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ABSTRACT
Software Fault Prediction (SFP) assists in the identification of faulty classes, and
software metrics provide us with a mechanism for this purpose. Besides others, metrics
addressing inheritance in Object-Oriented (OO) are important as these measure depth,
hierarchy, width, and overriding complexity of the software. In this paper, we evaluated
the exclusive use, and viability of inheritance metrics in SFP through experiments.
We perform a survey of inheritance metrics whose data sets are publicly available,
and collected about 40 data sets having inheritance metrics. We cleaned, and filtered
them, and captured nine inheritance metrics. After preprocessing, we divided selected
data sets into all possible combinations of inheritance metrics, and then we merged
similar metrics. We then formed 67 data sets containing only inheritance metrics that
have nominal binary class labels. We performed a model building, and validation for
Support Vector Machine(SVM). Results of Cross-Entropy, Accuracy, F-Measure, and
AUCadvocate viability of inheritancemetrics in software fault prediction. Furthermore,
ic, noc, and dit metrics are helpful in reduction of error entropy rate over the rest of
the 67 feature sets.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Software Engineering
Keywords Software metrics, Software inheritance metrics, Machine learning, Software fault
prediction, Software testing, Software reliability

INTRODUCTION
Object-Oriented software development is a widely used software development technique.
It is not possible to produce a completely fault-free software system. The failure rates in a
thousand lines of code for industrial projects are 15–50, 10–20 for Microsoft (McConnell,
2004) and specifically in Windows 2000, which comprises thirty-five million Lines of
Code(LOC) recorded sixty-three thousand errors (Foley, 2007). Residual errors may cause
failure since many types of errors have been newly detected (Bilton, 2016; Osborn, 2016;
Grice, 2015).

Early detection of faults may save time, costs, and decrease the software complexity since
it is proportional to the testing. Extensive testing is required to locate all remaining
errors. The extensive tests are impossible (Jayanthi & Florence, 2018; Kaner, Bach &
Pettichord, 2008). This is why the cost of testing at times elevated to over 50% of the
total software development cost (Majumdar, 2010). This number may rise to seventy-five
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percent as reported by IBM (Hailpern & Santhanam, 2002). Software testing is essential
and inevitable to produce software without errors. Thorough testing of entire classes with
limited manpower is a challenging task. It is more feasible to identify faulty classes and test
them to produce software with good quality. It is observed those faults are not uniformly
dispersed throughout the software product. Certain classes are more faulty as compare to
others and are clustered in a limited number of classes (Sherer, 1995). Research shows that
errors are limited to 42.04% of the entire components in a software project (Gyimothy,
Ferenc & Siket, 2005). Similarly, the findings of Ostrand, Weyuker & Bell (2004) revealed
that only 20% of the entire software components are faulty in a project.

In software engineering, presently numerous prediction approaches exist that include
reuse prediction, test effort prediction, security prediction, cost prediction, fault prediction,
quality prediction, and stress prediction (Catal, 2011). SFP is an up-and-coming
research area, in which defective classes are discovered in the initial period of project
development (Menzies, Greenwald & Frank, 2007; Jing et al., 2014; Seliya, Khoshgoftaar &
Van Hulse, 2010) with machine learning (Catal, 2011; Malhotra, 2015). It is assumed that
with the help of metrics, fault prediction model may be constructed to calculate coupling,
inheritance, cohesion, size, and complexity of software (Chen & Huang, 2009; Chidamber
& Kemerer, 1994; Li & Henry, 1993; Basili, Briand & Melo, 1996;Malhotra & Jain, 2012).

The fault prediction process typically includes the training and prediction phases. In
the first phase of training, a prediction model is constructed utilizing software metrics at
class or method level together with fault information associated with each module of the
software. Later, the said model is employed on a newly developed software version for
faults prediction.

We utilize methods of classification for labeling classes into fault-free or faulty classes
by using software metrics and fault information. Quality of software is improved by
detecting classes with faults within the software using fault prediction models. The model
performance has an effect on the modeling technique (Elish & Elish, 2008a; Catal & Diri,
2009) and metrics (Briand et al., 2000; Ostrand, Weyuker & Bell, 2005). Several researchers
have developed and validated fault prediction models based on statistical techniques
or machine learning. They have used software metrics, data sets, and feature reduction
methods to achieve improvement in the performance of model.

The software development industry is utilizing Object-Oriented paradigm; however,
the usage of metrics at class-level in fault prediction is less common while comparing
with other types of metrics (Catal & Diri, 2009). Our literature review findings show that
method level software metrics employing machine learning techniques are in use by the
researches (Catal, 2011). It is beneficial to use publicly available data sets for SFP since
they help to develop verifiable and repeatable models (Catal & Diri, 2009). It is pertinent
to mention here that models of machine learning have superior precision and accessibility
as comparing it with expert opinion-based approaches or statistical methods.

Besides others, inheritance is a prominent feature of Object-Oriented programming.
Inheritance is the class’s ability to obtain the properties of some other class. It is divided into
several types, namely single, multiple, multi-level, and so on. Object-Oriented supports
reuse in three different ways (Karunanithi & Bieman, 1993), where the primary technique
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of reuse is through inheritance. It is the relationship between classes, in which a class object
gets properties from other classes (Rosenberg, 1998). Forming classes into a classification
hierarchy, it provides an additional dimension to the encapsulation of the abstract data
types. It allows classes to inherit methods and attributes from other classes (Breesam,
2007). Use of inheritance reduces the essential software maintenance cost and testing
burden (Chidamber & Kemerer, 1991; Booch, 1991; Dale & Van Der Zee, 1992; Fenton,
1994). Software reuse through inheritance yields more maintainable, comprehensible, and
reliable software (Chidamber & Kemerer, 1991).

We validated inheritance metrics impact in SFP by experiments, in which we used
Artificial Neural Network (ANN) for the construction of models. We used Accuracy,
Recall, True negative rate (TNR), Precision, and F1-Measures as performance measures
(Aziz, Khan & Nadeem, 2019). The outcomes indicated the satisfactory influence of metrics
of inheritance on software fault prediction. The professionals associated with testing may
securely utilize metrics of inheritance for fault prediction in software projects. A higher
value of inheritance is also undesirable, as it might introduce faults in the software.

Generally utilized metrics of inheritance include Number of Children (noc), Depth of
Inheritance (dit), Total Progeny Count (tpc), Class-to-leaf depth (cld), Total Ascendancy
Count (tac), Number of Descendant Classes (ndc), Number of Ancestor Classes (nac),
Number of Overridden Methods (norm), Number of Methods Inherited (nmi) and
Number of Attributes Inherited (nai), Average InheritanceDepth (aid), Number of children
in the hierarchy (nocc), Maximum DIT (MaxDit), Specialization Ration (SRatio), Total
length of Inheritance chain(tli), Reuse Ration (RRatio), Method Inheritance Factor (mif),
Attribute Inheritance Factor (aif), Number of Attributes Inherited in Hierarchy (naih),
Specialization Index (si) and Number of Methods Inherited in Hierarchy (nmih) (Reddy
& Ojha, 2018).

It was noticed during the survey on SFP that researchers have already performed so
much work on the metrics of Object-Oriented software for example cohesion, coupling,
etc. All these are utilized either individually or in a group with other metrics. The C&K
metrics set is an example where these are used in a group and commonly recognized in the
research arena. However, it was perceived that inheritance metrics are utilized collectively
in C&K suite, but solo use and assessment of inheritance metrics is neglected. This prompts
the performance of experimentation to concentrate explicitly on inheritance aspect to
demonstrate the viability of its metrics in the perspective of SFP.

This paper is a novel representation of the following:
1. Exploring inheritance metrics having publicly available data sets.
2. Exclusive experimental evaluation of the inheritance metrics on as large as 40 data sets.
3. An empirical validation of exclusive viability of inheritance aspect on software fault

prediction.
4. Across the data sets/products software fault prediction.
The paper is categorized into sections where ‘Theoretical Background’ explains

theoretical context of SFP, Inheritance, Inheritance metrics, and their usage and data sets in
SFP. The literature review explaining inheritance in SFP is presented in ‘Literature Review’.
‘Methodology’ explains experimental approach utilized in this study and an experimental
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assessment of the inheritance measures. Finally, ‘Experiment and Results’ explains the
threats to validity, conclusion remarks and future directions of the investigation.

THEORETICAL BACKGROUND
Software fault prediction
The process of SFP typically includes two phases training and prediction. In the training
phase method or class level software metrics with faulty data associated with the individual
module of the software are used to construct a prediction model. Later, this model is used
for the prediction of fault-prone classes in a newer version of the software. Fault prediction
is beneficial to improve software quality and reduce testing costs. Moreover, it enables
testing teams to limit testing on fault-prone classes only. In software, faults prediction
theoretically established the target to grasp which parts may require concentration. Several
SFP methods have been used (Rathore & Kumar, 2017a; Catal, 2011), which share three
main ingredients (Beecham et al., 2010); Feature set, Class label, and Model.

The feature set consists of the metrics from a software artifact. It is believed that these
are decent class label predictors. The metrics are classified into product, project, and
process metrics. Out of these product metrics are mostly utilized (Gómez et al., 2006). The
product metrics are further grouped into class, method, and file levels. Generally, 60%
metrics at method-level are applied after that 24% metrics at class-level (Catal & Diri,
2009). Product metrics also comprise design, code, volume, and complexity metrics. The
fault prediction model performance is so much dependent on these metrics. Scholars have
evaluated the usage frequency of metrics in (Malhotra, 2015; Catal & Diri, 2009; Beecham
et al., 2010; Radjenović et al., 2013; Gondra, 2008; Chappelly et al., 2017; Nair et al., 2018),
where the utmost commonly applied software product metrics in software fault prediction
are Halstead (Halstead, 1977), McCabe (McCabe, 1976), LoC in structural programming,
and C&K metrics suite (Chidamber & Kemerer, 1991) in Object-Oriented paradigm. These
metrics have became the de-facto standardmetrics in SFP. PROMISE (Boetticher, 2007) and
D’Ambros (D’Ambros, Lanza & Robbes, 2010) are more often used data sets repositories
containing these metrics. These repositories contain data sets of about 52% of the studies
published after 2005 (Malhotra, 2015). Since these data sets are available publicly therefore
they are used very frequently. The second reason is the absence of fault data of industrial
projects of software.

