
Submitted 10 March 2021
Accepted 7 May 2021
Published 27 May 2021

Corresponding author
Seung-Mok Lee,
seungmok@kmu.ac.kr

Academic editor
Pengcheng Liu

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peerj-cs.567

Copyright
2021 Lee

Distributed under
Creative Commons CC-BY-NC 4.0

OPEN ACCESS

Ultrawideband (UWB)-based precise
short-range localization for wireless
power transfer to electric vehicles in
parking environments
Seung-Mok Lee
Department of Automotive System Engineering, Keimyung University, Daegu, South Korea

ABSTRACT
As the necessity of wireless charging to support the popularization of electric vehicles
(EVs) emerges, the development of a wireless power transfer (WPT) system for EV
wireless charging is rapidly progressing. The WPT system requires alignment between
the transmitter coils installed on the parking lot floor and the receiver coils in the
vehicle. To automatically align the two sets of coils, theWPT system needs a localization
technology that can precisely estimate the vehicle’s pose in real time. This paper
proposes a novel short-range precise localization method based on ultrawideband
(UWB) modules for application to WPT systems. The UWBmodule is widely used as a
localization sensor because it has a high accuracy while using low power. In this paper,
theminimumnumber of UWBmodules consisting of twoUWB anchors and twoUWB
tags that can determine the vehicle’s pose is derived through mathematical analysis.
The proposed localization algorithm determines the vehicle’s initial pose by globally
optimizing the collected UWB distance measurements and estimates the vehicle’s pose
by fusing the vehicle’s wheel odometry data and the UWB distance measurements. To
verify the performance of the proposed UWB-based localization method, we perform
various simulations and real vehicle-based experiments.

Subjects Algorithms and Analysis of Algorithms, Autonomous Systems, Robotics
Keywords Electric vehicles, Localization, Ultrawideband (UWB), Vehicle pose estimation,
Wireless power transfer systems

INTRODUCTION
The global electric vehicle (EV) market is growing rapidly due to the strengthening of
international environmental regulations on vehicle emissions. The technical limitation
that should be overcome to accelerate the popularization of EVs is the poor mileage.
To this end, the capacity of the battery should be increased, but the current technology
does not reach the mileage of internal combustion engine vehicles with a single charge.
In addition, the charging time is too long. To compensate for this problem, a wireless
power transfer (WPT) system that can easily charge EVs in a parking lot space has been
proposed (El-Shahat et al., 2019; Liang et al., 2020; Machura, Santis & Li, 2020; Panchal,
Stegen & Lu, 2018). WhenWPT systems are installed in parking lots, charging can be easily
performed frequently without building a separate charging station, thereby compensating
for problems caused by battery capacity limitations. In addition, when combined with an
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autonomous parking system, an advanced driver assistance system (ADAS), the use of EVs
becomes easier because these vehicles can park and charge themselves. TheWPT consists of
power-transmitting coils on the parking lot floor and power-receiving coils for the car, and
to be charged, the EV must precisely recognize the car location within the parking area and
align the two sets of coils to centimeter-level accuracy (Rozman et al., 2019). Therefore, for
the WPT system to be combined with an autonomous parking system, precise localization
technology is required in the parking area (Tian et al., 2020; Shin et al., 2019).

Vehicle localization technologies have been developed with different sensors and
different methods for indoor or outdoor environments. Localization in outdoor
environments uses the Global Positioning System (GPS) and vision sensors with high
definition (HD) maps. Localization in indoor environments uses a vision sensor or
lidar with prebuilt feature maps or grid maps, as GPS signals are unavailable in these
environments. It is thus difficult to apply these conventional localization methods to the
WPT system because a map cannot be constructed for all indoor environments.

