic editor
Stefan Wagner

Additional Information and
Declarations can be found on
page 29

DOI 10.7717/peerj-cs.573

Copyright
2022 Malhotra and Jain

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.573
mailto:juhijain_phdco2k16@�dtu.�ac.�in
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.573
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

complexity of software, early prediction of defects, and assurance of good software quality
of projects become difficult tasks. To achieve this task of SDP, machine learning (ML)
techniques have been used by several researchers from the past two decades. But software
defect data is mostly imbalanced (Khoshgoftaar, Gao & Seliya, 2010). This issue of
SDP has recently gained a high interest in researchers in the software engineering
community. Data is imbalanced if the number of minority classes, in our case, defective
classes, is much lower than the majority class, i.e., non-defective classes. This imbalanced
distribution of data misguides classifiers while learning the defective class correctly and
hence results in biased and inaccurate results. A good defect prediction model will be the
one that is trained on similar distribution of instances of defective and non-defective
classes. From this point onwards, we will refer to the imbalanced data problem as the class
imbalance problem (CIP) because we are dealing with an imbalanced ratio of defective and
non-defective classes of software.

CIP is very prominent in many real-life problems like medical diagnosis (Mazurowski
et al., 2008; Khalilia, Chakraborty & Popescu, 2011), fraud detection (Phua, Alahakoon &
Lee, 2004; Vasu & Ravi, 2011), text categorization (Zheng, Wu & Srihari, 2004; Moreo,
Esuli & Sebastiani, 2016), sentiment analysis (Lane, Clarke & Hender, 2012), churn
prediction (Burez & Van den Poel, 2009), etc. Researchers are actively participating in
finding solutions for this problem in the software engineering domain for the last two
decades. One of the prominent solutions is using resampling methods comprising of
undersampling and oversampling methods (Kotsiantis, Kanellopoulos & Pintelas, 2006).
A large number of software metrics adds to the problem of constructing good SDP models.
This curse of dimensionality is handled by selecting important and distinct features using
correlation feature selection (CFS). CFS is selected as it is a widely accepted feature
selection (FS) technique and it has emerged as an effective FS technique in a benchmark
study (Ghotra, McIntosh & Hassan, 2017). This study deals with the application of
resampling methods to handle CIP for 12 Apache datasets and performing a comparative
analysis of various SDP models developed using ML techniques. In this study, six
oversampling techniques namely Synthetic Minority Over-sampling Technique
(SMT), Safe Level Synthetic Minority Over-sampling Technique (SLSMT), Selective
Preprocessing of Imbalanced Data (SPD), ADAptive SYNthetic Sampling (ADSYN),
Random OverSampling (ROS), Aglomerative Hierarchical Clustering (AHC) and four
undersampling techniques namely Condensed Nearest Neighbor + Tomek’s modification
of Condensed Nearest Neighbor (CNNTL), Random Under-Sampling (RUS),
Neighborhood Cleaning Rule (NCL), One Sided Selection (OSS) are explored on different
datasets to deal with their imbalanced nature.

The main objective of this paper is to ascertain the importance of dealing with CIP using
(1) resampling methods and (2) stable performance evaluators to build correct and
effective SDP models. The study also identifies the important internal quality attributes
(IQAs) of software on which developers need to focus.

Malhotra and Jain (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.573 2/34

http://dx.doi.org/10.7717/peerj-cs.573
https://peerj.com/computer-science/

Research Questions (RQs) to achieve the aforementioned objectives are designed as
follows.

RQ1: Which features are repeatedly selected by CFS in software
engineering datasets?
RQ1 finds the most important internal metrics that impact the possibility of defect(s) in
the software. Software metrics are recognized that software designers and developers
should focus on while building the software. We found that defects in software engineering
datasets are greatly impacted by LCOM, Ca, Ce, and RFC. LCOM is a cohesion metric
whereas Ca, Ce, and RFC are coupling metrics. In any software, high cohesion and low
coupling are desired. Therefore, as LCOM, Ca, Ce and RFC play a crucial role in SDP,
their values should be monitored while designing the software. This would result in
software with fewer defects.

RQ2: What is the performance of ML techniques on imbalanced data
while building SDP models?
RQ2 summarizes the performance of 12 imbalanced datasets with 15 ML techniques in
terms of Sensitivity, GMean, Balance, and AUC.

RQ3a: What is the comparative performance of various SDP models
developed using resampling methods?

RQ3b: Is there any improvement in the performance of SDP models
developed using resampling methods?
RQ3 presents the performance of SDPmodels that are built on balanced datasets. The ratio
of defective and non-defective classes is equalized with help of different resampling
methods and their performance is compared with their original versions, i.e. when no
resampling of classes is done. We empirically proved that all resampling methods improve
the performance of SDP models as compared to the models that are trained on original
data. The values of AUC, Balance, GMean, and Sensitivity increased with models trained
on resampled data, and, hence, these models depict better defect prediction capabilities.

RQ4: Which resampling method outperforms the addressed
undersampling and oversampling methods for building an efficient
SDP model?
In RQ3 it is proved that resampling methods produce better SDP models but out of the
wide array of resampling methods which resampling method should the developer or
researcher choose? RQ4 is generated to find out the resampling method(s) that
outperforms the other resampling methods. The results of the Friedman Test followed
by the post-hoc Nemenyi Test obtained on AUC, Balance, GMean, and Sensitivity
values show that ML models based on ROS and AHC statistically outperforms other
models.

Malhotra and Jain (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.573 3/34

http://dx.doi.org/10.7717/peerj-cs.573
https://peerj.com/computer-science/

RQ5: Which ML technique performs the best for SDP in imbalanced
data?
This study uses 15 ML techniques from different categories. RQ5 tries to explore if there is
a statistical difference in the performances of different ML techniques. We constricted the
comparison to the models developed using ROS as it was statistically better than other
resampling methods except for AHC. Performance values of ROS-based models were
comparable but greater than the performance values of AHC-based models. We concluded
that statistically ensemble methods and nearest neighbor methods performed better than
neural networks and statistical techniques.

The answers to these questions are explored by building ML models on CFS selected
features using ten-fold cross-validation. Predictive performances of developed models are
evaluated using stable performance evaluators like Sensitivity, GMean, Balance, and
AUC. Kitchenham et al. (2017) reported that in many studies results are biased because
they lack statistical validation. They recommend using a robust statistical test to examine if
performance differences are significant or not. Statistical validation is carried out using
the Friedman test followed by post hoc analysis that is performed using the Nemenyi test.
The conducted study will acquaint developers with useful resampling methods and
performance evaluators that will assist them to solve CIP. This study also guides developers
and software practitioners about the important metrics that affect the SDP potential of
ML models. The result examination ascertained ROS-based and AHC-based MLmodels as
the best defect predictors for datasets related to the software engineering domain. With
ROS as a resampling method, nearest neighbors and ensembles exhibited comparable
performance in SDP. These models were statistically better than other ML models.

The rest of the paper is organized as follows. “Related work” deals with research
work done in SDP for imbalanced data. Empirical Study Design is explained in “Materials
and Methods”. “Results” expounds on the empirical findings and provides answers to set
RQs. Next, “Discussions” summarizes the results and provides the comparison of this
study with related studies. “Validity Threats” uncovers the validity threats of this study.
Finally, “Conclusions” presents the concluding remarks with potential future directions.

RELATED WORK
This section presents the related work done in the field of feature selection and resampling
solutions proposed in the SDP field.

Feature selection in SDP
Apache datasets have twenty OOmetrics and models developed using all these metrics can
hamper the defect prediction capabilities of ML models. The reason is the presence of
redundant or irrelevant metrics. This curse of dimensionality can be reduced by using
feature reduction strategies. This involves either feature selection—reducing the number of
features, or feature extraction—extracting new features from existing ones. This study
focuses on feature selection by using a widely acceptable CFS technique. Ghotra, McIntosh
& Hassan (2017) explored 30 feature selection techniques and concluded CFS as the best
feature predictor. They used NASA datasets and PROMISE datasets with 21 ML

Malhotra and Jain (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.573 4/34

http://dx.doi.org/10.7717/peerj-cs.573
https://peerj.com/computer-science/

techniques. Balogun et al. (2019) explored feature selection and feature reduction methods
for five NASA datasets over four ML techniques and experimentally concluded that FS
techniques did not show consistent behavior for the datasets or ML techniques. Recent
studies (Arar & Ayan, 2017; Lingden et al., 2019) have emphasized the importance of
feature selection and the impact of CFS in building efficient models with reduced
complexity and computation time. Balogun et al. (2020) empirically investigated the effect
of 46 FS methods over 25 datasets from different sources using Naïve Bayes and decision
trees. Based on accuracy and AUC performance, they concluded CFS was the best
performer in the FSS category. Therefore, in this study, CFS is used to reveal the most
relevant features.

Solutions proposed for CIP in SDP
Only 20% of software classes are accountable for the defects in software (Koru & Tian,
2005). This principle is enough to explain the reason for the uneven distribution of
minority (defective) classes and majority (non-defective) classes. Areas of SDP and
software change prediction (Malhotra & Khanna, 2017; Tan et al., 2015) are explored to
handle CIP resulting in promising outcomes. Now, to solve this class imbalance issue,
a variety of resampling methods have been proposed in the literature, among which
oversampling and undersampling techniques are most widely used. Liu, An & Huang
(2006) used a combination of oversampling and undersampling techniques for predicting
software defects using a support vector machine. The performance of developed models
was evaluated using F-Measure, GMean, and ROC curve. Experimentation by Pelayo &
Dick (2007) showed improvement in GMean values for SDP when the oversampling
technique SMT is used with a C4.5 decision tree classifier. Kamei et al. (2007) evaluated the
effect of ROS, RUS, SMT, and OSS on industrial software. The experimental analysis
proved that resampling methods improved the performance of LDA and LR models in
terms of F1-measure. Khoshgoftaar & Gao (2009) used RUS to handle CIP and also used a
wrapper-based feature selection technique for attribute selection. They investigated
four different scenarios of sampling techniques and feature selection combinations to
evaluate which model has better predictive capability in terms of accuracy and AUC.

Galar et al. (2011) performed SDP for imbalanced data using bagging—and boosting—
based ensemble techniques with C4.5 as the base classifier. The performance was evaluated
using the AUC measure. Some other studies support the application of resampling
methods for handling CIP (Riquelme et al., 2008; Pelayo & Dick, 2012; Seiffert et al., 2014;
Rodriguez et al., 2014). Shatnawi (2012) also performed an empirical comparison of
defect prediction models built using oversampling techniques with three different
classifiers on the eclipse dataset. Wang & Yao (2013) investigated ML models built
using five different resampling methods on 10 PROMISE datasets and their findings
confirmed that models based on resampled data result in better SDP. Experimentations
concluded the effective model development with AdaboostNC ensemble. Wang & Yao
(2013) were not able to conclude on which resampling method should be selected by
the software practitioners. We solved this issue by providing detailed statistical analysis

Malhotra and Jain (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.573 5/34

http://dx.doi.org/10.7717/peerj-cs.573
https://peerj.com/computer-science/

and experimentally proved ROS and AHC to be the better options for researchers and
other practitioners.

Jindaluang, Chouvatut & Kantabutra (2014) proposed the undersampling technique
with the k-centers clustering algorithm which proves to be effective in terms of Sensitivity
and F-measure, but they didn’t use any stable metric for imbalanced data like GMean or
AUC.