The second very significant element is the class label in software fault prediction, which
contains metrics actual value. Within the software fault prediction domain, fault free or
faulty are shown as continuous or nominal-binary or to point total faults in an occurrence.
Though, usage of continuous labels present in the literature (Rathore & Kumar, 2017b), but
leading class labels are nominal class labels in SFP (Catal, 2011; Rathore & Kumar, 2017a).

In software fault prediction, model building is a third key factor, which is a relationship
between feature set and label of class. It can be applied by the use of Machine learning (ML)
algorithms, statistical methods, or even expert opinion (Catal & Diri, 2009), where ML is
an extensively utilized method for model building (Beecham et al., 2010). It expressively
expands the accuracy of classification (Han, Pei & Kamber, 2011). In the SFP domain,
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several ML algorithms are utilized. The performance of these ML algorithms has been
compared by Malhotra, whose findings conclude that Bayesian networks and Random
forest are outperformers while compared with other algorithms of ML (Malhotra, 2015).

The findings of literature review disclosed that 22% statisticalmethods are utilized (Grice,
2015), and 59% is machine learning. Several performance measures and machine learning
methods are explored that make use of object-oriented metrics to predict faults. These
studies are cataloged into multiple tables. The studies from 1990-2003 are shown in Table
1, studies from 2004 to 2007 are listed in Table 2 and finally studies from 2008 to 2020 are
listed in Table 3 (Aziz, Khan & Nadeem, 2020).

Software inheritance
Inheritancemakes it possible tomake use of the components of previous objects by recently
created objects in an object-oriented paradigm. The superclass or base class is a source
of inheritance and a subclass or derived class inherits from a superclass. The term main
class and secondary class can also be used interchangeably for super and subclass. The
sub-class can possess its components and methods in addition to inherit visible methods
and properties from the main class. Inheritance offers (Aziz, Khan & Nadeem, 2019):
1. Reusability: reuse is a resource available by the inheritance where superclass’s public

methods are utilized into subclass without code rewriting.
2. Overriding: define a new behavior for a method that already exists. This happens

when the class in question extends any other class and creates a method with the same
signature as the ‘‘parent’’ class in the subclass.

3. Extensibility: extend the logic of the supper class according to the business logic of the
sub-class.

4. Maintainability:it is straightforward to walk-through the source code as soon as the
software program is split into portions.

5. Data hiding: Inheritance presents a feature to hiding data by marking a method as a
private in the main class so that it cannot be utilized or alter by the sub-class.
In the object-oriented paradigm, the basis of inheritance is an ‘‘IS-A’’ bond, which

describes ‘‘R is a Z type of thing’’, blue is a color, the bus is a vehicle. The inheritance
is uni-directional, ‘‘the house is a building’’, but ‘‘the building is not a house’’ etc. The
inheritance has other additional important characteristics (Aziz, Khan & Nadeem, 2019):

1. Generalization: dissemination of commonalities amongst several classes is termed as
generalization (Pason, 1994).

2. Specialization: increasing the functionality of a class is described as specialization
(Breesam, 2007).
The research shows that inheritance has various forms. There are described in the

subsequent lines (Shivam, 2013):
1. Single Inheritance: when a sub-class only inherits through a single main-class is

denoted as single inheritance.
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Table 1 SFP studies (1990–2003).

Reference Algorithms Performance measure

Porter & Selby (1990) Classification Tree Accuracy
Briand, Basili & Hetmanski (1993) Logistic Regression, Classification Tree,

Optimized Set Reduction
Correctness, Completeness

Lanubile, Lonigro & Visaggio (1995) PCA, Discriminant Analysis, Logistic Re-
gression, Logical Classification

Misclassification Rate

Cohen & Devanbu (1997) Foil, Flipper on IPL Error Rate
Khoshgoftaar et al. (1997) ANN and Discriminant Type-I, Type-II, Misclassification Rate
Evett et al. (1998) Ordinal Evaluation Procedure
Ohlsson, Zhao & Helander (1998) PCA, Discriminant Analyssis for Classifi-

caitn, Multivariate Analysis
Misclassification Rate

Binkley & Schach (1998) Spearman Rank Correlation Test
De Almeida & Matwin (1999) C4.5, CN2, FOIL, NewID Correctness, Completeness, Accuracy
Kaszycki (1999) TN, TP
Yuan et al. (2000) Fuzzy Subtractive Clustering Type-I, Type-II, Overall Misclassification

Rate, Effectiveness, Efficiency
Denaro (2000) Logistic Regression R2
Khoshgoftaar, Gao & Szabo (2001) Type-I, Type-II
Xu, Khoshgoftaar & Allen (2000) PCA,FNR Average Absolute Error
Guo & Lyu (2000) Finite Mixture Model Analysis, Expecta-

tion Maximization (EM)
Type-II Error

Khoshgoftaar, Gao & Szabo (2001) ZIP AAE,ARE
Schneidewind (2001) BDF,LRF Type-I, Type-II, Misclassification Rate
Emam, Melo & Machado (2001) Logistic Regression J-Coefficient
Khoshgoftaar, Geleyn & Gao (2002) PRM, ZIP, Module Order Modeling Average Relative Error
Khoshgoftaar (2002) GBDF Type-I, Type-II
Mahaweerawat, Sophasathit & Lursinsap
(2002)

Fuzzy Clustering, RBF Type-I, Type-II, Misclassification Rate

Khoshgoftaar & Seliya (2002a) SPRINT(Classification
Tree),CART(Decision Tree)

Type-I,Type-II, Misclassification Rate

Pizzi, Summers & Pedrycz (2002) Median-Adjusted Class Labels(Pre-
Processing),Multilayer Perception

Accuracy

Khoshgoftaar & Seliya (2002b) CART-LS,S-PLUS,CART-LAD AAE,ARE
Reformat (2003) Classification Models Rate Change
Koru & Tian (2003) Tree Base Models U-Test
Denaro, Lavazza & Pezzè (2003) Logistics Regression
Thwin & Quah (2003) GRNN R2,R,ASE,AAE,Min AE, Max AE
Khoshgoftaar & Seliya (2003) CART-LS,S-PLUS,CART-LAD
Guo, Cukic & Singh (2003) Dempster-Shafer Belief Networks Probability of Detection, Accuracy
Denaro, Pezzè & Morasca (2003) Logistic Regression R2,Completeness

2. Multiple Inheritances: in case of multiple inheritances, a sub-class is inheriting or
expanding through many main-classes. The problem in multiple inheritance is the
sub-class would manage the dependencies of many main-classes.
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Table 2 SFP studies (2004–2007).

Reference Algorithms Performance measure

Menzies & Di Stefano
(2004)

Naïve Bayes, J48 PF

Khoshgoftaar & Seliya
(2004)

CART,S-PLUS,SPRING-Sliq,C4.5 Misclassification Rate

Wang, Yu & Zhu (2004) CGA,ANN Accuracy
Mahaweerawat et al. (2004) RBF Accuracy, type-I, Type-II
Menzies & Di Stefano
(2004)

LSR, Model Trees, ROCKY Accuracy, Sensitivity, Precesion

Kaminsky & Boetticher
(2004)

Genetic Algorithm T -test

Kanmani et al. (2004) GRNN,PCA r,R2,ASE,AAE,Max AE, Min AE
Zhong, Khoshgoftaar &
Seliya (2004)

K-means, Neural-Gas clustering MSE, FPR, FNR, Misclassification
Rate

Xing, Guo & Lyu (2005) SVM, QDA, Classification Tree Type-I, Type-II Error
Koru & Liu (2005a) J48,Kstar,Bayesian Networks, ANN,SVM F-measure
Khoshgoftaar, Seliya & Gao
(2005)

C4.5,Decesion Tree, Discriminant Analy-
sis, Logistic Regression

Misclassification Rate

Koru & Liu (2005b) J48,K-Star,Random Forests F-measure
Challagulla et al. (2005) Linear Regression, SVM, Naïve Bayes,J48 AAE
Gyimothy, Ferenc & Siket
(2005)

Logistic Regression, Linear Regression,
Decision trees, NN

Completeness, Correctness, Precision

Ostrand, Weyuker & Bell
(2005)

Negative Binomial Regression Model Accuracy

Tomaszewski, Lundberg &
Grahn (2005)

Regression Technique, PCA R2

Hassan & Holt (2005) Hit Rate, APA
Ma, Guo & Cukic (2006) Random Forests, LR, DA, Naïve Bayes,

J48,ROCKY
G-mean I,G-mean II,F-measure, ROC,
PD, Accuracy

Challagulla, Bastani & Yen
(2006)

MBR PD, Accuracy

Khoshgoftaar, Seliya & Sun-
daresh (2006)

MLR,CBR ARE,AAE

Nikora & Munson (2006) Rules for Fault Definition
Zhou & Leung (2006) Logistic Regression, Naïve Bayes, Ran-

dom Forest
Correctness, Completeness, Precision

Mertik et al. (2006) C4.5, SVM,RBF PD,PF,Accuracy
Gao & Khoshgoftaar (2007) Poisson Regression, Negative Bionomial

Regression, Hardle Regression
AAE,ARE

Li & Reformat (2007) SimBoost Accuracy
Mahaweerawat, Sophat-
sathit & Lursinsap (2007)

RBP,Self-Organizing Map Clustering MAR

Menzies, Greenwald &
Frank (2007)

Naïve Bayes, J48 PD, PF, Balance

Ostrand, Weyuker & Bell
(2007)

Negative Binomial Regression Model accuracy

(continued on next page)
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Table 2 (continued)

Reference Algorithms Performance measure

Pai & Dugan (2007) Linear Regression, Poisson Regression,
Logic Regression

Sensitivity, Specificity, Precision, FP,
FN

Wang, Zhu & Yu (2007) S-PLUS, TreeDisc Type-I, Type-II
Seliya & Khoshgoftaar
(2007)

EM Techniques Type-I, Type-II

Tomaszewski et al. (2007) Univariate Liner regression Analysis Accuracy
Seliya & Khoshgoftaar
(2007)

Semi-Supervised Clustering, K-means
Clustering

Type-I,Type-II

Olague, Gholston & Quat-
tlebaum (2007)

UBLR, Spearman Correlation Accuracy

Jiang, Cukic & Menzies
(2007)

Naïve Bayes, Logistic Regression,
J48,IBK,Random Forests

PD,PF

3. Multilevel Inheritance: multilevel inheritance in object-oriented paradigm, refers to
an approach when a sub-class spread out from a derived class, making the derived class
a main class of the freshly formed class.