Recently, many studies have been conducted to utilize an ultrawideband (UWB) distance
sensor for vehicle localization technology (Stoll et al., 2017; Tiemann et al., 2016; Kukolev
et al., 2016; Alarifi et al., 2016). In Stoll et al. (2017), extended Kalman filter (EKF)-based
vehicle localization using one UWB tag mounted on the vehicle and multiple UWB
anchors placed in an outdoor parking space was proposed. The method requires many
UWB anchors to be installed in the outdoor space to enhance the accuracy of vehicle
localization. This method shows that the average position error is approximately 0.23 m
when seven anchors are used. In Tiemann et al. (2016), a UWB-based precise localization
method for application to WPT was proposed. The method is based on an EKF using
UWB distance measurements from one UWB tag on the vehicle and two UWB anchors
placed in the corners of a parking slot. When the vehicle moves straightforward and
approaches the parking slot, the localization accuracy is approximately 0.1 m near the
anchors, demonstrating the possibility of applying UWB technology to precise localization
for the WPT. However, since only one tag is used to estimate the vehicle’s state, only the
2D position can be estimated, and the vehicle’s heading cannot be estimated. In addition,
since the localization method uses only UWB distance measurements, it is very vulnerable
to UWB measurement noise. In Kukolev et al. (2016), a localization method based on one
UWB anchor in a parking lot and two UWB tags on a vehicle was proposed. The method
presented in Kukolev et al. (2016) can estimate the position while the vehicle is stationary.
However, there is a limitation that an area where position estimation is not possible exists
depending on the heading angle of the vehicle.

The UWB sensor can also be used for the localization of various objects, such as
mobile robots (Chen et al., 2020; Shi et al., 2020), flying drones (Wang, Marelli & Fu, 2021;
González-Castaño et al., 2021; Hyun et al., 2019), and users (Zhang et al., 2019; Knobloch,
2017), because it can provide precise distance measurements based on the time-of-flight
(TOF) principle at short-range regions while using low power. In addition, since the UWB
distance sensor is inexpensive, the UWB-based localization system can advantageously be
implemented at an economical cost, even though multiple UWB sensor modules are used.
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This paper proposes a novel short-range precise localization method based on a dual-
anchor and dual-tag (DADT) UWB system that can be applied to WPT systems. The
proposed DADT UWB-based localization method uses two UWB anchors placed in the
parking area and two UWB tags mounted on the vehicle. When the vehicle approaches
the parking slot where the WPT is located, the UWB anchors start to communicate with
the tags, and the vehicle’s pose, i.e., position and heading angle, is initialized by processing
the UWB distance measurement data. Then, the wheel odometry information and UWB
distance measurements are fused based on a particle filter framework to continuously
estimate the pose from the initial vehicle pose. The goal of this paper is to make a precise
pose estimation so that the final parking position of the vehicle has an error of less than
0.1 m, which is required for alignment between the power transmitter and receiver coils
of the WPT. To verify the performance of the proposed DADT UWB-based localization
method, we perform various simulations and experiments with an actual vehicle.

The preliminary results of this paper were presented in Lee (2020). In the preliminary
results, the theoretical analysis of the minimum number of UWB modules and their
placement was not performed sufficiently. Compared with the results in Lee (2020),
the contributions of this paper can be summarized as follows. This paper provides the
detailed DADT UWB localization system with rigorous theoretical analysis. It is shown
mathematically that the proposed DADT method can uniquely determine the pose of the
vehicle with only two anchors and two tags. Additionally, we analyze the observability of
the proposed DADT method based on the Fisher information matrix (FIM). From the
analysis, it is confirmed that the DADT UWB system is the minimal combination of UWB
anchors and tags satisfying the condition for the DADTUWB localization system to be fully
observable. In addition, more detailed simulation and experimental results are provided to
show the effectiveness of the propose method.

The rest of this paper is organized as follows: we introduce the WPT system for EVs and
describe the proposed DADT UWB localization method. To verify the performance of the
proposed method, simulation results with various scenarios and experimental results with
a real vehicle are presented. Finally, a conclusion is presented.

LOCALIZATION FOR WIRELESS POWER TRANSFER (WPT)
SYSTEMS
The basic working principle of WPT for EVs is as follows (González-Castaño et al., 2021).
The WPT consists of electric power transmitter coils and electric power receiver coils,
as shown in Fig. 1. Power transmitter coils are installed on the floor of the parking lot,
and power receiver coils are mounted underneath the vehicle. When the transmitter coil
and the receiver coil are kept close to each other while maintaining a certain distance,
electric power is transmitted to the receiver coils, and electric energy can be used to charge
the battery. The alignment of the transmitter and receiver coils is significant for the high
performance and efficiency of WPT.

Localization technologies that can be applied in parking lot environments have been
developed based on mono cameras (Hu et al., 2019; Panev et al., 2019; Yu et al., 2020),
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Figure 1 Wireless power transfer (WPT) for electric vehicles (EVs).When the power transmitter and
receiver coils are kept close to each other, electric energy can be used to charge the battery. The alignment
of the two coils is significant for the high performance and efficiency of the WPT.