Bennin et al. (2016) concluded that ROS outperformed the SMT approach when
defective classes are less than 20% in the software. This study also empirically proved
that ROS is statistically better than SMT, hence supports the conclusions of Bennin et al.
(2016).

Tantithamthavorn, Hassan & Matsumoto (2018) included a large number of datasets
but provided a comparative study with only four resampling methods. They also optimized
SMT and found its performance comparable with RUS. We created 1980 models with
12 datasets as compared to their 4242 models with 101 datasets. In this study, we covered
10 resampling methods and provided the breadth of resampling methods. We compared
models with 15 ML techniques whereas Tantithamthavorn, Hassan & Matsumoto
(2018) used only 7 ML techniques. The results of our study are different from those of
Tantithamthavorn, Hassan & Matsumoto (2018). The main reasons are that the model
evaluation is highly dependent on the nature of the data and the behavior of ML
techniques. This problem amplifies by adding the third dimension of resampling methods.
Furthermore, Bennin et al. (2018) empirically concluded that AUC performance is not
improved by the SMT and this contradicts with the results of Tantithamthavorn, Hassan &
Matsumoto (2018).

Agrawal & Menzies (2018) also proposed the modified SMT by tuning the SMT
parameters. They emphasized on the fact that preprocessing, i.e., resampling technique is
more important factor than the ML technique used for the construction of prediction
model. If data could be better (less skewed), then results would be more reliable.Malhotra
& Kamal (2019) inspected the impact of oversampling techniques onMLmodels built with
12 NASA datasets. They demonstrated the improvement in ML models with oversampling
and proposed a new resampling method—SPIDER3.

Though many studies have been conducted, still there is no particular set of resampling
methods that can be considered the winner of all. These techniques certainly need more
replicated studies with different classifiers and different datasets. More often NASA
datasets are exploited by researchers for investigating CIP. We have comparatively used
Apache datasets to visualize the effect of sampling techniques. Repetitive studies are
required to be performed in the future for a fair comparison. Apart from decision tree-
based and ensemble-based classifiers, this study used rule-based, neural network-based,
and statistical-based machine learners for assessing the predictive capability of models.

MATERIALS & METHODS
This section describes the components involved in this empirical study. This section
describes the framework established to build a classification model for defect prediction

Malhotra and Jain (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.573 6/34

http://dx.doi.org/10.7717/peerj-cs.573
https://peerj.com/computer-science/

from dataset collection to model validation. Figure 1 explains the experimental setup for
the study.

Step1: dataset collection
Datasets mined from the PROMISE repository were used for empirical predictive
modeling and validation. These datasets were collected by Jureczko & Spinellis (2010).
Jureczko &Madeyski (2010) used these datasets to find clusters of similar software projects.
The datasets consisted of 20 software metrics and a dependent variable indicating the
number of defects in a particular class. The selection of projects was based on the
percentage of data imbalance in them. Details of the datasets are provided in Table 1.
#Classes denotes the total number of classes in the project, #DClasses denotes the number
of defective classes, and #%ageDefects represents the percentage of defective classes in a
project. The percentage of defective classes in addressed projects varies from 9.85% to
33.9%. This low percentage represents the imbalanced ratio of defective and non-defective
classes in the datasets.

Figure 1 Experimental framework for SDP in imbalanced data.
Full-size DOI: 10.7717/peerj-cs.573/fig-1

Malhotra and Jain (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.573 7/34

http://dx.doi.org/10.7717/peerj-cs.573/fig-1
http://dx.doi.org/10.7717/peerj-cs.573
https://peerj.com/computer-science/

Step 2: data preprocessing and identification of variables
The independent variables used in this study are different OO metrics characterizing a
software system from various aspects. The OO metrics used in the study include the
following metrics:

Chidamber and Kemerer (CK) Metric suite (Chidamber & Kemerer, 1994): Six
popularly used metrics, namely Weighted Methods of a Class (WMC), Depth of
Inheritance Tree (DIT), Number of Children (NOC), Lack of Cohesion in Methods
(LCOM), Response For a Class (RFC) and Coupling Between Objects (CBO), are
incorporated in this metric suite. This metric suite has been validated in many empirical
studies for developing SDP models.

Quality Model for Object-Oriented Design metric suite (QMOOD) (Bansiya & Davis,
2002): The study uses few metrics from this metric suite namely Number of Public
Methods (NPM), Data Access Metric (DAM), Method of Functional Abstraction (MFA),
Measure of Aggression (MOA) and Cohesion amongMethods of a class (CAM) along with
CK metrics for developing defect prediction models. These metrics are also well exploited
in related studies to develop effective software quality prediction models.

Other metrics: Few other metrics have also been used in this study as independent
variables in addition to the above metrics that are widely used by researchers. These
metrics are—Efferent Coupling (Ce), Afferent Coupling (Ca), Lines of Code (LOC),
Coupling Between Methods of a Class (CBM), Average Method Complexity (AMC), and
the variant of LCOM (LCOM3). Ce and Ca are proposed by Martin (1994) and LOC,
CBM, AMC, and LCOM3 are proposed byHenderson-Sellers (1995). Inheritance Coupling
(IC), maximum Cyclomatic complexity (Max_cc), and average cyclomatic complexity
(Avg_cc) are also used in addition to the above metrics.

Details of metrics used can be referred to from http://gromit.iiar.pwr.wroc.pl/p_inf/
ckjm/metric.html.

Table 1 Dataset details. #Classes denotes the total number of classes in the project, #DClasses denotes
the number of defective classes, and #%ageDefects represents the percentage of defective classes in a
project.

Dataset #Classes #DClasses #%ageDefects

Tomcat6.0 858 77 9.85

Synapse1.0 157 16 10.19

Ivy2.0 352 40 11.4

Jedit4.2 367 48 13.1

Xerces1.3 453 69 15.2

Camel1.6 965 188 19.48

Ant1.7 745 166 22.3

Jedit4.0 306 75 24.5

Log4j1.0 135 34 25.2

Synapse1.1 222 60 27

Synapse1.2 256 86 33.6

Log4j1.1 109 37 33.9

Malhotra and Jain (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.573 8/34

http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/metric.html
http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/metric.html
http://dx.doi.org/10.7717/peerj-cs.573
https://peerj.com/computer-science/

Datasets are checked for any inconsistencies like missing data or redundant data. If
there are data inconsistencies, the model prediction would be biased. Therefore, it was
important to clean the data before using it for model development. Datasets collected
contain a continuous variable representing the number of defects. It was converted into a
binary variable by replacing ‘0’ with ‘No’ and natural numbers with ‘yes’. The binary
dependent variable, ‘defect’ with two possible values are ‘yes’ and ‘no’ reflects whether the
software class is defective or not.

Step 3: feature selection
All these metrics may not be important in the concern of predicting defects in the
early stages of project development. This study employs CFS for the identification of
significant metrics. A review by Malhotra (2015) has revealed that CFS is the most
commonly used feature selection technique. CFS is used in this study for selecting features
because it is the most preferred FS technique in SDP literature (Ghotra, McIntosh &
Hassan, 2017; Arar & Ayan, 2017; Lingden et al., 2019; Balogun et al., 2020). CFS performs
the ranking of features based on information gain and identifies the optimal subset of
features. The features in the subset are highly correlated to the class label ‘defect’ and are
uncorrelated or less correlated with each other. CFS is incorporated to minimize the
multicollinearity effect.

A list of metrics selected by CFS for each dataset is presented in Table 2.

Step 4: handling CIP
This step involves applying resampling methods for treating CIP. These methods are
implemented using a knowledge extraction tool based on evolutionary learning (KEEL)
(Alcalá-Fdez et al., 2011). Six oversampling methods and four undersampling methods
were applied to create a balance between majority and minority classes. Details of these
resampling methods are given in Table 3.

Table 2 OO features selected by CFS.

Dataset Features selected by CFS

Tomcat6.0 CBO, RFC, LCOM, LOC, MOA, AMC, Max_CC, Avg_CC

Synapse1.0 RFC, LCOM, Ce, LOC, DAM, MFA, CAM, IC, AMC, Max_CC, Avg_CC

Ivy2.0 RFC, Ce, LOC, MOA, AMC, NPM, CBO, WMC, LCOM, LCOM3, CAM

Jedit4.2 CBO, RFC, Ca, Ce, NPM, LCOM3, MOA, LOC, CAM, CBM, LCOM, AMC, Max_CC

Xerces1.3 WMC, Ce, LCOM, MOA, DAM, IC, CBM, AMC

Camel1.6 DIT, NOC, CBO, LCOM, Ca, NPM, LCOM3, CAM, IC, CBM, AMC, Max_CC, Avg_CC

Ant1.7 CBO, RFC, LCOM, Ce, LOC, MOA, CAM, AMC, Max_CC

Jedit4.0 WMC, DIT, CBO, RFC, LCOM, Ca, Ce, NPM, LCOM3, LOC, DAM, MOA, CBM,
Max_CC, Avg_CC

Log4j1.0 WMC, CBO, RFC, LCOM, Ce, Ca, NPM, LOC, DAM, CAM, Avg_CC

Synapse1.1 DIT, CBO, RFC, LCOM, Ce, DAM, MFA, CAM, Max_CC

Synapse1.2 WMC, CBO, RFC, Ca, Ce, LOC, MOA, CBM, CAM, AMC, Max_CC

Log4j1.1 WMC, RFC, LCOM, Ce, NPM, LCOM3, MOA, MFA

Malhotra and Jain (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.573 9/34

http://dx.doi.org/10.7717/peerj-cs.573
https://peerj.com/computer-science/

Table 3 Resampling methods used in the study.

Resampling Methods Description

Oversampling
Methods

ADAptive SYNthetic Sampling (ADSYN)
(He et al., 2008)

In ADASYN, synthetic samples are generated by finding the density
distribution of minority classes. Density distribution is computed using a
k-nearest neighbor with Euclidian distance. It is an extension of the Synthetic
Minority Oversampling Technique. It focuses on the samples that are hard to
classify.

Synthetic Minority Over-sampling Technique
(SMT) (Chawla et al., 2002)

The number of minority class samples is increased by generating artificial
samples in direction of k nearest neighbors of minority class samples. If one
neighbor is selected, then one synthetic sample is generated corresponding to
that original minority sample resulting in 100% oversampling of minority
classes. In this study, k = 5 results in 500% oversampling of minority classes.

Safe Level Synthetic Minority Oversampling
Technique (SLSMT) (Bunkhumpornpat,
Sinapiromsaran & Lursinsap, 2009)

Unlike the SMT version, where synthetic samples are generated randomly, in
SLSMT first safe levels are calculated that helps in determining safe positions
for generating the synthetic samples. If the safe level value is close to 0, it is
considered noise and if the safe level value is close to k for k nearest neighbor
implementation, then it is considered safe resulting in producing synthetic
minority samples there.

Selective Preprocessing of Imbalanced Data (SPD)
(Stefanowski & Wilk, 2008)

This technique categorizes the sample as either safe or noise based on the
nearest neighbor rule where distance measurement is done using a
heterogeneous value distance metric. If an instance is accurately classified by
its k nearest neighbors, it is considered safe otherwise it is considered noise
and then discarded.

Random OverSampling (ROS) (Batista, Prati &
Monard, 2004)

ROS is a very simple oversampling technique in which minority class instances
are replicated at random with the sole aim of creating a balance between
majority and minority class instances.