4. Hierarchical Inheritance: in the situation of hierarchical inheritance one superclass is
expanded by means of many sub-classes.

5. Hybrid Inheritance: is a mixture of multi-layer and multiple inheritance. In multiple
inheritance, subclasses are expended from two superclasses. Although these superclasses
are derived classes rather than the base classes.

Inheritance metrics
Depth of Inheritance Tree (DIT) (Chidamber & Kemerer, 1994): the DIT metrics is a
measurement of how significantly subclasses may efface the metrics of this class. In the case
of multiple inheritances, DIT would be the maximum distance from the node to the root
of a tree.

DIT =Max inheritance path from the class to the root (1)

• The lowest class in the hierarchy would inherit a larger amount of methods,
consequently, it would be hard to predict their behavior.
• While in the design phase, deeper trees will create more complexity since several classes
and methods are being used.
• The lower a particular class is in the hierarchy, the higher possibility reuse of inherited
methods.

Number of children (NOC) (Chidamber & Kemerer, 1994)
• Increasing the NOC will rise in reuse since inheritance is a type of reuse.
• The larger the sub-class, the bigger the probability of inadequate abstraction of the
main-class. In the case where a class has a large number of subclasses, it would be a
situation of misappropriation of a child-class.
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Table 3 SFP studies (2008–2020).

Reference Algorithms PerformanceMeasure

Bibi et al. (2008) RvC AAE, Accuracy
Bingbing et al. (2008) K-means, Affinity Propagation Type-I, Type-II
Marcus, Poshyvanyk & Ferenc (2008) Univariate Logistic Regression Precision, Correctness
Shafi et al. (2008) Classification Via Regression Precision, Recall, Accuracy
Catal & Diri (2009a) Random Forests(Artifical Immune Sys-

tems),Naïve Bayes
AUC

Turhan, Kocak & Bener (2009) CBGR, Nearest Neighbor Sampling
Catal & Diri (2009b) X-means Clustering,
Catal, Sevim & Diri (2009) Naïve Bayes, YATSI
Alan & Catal (2009)
Suresh, Kumar & Rath (2014) Linear Regression, Logistic Regression,

ANN
Precision, Correctness, Completeness,
MAE,MARE,RMSE,SEM

Aleem, Capretz & Ahmed (2015) NaiveBayes, MLP, SVM, AdaBoost, Bag-
ging, Decision Tree, Random Forest, J48,
KNN, RBF and K-means

Accuracy, Mean absolute error and F-
measure

Rathore & Kumar (2015) Genetic Programming(GP) Error rate, Recall, Completeness
Yohannese & Li (2017) NB, NN, SVM, RF, KNN, DTr, DTa, and

RTr
ROC

Pahal & Chillar (2017) ANN, SSO Accuracy
Mohapatra & Ray (2018) GSO-GA,SVM Fitness Value, Accuracy
Wójcicki & Dabrowski (2018) Machine Learning Recall, False Positive Rate
Patil, Rao & Bindu (2018) Linear Regression, FCM Coefficients, Standard Errors And T-Values
Arasteh (2018) Naive Bayes, ANN, SVM Accuracy, Precision
Akour et al. (2019) GA,SVM Accuracy, Sd, Error Rate, Specificity, Preci-

sion, Recall, And F-Measure
Balogun et al. (2019) RIPPER, Bayesian Network, Random Tree,

and Logistic Model Tree
Area Under Curve (AUC)

Rajkumar & Viji (2019) SVM,ANN,KNN Accuracy, Sensitivity, Specificity, Precision
Alsaeedi & Khan (2019) SVM, DS, RF Accuracy, Precision, Recall, F-Score, ROC-

AUC
Rhmann et al. (2020) Random Forest, J48 Precision, Recall
Sharma & Chandra (2020) Factor Analysis (FA) R2, Adjusted R2
Ahmed et al. (2020) SVM Precision, Recall, Specificity, F 1 Measure,

Accuracy

• The quantity of subclasses presents an impression of the possible impact on the design
of a class. In case when a class contains larger numbers of subclasses, it would require
further testing of methods present within the class.

NOC = number of immediate sub− classes of a class (2)

Attribute Inheritance Factor (AIF) (Abreu & Carapuça, 1994): AIF is the ratio of the
sum of all classes inherited attributes in the system to the all classes total number of available
attributes. It is a metric at system-level which gauges the range of inherited attribute within
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the system. The equation to calculated AIF is as under:

AIF =
∑

Ai(Ci)∑
Aa(Ci)

(3)

Method Inheritance Factor (MIF) (Abreu & Carapuça, 1994): MIF is the ratio of sum
of all classes inheritancemethods of the systemwith the total number of all classes presented
methods. It is a metric at the system-level. It is proposed to maintain MIF in between 0.25
and 0.37. The equation to calculated MIF is under:

MIF =
∑

Mi(Ci)∑
Ma(Ci)

(4)

Number OfMethods Inherited (NMI) (Lorenz & Kidd, 1994): NMI metric calculates
the total methods inherited by a sub-class.

Number of Methods Overridden (NMO): a larger value of NMO reveals a design issue,
showing that these methods were overridden as a last-minute design. It is recommended
that a sub-class should be a specialization of its main classes, which results in a brand-new
distinctive name for the methods.
Number of NewMethods (NNA): the usual anticipation of a sub-class is how to
additionally specialize or add up objects of the main class. If there is not any method
with a similar name in any superclass, the said method is defined as an additional method
in the subclass.
Inheritance Coupling (Li & Henry, 1993): is an association between classes that facilitates
to use of earlier defined objects, consist of variables and methods. Inheritance reduces
class complexity by decreasing the number of methods of a single class, but then this
becomes design and maintenance difficult. Inheritance improves reusability and efficiency
when using current objects. Simultaneously, inheritance has led to complexities in testing
and understanding software. This implies that inheritance coupling affects several quality
attributes such as complexity, reusability, efficiency, maintainability, understandability,
and testability.
Number Of InheritedMethods (NIM): is a simple metric that describes the extent to
which a particular class may reuse. It calculates the number of methods a class may gain
access to in its main class. The greater the inheritance of methods, the greater the reuse of
a class will be via subclasses. Comparing this metric amongst the number of superclasses
referred and the manner it is referred to methods not specified in the class could be exciting
since it shows how much internal reuse occurred within the calling class and its superclass.
It may be an inward call to an inward method, even though it is hard to measure it. Also,
inheriting from larger superclasses could be a problem for the reason that only a subset
of the behavior may be used/needed in subclasses. This is a limit of the single inheritance
based on the object-oriented paradigm.
Fan-In and Fan-Out Metric (Henry & Kafura, 1981): Henry and Kafura first defined the
Fan-In and Fan-Out metrics (Henry & Kafura, 1981). These are ‘‘module-level’’ metrics
and expanded for the object-oriented paradigm. Assuming a class X, we note its Fan-In
such as the number of classes, that make use of characteristics of class X. Likewise, the
Fan-Out for a class X is the number of classes utilized by X.
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Sheetz, Tegarden, andMonarchi originate a set of basic counts. Fundamental complexity
or inter-module complexity (Card & Glass, 1990) has been recognized as an important part
of the complexity of a structured system. Several researchers have utilized module-defined
Fan in and Fanout (Belady & Evangelisti, 1981; Card & Glass, 1990; Monarchi & Puhr,
1992). Extending these ideas to variables in object-oriented systems seems appropriate and
straightforward. The number of methods using variables (variable Fan-In) is very similar
to the number of modules calling the module (Fan-In), and the number of objects accessed
by the variable (variable Fan-Out) and the digital module called by the module (Fan-Out).
Fan-Down: Fan-Down is the number of objects below the object hierarchy (subclasses).
Fan-Up: Fan-Up is the number of objects above in hierarchy (superclasses).
Class-To-Root Depth: the maximum number of levels in the hierarchy that are above the
class.
Class-To-Leaf Depth: the maximum number of levels in the hierarchy that are below the
class.
Measure of Functional Abstraction (MFA): MFA is the share of the count of methods
inherited by a class with the sum of methods of the class. Its range is from 0 to 1.
IFANIN: IFANIN metric counts the immediate base classes in the hierarchy.

Inheritance metrics and their usage
Inheritance is a key characteristic of the object-oriented paradigm. It facilitates the class
level design and forms the ‘‘IS-A’’ relationship among classes since the basic segment of
the development of a system is the design of class(Rajnish, Choudhary & Agrawal, 2010).
The utilization of inheritance shrinkages the costs of testing efforts and maintenance
of the system (Chidamber & Kemerer, 1994). The reuse employing inheritance will thus
deliver software, that is greatly understandable, maintainable, and reliable(Basili, Briand
& Melo, 1996). In an experiment, Harrison et al. describe the absence of inheritance as
easier to control or grasp as compared to the software that makes use of inheritance aspect
(Harrison, Counsell & Nithi, 1998). However, Daley’s experiments reveal software with
tertiary inheritance may possibly be simply revised as compared to the software with no
inheritance aspect (Daly et al., 1996).