Full-size DOI: 10.7717/peerjcs.567/fig-1

Figure 2 Dual-anchor and dual-tag (DADT) ultrawideband (UWB)-based localization system. Two
UWB anchors are placed on both corners of the parking slot and two UWB tags are mounted on the ve-
hicle. The observability of the vehicle’s pose estimated by the proposed DADT UWB system is analyzed
based on the Fisher information matrix.

Full-size DOI: 10.7717/peerjcs.567/fig-2

depth cameras (Zhao et al., 2020), lidar (Tao et al., 2018), and radio frequency (RF)
fingerprinting of WiFi signals (Gao, He & Li, 2018), but they still have some limitations.
Most camera-based localization technologies are based on parking line recognition.
However, parking lines are usually not standardized and may not even be drawn. These
methods are also sensitive to lighting changes at night and do not operate well in dark
indoor parking lots. Lidar is useful for finding vacant parking spaces, but it is difficult to
estimate the relative position from the transmitting coil because it is difficult for lidar to
recognize the position of the transmitting coil.

The use of UWB sensors can overcome the limitations of cameras and lidar sensors. The
proposed DADT localization method only needs to know the positions of two anchors and
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the transmitting coil installed in the parking slot. Thus, it does not require an inconvenient
process of building a high-precision map with cameras or lidar sensors. As the UWB sensor
is based on RF signals, it is unaffected by changes in lighting and robust against dynamic
obstacles such as vehicles and pedestrians. In addition, if a pair of UWB sensors has a
clear line of sight, the distance between them can be precisely measured with an error of
approximately 0.05 m- 0.1 m. Due to the economics of UWB sensors, many automotive
makers have plans to use UWB sensors in vehicles soon. Therefore, it is possible to
implement a precise localization applicable to WPT for EVs with economical cost.

PROPOSED ULTRAWIDEBAND (UWB)-BASED
LOCALIZATION
Dual-Anchor and dual-tag (DADT) UWB localization and observability
analysis
This section describes a novel dual-anchor and dual-tag (DADT) UWB-based localization
method that can precisely estimate the pose of a vehicle near a parking area. The key
idea of the proposed DADT UWB-based localization is shown in Fig. 2. Two anchors are
installed on the charging station, and two tags are mounted on the vehicle. The two tags
should be placed so that the pose of the vehicle is always observable with only the distance
measurements of the DADT UWB system. The location of the UWB anchors should be
known in advance. Thus, the two anchors are placed on both corners of the parking slot so
that the location of the anchor can be easily identified.

To show the effectiveness of the proposed DADT UWB sensor system, the condition in
which the vehicle’s pose can be uniquely determined by the DADT UWB sensor system
is analytically derived. Then, observability analysis based on FIM is performed on the
proposed DADT UWB sensor system.

Existence and Uniqueness Solution to DADT UWB localization
We denote the vehicle pose state vector at a time step k by xk = [xk,yk,θk]T , the two UWB
anchor position vectors by a1 =

[
a1x ,a1y

]T and a2 =
[
a2x ,a2y

]T , and the two UWB tag
position vectors by t1=

[
t1x ,t1y

]T and t2=
[
t2x ,t2y

]T . For simplicity, let us assume that the
two anchors are placed at a1= [a0,0]T and a2= [−a0,0]T , as shown in Fig. 2. The position
vectors of the two tags can then be represented in the global frame (XG,YG) as

t1=

[
t1x
t1y

]
=

[
xk−d0sinθk
yk+d0cosθk

]
, (1)

t2=

[
t2x
t2y

]
=

[
xk+d0sinθk
yk−d0cosθk

]
. (2)
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The measurement model of the DADT UWB system can then be derived as

h(xt ,a0,d0)=



√
(xk−d0sinθk−a0)2+ (yk+d0cosθk)2√
(xk+d0sinθk−a0)2+ (yk−d0cosθk)2√
(xk−d0sinθk+a0)2+ (yk+d0cosθk)2√
(xk+d0sinθk+a0)2+ (yk−d0cosθk)2