Agglomerative Hierarchical Clustering (AHC)
(Cohen et al., 2006)

In AHC, each class is decomposed into sub-clusters and synthetic samples are
generated corresponding to cluster prototypes. Since artificial samples are
created as centroids of sub-clusters of classes, they, therefore extract the
characteristics of that class and represent better samples than randomly
generated samples.

Undersampling
Methods

Random UnderSampling (RUS) (Batista, Prati &
Monard, 2004)

RUS, like ROS, is a non-heuristic technique. But in this instead of replicating
minority class instances, majority class instances are removed with aim of
creating a balance between majority and minority class instances. The
problem with this technique is that some important or useful data may be
rejected as it is based on random selection.

Condensed Nearest Neighbor(CNN) + Tomek’s
modification of Condensed Nearest Neighbor
(CNNTL) (Cohen et al., 2006)

First CNN is applied to find a consistent subset of samples that helps to
eliminate majority class samples that are far from the decision border. Then
Tomek links (Tomek, 1976) are made between samples. If it exists between
any two samples, then either both are borderline samples or one of them is
noise. Samples with Tomek links that fit in majority classes are removed.

Neighborhood Cleaning Rule (NCL) (Laurikkala,
2001)

NCL uses the edited nearest-neighbor (ENN) rule to remove majority class
samples. For each training sample Si, first it finds three nearest neighbors. If
Si= majority class sample, then discard it if more than two nearest neighbors
incorrectly classifies it. If Si = minority class sample, then discard the nearest
neighbors if they incorrectly classify it.

One Sided Selection (OSS) (Kubat & Matwin,
1997)

OSS and CNNTL have similar working. The difference lies in the order of the
application of CNN and the determination of Tomek links. OSS identifies
unsafe samples using Tomek links and then applying condensed nearest
neighbor (CNN). Noisy and borderline samples are considered unsafe. Small
noise may result in the flipping of the decision border of the borderline
samples; therefore, they are also considered unsafe. CNN eliminates the
majority of samples that are far away from decision boundaries.

Malhotra and Jain (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.573 10/34

http://dx.doi.org/10.7717/peerj-cs.573
https://peerj.com/computer-science/

Step 5: performance evaluation and model development
Performance evaluators
When it comes to imbalanced data, the selection of appropriate performance evaluators
plays a critical role. These measures can be calculated by using the confusion matrix shown
in Table 4. TP represents the number of defective classes predicted correctly. TN
represents the number of non-defective classes predicted correctly. FP represents the
number of non-defective classes that are wrongly predicted as defective classes. FN
represents the number of defective classes that are wrongly predicted as non-defective
classes.

The use of accuracy to evaluate performance is specious when data is imbalanced.
Instead, robust performance evaluators like AUC, GMean, and Balance should be used in
the class imbalance framework. The Sensitivity indicates the probability of correctly
predicted defective classes out of total defective classes. whereas specificity refers to the
probability of identifying non-defective classes correctly. Sensitivity or True Positive Rate
(TPR) is defined as

Sensitivity ¼ TP
TP þ FN

(1)

GMean maintains a balance between both these accuracies (Li et al., 2012). Therefore, it
is wise to use GMean as an effective measure to assess imbalanced data. GMean is defined
as the geometric mean of Sensitivity and specificity for any classifier.

GMean ¼
ffi
sensitivity � specificity

p
(2)

where

Specificity ¼ TN
TN þ FP

(3)

Balance corresponds to the Euclidean distance between a pair of Sensitivity and False
Positive Rate (FPR) (Li et al., 2012). FPR is the probability of false alarm. It exemplifies the
proportion of non-defective classes that are misclassified as defective classes amongst
actual non-defective classes. Balance can be computed as—

Balance ¼ 1�

ffi
0

FPR
100

� �2

þ 1
Sensitivity

100

� �2

2

vuuut
(4)

Table 4 Confusion matrix.

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)

Malhotra and Jain (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.573 11/34

http://dx.doi.org/10.7717/peerj-cs.573
https://peerj.com/computer-science/

where

FPR ¼ FP
TN þ FP

(5)

The area under the curve (AUC) is widely accepted as a consistent and robust
performance evaluator for predictions in imbalanced data (Fawcett, 2006; Lessmann et al.,
2008; Malhotra & Khanna, 2017). It is threshold independent and can handle skewed
data. It is a measure to distinguish between the two classes. The range of AUC is (0, 1).
Higher the AUC value the better the prediction model. AUC value of 0.5 signifies that the
model cannot differentiate between the two classes. AUC values from 0.7 to 0.8 are
considered acceptable. AUC values greater than 0.8 are considered excellent.

Model development using ML techniques
This study developed models based on 15 ML techniques. Ten-fold within project
cross-validation is carried out to reduce the partitioning bias. Data was divided into ten
partitions. Nine partitions were used for the training part and the remaining one partition
was used for the testing part. Then performance evaluators are averaged across ten folds.
The ML parameters that were used in experiments created in this study are noted in
Table 5. ML techniques used in this study can be divided into five major categories as
described below.

Statistical techniques

� Naive Bayes (NB) (John & Langley, 1995): Naïve Bayes is a probability-based classifier
that works on the Bayes theorem. It is an instance-based learner that computes class wise
conditional probabilities. Features need to be conditionally independent with each
other. It provides fair results even in violation of this assumption. This ML technique
works well for both categorical and numerical variables.

� Logistic Regression (LR) (Le Cessie & Van Houwelingen, 1992): Logistic Regression
is also a probabilistic classifier used for dichotomous variables and assumes that the
data follows Gaussian distribution. It works well in case of assumption desecration.
During training coefficient values are minimized by ridge estimator to solve
multicollinearity and this makes the model simpler. The algorithm runs until it
converged.

� Simple Logistic (SL) (Sumner, Frank & Hall, 2005): SimpleLogistic uses LogitBoost
to construct logistic regression models. LogitBoost uses the logit transform to predict
the probabilities. With each repetition, one simple regression model is added
for each class. The process terminates when there is no more reduction in classification
error.

� LogitBoost (LB) (Friedman, Hastie & Tibshirani, 2000): LogitBoost is an additive logistic
regression with a decision stump as the base classifier. It maximizes the likelihood and,
therefore, generalizes the linear logistic model. The base classifier taken is the decision
stump which considers entropy for classification.

Malhotra and Jain (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.573 12/34

http://dx.doi.org/10.7717/peerj-cs.573
https://peerj.com/computer-science/

Neural networks

� MultiLayerPerceptron (MLP) (Rojas & Feldman, 2013): It is a backpropagation neural
network that uses sigmoid function as the activation function. The number of hidden
layers in the network is determined by the average of the number of attributes and
total classes for a particular dataset. The error is backpropagated in every epoch and
reduced via gradient descent. The network is then learned based on revised weights.

Nearest neighbors

� IBk (Aha, Kibler & Albert, 1991): IBk is an instance-based K-nearest neighbor learner.
It calculates the Euclidian distance measure of the test sample with all the training
samples to find its ‘k’ nearest neighbors. It then assigns the class label to the testing
instance based on the majority classification of nearest neighbors. Only one nearest
neighbor is determined with k = 1 and the class label of that nearest neighbor is assigned
to the testing instance.

� Kstar (Cleary & Trigg, 1995): Like Ibk, Kstar is also an instance-based learning
algorithm. The difference between the two techniques is about the similarity measures
they use. IBk exploits Euclidian distance and Kstar uses the similarity measure based on
entropy. Kstar exhibits good classification competence for noisy and imbalanced data.

Ensembles

� AdaboostM1 (ABM1) (Quinlan, 1993; Freund & Schapire, 1996): AaboostM1 is an
ensemble technique where numbers of weak classifiers are used iteratively to improve
the overall performance. It augments the performance of weak learners by adjusting
the weak hypothesis returned by the weak learner. The base decision tree used in ABM1
is J48. J48 learns from the previous trees about misclassified instances and calculates the
weighted average. NumIterations in parameters represent the number of classifiers
involved in this ensemble. This technique helps in reducing the bias in the model.

� Bagging (Bag) (Quinlan, 1993; Breiman, 1996): Bagging or bootstrap aggregation is
also one of the ensemble techniques that improve the predictive capability of base
classifiers by making bags of training data. Models work in parallel and their results are
averaged. Bagging reduces the variance. The number of bags used for experimentation is
10 and the base classifier used is J48.

� Iterative Classifier Optimizer (ICO): LogitBoost is used as the iterative classifier in this
technique. Cross-validation is utilized for its optimization. In the experiments
conducted, it goes through 50 iterations to decide for the best cross-validation.

� Logistic Model Tree (LMT) (Landwehr, Hall & Frank, 2005): Logistic Model Tree is a
meta-learning algorithm that uses logistic regression at leaf nodes for classification.
A combination of linear logistic regression and decision tree helps in dealing with the
bias-variance tradeoff. This technique is robust to missing values and can handle
numeric as well as nominal attributes.

Malhotra and Jain (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.573 13/34

http://dx.doi.org/10.7717/peerj-cs.573
https://peerj.com/computer-science/

� Random Tree (RT) (Leo, 2001; Sumner, Frank & Hall, 2005): Random Tree is an
ensemble-based supervised learner where different trees are constructed from the same
population. Random samples of the population are generated to form different trees
with a random selection of features. After bags are constructed, models are developed
and majority voting is performed to classify the class.

� Random SubSpace method (RSS) (Ho, 1998): Random SubSpace is used to construct
random forests. Randomly feature subsets are selected to generate multiple trees.
Bagging is performed with Reptree. Reptree is faster than the basic decision tree and
generates multiple trees in each iteration. It then selects the tree whose performance is
the best.

Decision trees

� Pruning rule-based classification tree (PART) (Frank & Witten, 1998): PART is a rule-
based learning algorithm that exploits partial C4.5 decision trees and generates rules at
each iteration. PART stands for a pruning rule-based classification tree. The rule that
results in the best classification is selected. MDL is used to find the optimal split. smaller
the confidence factor more will be the pruning done.

� J48 (Quinlan, 1993): J48 is a JAVA implementation of the C4.5 decision tree. It follows
the greedy technique to build a decision tree and uses the gain ratio as splitting criteria.
Leaf nodes are the classification labels-defective and non-defective and rules can be
derived by traversing from root to leaf node. It generates a binary tree, and one-third of
the data is used for reduced error pruning.

Step 6: statistical validation
The results need to be statistically verified because without the involvement of statistics
results may be misleading (Frank & Witten, 1998). Kitchenham et al. (2017) emphasized
employing robust statistical tests for validating the experimental results. For statistical
validation, we can use either parametric or nonparametric tests. The nonparametric
Friedman statistical test (Friedman, 1940) and the Nemenyi Test are exercised in this study
because software data do not follow a normal distribution (Demšar, 2006). The Friedman
test is executed for different performance evaluators for establishing the statistical
difference amongst the performance of developed SDP models. We need to compare
several ML models built for several datasets. Therefore, Friedman rankings are computed
using the Friedman test. Mean ranks are determined with the help of actual values of
performance measure and then these ranks are exploited to perform post-hoc Nemenyi
test. If the Friedman test results tend to be positive, post hoc analysis is carried by the
Nemenyi test to find pair-wise significant differences. Nemenyi test is executed to
determine the technique that statistically outperforms others. The Friedman test and the
Nemenyi test are the non-parametric alternatives of the parametric ANOVA test and
Tukey test. Both tests are performed using a 95% confidence interval. Hypotheses are set
for the corresponding test and we need to accept or refute hypotheses at α = 0.05.