The Inheritance metrics calculate numerous aspects of inheritance, that include breadth
and depth of the hierarchy, besides the overriding complexity (Krishna & Joshi, 2010).
Similarly, Bhattacherjee and Rajnish executed a study about inheritance metrics related
with classes (Rajnish, Bhattacherjee & Singh, 2007; Rajnish & Bhattacherjee, 2008a; Rajnish
& Bhattacherjee, 2007; Rajnish & Bhattacherjee, 2006a; Rajnish & Bhattacherjee, 2006b;
Rajnish & Bhattacherjee, 2005). However, it is agreed the deeper the inheritance hierarchy,
the class reusability will be enhanced but system maintainability will be complicated. In
order to streamline the insight, software designers striving to keep inheritance hierarchy
narrow and dispose of reusability by the usage of inheritance (Chidamber & Kemerer,
1994). Hence, it’s important to assess the difficulty of the inheritance hierarchy to resolve
the disparity among depth and shallowness.

Several metrics focus on inheritance are well-defined by the researchers. These metrics
with their references are listed in Table 4 (Aziz, Khan & Nadeem, 2019).
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Some of these Inheritance metrics listed in Table 4 are discussed briefly in ‘Inheritance
metrics’ of the paper. We specifically take these inheritance metrics in the background of
object oriented software fault prediction.

Data sets in SFP
In software fault prediction, somany data sets are being used. These data sets are categorized
into public, private, partial, and unknown data sets types (Catal & Diri, 2009a). Out of
these, public type data sets utilization has increased from 31% to 52% since 2005 onward
(Malhotra, 2015). It is a fact that fault informationnormally not available for private projects
however there are public data sets widely available with fault information, these can be
downloaded for free. Also, there are many fault repositories, out of this Tera-PROMISE
(Boetticher, 2007) warehouses, and D’Ambros warehouses are usually utilized for fault
predicting (D’Ambros, Lanza & Robbes, 2010).

A publicly available repository identified as Tera-PROMISE presents substantial data
sets of many projects. Its previous edition was named as NASA repository (Shirabad &
Menzies, 2005). The data sets of NASA are a vital resource of the Tera-PROMISE repository
because its data sets are a widely used library of SFP. Nearly 60% of articles published
between 1991 and 2013 take advantage of this archive (Card & Agresti, 1988). The library
of Tera-PROMISE presents metrics related to product and process along with digital and
nominal class labels for buildup regression and classification models.

The D’Ambros library retains data sets of six software systems. These are Equinox,
Eclipse JDT Core, Eclipse PDE UI, Framework, and Mylyn.

During the review of the literature, it is identified that scholars make use of private, and
public data sets for the proof of their study. In this respect, Table 5 indicates the name
of the author, publication year, and public data sets or private data sets applied in said
experiments.

LITERATURE REVIEW
In this section, emphases are on inheritancemetrics to find out how these might be effective
in SFP. This paper is not performing a systematic literature review. It explores how various
inheritance metrics are advantageous in fault prediction.

Inheritance in SFP
Object-oriented metrics are employed for the prediction of faults to produce quality
software. The attributes that ascertain software quality are fault tolerance, understandability,
defect density, maintainability, normalized rework rate, reusability, and many more others.

There are several metrics levels comprising class level, method level, file level,
process level, component level, and quantitative levels. The method-level metrics are
comprehensively applied for the prediction of faults problem.Halstead (1977) andMcCabe
(1976) metrics suggested in the year 1970s though these are still the greatest predominant
metrics at the method-level. The class-level metrics are merely applied in object-oriented
programs. The C&K (Chidamber & Kemerer, 1994) set of metrics is yet the ultimate
predominant metrics suite at class-level being employed for fault prediction. Table 6
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Table 4 Inheritance metrics.

Author name Metrics name

Chidamber and Kemerer (Chidamber &
Kemerer, 1994)

Depth of Inheritance Tree (DIT)

Number of Children (NOC)Abreu Mood metrics suit (Abreu &
Carapuça, 1994) Attribute Inheritance Factor (AIF)

Method Inheritance Factor (MIF)
Number of Hierarchies (NOH)
Average number of Ancestors (ANA)

Bansiya J. et al. QMOOD (Bansiya &
Davis, 2002)

Measure of Functional Abstraction (MFA)
Fan inHenry’s & Kafura (Henry & Kafura,

1981) Fan out
Tang, Kao and Chen, (Li & Henry, 1993) inheritance coupling(IC)

Number of Method Inherited (NMI)
Number of Methods Overridden (NMO)
Number of New Methods(NNA)

Lorenz and Kidd (Lorenz & Kidd, 1994)

Number of Variable Inherited (NVI)
Henderson-Sellers (Henderson-Sellers,
1995)

AID (average inheritance depth)

NAC (number of ancestor classes)
Li (Li, 1998)

NDC (number of descendent classes)
CLD (class-to-leaf depth)Tegarden et al. (Tegarden, Sheetz &

Monarchi, 1995) NOA (number of ancestor)
NOP (number of parents)

Lake and Cook (Lake & Cook, 1994)
NOD (number of descendants)
DITC (Depth of Inheritance Tree of a Class)Rajnish et al. (Rajnish & Singh, 2013; Ra-

jnish & Bhattacherjee, 2008) CIT (Class Inheritance Tree)

ICC (Inheritance Complexity of Class)Sandip et al. (Catal, 2011;Mal & Rajnish,
2013) ICT (Inheritance Complexity of Tree)

CCDIT (Class Complexity Due To Depth of Inheritance Tree)Gulia, Preeti, and Rajender S. Chillar
(Gulia & Chillar, 2012) CCNOC (Class Complexity Due To Number of Children)

Average Degree of Understandability (AU)F. T. Sheldon et al. (Sheldon, Jerath &
Chung, 2002) Average Degree of Modifiability (AM)

Derive Base Ratio Metric (DBRM)
Average Number of Direct Child (ANDC)

Rajnish and Choudhary (Rajnish, Choud-
hary & Agrawal, 2010)

Average Number of Indirect Child (ANIC)
CCI (Class Complexity due to Inheritance)
ACI (Average Complexity of a program due to Inheritance)

Mishra, Deepti, and Alok Mishra (Mishra
& Mishra, 2011)

MC (Method Complexity)
Total Children Count (TCC)
Total Progeny Count (TPC)
Total Parent Count (TPAC)
Total Ascendancy Count(TAC)
Total Length of Inheritance chain (TLI)

Abreu and Carapuc (Mishra & Mishra,
2011; e Abreu & Carapuça, 1994)

Method Inheritance Factor(MIF)

(continued on next page)
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Table 4 (continued)

Author name Metrics name

Extended Derived Base Ratio Metrics (EDBRM)
Extended Average Number of Direct Child (EANDC)

K. Rajnish and A. K. Choudhary (Ra-
jnish, Choudhary & Agrawal, 2010)

Extended Average Number of Indirect Child (EANIC)
Rajnish and Bhattacherjee (Rajnish &
Bhattacherjee, 2007)

Inheritance Metric Tree (IMT)

Chen, J. Y., and J. F. Lu (Chen & Lu,
1993)

Class Hierarchy of Method (CHM)

Lee et al. (Lee, 1995) Information-flow-based inheritance coupling (IH-ICP)

recapped the commonly employed metrics set at class, method, and file-level for software
fault prediction.

Many studies have been carried out on SFP which also takes into account the object-
oriented metrics. These studies includes, empirical study on open source software for fault
prediction using {loc}, { dit }, { noc }, { lcom } and { cbo }metrics (Gyimothy,
Ferenc & Siket, 2005). The reusability study on object-oriented software using inheritance,
cohesion, and coupling metrics (Catal, 2012). The experimental-based assessment of
C&K metrics (Kumar & Gupta, 2012), reusability metrics for object-oriented design (Goel
& Bhatia, 2012), and empirical analysis of C&K metrics for the object-oriented design
complexity (Subramanyam & Krishnan, 2003).

The metrics collection of C&K crafted and applied by Chidamber & Kemerer (1994) are
the ultimate frequently utilize metrics set for software related to object oriented. Briand et
al. (2000) have analyzed the collection of object oriented design metrics suggested by Basili,
Briand & Melo (1996). R. Subramanyam validated that {dit}, {cbo} and {wmc} metrics
are fault predictor at class level (Subramanyam & Krishnan, 2003).

Experimental evaluations of the classification algorithm have been built for fault
prediction through researches (Kaur & Kaur, 2018). Basili et al. revealed that many C&K
metrics are observed to be associated with failure propensity (Basili, Briand & Melo, 1996).
Tang et al. assessed C&Kmetrics suite and discovered that any of thesemetrics except {rfc}
and {wmc} were deemed vital (Tang, Kao & Chen, 1999). Briand et al. carryout forty-nine
metrics to ascertain, which model to apply for the prediction of faults. Conclusions
shows apart from {noc} all metrics are useful to predict faults tendency (Briand et al.,
2000). Wust and Briand determined that {dit} metrics are inversely correlated to fault
proneness and {noc} metrics is an insignificant predictor of fault tendency (Briand, Wüst
& Lounis, 2001). Yu et al. selected eight metrics to explored the relationship amongst these
metrics and the tendency to identify faults. So firstly they explored the correlation among
metrics and found four closely associated sets. After this, they utilize univariate analysis to
observe, which set can classify faults (Yu, Systa & Muller, 2002). Malhotra and Jain applied
logistic regression methods to examine the correlation amongst metrics of object-oriented
along with faults tendency. The receiver operating characteristics (ROC) evaluation was
employed. The predictive model performance was assessed through ROC (Malhotra &
Jain, 2012). Yeresime et al. have investigated using linear regression, logistic regression,
and artificial neural network methods for the prediction of software faults making use of
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Table 5 Data usage by studies.