, (3)

and Eq. (3) can be represented as

z211= (xk−d0sinθk−a0)2+ (yk+d0cosθk)2 (4a)

z212= (xk+d0sinθk−a0)2+ (yk−d0cosθk)2 (4b)

z221= (xk−d0sinθk+a0)2+ (yk+d0cosθk)2 (4c)

z222= (xk+d0sinθk+a0)2+ (yk−d0cosθk)2, (4d)

where zij is the distance measurement value by the ith anchor and jth tag. The vehicle
pose as determined by the DADT UWB system can be found by solving Eqs. (4a)–(4d) for
xk =

[
xk,yk,θk

]T . From Eqs. (4a) and (4c), xk and yk can be uniquely determined by

xk = d0sinθk+
1
4a0

(
z221−z

2
11
)

(5a)

yk =−d0cosθk+

√
z211−

[
1
4a0

(
z221−z

2
11
)
−a0

]2
, (5b)

under the condition that

yk+d0cosθk > 0. (6)

In a similar manner, using Eqs. (4b) and (4d), xk and yk have another equivalent form as
follows:

xk =−d0sinθk+
1
4a0

(
z222−z

2
12
)

(7a)

yk = d0cosθk+

√
z212−

[
1
4a0

(
z222−z

2
12
)
−a0

]2
, (7b)

under the condition that

yk−d0cosθk > 0. (8)

The two conditions Eqs. (6) and (8) can be satisfied the two tags are on the YG> 0 region.
Subtracting Eqs. (7a) from (5a) and rearranging with respect to sinθk gives

sinθk =
1

8a0d0

(
z211−z

2
12−z

2
21+z

2
22
)
. (9)

From Eqs. (5b) and (7b), cosθk can be expressed by
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cosθk =
1
2d0

√z211−
[

1
4a0

(
z221−z

2
11
)
−a0

]2
−

√
z212−

[
1
4a0

(
z222−z

2
12
)
−a0

]2. (10)

Using Eqs. (9) and (10), θk can be found as

θk = arctan

 1
4a0

z211−z
2
12−z

2
21+z

2
22√

z211−
[

1
4a0

(
z221−z

2
11
)
−a0

]2
−

√
z212−

[
1
4a0

(
z222−z

2
12
)
−a0

]2
. (11)

Therefore, the vehicle pose xk =
[
xk,yk,θk

]T can be uniquely determined by Eqs. (7a), (7b)
and Eq. (11) under the condition that yk > d0.

Observation analysis based on the Fisher information matrix (FIM)
The uncertainty of the pose of the vehicle estimated by UWB distance measurements is
determined by the geometric distribution of the anchors fixed on the parking lot and the
tags mounted on the vehicle. To estimate the amount of uncertainty about the vehicle
pose estimated by the proposed DADT UWB system, FIM-based observability analysis is
performed as follows. The FIM can be defined as (Lee et al., 2015)

F ,HTW−1H (12)

where H is the Jacobian of h(xt ,a0,d0) in Eq. (3) with respect to the vehicle state xk and
W is a covariance matrix of the UWB measurement noise. The sufficient and necessary
condition for the DADT UWB localization system to be fully observable is that the FIM
defined in Eq. (12) should be positive definite. The positive definiteness of the FIM is
equivalent to the full column rank of the Jacobian H. Therefore, it can be found that the
DADT UWB localization system is fully observable from the UWB distance measurements
if and only if H has a full column rank. The Jacobian H can be computed as

H=
∂h(xk,a0,d0)

∂xk

=


1

m11
(xk−a0−d0sinθk)

1
m12

(xk−a0+d0sinθk)

1
m11

(
yk+d0cosθk

) 1
m12

(
yk−d0cosθk

)
−

d0
m11

(
(xk−a0)cosθk+yk sinθ

) d0
m12

(
(xk−a0)cosθk+yk sinθ

)
1

m21
(xk+a0−d0sinθk)

1
m22

(xk+a0+d0sinθk)

1
m21

(
yk+d0cosθk

) 1
m22

(
yk−d0cosθk

)
−

d0
m21

(
(xk+a0)cosθk+yk sinθ

) d0
m22

(
(xk+a0)cosθk+yk sinθ

)

. (13)
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Figure 3. Numerical distribution of the determinant of the Fisher information matrix in (12) around the
UWB anchors placed at a1 = [1, 0]T and a2 = [−1, 0]T with different vehicle’s heading angles for every
position. (A) θk = 0 deg or 180 deg; (B) θk = 30 deg or 210 deg; (C) θk = 60 deg or 240 deg; (D)
θk = 90 deg or 270 deg.