Malhotra and Jain (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.573 14/34

http://dx.doi.org/10.7717/peerj-cs.573
https://peerj.com/computer-science/

RESULTS
RQ1: Which features are repeatedly selected by CFS in software
engineering datasets?
A total of 20 OOmetrics of datasets fundamentally define the IQAs of the software and can
be grouped into cohesion, coupling, size, complexity, inheritance, encapsulation, and
composition metrics. OO metrics corresponding to each IQA are presented in Table 6.
#Selected denotes the number of times a particular metric is selected by CFS for all
datasets. LCOM was selected by 11 datasets whereas the Ce metric was selected by 10
datasets. This RQ contemplates the metrics that are important for SDP. The weightage of
each metric that was selected by CFS for 12 datasets is considered and their proportion
selection was determined for each IQA.

In cohesion metrics, LCOM, CAM, and LCOM3 were chosen by 91.67%, 66.67%, and
41.67% of datasets respectively. The cumulative proportion of the selection of cohesion
metrics is 66.7%. This shows that cohesion metrics are important for SDP and while
developing the software, developers can focus more on LCOM and CAM values. Similarly,
the composition metric (MOA) was selected by 66.67% of the datasets.

Table 5 Parameters used in ML techniques.

Category ML
technique

Parameter settings

Statistical ML techniques NB useKernelEstimator = false, displayModelInOldFormat = false, useSupervisedDiscretization = false

LR Ridge: 1.0E−8, useConjugateGradientDescent = false, maxIts = −1

SL Heuristic Stop = 50, Max Boosting Iterations = 500, useCrossValidation = True, weightTrimBeta = 0.0

LB Zmax = 3.0, likelihoodThreshold = −1.7976931348623157E308, numIterations = 10, numThreads = 1,
poolSize = 1, seed = 1, shrinkage = 1.0, useResampling = False, weightThreshold = 100

Neural Networks MLP Hidden layer = a, Learning rate = 0.3, Momentum = 0.2, Training time = 500, Validation threshold =20

Nearest Neighbour Methods IBk KNN = 1, nearestNeighbourSearchAlgorithm = LinearNNSearch,

K* globalBlend = 20, entropicAutoBlend = False

Ensemble Methods ABM1 numIterations = 10, weightThreshold = 100, seed =1, classifier = J48: confidenceFactor = 0.25,
minNumObj = 2, numFolds = 3, seed = 1, subtreeRaising = True, useMDLcorrection = True

Bag numIterations = 10, numExecutionSlots = 1, seed =1, bagSizePercent = 100, classifier = J48:
confidenceFactor = 0.25, minNumObj = 2, numFolds = 3, seed = 1, subtreeRaising = True,
useMDLcorrection = True

ICO evaluationMetric = RMSE, lookAheadIterations = 50, numFolds = 10, numRuns = 1, numThreads = 1,
poolsize = 1, seed = 1, stepSize = 1, iterativeClassifier = LogitBoost

LMT errorOnProbabilities = False, fastRegression = True, minNumInstances = 15, numBoostingIterations = −1,
weightTrimBeta = 0.0

RT KValue = 0, breakTiesRandomly = False, maxDepth = 0, minNum = 1, minVarianceProp = 0.001,
numFolds = 0, seed = 1

RSS numExecutionSlots = 1, numIterations = 10, seed = 1, subSpaceSize = 0.5, classifier = Reptree: initialCount =
0.0, maxDepth = -1, minNum = 2.0, minVarianceProp = 0.001, numFolds = 3, seed = 1

Decision Tree PART confidenceFactor = 0.25, minNumObj = 2, numFolds = 3, reducedErrorPruning = False, seed = 1,
useMDLcorrection = True

J48 confidenceFactor = 0.25, minNumObj = 2, numFolds = 3, seed = 1, subtreeRaising = True,
useMDLcorrection = True

Malhotra and Jain (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.573 15/34

http://dx.doi.org/10.7717/peerj-cs.573
https://peerj.com/computer-science/

Exploring Table 6, though the cumulative proportion of coupling metrics is 55.6%
its significance can be judged by selecting the top three selected metrics—RFC, Ca, and
Ce. RFC is picked by 10 datasets whereas Ca and Ce are opted by 9 datasets each.
Considering only these three metrics, the proportion selection of coupling metrics raises
from 55.65% to 77.78%.

In size metrics, LOC and AMC are more preferred software metrics for defect
prediction. In all datasets, the least selected metrics belong to the inheritance category.
Therefore, resource investment can be done wisely by developers. The number of times
any metric is selected for all the datasets guides developers and software practitioners in
determining its worth for SDP.

RQ2: What is the performance of ML techniques on imbalanced data
while building SDP models?
A box and whisker diagram (boxplot diagram) graphically represents numerical data
distributions using five statistics: (a) the smallest observation, (b) lower quartile (Q1),
(c) median, (d) upper quartile (Q3), and (e) the largest observation. The box is constructed
based on the interquartile range (IQR) from Q1 to Q3. The median is represented by the
line inside the box. The whiskers at both ends indicate the smallest observation and the
largest observation.

Table 6 Proportion selection of IQAs and CFS selected metrics.

IQA OO Metric #Selected Proportion selection

Cohesion LCOM 11 0.667

CAM 8

LCOM3 5

Composition MOA 8 0.667

Size WMC 6 0.583

NPM 6

LOC 8

AMC 8

Coupling Ca 9 0.556

Ce 10

CBO 5

RFC 9

CBM 3

IC 4

Complexity Avg_CC 4 0.5

Max_CC 8

Encapsulation DAM 5 0.462

Inheritance NOC 1 0.194

MFA 3

DIT 3

Malhotra and Jain (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.573 16/34

http://dx.doi.org/10.7717/peerj-cs.573
https://peerj.com/computer-science/

Figure 2 presents the Boxplot diagrams to visually depict the defect predictive capability
of ML models on imbalanced data in terms of AUC, Balance, GMean, and Sensitivity.

AUC analysis
The AUC of ML models of imbalanced data varies from 0.52 to 0.86 with a median value
of 0.76. Only 55.6% of models have AUC greater than 0.75. AUC is less than 0.85 in 97.8%
of cases. Log4j1.1 depicted the best AUC value of 0.86 with NB. Analysis of results
obtained on experimentation reveals that statistical techniques, NB and SL, have
performed fairly well in terms of AUC, depicting the highest AUC values for Log4j1.1,
Ant1.7, Jedit4.2, Log4j1.0, and Tomcat6.0. Similarly, LMT models were able to predict the
highest AUC values for five datasets. Overall, 25% of ML models have AUC less than 0.7.

Balance analysis
The range of Balance in No Resampling (NS) case is from 29.20 to 76.55. In Tomcat6.0,
only 59.01 value was achieved as the maximum value by NB. Balance values achieved by
RSS, PART, and LMT are comparatively lower than other ML techniques. The median
value for Balance for all models in the NS case is 56.35. Ivy2.0, Synape1.0, and Tomcat6.0
attained the maximum Balance value with NB. IBk also resulted in maximum Balance
values for Jedit4.0, Synapse1.1, and Xerces1.3. 68.3% of datasets have a Balance value of less
than 65. Only 3.3% of datasets have a Balance value greater than 75.

GMean analysis
When no resampling method is used, GMean ranges from 0 to 0.79. The median value of
GMean for all datasets is observed as 0.6. NB achieved the highest GMean values for

Figure 2 Boxplot diagram representing performance measures using original data (NS Case).
Full-size DOI: 10.7717/peerj-cs.573/fig-2

Malhotra and Jain (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.573 17/34

http://dx.doi.org/10.7717/peerj-cs.573/fig-2
http://dx.doi.org/10.7717/peerj-cs.573
https://peerj.com/computer-science/

58.33% of datasets. Considering the models for all datasets with 5 different ML techniques,
only 14.4% of models achieved GMean greater than 0.7. 30.6% of models have a GMean
value less than 0.5.

Sensitivity analysis
Sensitivity is less than 60% in 93.9% of cases. The median value of Sensitivity is only
0.39. This supports the low predictive capability of developed models when CIP is not
handled. Sensitivity values lie between 0 and 0.63. Only 0.6% of cases have a Sensitivity
greater than 70% which is not an acceptable achievement for any prediction model.
The maximum Sensitivity value obtained in the NS case is 0.7 by IBk, the nearest neighbor
technique, in the Log4j1.1 dataset.

Thus, the overall performance of SDP models developed using machine learning
algorithms on imbalanced data is not satisfactory for high-quality predictions.

RQ3a: What is the comparative performance of various SDP models
developed using resampling methods?

RQ3b: Is there any improvement in the performance of SDP models
developed using ML techniques on the application of resampling
methods?
To answer these questions, we exploited performance evaluators—Sensitivity, GMean,
Balance, and AUC values that are calculated with help of a confusion matrix obtained by
ten-fold cross-validation-trained models developed using resampling methods. Boxplot
diagrams are generated and presented in Fig. 3 to visually depict the defect predictive
capability of ML models in terms of AUC, Balance, GMean, and Sensitivity on resampled
data. Median values of the best resampling method and NS scenario for AUC, Balance,
GMean, and Sensitivity are recorded in Figs. 4, 5, 6, and 7 in form of bar graphs. We have
analyzed the performance of developed models based on mean and median values
obtained for the cumulative ML techniques of considered performance evaluators. NS
cases are included to provide a fair comparison with the resampling-based models.

Comparative performance of various SDP models developed using
resampling methods
For all the datasets, the median values are reported for NS and the resampling method that
yields the maximum median performance value in bar graphs. Comparison of boxplot
diagram in Fig. 2 with boxplot diagram in Fig. 3 shows the rise in the median line,
quartiles, and the highest value achieved by models that were built using resampled data.

AUC analysis

On the application of resampling methods, 51.4% of models achieved AUC greater than
0.8. From the bars in Fig. 4, it is visible that ROS performance is the best amongst others.
ROS attained the highest mean and median value for 75% of the datasets-Ant1.7,
Camel1.6, Ivy2.0, Jedit4.0, Jedit4.2, Log4j1.0, Synapse1.0, Tomcat6.0, and Xerces1.3. It also
showed the highest mean value for Synapse1.1. Other resampling methods like AHC, SMT,

Malhotra and Jain (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.573 18/34

http://dx.doi.org/10.7717/peerj-cs.573
https://peerj.com/computer-science/

and SPD also have depicted good performance in terms of AUC. SPD got the highest
median value for Log4j1.1 (0.92) and Synapse1.1 (0.87). In undersampling methods,
only NCL results can be considered progressive. NCL was able to manage to secure the
highest median value for only one dataset, i.e., Synapse1.2. The highest AUC value of 1 is

Figure 4 Dataset-wise comparison of median AUC values of NS and RS.
Full-size DOI: 10.7717/peerj-cs.573/fig-4

Figure 3 Boxplot diagram representing performance measures using resampled data.
Full-size DOI: 10.7717/peerj-cs.573/fig-3

Malhotra and Jain (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.573 19/34

http://dx.doi.org/10.7717/peerj-cs.573/fig-4
http://dx.doi.org/10.7717/peerj-cs.573/fig-3
http://dx.doi.org/10.7717/peerj-cs.573
https://peerj.com/computer-science/

achieved by Jedit4.2 and Tomcat6.0 datasets. 13.9% of models have AUC greater than 90%,
which is a remarkable improvement.