Author Year Dataset

Briand et al. 2000 Hypothetical video rental business
Cartwright et al. 2000 Large European telecommunication industry, which consists of 32 classes and 133KLOC.
Emam et al. 2001 Used two versions of Java application: Ver 0.5 and Ver 0.6 consisting of 69 and 42 classes.
Gyimothy et al. 2005 Source code of Mozilla with the use of Columbus framework
Nachiappan et al. 2005 Open source eclipse plug-in
Zhou et al. 2006 NASA consisting of 145 classes, 2107 methods and 40 KLOC
Olague H.M et al. 2007 Mozilla Rhino project
Kanmani et al. 2007 Library management system consists of 1185 classes
Pai et al. 2007 Public domain dataset consists of 2107 methods, 145 classes, and 43 KLOC
Tomaszewksi et al. 2007 Two telecommunication project developed by Ericsson
Shatnawi et al. 2008 Eclipse project: Bugzilla database and Change log
Aggarwal et al. 2009 Student projects at University School of Information Technology
Singh et al. 2009 NASA consists of 145 classes, 2107 methods and 40K LOC
Cruz et al. 2009 638 classes of Mylyn software
Burrows et al. 2010 iBATIS, Health watcher, Mobile media
Singh et al. 2010 NASA consists of 145 classes, 2107 methods, and 40K LOC
Zhou et al. 2010 Three releases of Eclipse, consisting of 6751, 7909, 10635 java classes and 796, 988, 1306 KLOC
Fokaefs et al. 2011 NASA datasets
Malhotra et al. 2011 Open source software
Mishra et al. 2012 Eclipse and Equinox datasets
Malhotra et al. 2012 Apache POI
Heena 2013 Open Source Eclipse System
Rinkaj Goyal et al. 2014 Eclipse, Mylyn, Equinox and PDE
Yeresime et al. 2014 Apache integration framework (AIF) Ver 1.6
Ezgi Erturk et al. 2015 Promise software engineering repository data
Golnoush Abaei et al. 2015 NASA datasets
Saiqa Aleem et al. 2015 PROMISE data repository
Santosh et al. 2015 10 Datasets from PROMISE repository
Yohannese et al. 2016 AEEEM Datasets & Four datasets PROMISE repository
Ankit Pahal et al. 2017 Four projects from the NASA repository
Bartłomiej et al. 2018 Github Projects: Flask, Odoo, GitPython, Ansible,Grab
Patil et al. 2018 Real-time data set, Attitude Survey Data
Bahman et al. 2018 Five NASA datasets
Hiba Alsghaier et al. 2019 12-NASA MDP and 12-Java open-source projects
Balogun et al. 2019 NASA and PROMISE repositories
Alsaeedi et al. 2019 10 NASA datasets
Wasiur Rhmann et al. 2020 GIT repository, Android-4 & 5 versions
Deepak et al. 2020 Open source bug metris dataset
Razu et al. 2020 3 open source datasets from PROMISE

C&K metrics. The findings show the significance of the weighted method per class {wmc}
metric for classification of fault (Suresh, Kumar & Rath, 2014). The impact of inheritance
metrics in SFP is authenticated in experimentation, where the artificial neural network
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Table 6 Frequently used metrics in software fault prediction.

Method level metrics

1. loc McCab’s line count of code
2. v(g) McCabe ’’cyclomatic complexity’’
3. ev(g) McCabe ’’essential complexity’’
4. iv(g) McCabe ’’design complexity’’
5. n Halstead total operators + operands
6. v Halstead ’’volume’’
7. l Halstead ’’program length’’
8. d Halstead ’’difficulty’’
9. i Halstead ’’intelligence’’
10. e Halstead ’’effort’’
11. b Halstead ’’bug’’
12. t Halstead’s time estimator
13. lOCode Halstead’s line count
14. lOComment Halstead’s count of lines of comments
15. lOBlank Halstead’s count of blank lines
16. lOCodeAndComment Lines of comment and code
17. uniq_op Halstead Unique operators
18. uniq_opnd Halstead Unique operands
19. total_op Halstead Total operators
20. total_opnd Halstead Total operands
21. branchCount Branch count of the flow graph
Converted method-level metrics into class-level using
minimum , maximum , average and sum operations
(21*4=84)

Class Level Metrics

1. Coupling between Objects (CBO)
2. Depth of Inheritance Tree (DIT)
3. Lack of Cohesion of Methods (LCOM)
4. Number of Children (NOC)
5. Response for Class (RFC)
6. Weighted Method Per Class (WMC)
Percent_Pub_Data
Access_To_Pub_Data
Dep_On_Child
Fan_In is the # of calls by higher modules.
No_of_Method
No_Of_Attribute
No_Of_Attribute_Inher
No_Of_Method_Inher

(continued on next page)
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Table 6 (continued)

Class Level Metrics

Fan-in
Fan_out
No_of_Pvt_Method
No_of_Pvt_Attribute
No_Pub_Method
No_Pub_Attribute
NLOC

File Leel Metrics

1. # of times the source file was inspected prior to system
test release.
2. # of LOC for the source file prior to coding phase (auto-
generated code)
3. # of LOC for the source file prior to system test release.
4. # of lines of commented code for the source prior to
code(auto-generated).
5. # of lines of commented code for the source file prior to
system test release.

(ANN) is utilized for model building. Recall, Accuracy, F1 measures, True negative rate
(TNR), and Precision are employed for performance measures. The conclusions reveal the
acceptable impact of inheritance metrics SFP. The practitioners of software testing can
strongly use inheritance metrics to predict faults in software projects. A higher value of
inheritance is also detrimental, because subsequently, it may generate faults in software
(Aziz, Khan & Nadeem, 2019).

The literature review shows that the { dit } and { noc }metrics, related to inheritance
feature are utilized in the prediction of faults jointly inside C&K metrics suite only.
Consequently, it is considered important to validate the exclusive value of inheritance
metrics in the context of software fault prediction.

METHODOLOGY
The research approach comprises on three interconnected phases, as shown in Fig. 1, which
includes selection, preprocessing, and experimentation/evaluation phases. The first phase
comprises on the choice of data sets of inheritance metrics and performance measure. The
selection of inheritance metrics data sets is based on dual criteria, the data set should be
publicly available and metrics correlation should not be ≥ 0.7 OR ≤ −0.7.
In the second pre-processing phase, othermetrics in addition to the inheritance for example
loc, cbo, wmc are removed to keep the data set consistent. These data sets are then split by
all possible combinations of their features sets. After this, the data sets are cleaned, filtered,
and remove the related anomalies. Finally, in the experiment/evaluation phase, the final
form of the data set is used for the experiment, in which SVM (Support Vector Machine) is
built and cross-validated. The calculation of cross entropy losses, Accuracy, F-Measure and
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Figure 1 Research methodology.
Full-size DOI: 10.7717/peerjcs.563/fig-1

AUC is performed. Accordingly, a score is calculated for each selected inheritance metric
to determine the superior.

Selection phase
(1) Selection of inheritance metrics: from the inheritance metrics mentioned in
‘Theoretical Background’ of this paper, we choose only those metrics that meet the
criteria stated as follows.

Data set must be publicly available
This condition is comprehended since the software projects fault information is extremely
rarely approachable. The fundamental issue is that the information of fault for large
enterprise projects is stored digitally and propriety. The bug information on small projects
is too less but available for the public. Thus, labeled data is infrequently accessible. The
accessibility of the data set, which is publicly available will permit the assessment of the
metrics related to inheritance in fault prediction. Lastly, 40 data sets were discovered
with inheritance metrics (Jureczko & Madeyski, 2010; Menzies & Di Stefano, 2004; Menzies
et al., 2004; a51, 2009; Niu & Mahmoud, 2012; D’Ambros, Lanza & Robbes, 2010; Wagner,
2010; Abdelmoez, Goseva-Popstojanova & Ammar, 2006; Abdelmoez et al., 2005; Monarchi
& Puhr, 1992; Shepperd et al., 2013). A total of nine inheritance metrics are found in this
data set; which are Inheritance Tree Depth (dit), Number of Children (noc), Functional
Abstraction Measure (mfa), Inheritance Coupling (ic), Number of Method Inherited
(nomi), Inherited Attribute Number (noai), Dependent on Child (doc) , Number of
methods called per class (fanOut) and Number of classes that call class methods (fanIn).

A total of 40 data sets, out of which about 35 data sets are found on the servers of
tera-PROMISE repository (Boetticher, 2007) and five data sets are located in the D’Ambros
repository (D’Ambros, Lanza & Robbes, 2010). In this regard, Table 7 depicts the detailed
information of these data sets. The first column indicates the data set name along with
the version number if exist. Second column shows the detail about the total number of
records and third column shows the percentage of fault for each base data sets. Overall,
nine distinct metrics of inheritance are discovered in 40 data sets, where 3is used to label
the presence of a metric in the associated data set and × is labeled where the metrics are
not present in the data set.

Unluckily, all nine inheritance metrics do not exist in a single data set. However, set of
inheritance metrics comprising {dit, noc, ic, mfa} are found in 30 data sets, {dit,
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Table 7 Source data-sets.