The Jacobian presented in (13) can also be represented in a reduced row echelon form using the Gaussian
elimination process as follows:




1 0 0 −m11(yk−d cosθk)((xk+a)cosθk+yk sinθk)
m22(yk+d cosθk)((xk−a)cosθk+ysinθk)

0 1 0 m12((xk+a)cosθk+ysinθk)
m22((xk−a)cosθk+ysinθk)

0 0 1 m21(yk−d cosθk)
m22(yk+d cosθk)


 . (14)

As seen in (14), the column rank is 3, which is the full rank.139

The determinant value of the FIM represents the amount of Fisher information that can be observed for140

vehicle pose state variables; i.e., as the determinant of the FIM increases, the vehicle pose can be estimated141

with higher accuracy. Fig. 3 shows the numerical distribution of the determinant of the FIM around the142

UWB anchors placed at a1 = [1, 0]T and a2 = [−1, 0]T , when the vehicle heading is θk = 0 deg, 30 deg,143

60 deg, and 90 deg for every position. In Fig. 3, the covariance matrix W in (12) is assumed to be an144

identity matrix in order to compare the determinant value depending only on the positions. As shown in145

Fig. 2, when the vehicle approaches the parking slot, the heading angle θk is 90 deg for back-in parking146

and 270 deg for front-end parking. By comparing Fig. 3, it can be seen that when the heading angle is147

90 deg or 270 deg, the determinant of the FIM has the largest distribution. This means that for anchors148

placed at both corners of the parking lot slot, installing the two tags in a direction perpendicular to the149

vehicle’s moving direction maximizes the amount of Fisher information under the assumption that back-in150

parking (θk = 90 deg) or front-end parking (θk = 270 deg) is performed.151
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Figure 3 Numerical distribution of the determinant of the Fisher informationmatrix in Eq. (12)
around the UWB anchors placed at a1 = [1,0]T and a2 = [−1,0]T with different vehicle’s heading
angles for every position. (A) θk = 0 deg or 180 deg; (B) θk = 30 deg or 210 deg; (C) θk = 60 deg or 240
deg; (D) θk = 90 deg or 270 deg.

Full-size DOI: 10.7717/peerjcs.567/fig-3

The Jacobian presented in Eq. (13) can also be represented in a reduced row echelon form
using the Gaussian elimination process as follows:
1 0 0

−m11(yk−d cosθk)((xk+a)cosθk+yk sinθk)
m22(yk+d cosθk)

(
(xk−a)cosθk+y sinθk

)
0 1 0

m12((xk+a)cosθk+y sinθk)
m22((xk−a)cosθk+y sinθk)

0 0 1
m21(yk−d cosθk)
m22(yk+d cosθk)


. (14)

As seen in Eq. (14), the column rank is 3, which is the full rank.
The determinant value of the FIM represents the amount of Fisher information that can

be observed for vehicle pose state variables; i.e., as the determinant of the FIM increases,
the vehicle pose can be estimated with higher accuracy. Figure 3 shows the numerical
distribution of the determinant of the FIM around the UWB anchors placed at a1= [1,0]T

and a2= [−1,0]T , when the vehicle heading is θk = 0 deg, 30 deg, 60 deg, and 90 deg for
every position. In Fig. 3, the covariance matrix W in Eq. (12) is assumed to be an identity
matrix in order to compare the determinant value depending only on the positions. As
shown in Fig. 2, when the vehicle approaches the parking slot, the heading angle θk is 90
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Figure 4 Flowchart of the proposed DADTUWB localization algorithm. In the first step, the vehicle’s
pose is initialized by globally optimizing the UWB distance measurements. In the second step, based on
the initialized vehicle pose, the wheel odometry and UWB distance measurement collected as the vehicle
moves are fused to estimate the pose of the vehicle in real time.

Full-size DOI: 10.7717/peerjcs.567/fig-4

deg for back-in parking and 270 deg for front-end parking. By comparing Fig. 3, it can be
seen that when the heading angle is 90 deg or 270 deg, the determinant of the FIM has the
largest distribution. This means that for anchors placed at both corners of the parking lot
slot, installing the two tags in a direction perpendicular to the vehicle’s moving direction
maximizes the amount of Fisher information under the assumption that back-in parking
(θk = 90 deg) or front-end parking (θk = 270 deg) is performed.