Balance analysis

Referring to Fig. 5, according to the Balance performance evaluator values achieved in
predictive modeling, ROS performance seemed to outperform the other resampling
methods. ADSYN could achieve a maximum of 86.24 Balance value for Synapse1.0. There
were only three resampling methods, ROS, AHC, and SPD, that could achieve the highest

Figure 5 Dataset-wise comparison of median balance values of NS and RS.
Full-size DOI: 10.7717/peerj-cs.573/fig-5

Figure 6 Dataset-wise comparison of median GMean values of NS and RS.
Full-size DOI: 10.7717/peerj-cs.573/fig-6

Malhotra and Jain (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.573 20/34

http://dx.doi.org/10.7717/peerj-cs.573/fig-5
http://dx.doi.org/10.7717/peerj-cs.573/fig-6
http://dx.doi.org/10.7717/peerj-cs.573
https://peerj.com/computer-science/

Balance value greater than 90. ROS was able to generate a Balance value of 95.58 for
Ivy2.0. Comparatively, undersampling techniques, RUS and OSS, had a maximum Balance
value of only 77.36 and 80.02 respectively. The highest median and mean values for all
datasets except Synapse1.2 are attained by either SPD or ROS. Synapse 1.2 got the
highest mean value with NCL and undersampling method. 60.9% of cases have a Balance
greater than 70. Therefore, there was 357% of growth in median values of Balance when
resampling is done as compared to NS.

GMean analysis

Similar patterns were also observed in GMean. Bar graphs in Fig. 6 portray the better
predictive capabilities of ML techniques with ROS. The highest mean and median
values are attained by ROS and SPD for all datasets except Synapse1.2. NCL gave the best
results for mean and median values of Synapse1.2. 80.7% of cases have GMean greater than
0.65 for resampling methods. AHC, though not having any maximum values, but have
consistent performance for all the datasets. With NS, only 3.9% of cases could achieve a
GMean value greater than 0.75. With resampling methods, the number of cases for
GMean values greater than or equal to 0.75 has elevated to 42.7% with the 1,182% of
improvement. Comparing the oversampling and undersampling methods, oversampling
methods thrived in predicting defects efficiently.

Sensitivity analysis

Sensitivity values are illustrated in the bar graph presented in Fig. 7. CNNTL worked best
for Log4j1.1 and Synapse1.2 with an average Sensitivity value of 0.85 and 0.83 respectively.
For other datasets, ROS outperformed other resampling methods. After applying
resampling methods, Sensitivity increases above 0.9 for 11.9% of the developed models.
53% of resampling-based models have a Sensitivity greater than 0.7 as compared to only

Figure 7 Dataset-wise comparison of median sensitivity values of NS and RS.
Full-size DOI: 10.7717/peerj-cs.573/fig-7

Malhotra and Jain (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.573 21/34

http://dx.doi.org/10.7717/peerj-cs.573/fig-7
http://dx.doi.org/10.7717/peerj-cs.573
https://peerj.com/computer-science/

0.6% of cases in the NS scenario. This accounts for a whopping 9,440% of improvement in
ML models having a Sensitivity value greater than 0.7.

Therefore, it can be concluded that the predictive capability of ML models has
immensely improved after treating imbalanced data properly using resampling methods.

Comparison of resampling-based ML models with NS models

A comparison of the results of models developed without employing resampling methods
and models developed using resampling methods provides an answer to RQ3b. 1800 ML
models were constructed for 12 datasets with ten resampling methods. The results were
compared based on the maximum value attained and averaged median value achieved in
each dataset. Percentage Improvement in Performance Measures after resampling
methods are used is presented in Table 7. Analysis of Table 7 shows that there is a positive
increment in all the values of maximum or median for the four performance evaluators
when resampling methods are employed to build SDP models. This proves that there is a
definite improvement in resampling-based ML models than the NS models when
evaluated based on AUC, Balance, GMean, and Sensitivity.

For AUC, the overall percentage growth for the median value was 6.3%. The maximum
AUC value achieved in the NS case is 0.86 for Log4j1.1 which increases to 0.97 when
resampling methods are applied to it. Jedit4.2 and Tomcat6.0 were able to attain a
maximum AUC value of 1 showing 18.2% and 22.2% of the increase. For Synapse1.0, on
the application of resampling methods, the maximum value depicts the incremental
growth of 33.8% and the respective median growth corresponds to 24.3%.

The increase in median values of Balance and GMean for all the datasets is 29.1%
and 21.2% respectively with resampling methods. Synapse1.0, Tomcat6.0, Ivy2.0, and
Camel1.6 has illustrated more than 60% of improvement in Balance median values and
more than 70% improvement in GMean median values. The maximum Balance value

Table 7 Percentage improvement in performance measures after resampling methods are used.

Datasets AUC growth Balance growth GMean growth Sensitivity growth

Max Median Max Median Max Median Max Median

Ant1.7 18.1% 1.3% 30.9% 16.4% 27.8% 12.1% 67.2% 44.9%

Camel1.6 34.2% 4.4% 69.8% 61.3% 68.5% 72.2% 180.0% 353.8%

Ivy2.0 19.3% 13.7% 62.3% 74.7% 54.8% 75.0% 130.2% 250.0%

Jedit4.0 24.1% 1.3% 34.9% 23.6% 32.9% 17.7% 75.0% 73.2%

Jedit4.2 19.0% 1.2% 66.7% 49.5% 57.4% 45.1% 147.5% 155.6%

Log4j1.0 14.1% 9.2% 34.9% 26.0% 31.0% 20.6% 75.0% 68.2%

Log4j1.1 12.8% 0.0% 16.1% 2.2% 15.2% 1.4% 41.4% 19.4%

Synapse1.0 33.8% 23.9% 38.7% 86.8% 33.8% 86.0% 76.8% 326.3%

Synapse1.1 21.8% 0.0% 35.9% 13.1% 36.4% 9.4% 72.7% 44.7%

Synapse1.2 14.6% 3.9% 21.5% 7.2% 21.1% 5.9% 47.6% 33.3%

Tomcat6.0 23.5% 3.8% 70.8% 77.7% 62.7% 85.0% 160.5% 288.2%

Xerces1.3 16.9% 5.2% 45.8% 31.9% 38.8% 23.7% 93.9% 88.9%

Overall 16.3% 5.3% 24.9% 29.1% 21.5% 21.7% 41.4% 82.1%

Malhotra and Jain (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.573 22/34

http://dx.doi.org/10.7717/peerj-cs.573
https://peerj.com/computer-science/

gained by models with resampling methods is 95.58 for Ivy2.0 which was earlier 58.88.
Similarly, the Sensitivity median values have shown a remarkable improvement of 84.6%.
The median value of NS was 0.39 when all datasets were considered together. This value
was raised to 0.71 on the application of resampling methods.

Answer to RQ3b—The results verify that there is an improvement in the performance of
SDP models developed using ML techniques on the application of resampling methods.

RQ4: Which resampling method outperforms the addressed
undersampling and oversampling techniques for building an efficient
SDP model?
This RQ addresses the effectiveness of 10 resampling methods that are investigated in this
study for constructing good SDP models. For the experiments conducted, is there any
particular resampling method that can be considered the best? In this direction, we
conducted Friedman tests on performance evaluators to provide rankings to models built
using resampling methods. The case when no resampling method was used is also
included.

The Friedman test was used to find the difference between techniques statistically. Four
hypotheses are formed for four different performance evaluators. The hypothesis formed
to achieve this objective is stated as:

Hi0 (Null Hypothesis): There is no significant statistical difference between the
performance of any of the defect prediction models developed after using resampling
methods and models developed using original data, in terms of PMj.

Hia (Alternate Hypothesis): There is a significant statistical difference between the
performance of any of the defect prediction models developed after using resampling
methods and model developed using original data, in terms of PMj.

where i = 1 to 4 denoting H1, H2, H3 and H4 hypothesis and j = 1 to 4. PM1 = AUC,
PM2 = Balance, PM3 = GMean, and PM4 = Sensitivity.

Table 8 provides the desired ranking of SDP models developed in this study for AUC,
Balance, GMean, and Sensitivity. Best resampling technique is highlighted in bold for each
performance measure in Table 8. The mean ranks of each resampling method and NS
are shown in parentheses. As discussed, NS represents the scenario when no sampling
technique is used, so, it represents the performance with original data. We evaluated the
hypothesis at the 0.05 level of significance, i.e., 95% of the confidence interval. Rank 1 is the
best rank and rank 11 is the worst rank. The p-values achieved for all performance
evaluators are 0.000 and recorded in Table 8. As p-values were less than 0.05, we rejected

Table 8 Friedman rankings for resampling methods with AUC, Balance, GMean, and Sensitivity.

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Rank 9 Rank 10 Rank 11

AUC ROS (10.11) AHC (9.13) SPD (8.58) NCL (8.04) SMT (7.06) ADSYN (5.55) NS (4.3) SLSMT (4.05) RUS (3.37) CNNTL (3.08) OSS (2.68)

Balance ROS (10.08) AHC (9.01) SPD (7.93) SMT (7.56) NCL (6.6) ADSYN (6.23) SLSMT (5.09) RUS (4.42) CNNTL (3.85) OSS (3.41) NS (1.77)

GMean ROS (10.15) AHC (9.01) SPD (7.91) SMT (7.46) NCL (6.95) ADSYN (6.11) SLSMT (4.88) RUS (4.36) CNNTL (3.66) OSS (3.3) NS (2.16)

Sensitivity ROS (9.89) AHC (8.83) SMT (7.06) SPD (7.06) ADSYN (7.01) CNNTL (6.48) NCL (5.29) SLSMT (5.2) RUS (4.01) OSS (3.9) NS (1.22)

Note:
Best resampling technique is highlighted in bold.

Malhotra and Jain (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.573 23/34

http://dx.doi.org/10.7717/peerj-cs.573
https://peerj.com/computer-science/

the null hypothesis and declared that there was a significant difference between resampling
methods applied to developed SDP models.

Table 8 shows that ROS and AHC have unanimously scored Rank 1 and Rank 2
respectively for all the performance evaluators. Out of four undersampling methods,
only one, i.e., NCL can make its space in the first seven positions for the reliable
performance evaluators—AUC, Balance, and GMean. OSS, CNNTL, and RUS have
acquired positions in the last four ranks with AUC, Balance, and GMean. These rankings
clearly state the supremacy of oversampling methods over undersampling methods.

For Balance, GMean, and Sensitivity, NS case is ranked last. Therefore, results
statistically approved the visualization in RQ3 that usage of resampling methods improved
the predictive power of SDP models.

We have used Kendall’s coefficient of concordance to assess the effect size. It is a
quantitative measure of the magnitude of the experimental effect. Kendall in Table 8 shows
the value for Kendall’s coefficient of concordance. Its value ranges from 0 to 1. It reflects
the degree of agreement. The Kendall value is 0.656, 0.589, 0.587, and 0.538 for AUC,
Balance, GMean, and Sensitivity respectively. As the values are greater than 0.5 but less
than 0.7, therefore, its effect is moderate.