Dataset name # Ins % Falty dit noc ic mfa noai nomi doc fanin fanout

ant-1.7 745 22 X X X X × × × × ×

Arc 234 11 X X X X × × × × ×

berek 43 37 X X X X × × × × ×

camel-1.2 608 36 X X X X × × × × ×

churn 997 21 X X × × X X × X X

ckjm 10 50 X X X X × × × × ×

Eclipse JDT Core 997 21 X X × × X X × X X

Eclipse PDE UI 1497 14 X X × × X X × X X

eclipse34_debug 1065 25 X X × × X X × × ×

eclipse34_swt 1485 44 X X × × X X × × ×

e-learning 64 9 X X X X × × × × ×

Equinox Framework 324 40 X X × × X X × X X

forrest-0.6 7 14 X X X X × × × × ×

iny-1.1 111 57 X X X X × × × × ×

jedit-3.2 272 33 X X X X × × × × ×

Kalkulator 27 22 X X X X × × × × ×

Kc1-class-binary 145 41 X X X × × × X X ×

log4j-1.0 135 25 X X X X × × × × ×

Lucene 691 9 X X × × X X × X X

mylyn 1862 13 X X × × X X × X X

nieruchomosci 27 37 X X X X × × × × ×

pdftranslator 33 45 X X X X × × × × ×

poi-1.5 237 59 X X X X × × × × ×

prop-1 18471 15 X X X X × × × × ×

redaktor 176 15 X X X X × × × × ×

serapion 45 20 X X X X × × × × ×

single-version-ck-oo 997 20 X X × × X X × X X

skarbonka 45 20 X X X X × × × × ×

sklebagd 20 60 X X X X × × × × ×

synapse-1.0 157 10 X X X X × × × × ×

systemdata 65 13 X X X X × × × × ×

szybkafucha 25 56 X X X X × × × × ×

tempoproject 42 30 X X X X × × × × ×

tomcat 858 8 X X X X × × × × ×

velocity-1.4 196 75 X X X X × × × × ×

workflow 39 51 X X X X × × × × ×

wspomaganiepi 18 67 X X X X × × × × ×

xalan-2.4 723 15 X X X X × × × × ×

xerces-init 162 47 X X X X × × × × ×

zuzel 29 44 X X X X × × × × ×
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noc, nomi,noai} in 2 data sets, {dit, fanin, fanout, noai, noc, nomi} in 7 data
sets and {dit, noc,ic, doc, fanin} in 1 data set.

Overall {dit} and {noc} features exist in all forty data sets. The feature {ic} is found
in 31 data sets, feature mfa} in 30 data sets and similarly other in multiple data sets through
these 659 data sets created for the experiment that will be explained in subsequent sections.
The conclusion drawn is based upon the predictive ability of {ic} on 31 data sets. Same
goes for rest of the feature sets.

It is prominent to mentioned here that some of the data sets are already utilized in an
experiment to comparing inheritance metrics with C&K metrics (Aziz, Khan & Nadeem,
2019).

Correlation should not be ≥ 0.7 OR ≤ −0.7
Software metrics have a tendency of correlation as these focus on the related characteristic
of object-oriented programming for example in our case inheritance. A high value of
correlation as ≥ 0.7 or ≤ −0.7 is a category of repetition that needs that repetition metric
should be eliminated. The issue is the effect of managing the repetition metric might be
negative, triggering uncertainty for the mining algorithm and determine a depleted pattern
of quality (Han, Pei & Kamber, 2011). Furthermore, the advantages of removing correlated
metrics are significantly better as compare to the cost (Jiarpakdee, Tantithamthavorn &
Hassan, 2018). In the event of a lesser value of correlation, almost near to ≥ 0.7 or ≤−0.7,
the rejection of a metric may deprive the data set of significant important information.

In the study, in the case metrics illustrated in the second criterion, we execute the
Pearson r and the Spearman p correlation coefficient for the pairs discovered in forty
selected public data sets. Correlation between the features of each data set is computed in
unfiltered data set. In order to explain the feature to feature correlation analysis further
data set ant−1.7 has four features {dit}, {noc}, {ic}, and {mfa} as shown in Table 7.
First the correlation of {dit} with other available features {noc}, {ic}, and {mfa} is
computed. After this, the correlation of second feature of ant−1.7 data set {noc} with
other features {ic} and {mfa} is computed. Finally {ic} with {mfa} is computed. The
same process is separately applied between the features of all selected 40 data set shown in
Table 7.

The strongly correlated features are dropped in their corresponding data sets only. It is
important to mention here that correlation is only a precautionary step otherwise it does
not manipulate feature set.

The presence of strongly correlated features in the SVM models make it difficult to
converge and justify the generality of the results. Therefore, strongly correlated features are
identified and dropped. Pearson correlation coefficient is used for the purpose.

Nevertheless, all combinations are positively correlated, where not a single pair is equal
to ≥ 0.7 or ≤−0.7. The nine inheritance metrics also meet the second criterion.

Tools/programming language and environments used to compute Pearson r and the
Spearman p correlation coefficient is R platform with ggp4br R package.
2) Selection of PerformanceMeasure. The models of machine learning built using
classification are measured with their accomplishment by categorizing the unidentified
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occurrences. A confusion matrix is a method of showing its capability. Catal et al. have
computed many performance metrics, derived and originated through confusion matrix
(Catal, 2012). Malhotra also has suggested the overall explanation of many assessment
measures used in software fault prediction. The finding revealed that True Positive
Rate(TPR) is the frequently utilized performance measure in software fault prediction,
succeeding measures are Precision and AUC (Malhotra, 2015).

Cross entropy is a mean to compute the overall deviation of themodels’ probability from
the actual label. Independent of the threshold is a key property of cross entropy (Hinojosa
et al., 2018). It is effective in both training and testing phases (Golik, Doetsch & Ney, 2013;
Kline & Berardi, 2005). So cross entropy is choose as a primary performance measure and
Accuracy, F-Measure and AUC are selected as a supporting measure for this experiment.

Preprocessing phase
(1) Remove non-inheritance metrics. Collected data sets have numerous metrics other
than inheritance metrics, including {loc}, {wmc}, {ca}, {cbo}, and several others.
Because we are planning to assess the inheritance metrics in the background of SFP, so
all non-inheritance metrics are removed. This might affect the performance but it will be
better to evaluate the inheritance metrics viability on software fault prediction.
(2) Uniformity of Labels. Every metrics encompass continuous numeric values with the
associated data set however discrepancies are located in the class namely [bug]. These are
settled through the guidelines mentioned as under:

bug =

{
False defects=No, False, 0, N, No

True Otherwise

}
(5)

Within the guidelines, [False] is employed when there are no faults and [True] represents
faulty instances.
3) Splitting. The main objective of this study is to measure the significance of nine selected
metrics of inheritance so forty data sets are separated into numerous possible sets of features
after removing non-inheritance metrics.

The objectives of splitting process are to visualize the impact of every possible feature
set and determine the most significant feature set out of the available data sets.

Each data set out of these forty data sets are separated into numerous possible sets of
features by splitting and combining features into all possible unique combinations. In order
to explain further, data set ant−1.7 has four features {dit}, {noc}, {ic}, and {mfa}

as shown in Table 7. Splitting this single data set into all possible unique combinations
will create about 15 sub-data sets as explained by the formula 2[number of features]

−1 where
24−1= 15 unique sub-data sets.

Resultantly 659 sub-data sets are formed by applying the same process on all forty
publicly acquired data sets. Overall 67 unique features has been generated from these
sub-data sets. First column of Table 8 shows these 67 unique features under the heading
‘‘features’’, 2nd column depicts the number of metrics combined to generate a unique
feature and third column shows total number of sub-data sets formed by applying splitting
process on to forty data sets that generated overall 659 sub-data sets.
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Table 8 Filtered data.

Features # F Total datasets Small datasets skewed Remaining

mfa 1 28 25 0 3
noai 1 9 7 0 2
nomi 1 9 5 1 3
dit,fanIn 2 9 5 0 4
dit,fanOut 2 7 3 0 4
dit,mfa 2 28 25 0 3
dit,noai 2 9 4 0 5
dit,noc 2 40 38 0 2
dit,nomi 2 9 3 0 6
fanIn,fanOut 2 6 0 0 6
fanIn,noai 2 7 1 0 6
fanIn,noc 2 8 4 0 4
fanIn,nomi 2 6 0 0 6
fanOut,noai 2 7 2 0 5
fanOut,noc 2 7 3 0 4
fanOut,nomi 2 6 0 0 6
ic,mfa 2 27 24 0 3
noai,nomi 2 9 1 0 8
noc,mfa 2 28 25 0 3
noc,noai 2 9 4 0 5
noc,nomi 2 9 2 0 7
dit,fanIn,fanOut 3 6 0 0 6
dit,fanIn,noai 3 7 1 0 6
dit,fanIn,noc 3 8 3 0 5
dit,fanIn,nomi 3 6 0 0 6
dit,fanOut,noai 3 7 1 0 6
dit,fanOut,noc 3 7 2 0 5
dit,fanOut,nomi 3 6 0 0 6
dit,ic,mfa 3 28 24 0 4
dit,noai,nomi 3 9 1 0 8
dit,mfa,noc 3 27 24 0 3
dit,noc,noai 3 9 2 0 7
dit,noc,nomi 3 9 1 0 8
fanIn,fanOut,noai 3 6 0 0 6
fanIn,fanOut,noc 3 6 0 0 6
fanIn,fanOut,nomi 3 6 0 0 6
fanIn,noai,nomi 3 6 0 0 6
fanIn,noc,noai 3 7 1 0 6
fanIn,noc,nomi 3 6 0 0 6

(continued on next page)
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Table 8 (continued)

Features # F Total datasets Small datasets skewed Remaining

fanOut,noai,nomi 3 6 0 0 6
fanOut,noc,noai 3 7 1 0 6
fanOut,noc,nomi 3 6 0 0 6
ic,mfa,noc 3 27 24 0 3
noc,noai,nomi 3 9 1 0 8
dit,fanIn,fanOut,noai 4 6 0 0 6
dit,fanIn,fanOut,noc 4 6 0 0 6
dit,fanIn,fanOut,nomi 4 6 0 0 6
dit,fanIn,noai,nomi 4 6 0 0 6
dit,fanIn,noc,noai 4 7 1 0 6
dit,fanIn,noc,nomi 4 6 0 0 6
dit,fanOut,noai,nomi 4 6 0 0 6
dit,fanOut,noc,noai 4 6 0 0 6
dit,fanOut,noc,nomi 4 6 0 0 6
dit,ic,noc,mfa 4 27 24 0 3
dit,noc,noai,nomi 4 7 1 0 6
fanIn,fanOut,noai,nomi 4 6 0 0 6
fanIn,fanOut,noc,noai 4 6 0 0 6
fanIn,fanOut,noc,nomi 4 6 0 0 6
fanIn,noc,noai,nomi 4 6 0 0 6
fanOut,noc,noai,nomi 4 6 0 0 6
dit,fanIn,fanOut,noai,nomi 5 6 0 0 6
dit,fanIn,fanOut,noc,noai 5 6 0 0 6
dit,fanIn,fanOut,noc,nomi 5 6 0 0 6
dit,fanIn,noc,noai,nomi 5 6 0 0 6
dit,fanOut,noc,noai,nomi 5 6 0 0 6
fanIn,fanOut,noc,noai,nomi 5 6 0 0 6
dit,fanIn,fanOut,noc,noai,nomi 6 6 0 0 6
Total 659 293 1 365

Finally, 659 sub-data sets were formed, which contains 67 different features sets (column
3 of Table 8). Afterwards, all 659 sub data sets have been passed through three phases;
dropping same instances, dropping inconsistent instances, and filtration.
(4) Cleaning. The next step is cleaning where identical instances in the data sets are
eliminated since these instances are worthless and, sometimes, confusing for the model.
Afterwards, inconsistent instances are also removed, since these are inconsistency in data
sets (Henderson-Sellers, 1995). In inconsistency, the occurrences of all the metrics contain
same values and contain dissimilar class tags.