Vehicle pose estimation based on the DADT UWB system
The proposed DADT UWB localization algorithm consists of two major steps, as shown
in Fig. 4. In the first step, when the EV approaches the parking area where the UWB tag
and anchor can communicate, distance measurements between UWB anchors and tags are
collected. Subsequently, the pose of the EV is initialized through global optimization of
the UWB measurements. In the second step, based on the initialized vehicle pose, wheel
odometry and UWB distance data collected as the vehicle moves are fused to estimate the
pose of the vehicle in real time. The details are given in the following subsections.
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Vehicle pose initialization by globally optimizing UWB measurements
The purpose of this step is to quickly find the approximate initial pose of the EV using
only UWB distance measurements under the assumption that no prior information about
the EV’s pose is available. From the mathematical analysis of the proposed DADT UWB
system, the EV pose can always be uniquely determined by the DADT UWB system in the
area of y > d0. Therefore, it is possible to predict the sensor measurement value from the
measurement model as formulated in Eq. (3) and determine the initial pose of the vehicle
through global optimization between the predicted value and the actual measurement
value.

We propose a particle swarmoptimization (PSO) (Kennedy, Eberhart & Shi, 2001)-based
global optimization algorithm that can quickly search for suboptimal solutions to find the
initial pose. Each particle in PSO is considered a potential solution, i.e., a vehicle pose state
vector, and searches for a given solution space. The position of each particle is iteratively
updated based on the experience of the particle and its neighbors and converges toward
the optimal solution quickly.

The PSO-based vehicle pose initialization method is as follows. When a vehicle
approaches a parking area where communication between UWB anchors and tags is
possible, UWBdistancemeasurements between eachUWB tag and anchor pair are sampled.
When a certain number of measurements is collected, the average value is estimated by
removing outliers. The error function J for global optimization is defined as follows.

J = [h(xt ,a0,d0)−zk]T [h(xt ,a0,d0)−zk], (15)

where zk is a measurement vector. For the region where y > d0, the PSO finds the initial
vehicle pose x0 =

[
x0,y0,θ0

]T whose error function J value is less than or equal to a
specific threshold ε. The threshold is determined by considering the variance of UWB
measurements.

Vehicle pose tracking by fusing odometry and UWB measurements
To estimate the vehicle’s pose precisely as the vehicle moves, the UWB distance
measurements and wheel odometry data are fused through a particle filter. The method of
estimating the vehicle’s pose through the particle filter is shown in the right block of Fig. 4,
and the details of each part are as follows.

In particle filter-based localization, a group of particles represents the probability
distribution of vehicle states, with each particle x[m]k representing a possible state, where
[m] indicates a particle index. When the initial pose state of the EV is determined by
the PSO, the particles are initialized to have a Gaussian distribution. The mean of the
distribution is set to the initial pose state determined by the PSO.

The motion model of the vehicle is

xk = f (xk−1,uk)+eu, (16)

where uk is a control input vector and eu is normally distributed process noise with
zero mean. Given the current vehicle pose xk and the positions of the anchors fixed at
a1= [a0,0]T and a2= [−a0,0]T , the observation model of the DADT UWB system can be
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Figure 5 Four simulation tests. The vehicle starts from four different positions and moves along the path
for front-end parking or back-in parking.

Full-size DOI: 10.7717/peerjcs.567/fig-5

written as

zk = h(xk,a0,d0)+ev (17)

where ev is normally distributed Gaussian noise with zero mean.
The vehicle pose x[m]k is predicted by taking the wheel odometry into consideration,

which is denoted by x[m]k ∼ p
(
xk |x

[m]
1:k−1,uk

)
. The importance weight is computed by

(Grisetti, Stachniss & Burgard, 2007)

ω
[m]
k =

1
√
2πQ

exp
[
−
1
2

(
zk− ẑ

[m]
k

)T
(Qk)

−1
(
zk− ẑ

[m]
k

)]
, (18)

where ẑ[m]k is a predicted measurement and Qk is the covariance of the anchors’ positions.
In the process of particle filtering, the importance weight of some particles can gradually
become low, and particles with lower importance weights have little effect in estimating
the vehicle pose states. To prevent this effect, the particles are resampled in proportion to
the weight of each particle. The number of effective particles given by

Neff =
1∑M

m=1

(
ω
[m]
k

)2 , (19)

whereM is the total number of particles. When the number of effective particle is less than
50% of the total number of particles, the weights of all particles are uniformly reset after
resampling particles.