The Friedman test shows whether there is an overall difference or not in the model
performances, but if there is a difference, it fails to further identify the pairwise difference,
i.e., exactly which technique is significantly different from other. For this, a post-hoc
analysis was conducted using Nemenyi Test on overall datasets and the comparative
pairwise performance of all the resampling methods was evaluated with ROS. The
Nemenyi test was carried out at the α = 0.05 level of significance. Table 9 summarizes the
Nemenyi test results for AUC, GMean, Balance, and Sensitivity. ‘S+’ represents
‘significantly better’ results. If the difference between the mean ranks of the two techniques
is less than the value of critical distance (CD), there is no significant difference in the 95%
confidence interval. If the difference is greater than the CD value, the technique with a
higher rank is considered statistically better. The computed CD value for the Nemenyi test
conducted for resampling methods was 1.135. It can be inferred from Table 9 that ROS

Table 9 Pairwise comparison of resampling methods using Nemenyi test for AUC, Balance, GMean,
and Sensitivity.

Pair AUC Balance GMean Sensitivity

ROS-AHC NS NS NS NS

ROS-SPD S+ S+ S+ S+

ROS-SMT S+ S+ S+ S+

ROS-NCL S+ S+ S+ S+

ROS-ADSYN S+ S+ S+ S+

ROS-SLSMT S+ S+ S+ S+

ROS-RUS S+ S+ S+ S+

ROS-CNNTL S+ S+ S+ S+

ROS-OSS S+ S+ S+ S+

ROS-NS S+ S+ S+ S+

Malhotra and Jain (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.573 24/34

http://dx.doi.org/10.7717/peerj-cs.573
https://peerj.com/computer-science/

has comparable performance with AHC and exhibits statistically better performance than
all other compared scenarios based on AUC, Balance, GMean, and Sensitivity.

Answer to RQ4: Oversampling methods resulted in better SDP models than
undersampling methods. ROS and AHC emerged as the statistically better resampling
method in terms of AUC, Balance, GMean, and Sensitivity.

RQ5: which ML technique performs the best for SDP based on
resampled data?
To answer this RQ, we performed the Friedman test for 15 ML techniques by considering
ROS-based models. The Friedman rankings are recorded in Table 10 with Rank 1 as
the best rank. The ML Technique that achieved best rank is bold in Table 10. The
Friedman test was held at the 0.05 significance level with a degree of freedom of 14. The
null hypothesis is set as there is no difference between comparative performances of
ROS-based models for different ML techniques. In Table 10, significant p-values (p-values
< 0.05) are highlighted in bold. The p-value for each performance evaluator was 0.000.
Therefore, the results are considered 95% significant. We refute the null hypothesis as
there is a significant difference amongst performances of models built using different
ML techniques. The Kendall value for AUC, Balance, GMean, and Sensitivity for ML
techniques with ROS-based models is 0.876, 0.835, 0.844, and 0.838. All the four
performance evaluators have a Kendall value greater than or equal to 0.835. This signifies
that rankings for different datasets are approximate 83.5% similar and hence, increases the

Table 10 Friedman rankings for ML techniques with AUC, balance, gmean, and sensitivity.

AUC Balance GMean Sensitivity

Rank 1 Kstar (14.41) ABM1 (13.41) ABM1 (13.5) RT (12.62)

Rank 2 ABM1 (13.75) IBk (12.66) IBk (12.91) IBk (12.54)

Rank 3 BAG (13.37) RT (12.16) RT (12.58) Kstar (12.33)

Rank 4 RSS (12.29) BAG (12.12) BAG (11.75) ABM1 (12.2)

Rank 5 IBk (9.83) Kstar (11.08) Kstar (11.25) LMT (10.95)

Rank 6 RT (9.2) RSS (10.33) RSS (9.58) PART (9.95)

Rank 7 LMT (8.58) PART (9.04) PART (9.04) J48 (9.83)

Rank 8 J48 (7.62) LMT (9) LMT (9) BAG (9.54)

Rank 9 PART (7.58) J48 (8.58) J48 (8.7) RSS (8.75)

Rank 10 LB (6.08) MLP (5.45) MLP (5.75) LB (5.25)

Rank 11 ICO (5.54) ICO (4.87) ICO (4.87) MLP (4.91)

Rank 12 MLP (4.75) LB (4.83) LB (4.7) ICO (4.83)

Rank 13 LR (2.79) SL (2.75) SL (2.66) SL (2.66)

Rank 14 SL (2.5) LR (2.41) LR (2.33) LR (2.41)

Rank 15 NB (1.66) NB (1.25) NB (1.33) NB (1.16)

p-value 0.000 0.000 0.000 0.000

Kendall 0.876 0.835 0.844 0.838

Note:
First ranked ML techniques and significant p-values attained for different performance measures are indicated in bold.

Malhotra and Jain (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.573 25/34

http://dx.doi.org/10.7717/peerj-cs.573
https://peerj.com/computer-science/

reliability and credibility of the Friedman statistical results. The impact of differences in
results is high.

This can be observed from Table 10 that Kstar, IBk, ABM1, RT, and RSS techniques
incited better prediction models than other ML techniques.

Kstar and IBk are the variants of the nearest neighbor techniques. These ML techniques
provide good results when there is a large number of samples irrespective of the data
distribution. Nearest neighbors are instance-based fast learners. Mean ranks are inscribed
in brackets. The mean rank of KStar is 14.41 for AUC which is the highest in the pool.
The rank of IBk is second when the models are evaluated based on Balance, GMean, and
Sensitivity. The mean rank of IBk is 12.66, 12.91, and 12.33 for Balance, GMean, and
Sensitivity respectively.

ABM1, RT, Bag, and RSS have also attained high ranks. ABM1 is the first ranker in
Balance and GMean with a mean rank of 13.41 and 13.5 respectively. ABM1 got 2nd rank
with AUC and 4th rank with sensitivity. For the stable performance evaluators, ABM1, Bag,
RT, and RSS appeared in the first six ranks, proving their competency in the ML world.
These four techniques are ensembles that are considered robust in dealing with imbalanced
data. The crux of ensemble techniques is to cover the weakness of the base ML technique
and combine them to reduce bias or variance and enhance its predictive capability.

The last three ranks for all the performance evaluators are grabbed by the statistical
learners: Naïve Bayes, Simple Logistic, and Logistic Regression. These ML techniques, in
contrast, were able to generate good prediction models when no resampling method
was involved in model construction. The balancing of both the classes boosted the
performance of other classifiers, especially ensembles and nearest neighbors, and resulted
in their unacceptable performance.

Table 11 Pairwise comparison of ML techniques using Nemenyi Test for AUC, Balance, GMean, and
Sensitivity.

Pair AUC Balance GMean Sensitivity

ABM1-IBk NS NS NS NS

ABM1-RT NS NS NS NS

ABM1-BAG NS NS NS NS

ABM1-Kstar NS NS NS NS

ABM1-RSS NS NS NS NS

ABM1-PART NS NS NS NS

ABM1-LMT NS NS NS NS

ABM1-J48 NS NS NS NS

ABM1-MLP S+ S+ S+ S+

ABM1-ICO S+ S+ S+ S+

ABM1-LB S+ S+ S+ S+

ABM1-SL S+ S+ S+ S+

ABM1-LR S+ S+ S+ S+

ABM1-NB S+ S+ S+ S+

Note:
Significant results are in bold.

Malhotra and Jain (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.573 26/34

http://dx.doi.org/10.7717/peerj-cs.573
https://peerj.com/computer-science/

The post-hoc analysis is carried out using the Nemenyi Test and results are computed
with CD = 6.191. Pairwise Comparison of ML Techniques using Nemenyi Test for
AUC, Balance, GMean, and Sensitivity are presented in Table 11 and significant results are
in bold. ABM1 was paired with other ML techniques and it was found comparable with
IBk, Kstar, RT, BAG, RSS, PART, LMT, and J48. ABM1 was found statistically significant
than MLP, ICO, LB, SL, LR, and NB.

Answer to RQ5: Ensembles and nearest neighbors performed the best for SDP in
imbalanced data with a random oversampling method.

DISCUSSIONS
Feature Selection is an important activity in software quality predictive modeling. The
most widely accepted feature selection technique in literature is CFS. Through this study,
we provided the important subset of features to the software practitioners. We identified
that coupling and cohesion are the most important internal quality attributes that
developers should focus on while building software to avoid defects. Defects in software
were found to be highly correlated to LCOM, RFC, Ca, and Ce.

Median values of Sensitivity have improved by 45.7%, 341.9%, 250%, 72.2%, 154.8%,
66.7%, 18.9%, 330%, 46.5%, 32.8%,293.3%, and 88.8% for Ant1.7, Camel1.6, Ivy2.0,
Jedit4.0, Jedit4.2, Log4j1.0, Log4j1.1, Synapse1.0, Synapse1.1, Synapse1.2, Tomcat6.0, and
Xerces1.3 respectively after applying resampling methods.

Median values of Balance have improved by 16.4%, 61.3%, 74.7%, 23.6%, 49.5%, 26%,
2.2%, 86.8%, 13.1%, 7.2%, 77.7%, and 31.9% for Ant1.7, Camel1.6, Ivy2.0, Jedit4.0, Jedit4.2,
Log4j1.0, Log4j1.1, Synapse1.0, Synapse1.1, Synapse1.2, Tomcat6.0, and Xerces1.3
respectively after applying resampling methods.

Median values of G-Mean have improved by 13.1%, 73.7%, 73.5%, 16.9%, 44.7%, 20.1%,
0.4%, 88.3%, 9%, 5.5%, 83.5%, and 24.2% for Ant1.7, Camel1.6, Ivy2.0, Jedit4.0, Jedit4.2,
Log4j1.0, Log4j1.1, Synapse1.0, Synapse1.1, Synapse1.2, Tomcat6.0, and Xerces1.3
respectively after applying resampling methods.

Median values of ROC-AUC have improved by 1.9%, 3.8%, 14.3.7%, 1.9%, 1.3%, 8.7%,
0.6%, 24.3%, 0.7%, 3.3%, 4.7%, and 5.8% for Ant1.7, Camel1.6, Ivy2.0, Jedit4.0, Jedit4.2,
Log4j1.0, Log4j1.1, Synapse1.0, Synapse1.1, Synapse1.2, Tomcat6.0, and Xerces1.3
respectively after applying resampling methods.

For the datasets considered, ROS and AHC were significantly better than other
resampling methods. Better model predictions can be achieved by incorporating
oversampling methods than the undersampling methods. Our findings are in the
agreement with the Wang & Yao (2013) conclusions. They proved that resampling
methods improve defect prediction and, in their settings, the AdaBoost ensemble gave the
best performance.

Resampling methods did not improve the defect predictive capability of statistical
techniques. Developers and researchers should prefer ensemble methods for software
quality predictive modeling.

Malhotra and Jain (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.573 27/34

http://dx.doi.org/10.7717/peerj-cs.573
https://peerj.com/computer-science/

VALIDITY THREATS
Conclusion validity
Conclusion validity threat is a threat to statistical validity and this indicates that results
of the empirical study are not properly analyzed and validated. To avoid this threat,
ten-fold cross-validation is performed. The Friedman test and Nemenyi test during post
hoc analysis strengthens conclusion validity further. In this study, both the statistical
validation techniques are nom parametric in nature. Non-parametric tests are not based on
any assumptions for underlying data and, therefore, applicable to the selected datasets.
This reinforces the analysis of the relationship between independent variables and
dependent variables and hence enhancing conclusion validity.