Our objective is only to identify the anomaly on the data sets. This problemmay possibly
be addressed in four different ways. First option is to drop both the instances, consequently,
information will be lost. Second option is to drop instances of minor class, due to this,
data set will become more skewed. Third option is to drop instances of major class that
resultantly produces less skewness, and in fourth option keep both instances resultantly
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reciprocities negates the effect of each other. In this study, third option is applied to keep
the impact minimum on the data sets.
(5) Filtration. Small data sets have been dropped where the number of instances are
≤100 in the filtration phase. This filter is applied for the reason to employ ten-fold cross
validation, not including replacement, that is typically the situation with validation of the
model. Consequently, 293 data sets are eliminated while using this filter.
(6) Skewness≤ 9:1. The objective is to identify the skewed data sets out of 659 sub-data
sets and drop them. Skewness has not been addressed further in this study.

Skewness shows faulty or free of fault occurrences that must contain a percentage of data
sets to ≤90 and ≥10. The skewness filter is applied in the case where only 100 instances
in the data set, then a minimum one record from both groups exists in the case where no
hierarchical 10-fold cross validation that is replaced. After applying this filter onto all 659
sub-data sets only one sub-data set found skewed, which is hence eliminated.

Though remaining data sets are imbalance yet it is addressed in two folds, model building
algorithm selection and performance measure selection. In first case, we use SVM which
is usually the choice of modeling for imbalance data set (Xing, Guo & Lyu, 2005; Elish &
Elish, 2008b; Singh, Kaur & Malhotra, 2009; Di Martino et al., 2011; Yu, 2012; Malhotra,
Kaur & Singh, 2010). In the case of performance evaluation we use cross entropy which is,
again independent of imbalancencess in the data set.

Lastly, after applying cleaning, filtering, and skewness, 659 data sets were decreased to
365, which are shown in the last columns of Table 8.

EXPERIMENT AND RESULTS
Experiment setup
Dataset: 365 preprocessed data sets, as depicted in Table 8.
Tools: R Language version 3.4.3 (Rajnish & Bhattacherjee, 2005) in R Studio 1.1.383
(Rajnish & Bhattacherjee, 2006b).
Data Splitting technique: Ten-fold stratified cross-validation without replacement. The
stratified splitting maintains the ratio of classes in all the folds. Moroever, we reported the
average results attained in the 10 folds.
Classifiers Algorithm: SVM is generally appreciated by the SFP community (Xing, Guo &
Lyu, 2005; Elish & Elish, 2008b; Singh, Kaur & Malhotra, 2009; Di Martino et al., 2011; Yu,
2012), for its applicability on real-world applications, non-linear data coverage, and well
generalization in high dimensional space. SVM is utilized for model building. Stratified
splitting without replacement is done for ten-fold cross validation. Finally, we reported the
average results computed in the 10-folds splitting in the form Cross entropy loss, Accuracy,
F-Measure and AUC for all data sets.
SVM parameters: Gaussian kernel: The kernal has following equation:

k(x,y)= exp(−
‖x−y‖
2σ 2 ) (6)

It is a general-purpose kernel. It does not require any specific pattern of data. Moreover,
SVM has been built and validated Gaussian kernel functions of the kernel and the best

Aziz et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.563 24/47

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.563


model. Complete working of SVM model building and result collection is shown in
Algorithm 1.

Algorithm 1: SVMModel Building and Cross Validation
1 function SVMbuild (365 data sets);
Input : 365 data sets
Output: Cross entropy, Accuracy, F-Measure and AUC of the model in every data set

2 for cur−Dset← 1 to 365 do
3 curr-Dset← zScoreScale(cur-Dset)
4 stratifiedSplit(cur-Dset, j←10)
5 for j← 1 to 10 do
6 train-set← cur-Dset[j-1]
7 test-set← cur-Dset[j]
8 four-Models←∅
9 kernel←Gaussianradial
10 SVMModel← trainSVM(train-set, kernel)
11 PerformanceMeasures← CrossEntropy, Acc, F-Measure and AUC (SVMModel)
12 end
13 all-Dataset-PerformanceMeasures← {all-Dataset-PerformanceMeasures} ∪ {PerformanceMeasures}
14 end
15 return all-Dataset-PerformanceMeasures

The focus of this article is the viability of inheritance metrics in software fault prediction.
It is found that the conventional techniques nevertheless being quite old, are still being
used by the SFP community. The obvious reason is the outperformance of the discussed
algorithms on the data set used. We didn’t use the advanced machine learning techniques,
explicitly. The reason is that they are accumulated using the algorithms discussed in the
articles, therefore they are implicitly discussed in the article. Apart from that, advanced
machine learning techniques are found more effective in huge data sets having a large
number of features. Unfortunately, such data sets are seriously lacking in the Software
engineering domain.

The experiment was conducted while keeping the industrial objective in mind where
model is deployed with single threshold. Although model is supposed to be checked at
every threshold but needs to be deployed with the threshold that gives the best results. So
performance measure that visualize the performance of the model on that very threshold
is of our interest, exactly where error entropy sits well, whereas AUC computes the models
performance at every threshold, which does not suit with the objective.

RESULTS AND DISCUSSION
There are facts that inheritance metrics are significantly different from other metrics.
Firstly, semantic distinction of inheritance metrics from other metrics need no comments
and justification. Secondly, data set view point, Rashid et al. (Aziz, Khan & Nadeem, 2019)
proved the empirical distinction between inheritance, and non-inheritance metrics in
his study. Moreover, inheritance metrics itself quite distinct from each other. This has
been approved by visualizing the tendency of correlation between inheritance metrics. To
illustrate this we compute the Pearson r, and the Spearman p correlation coefficient for the
pairs discovered in forty selected public data sets. Correlation between the features of each
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data set is computed in unfiltered data set. Nevertheless, all combinations are positively
correlated, where not a single pair is equal to ≥ 0.7 or ≤ −0.7.

The fundamental objective of this work is to assess the exclusive viability of inheritance
metrics in SFP, whereas the secondary aim is to achieve the greatest outcomes from the
algorithms of machine learning. Keeping these in view, filtration is applied to data sets and
experiments are planned.

Overall cross entropy loss
In this context, Table 9 displays the outcomes of the experiments where the name of the
feature is shown in the first column, the number of features in the second column, the
overall number of data sets in the third column. Averages of Cross Entropy, Accuracy,
F-Measure, and AUC are in column four, five, six and seven. The minimum values of
Cross Entropy, Auuracy, F-measure, and AUC are in column eight, nine, ten, and eleven
respectively. Cross-entropy loss, Accuracy, F-Measure, and AUC are computed for all 365
data sets comprising of 67 unique combinations. These unique combinations are plotted
in Fig. 2 where the number of features are increasing from bottom to top. The upper part
depicts the least mean entropy loss, average in the middle, and maximum at the bottom.
This graph proves our objective that adding inheritance metrics will reduce the entropy
loss. The findings are also validated by Accuracy, F-Measure, and AUCmentioned in Table
9.
Figure 2 graphically compares the cross entropy loss calculated through SVM on 1, 2,
3, 4, 5, and 6 feature sets of inheritance metrics on 365 data sets comprising 67 unique
features. The lower part of Fig. 2 is heavy since the features are less. The results are gradually
decreasing while moving upward since feature sets are increasing from 2 to 6. This graph
proves our objective that adding inheritance metrics will reduce the entropy loss. The
findings are also validated by Accuracy, F-Measure, and AUC.

Table 9 shows that overall {dit,ic,noc,mfa} achieved least entropy rate of 0.000723,
and {fanIn, fanOut, noc, noai, nomi} achieved average least entropy rate of
0.001707.

Figure 3 shows the absence of outliers in the results across all performance measures. It
can therefore be safely stated that the averages of performance measures are not biased.

Feature wise cross entropy loss
Regarding the exclusive assessment of inheritance metrics in the context of SFP, which
is the main goal of this article, adding inheritance metrics will reduce the Cross Entropy
Loss. In this regard feature wise Cross Entropy Loss, Accuracy, F-Measure, and AUC are
extracted from Table 9. The first column of Table 10 shows the feature set, number of
features from 1 to 6 in the second column, and least Cross Entropy Loss in the third
column. In order to support the findings Accuracy, F-measure, and AUC in column four,
five, and six respectively. The overall findings are:
1. The results shown in Table 10 contain two distant feature sets, feature number 1 to 4,

and 5 to 6. The first set comprises of {mfa, ic, noc, dit} and second set comprises
of {dit, fanIn, fanOut, noc, noai, nomi}.
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Table 9 Evaluation parameters for all features sets.