SIMULATION AND EXPERIMENTAL RESULTS
Simulation results
To verify the performance of the proposed DADT UWB localization method, we perform
the following simulations: (1) Initialize the vehicle’s pose by globally optimizing the error
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Table 1 Initial pose estimation results by the Levenberg–Marquardt and the proposed globally opti-
mizing DADTUWBmeasurements for the four selected poses (unit: m, rad).

True pose Levenberg–Marquardt Proposed DADT

xGT =
[
x,y,θ

]T Estimated Pose E Estimated Pose E
Test 1 [15,9,π]T [14.83,9.26,1.11]T 2.05 [14.99,9.01,3.14]T 1.42E–02
Test 2 [15,6,π]T [14.88,6.30,0.79]T 2.37 [15.01,5.98,3.14]T 2.24E–02
Test 3 [−15,9,0]T [−14.74,9.40,−0.03]T 0.48 [−14.97,9.05,0.00]T 5.83E–02
Test 4 [−15,6,0]T [−14.69,6.69,−0.04]T 0.76 [−14.99,6.02,0.00]T 2.24E–02

function defined in Eq. (15); (2) estimate the vehicle’s pose by fusing wheel odometry
and UWB measurements. Figure 5 shows the simulation scenario. The vehicle starts
from four different positions and moves along the path for front-end parking or back-
in parking. Considering the actual dimensions of the vehicle and the parking space
environment, the distance between the UWB tags mounted on the vehicle is set to 1.36 m,
i.e., d0= 0.68 and the two UWB anchors are placed at a1= [1,0]T and a2= [−1,0]T . The
wheel odometry noise and UWB measurement noises are assumed to be sampled from the
normal distributions denoted by eu ∼N

(
0,σ 2

u
)
and vu ∼N

(
0,σ 2

v
)
where σu= 0.35 m/s

and σv = 0.10 m.
Table 1 shows the initial pose estimation results by the proposed global optimizing

UWB measurements for the four selected poses. To show the effectiveness of the proposed
vehicle’s pose initialization method, the results of the Levenberg–Marquardt method
(Moré, 1978), which is a widely used method of optimization of the least square problem,
are compared with the results of the proposed DADT method. The pose error E between
the estimated initial pose x0 and the ground truth pose xGT defined by

E =‖x0−xGT‖. (20)

Since the Levenberg–Marquardt method is a local optimization method, it has a limitation
in that it cannot find the initial position when it converges to a local minimum. As seen in
Table 1, the Levenberg–Marquardt method fails to find the vehicle’s initial pose. However,
the proposed initial pose estimation method can precisely find the initial pose for all
the tests. These results are consistent with the mathematical analysis of the DADT UWB
localization system.

Figures 6–9 show the results of estimating the vehicle’s pose continuously from the initial
pose through the fusion of the vehicle’s odometry data and theUWBdistancemeasurements
under the particle filter framework with a fixed number of particles,M = 100. As seen from
the results, the error of the odometry increases as the vehicle moves, whereas the trajectories
estimated by the proposed DADT method match the ground truth trajectories in all four
cases. Figure 10 shows boxplots for each test, including the mean, minimum, maximum,
and standard deviation of the errors. Table 2 shows the numerical values corresponding to
the boxplots. The results show that the proposed DADT method keeps the mean error of
the vehicle’s position under 0.1 m.
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Figure 6 Simulation results of Test 1. The vehicle starts from its initial pose x0 = [15,9,π]T and moves
along the path for front-end parking.
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Figure 7 Simulation results of Test 2. The vehicle starts from its initial pose x0 = [15,6,π]T and moves
along the path for back-in parking.
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Figure 8 Simulation results of Test 3. The vehicle starts from its initial pose x0 = [−15,9,0]T and moves
along the path for front-end parking.
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Figure 9 Simulation results of Test 4. The vehicle starts from its initial pose x0 = [−15,6,0]T and moves
along the path for back-in parking.
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Figure 9. Simulation results of Test 4. The vehicle starts from its initial pose x0 = [−15, 6, 0]T and
moves along the path for back-in parking.

Figure 10. Boxplots of the simulation results.