Internal validity
Applying resampling methods results in the change in the original ratio of defective
and non-defective classes. This would be affecting the causal relationship between
independent and dependent variables resulting in internal validity bias in our study.
However, we have used stable performance evaluators, GMean and AUC, to assess the
performance of different SDP that help to reduce this threat. We have also used Sensitivity
that takes care of the proper classification of defective classes, which is one of the major
requirements of our problem domain. So, judicious selection of performance evaluators
may have reduced some effect of internal validation threat.

Construct validity
Construct validity ensures the correctness of the way of measuring the independent and
dependent variables of the study. It also emphasizes whether the variables are correctly
mapped to the concept that they are representing. The Independent variables of this
study are object-oriented software metrics and the dependent variable of this study is
‘Defect’ representing the absence or presence of a defect in the software module. Chosen
independent variables and dependent variables are widely used in defect prediction studies
and thus builds confidence in the removal of construct validity threats from our study.
Hence, any construct validity threats may not exist in our study.

External validity
External validity refers to the extent to which the results of the study are widely applicable.
Whether the conclusions of the concerned study can be generalized or not? The datasets
used in this study are available publicly. Concerned software are written in the JAVA
language. Thus, results validity holds for similar situations only. Results may not be valid
for proprietary software. Resampling methods are implemented with default parameter
settings in KEEL (Alcalá-Fdez et al., 2011), and ML parameter settings are provided.
Therefore, this study can be reproduced without any complications. This minimizes the
external validity threat in this study.

Malhotra and Jain (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.573 28/34

http://dx.doi.org/10.7717/peerj-cs.573
https://peerj.com/computer-science/

CONCLUSIONS
This study evaluates the effect of resampling methods on various machine learning models
for defect prediction using Apache software. In total, 1,980 models were built and the
performances of models were empirically compared using stable performance evaluators
such as GMean, Balance, and AUC. Important features were selected using CFS and ten-
fold cross-validation was executed while training the model. Six oversampling and four
undersampling methods were analyzed with 15 ML techniques and results were
statistically validated by using the Friedman test followed by Nemenyi post hoc analysis.
The use of statistical tests reinforces the correctness of results. CFS is incorporated to
minimize the multicollinearity effect whereas resampling methods reduces the model
bias and assures that predictions are not affected by majority class label. This study
reinsures that SDP models developed with resampling methods enhance their predictive
capability as compared to models developed without resampling methods. The results
of the Friedman test strongly advocate the use of the random oversampling method for the
improved predictive capability of SDP classifiers for imbalanced data. Apart from ROS,
AHC and SMT also demonstrated good predictive capability for uncovering defects.
The Nemenyi test eradicates family-wise error and concluded ROS and AHC to be
significantly and statistically better than other resampling methods. Models developed
using oversampling methods illustrated better defect prediction capability than that of
undersampling methods. Handling CIP using ROS and AHC will aid developers and
software practitioners in detecting defects effectively in the early stages of software
development reducing testing cost and effort. Resampling methods greatly improved the
performance of ensemble methods.

Future direction involves the inclusion of more imbalanced datasets and investigates
the impact of resampling methods on them. Datasets can be taken of any prevalent
language different than JAVA like C#. There is a dire need for a benchmark study that
compares all the existing resampling solutions in the literature with the common
experimental settings. Optimized versions of base resampling methods like RUS or ROS
can be proposed. Further, we will also like to explore the consequences of resampling
methods with search-based techniques for the classification of software defects. Instead of
predicting defects, a framework can besides be utilized to envisage defect severity.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Ruchika Malhotra conceived and designed the experiments, analyzed the data,
performed the computation work, authored or reviewed drafts of the paper, supervision,
and approved the final draft.

Malhotra and Jain (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.573 29/34

http://dx.doi.org/10.7717/peerj-cs.573
https://peerj.com/computer-science/

� Juhi Jain conceived and designed the experiments, performed the experiments, analyzed
the data, performed the computation work, prepared figures and/or tables, authored or
reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Raw data are available as Supplemental Files 1 to 12. These files represent the datasets
used in this study.

Regarding code availability: We used KEEL and WEKA software for implementing
resampling methods and ML techniques. Both these tools are opensource tools.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.573#supplemental-information.

REFERENCES
Agrawal A, Menzies T. 2018. Is “Better Data” better than “Better Data Miners”? In: IEEE/ACM

40th International Conference on Software Engineering. 1050–1061.

Aha DW, Kibler D, Albert MK. 1991. Instance-based learning algorithms. Machine Learning
6(1):37–66.

Alcalá-Fdez J, Fernández A, Luengo J, Derrac J, García S, Sánchez L, Herrera F. 2011. Keel
data-mining software tool: data set repository, integration of algorithms and experimental
analysis framework. Journal of Multiple-Valued Logic & Soft Computing 1(6):17.

Arar ÖF, Ayan K. 2017. A feature dependent naive Bayes approach and its application to the
software defect prediction problem. Applied Soft Computing 59(10):197–209
DOI 10.1016/j.asoc.2017.05.043.

Balogun AO, Basri S, Abdulkadir SJ, Hashim AS. 2019. Performance analysis of feature selection
methods in software defect prediction: a search method approach. Applied Sciences 9(13):2764
DOI 10.3390/app9132764.

Balogun AO, Basri S, Mahamad S, Abdulkadir SJ, Almomani MA, Adeyemo VE, Al-Tashi Q,
Mojeed HA, Imam AA, Bajeh AO. 2020. Impact of feature selection methods on the predictive
performance of software defect prediction models: an extensive empirical study. Symmetry
12(7):1147 DOI 10.3390/sym12071147.

Bansiya J, Davis CG. 2002. A hierarchical model for object-oriented design quality assessment.
IEEE Transactions on Software Engineering 28(1):4–17 DOI 10.1109/32.979986.

Basili VR, Briand LC, Melo WL. 1996. A validation of object-oriented design metrics as quality
indicators. IEEE Transactions on Software Engineering 22(10):751–761 DOI 10.1109/32.544352.

Batista GE, Prati RC, Monard MC. 2004. A study of the behavior of several methods for balancing
machine learning training data. ACM SIGKDD Explorations Newsletter 6(1):20–29
DOI 10.1145/1007730.1007735.

Bennin KE, Keung J, Monden A, Kamei Y, Ubayashi N. 2016. Investigating the effects of
balanced training and testing datasets on effort-aware fault prediction models. In: IEEE 40th
Annual Computer Software and Applications Conference. Vol. 1. 154–163.

Bennin KE, Keung J, Phannachitta P, Monden A, Mensah S. 2018. Mahakil: Diversity based
oversampling approach to alleviate the class imbalance issue in software defect prediction. IEEE
Transactions on Software Engineering 44(6):534–550 DOI 10.1109/TSE.2017.2731766.

Malhotra and Jain (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.573 30/34

http://dx.doi.org/10.7717/peerj-cs.573/supp-1
http://dx.doi.org/10.7717/peerj-cs.573/supp-12
http://dx.doi.org/10.7717/peerj-cs.573#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.573#supplemental-information
http://dx.doi.org/10.1016/j.asoc.2017.05.043
http://dx.doi.org/10.3390/app9132764
http://dx.doi.org/10.3390/sym12071147
http://dx.doi.org/10.1109/32.979986
http://dx.doi.org/10.1109/32.544352
http://dx.doi.org/10.1145/1007730.1007735
http://dx.doi.org/10.1109/TSE.2017.2731766
http://dx.doi.org/10.7717/peerj-cs.573
https://peerj.com/computer-science/

Breiman L. 1996. Bagging predictors. Machine Learning 24(2):123–140.

Bunkhumpornpat C, Sinapiromsaran K, Lursinsap C. 2009. Safe-level-smote: safe-level-
synthetic minority over-sampling technique for handling the class imbalanced problem. In:
Pacific-Asia Conference on Knowledge Discovery and Data Mining. Vol. 27. 475–482.

Burez J, Van den Poel D. 2009. Handling class imbalance in customer churn prediction. Expert
Systems with Applications 36(3):4626–4636 DOI 10.1016/j.eswa.2008.05.027.

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. 2002. SMOTE: synthetic minority over-
sampling technique. Journal of Artificial Intelligence Research 16(6):321–357
DOI 10.1613/jair.953.

Chidamber SR, Kemerer CF. 1994. A metrics suite for object oriented design. IEEE Transactions
on Software Engineering 20(6):476–493 DOI 10.1109/32.295895.

Cleary JG, Trigg LE. 1995. K*: an instance-based learner using an entropic distance measure. In:
Machine Learning Proceedings. 108–114.

Cohen G, Hilario M, Sax H, Hugonnet S, Geissbuhler A. 2006. Learning from imbalanced data in
surveillance of nosocomial infection. Artificial Intelligence in Medicine 37(1):7–18
DOI 10.1016/j.artmed.2005.03.002.

Demšar J. 2006. Statistical comparisons of classifiers over multiple data sets. Journal of Machine
Learning Research 7(1):1–30.

Fawcett T. 2006. An introduction to ROC analysis. Pattern Recognition Letters 27(8):861–874
DOI 10.1016/j.patrec.2005.10.010.

Frank E, Witten IH. 1998. Generating accurate rule sets without global optimization. In: Fifteenth
International Conference on Machine Learning. 144–151.

Freund Y, Schapire RE. 1996. Experiments with a new boosting algorithm. In: 13th International
Conference on Machine Learning. Vol. 96. 148–156.

Friedman J, Hastie T, Tibshirani R. 2000. Additive logistic regression: a statistical view of
boosting (with discussion and a rejoinder by the authors). The Annals of Statistics 28(2):337–407
DOI 10.1214/aos/1016218223.

FriedmanM. 1940. A comparison of alternative tests of significance for the problem of m rankings.
The Annals of Mathematical Statistics 11(1):86–92 DOI 10.1214/aoms/1177731944.

Galar M, Fernandez A, Barrenechea E, Bustince H, Herrera F. 2011. A review on ensembles for
the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
42(4):463–484 DOI 10.1109/TSMCC.2011.2161285.

Ghotra B, McIntosh S, Hassan AE. 2017. A large-scale study of the impact of feature selection
techniques on defect classification models. In: IEEE/ACM 14th International Conference on
Mining Software Repositories (MSR). Vol. 20. Piscataway: IEEE, 146–157.

He H, Bai Y, Garcia EA, Li S. 2008. ADASYN: adaptive synthetic sampling approach for
imbalanced learning. In: IEEE International Joint Conference on Neural Networks (IEEE World
Congress on Computational Intelligence). Vol. 1. Piscataway: IEEE, 1322–1328.

Henderson-Sellers B. 1995. Object-oriented metrics: measures of complexity. Hoboken:
Prentice-Hall.

Ho TK. 1998. The random subspace method for constructing decision forests. IEEE Transactions
on Pattern Analysis and Machine Intelligence 20(8):832–844 DOI 10.1109/34.709601.

Jindaluang W, Chouvatut V, Kantabutra S. 2014. Under-sampling by algorithm with
performance guaranteed for class-imbalance problem. In: International Computer Science and
Engineering Conference. Vol. 30. 215–221.

Malhotra and Jain (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.573 31/34

http://dx.doi.org/10.1016/j.eswa.2008.05.027
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1016/j.artmed.2005.03.002
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1214/aos/1016218223
http://dx.doi.org/10.1214/aoms/1177731944
http://dx.doi.org/10.1109/TSMCC.2011.2161285
http://dx.doi.org/10.1109/34.709601
http://dx.doi.org/10.7717/peerj-cs.573
https://peerj.com/computer-science/

John GH, Langley P. 1995. Estimating continuous distributions in Bayesian classifiers. In:
Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence. 338–345.

Jureczko M, Madeyski L. 2010. Towards identifying software project clusters with regard to defect
prediction. In: Proceedings of the 6th International Conference on Predictive Models in Software
Engineering. 1–10.

Jureczko M, Spinellis D. 2010. Using Object-Oriented Design metrics to predict software defects.
In: Models and Methods of System Dependability. Wroc1aw: Oficyna Wydawnicza Politechniki
Wroc1awskiej, 69–81.

Kamei Y, Monden A, Matsumoto S, Kakimoto T, Matsumoto KI. 2007. The effects of over and
under sampling on fault-prone module detection. In: First International Symposium on
Empirical Software Engineering and Measurement. 196–204.

Khalilia M, Chakraborty S, Popescu M. 2011. Predicting disease risks from highly imbalanced
data using random forest. BMC Medical Informatics and Decision Making 11(1):51
DOI 10.1186/1472-6947-11-51.

Khoshgoftaar TM, Gao K. 2009. Feature selection with imbalanced data for software defect
prediction. In: International Conference on Machine Learning and Applications.
Vol. 13. 235–240.

Khoshgoftaar TM, Gao K, Seliya N. 2010. Attribute selection and imbalanced data: problems in
software defect prediction. In: 22nd IEEE International Conference on Tools with Artificial
Intelligence. Vol. 1. 137–144.

Kitchenham B, Madeyski L, Budgen D, Keung J, Brereton P, Charters S, Gibbs S, Pohthong A.
2017. Robust statistical methods for empirical software engineering. Empirical Software
Engineering 22(2):579–630 DOI 10.1007/s10664-016-9437-5.

Koru AG, Tian J. 2005. Comparing high-change modules and modules with the highest
measurement values in two large-scale open-source products. IEEE Transactions on Software
Engineering 31(8):625–642 DOI 10.1109/TSE.2005.89.

Kotsiantis S, Kanellopoulos D, Pintelas P. 2006. Handling imbalanced datasets: a review. GESTS
International Transactions on Computer Science and Engineering 30(1):25–36.

Kubat M, Matwin S. 1997. Addressing the curse of imbalanced training sets: one-sided selection.
In: International Conference of Machine Learning. Vol. 97. 179–186.

Landwehr N, Hall M, Frank E. 2005. Logistic model trees. Machine learning 59(1–2):161–205
DOI 10.1007/s10994-005-0466-3.

Lane PC, Clarke D, Hender P. 2012. On developing robust models for favourability analysis:
model choice, feature sets and imbalanced data. Decision Support Systems 53(4):712–718
DOI 10.1016/j.dss.2012.05.028.

Laurikkala J. 2001. Improving identification of difficult small classes by balancing class
distribution. In: Conference on Artificial Intelligence in Medicine in Europe. 63–66.

Le Cessie S, Van Houwelingen JC. 1992. Ridge estimators in logistic regression. Journal of the
Royal Statistical Society: Series C (Applied Statistics) 41(1):191–201.

Leo B. 2001. Random forests. Machine Learning 45(1):5–32 DOI 10.1023/A:1010933404324.

Lessmann S, Baesens B, Mues C, Pietsch S. 2008. Benchmarking classification models for software
defect prediction: a proposed framework and novel findings. IEEE Transactions on Software
Engineering 34(4):485–496 DOI 10.1109/TSE.2008.35.

Li M, Zhang H, Wu R, Zhou ZH. 2012. Sample-based software defect prediction with active and
semi-supervised learning. Automated Software Engineering 19(2):201–230
DOI 10.1007/s10515-011-0092-1.

Malhotra and Jain (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.573 32/34

http://dx.doi.org/10.1186/1472-6947-11-51
http://dx.doi.org/10.1007/s10664-016-9437-5
http://dx.doi.org/10.1109/TSE.2005.89
http://dx.doi.org/10.1007/s10994-005-0466-3
http://dx.doi.org/10.1016/j.dss.2012.05.028
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1109/TSE.2008.35
http://dx.doi.org/10.1007/s10515-011-0092-1
http://dx.doi.org/10.7717/peerj-cs.573
https://peerj.com/computer-science/

Lingden P, Alsadoon A, Prasad PW, Alsadoon OH, Ali RS, Nguyen VT. 2019. A novel modified
undersampling (MUS) technique for software defect prediction. Computational Intelligence
35(4):1003–1020 DOI 10.1111/coin.12229.

Liu Y, An A, Huang X. 2006. Boosting prediction accuracy on imbalanced datasets with
SVM ensembles. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining.
Vol. 9. 107–118.

Malhotra R. 2015. A systematic review of machine learning techniques for software fault
prediction. Applied Soft Computing 27:504–518 DOI 10.1016/j.asoc.2014.11.023.

Malhotra R, Kamal S. 2019. An empirical study to investigate oversampling methods for
improving software defect prediction using imbalanced data. Neurocomputing 343(2):120–140
DOI 10.1016/j.neucom.2018.04.090.

Malhotra R, Khanna M. 2017. An empirical study for software change prediction using
imbalanced data. Empirical Software Engineering 22(6):2806–2851
DOI 10.1007/s10664-016-9488-7.

Malhotra R. 2016. Empirical research in software engineering: concepts, analysis, and applications.
New York: Chapman and Hall/CRC.

Martin R. 1994. OO design quality metrics. An Analysis of Dependencies 12(1):151–170.

Mazurowski MA, Habas PA, Zurada JM, Lo JY, Baker JA, Tourassi GD. 2008. Training neural
network classifiers for medical decision making: the effects of imbalanced datasets on
classification performance. Neural Networks 21(2–3):427–436
DOI 10.1016/j.neunet.2007.12.031.

Moreo A, Esuli A, Sebastiani F. 2016. Distributional random oversampling for imbalanced text
classification. In: Proceedings of the 39th International ACM SIGIR Conference on Research and
Development in Information Retrieval. Vol. 7. New York: ACM, 805–808.

Pelayo L, Dick S. 2007. Applying novel resampling strategies to software defect prediction. NAFIPS
Annual Meeting of the North American Fuzzy Information Processing Society 24(6):69–72.

Pelayo L, Dick S. 2012. Evaluating stratification alternatives to improve software defect prediction.
IEEE Transactions on Reliability 61(2):516–525 DOI 10.1109/TR.2012.2183912.

Phua C, Alahakoon D, Lee V. 2004. Minority report in fraud detection: classification of skewed
data. ACM SIGKDD Explorations Newsletter 6(1):50–59 DOI 10.1145/1007730.1007738.

Quinlan JR. 1993. C4.5: programs for machine learning. San Mateo: Morgan Kaufmann.

Radjenović D, Heričko M, Torkar R, Živkovič A. 2013. Software fault prediction metrics: a
systematic literature review. Information and Software Technology 55(8):1397–1418
DOI 10.1016/j.infsof.2013.02.009.

Riquelme JC, Ruiz R, Rodríguez D, Moreno J. 2008. Finding defective modules from highly
unbalanced datasets. Actas de los Talleres de las Jornadas de Ingeniería del Software y Bases de
Datos 2(1):67–74.

Rodriguez D, Herraiz I, Harrison R, Dolado J, Riquelme JC. 2014. Preliminary comparison of
techniques for dealing with imbalance in software defect prediction. In: Proceedings of the 18th
International Conference on Evaluation and Assessment in Software Engineering. Vol. 13. 1–10.

Rojas R, Feldman J. 2013. Neural networks: a systematic introduction. Berlin: Springer-Verlag.

Seiffert C, Khoshgoftaar TM, Van Hulse J, Folleco A. 2014. An empirical study of the
classification performance of learners on imbalanced and noisy software quality data.
Information Sciences 259(2):571–595 DOI 10.1016/j.ins.2010.12.016.

Shatnawi R. 2012. Improving software fault-prediction for imbalanced data. In: International
Conference on Innovations in Information Technology. Vol. 18. 54–59.

Malhotra and Jain (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.573 33/34

http://dx.doi.org/10.1111/coin.12229
http://dx.doi.org/10.1016/j.asoc.2014.11.023
http://dx.doi.org/10.1016/j.neucom.2018.04.090
http://dx.doi.org/10.1007/s10664-016-9488-7
http://dx.doi.org/10.1016/j.neunet.2007.12.031
http://dx.doi.org/10.1109/TR.2012.2183912
http://dx.doi.org/10.1145/1007730.1007738
http://dx.doi.org/10.1016/j.infsof.2013.02.009
http://dx.doi.org/10.1016/j.ins.2010.12.016
http://dx.doi.org/10.7717/peerj-cs.573
https://peerj.com/computer-science/

Singh Y, Kaur A, Malhotra R. 2010. Empirical validation of object-oriented metrics for predicting
fault proneness models. Software Quality Journal 18(1):3–35 DOI 10.1007/s11219-009-9079-6.

Stefanowski J, Wilk S. 2008. Selective pre-processing of imbalanced data for improving
classification performance. In: International Conference on Data Warehousing and Knowledge
Discovery. Vol. 2. 283–292.

Sumner M, Frank E, Hall M. 2005. Speeding up logistic model tree induction. In: European
Conference on Principles of Data Mining and Knowledge Discovery. 675–683.

Tan M, Tan L, Dara S, Mayeux C. 2015. Online defect prediction for imbalanced data. In:
IEEE/ACM 37th IEEE International Conference on Software Engineering. Vol. 2. Prentice-Hall,
99–108.

Tantithamthavorn C, Hassan AE, Matsumoto K. 2018. The impact of class rebalancing
techniques on the performance and interpretation of defect prediction models. IEEE
Transactions on Software Engineering 46(11):1200–1219 DOI 10.1109/TSE.2018.2876537.

Tomek I. 1976. Two modifications of CNN. IEEE Transactions on Systems, Man, and Cybernetics:
Systems 6:769–772.

Vasu M, Ravi V. 2011. A hybrid under-sampling approach for mining unbalanced datasets:
applications to banking and insurance. International Journal of Data Mining, Modelling and
Management 3(1):75–105 DOI 10.1504/IJDMMM.2011.038812.

Wang S, Yao X. 2013. Using class imbalance learning for software defect prediction. IEEE
Transactions on Reliability 62(2):434–443 DOI 10.1109/TR.2013.2259203.

Zheng Z, Wu X, Srihari R. 2004. Feature selection for text categorization on imbalanced data.
ACM SIGKDD Explorations Newsletter 6(1):80–89 DOI 10.1145/1007730.1007741.

Malhotra and Jain (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.573 34/34

http://dx.doi.org/10.1007/s11219-009-9079-6
http://dx.doi.org/10.1109/TSE.2018.2876537
http://dx.doi.org/10.1504/IJDMMM.2011.038812
http://dx.doi.org/10.1109/TR.2013.2259203
http://dx.doi.org/10.1145/1007730.1007741
http://dx.doi.org/10.7717/peerj-cs.573
https://peerj.com/computer-science/

	Predicting defects in imbalanced data using resampling methods: an empirical investigation
	Introduction
	Related work
	Materials & methods
	Results
	Discussions
	Validity threats
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