11/16

Figure 10 Boxplots of the simulation results.
Full-size DOI: 10.7717/peerjcs.567/fig-10

Table 2 Comparison of pose estimation error by odometry and the proposed DADTUWB system
while the vehicle moves. (Unit: m).

Odometry Proposed DADT

Mean Min Max Std Mean Min Max Std

Test 1 0.3396 0.0012 0.8322 0.2613 0.0691 0.0016 0.2831 0.0476
Test 2 0.3555 0.0140 0.6925 0.1414 0.0720 0.0129 0.2220 0.0397
Test 3 0.3930 0.0034 0.7266 0.2362 0.0714 0.0035 0.2075 0.0382
Test 4 0.3831 0.0032 0.5838 0.1525 0.0732 0.0030 0.2344 0.0401

Experimental results
The proposed DADT UWB-based localization method is tested with a real vehicle. The
tests are performed with the UWB modules manufactured by Pozyx (Pozyx, 2021), which
have a maximum measurable distance of 30 m and an update rate of 60 Hz. As shown
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Figure 11 Experimental setup. (A) Two UWB anchors are installed near both corners of the parkingslot.
(B) two UWB tags and DGPS are mounted on the vehicle roof.

Full-size DOI: 10.7717/peerjcs.567/fig-11

Figure 12 Snapshots of the experiment with a real vehicle. The vehicle is performing front-end parking.
Full-size DOI: 10.7717/peerjcs.567/fig-12

in Fig. 11, two UWB tags are mounted on the vehicle roof, and two UWB anchors are
installed near both corners of the parking slot. The UWB anchors are installed at a height
of 1.8 m to maintain line-of-sight communication with the UWB tags mounted on the
vehicle. The positions where the UWB anchors and tags are installed are set to be the same
as in the simulation. To evaluate the error of the proposed method, a differential global
positioning system (DGPS) receivermodule with centimeter-level accuracy is alsomounted
on the vehicle. The proposed localization algorithm is implemented to perform real-time
computation at 10 Hz on an NVIDIA Nano Jetson board (NVIDIA, 2021). Figure 12 shows
snapshots of the experiment with a real vehicle performing front-end parking.

Figures 13–14 show the experimental results with the actual vehicle. As shown in the
experimental results, the error generated by the wheel odometry increases due to the slip of
the wheels when moving along a curved path. However, the proposed DADT UWB-based
method precisely corrects the vehicle’s pose using the UWBdistancemeasurements. Table 3
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Figure 13 Results of Exp. 1. The black dashed-dotted line shows the DGPS trajectory, the red dotted line
shows the odometry trajectory, and the blue solid line shows the proposed DADT UWB-based localization
results.
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Table 3 Comparison of the final position estimation error by odometry and the proposed DADT
UWB system with a real vehicle. (unit: m).

XG-axis error YG-axis error Distance error

Odometry 0.4690 0.5826 0.7479Exp. 1
Proposed DADT 0.0493 0.0763 0.0908
Odometry 0.9038 0.1604 0.9179Exp. 2
Proposed DADT 0.0328 0.0031 0.0329

shows that the errors are within 0.1 m at the final parked position. The proposed DADT
UWB-based localization method can be sufficiently applied to WPT.
Through the experiments, the average computation time required to update the vehicle’s
pose at each time instant is estimated while increasing the number of particles from 20 to
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Figure 14 Results of Exp. 2. The black dashed-dotted line shows the DGPS trajectory, the red dotted line
shows the odometry trajectory, and the blue solid line shows the proposed DADT UWB-based localization
results.

Full-size DOI: 10.7717/peerjcs.567/fig-14

100. Figure 15 shows the average computation time estimated by an NVIDIA Nano Jetson
board. The computation time grows linearly as the number of particles increases. However,
even when 100 particles are used, it can be operated in real time at a rate of 10 Hz.

CONCLUSIONS
This paper proposed a novel short-range precise localization method using a DADT UWB
sensor system for application to a WPT system. An observability analysis of the proposed
DADT UWB sensor system consisting of two anchors and two tags was performed based
on the FIM. The proposed localization algorithm determines the vehicle’s initial pose by
globally optimizing the collected UWB distance measurements and estimates the vehicle’s
pose by fusing the vehicle’s wheel odometry data and the UWB distance measurements.
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Figure 15 Average computation time required to update the vehicle’s pose at each time instant.
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The effectiveness of the proposed method was confirmed through various simulations and
real vehicle-based experiments.
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