Features # F # Sets Average Minimum

Cross
entropy

Accuracy F-Measure AUC Cross
entropy

Accuracy F-Measure AUC

mfa 1 3 0.00731 0.25978 0.40285 0.61196 0.00789 0.11111 0.20000 0.30210
nomi 1 3 0.00851 0.19259 0.31892 0.56063 0.00242 0.11765 0.21053 0.44420
noai 1 2 0.00916 0.40741 0.57895 0.48219 0.00895 0.40741 0.57895 0.39453
ic,mfa 2 3 0.00315 0.29366 0.43792 0.65072 0.00125 0.10256 0.18605 0.49415
noc,mfa 2 3 0.00341 0.24679 0.38847 0.64984 0.00123 0.12500 0.22222 0.44189
dit,mfa 2 3 0.00342 0.24493 0.38496 0.63859 0.00323 0.15000 0.26087 0.59120
fanOut,nomi 2 6 0.00359 0.28723 0.42839 0.68552 0.00829 0.17241 0.29412 0.32919
fanIn,nomi 2 6 0.00423 0.26969 0.40781 0.62949 0.00281 0.13043 0.23077 0.51891
fanOut,noai 2 5 0.00470 0.29504 0.44757 0.77786 0.00732 0.14286 0.25000 0.55104
fanIn,fanOut 2 6 0.00561 0.37622 0.53416 0.69704 0.00213 0.12245 0.21818 0.50322
noc,nomi 2 7 0.00581 0.32125 0.44381 0.65221 0.00116 0.11628 0.20833 0.43113
noai,nomi 2 8 0.00600 0.33470 0.45916 0.58975 0.00267 0.17308 0.29508 0.63020
dit,nomi 2 6 0.00661 0.37477 0.48181 0.67646 0.00710 0.19231 0.32258 0.83330
fanIn,noai 2 6 0.00673 0.25858 0.40530 0.68944 0.00447 0.11321 0.20339 0.34161
fanOut,noc 2 4 0.00754 0.32039 0.47248 0.90753 0.00351 0.10000 0.18182 0.31938
noc,noai 2 5 0.00780 0.38349 0.52902 0.73609 0.00660 0.22857 0.37209 0.57792
dit,fanOut 2 4 0.00784 0.33593 0.49815 0.66261 0.00408 0.10345 0.18750 0.31052
dit,noai 2 5 0.00826 0.41093 0.55152 0.55306 0.00901 0.20000 0.33333 0.39503
fanIn,noc 2 4 0.00881 0.26334 0.41176 0.52607 0.00479 0.13043 0.23077 0.56760
dit,fanIn 2 4 0.00919 0.28489 0.43365 0.65507 0.00504 0.17391 0.29630 0.34834
dit,noc 2 2 0.01093 0.47727 0.58974 0.65905 0.01030 0.18182 0.30769 0.57995
fanIn,fanOut,nomi 3 6 0.00206 0.26114 0.39801 0.72921 0.00448 0.13462 0.23729 0.39846
fanOut,noai,nomi 3 6 0.00263 0.26605 0.40493 0.71459 0.00252 0.15385 0.26667 0.52981
fanOut,noc,nomi 3 6 0.00278 0.27245 0.41109 0.79619 0.00249 0.14286 0.25000 0.40545
fanIn,fanOut,noai 3 6 0.00284 0.29089 0.43646 0.67128 0.00218 0.13333 0.23529 0.42610
fanIn,noai,nomi 3 6 0.00284 0.26575 0.40145 0.62098 0.00211 0.17500 0.29787 0.48502
ic,mfa,noc 3 3 0.00294 0.27869 0.42297 0.72094 0.00349 0.17910 0.30380 0.42501
dit,mfa,noc 3 3 0.00302 0.27185 0.41629 0.65053 0.00234 0.13208 0.23333 0.30763
dit,fanOut,nomi 3 6 0.00312 0.27066 0.40932 0.64407 0.00137 0.11111 0.20000 0.41411
fanIn,noc,nomi 3 6 0.00339 0.26596 0.40151 0.62571 0.00206 0.12727 0.22581 0.47119
dit,fanIn,nomi 3 6 0.00349 0.25965 0.39580 0.59709 0.00233 0.12500 0.22222 0.37093

(continued on next page)
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Table 9 (continued)

Features # F # Sets Average Minimum

Cross
entropy

Accuracy F-Measure AUC Cross
entropy

Accuracy F-Measure AUC

dit,fanIn,fanOut 3 6 0.00358 0.31639 0.46312 0.65336 0.00177 0.11864 0.21212 0.52079
dit,fanOut,noai 3 6 0.00405 0.25577 0.39723 0.62693 0.00088 0.11111 0.20000 0.37349
noc,noai,nomi 3 8 0.00405 0.30773 0.44233 0.64096 0.00182 0.12500 0.22222 0.42110
fanIn,fanOut,noc 3 6 0.00410 0.33394 0.48534 0.70194 0.00089 0.11364 0.20408 0.44540
fanOut,noc,noai 3 6 0.00417 0.25603 0.40023 0.69987 0.00173 0.12698 0.22535 0.60076
dit,noai,nomi 3 8 0.00435 0.29943 0.42878 0.72201 0.00087 0.12500 0.22222 0.41651
fanIn,noc,noai 3 6 0.00489 0.24448 0.38631 0.63796 0.00178 0.14815 0.25806 0.35226
dit,noc,nomi 3 8 0.00495 0.29684 0.42560 0.66426 0.00264 0.12245 0.21818 0.38422
dit,fanOut,noc 3 5 0.00503 0.25842 0.40627 0.65085 0.00241 0.08333 0.15385 0.31551
dit,fanIn,noai 3 6 0.00513 0.23834 0.37851 0.66118 0.00268 0.12245 0.21818 0.30099
dit,fanIn,noc 3 5 0.00590 0.23308 0.37191 0.58804 0.00765 0.14815 0.25806 0.35478
dit,ic,mfa 3 4 0.00613 0.26794 0.40688 0.62737 0.00727 0.17391 0.29630 0.53010
dit,noc,noai 3 7 0.00621 0.36134 0.50250 0.63620 0.00340 0.13953 0.24490 0.32523
fanIn,fanOut,noai,nomi 4 6 0.00177 0.25042 0.38530 0.69209 0.00218 0.15476 0.26804 0.44852
fanIn,fanOut,noc,nomi 4 6 0.00193 0.25367 0.38925 0.67488 0.00202 0.11290 0.20290 0.35545
dit,fanIn,fanOut,nomi 4 6 0.00196 0.25429 0.36958 0.73321 0.00129 0.10638 0.19231 0.34208
fanOut,noc,noai,nomi 4 6 0.00223 0.26055 0.39747 0.64410 0.00184 0.12308 0.21918 0.36006
dit,fanIn,fanOut,noai 4 6 0.00245 0.28168 0.42259 0.72720 0.00124 0.11458 0.20561 0.43630
fanIn,fanOut,noc,noai 4 6 0.00247 0.28242 0.42448 0.58455 0.00127 0.11828 0.21154 0.50334
dit,fanOut,noai,nomi 4 6 0.00248 0.26200 0.39904 0.74634 0.00199 0.12069 0.21538 0.34897
fanIn,noc,noai,nomi 4 6 0.00254 0.25246 0.38617 0.70396 0.00153 0.12676 0.22500 0.35997
dit,fanOut,noc,nomi 4 6 0.00254 0.26517 0.40303 0.78515 0.00163 0.11475 0.20588 0.33064
dit,fanIn,noai,nomi 4 6 0.00270 0.26010 0.39531 0.73084 0.00159 0.13043 0.23077 0.47058
dit,ic,noc,mfa 4 3 0.00279 0.27505 0.39122 0.73354 0.00072 0.12000 0.04348 0.50000
dit,fanIn,noc,nomi 4 6 0.00285 0.24841 0.38130 0.62960 0.00159 0.12857 0.22785 0.46006
dit,fanIn,fanOut,noc 4 6 0.00291 0.29058 0.43401 0.66073 0.00171 0.14063 0.24658 0.39800
dit,noc,noai,nomi 4 8 0.00331 0.51159 0.66989 0.85684 0.00211 0.13846 0.24324 0.34073
dit,fanOut,noc,noai 4 6 0.00333 0.30576 0.44797 0.72262 0.00194 0.16379 0.28148 0.57580
dit,fanIn,noc,noai 4 6 0.00376 0.22851 0.36565 0.66170 0.00162 0.40196 0.57343 0.78049
fanIn,fanOut,noc,noai,nomi 5 6 0.00172 0.24315 0.37650 0.74827 0.00120 0.11000 0.19820 0.38091
dit,fanIn,fanOut,noc,nomi 5 6 0.00185 0.24803 0.38232 0.54270 0.00122 0.11111 0.20000 0.35658
dit,fanIn,fanOut,noai,nomi 5 6 0.00186 0.24988 0.38492 0.69476 0.00127 0.11579 0.20755 0.42572
dit,fanIn,fanOut,noc,noai 5 6 0.00212 0.27066 0.40893 0.70901 0.00182 0.11765 0.21053 0.37438
dit,fanOut,noc,noai,nomi 5 6 0.00220 0.25810 0.39409 0.71781 0.00146 0.12329 0.21951 0.57075
dit,fanIn,noc,noai,nomi 5 6 0.00242 0.25452 0.38759 0.59626 0.00148 0.12658 0.22472 0.58879
dit,fanIn,fanOut,noc,noai,nomi 6 6 0.00174 0.24222 0.37580 0.77904 0.00118 0.10891 0.19643 0.61710
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Figure 2 Feature wise cross entry loss of all data sets.
Full-size DOI: 10.7717/peerjcs.563/fig-2

2. Considering the single inheritance feature, {mfa} achieved the highest entropy rate of
0.0024225. After inserting another inheritance feature {ic} with {mfa} the error rate
is further reduced to 0.0011558. Similarly adding {noc} with {ic, mfa} the entropy
rate further reduced to 0.008679. The rate further reduced to 0.0007233 by adding
{dit} into the existing combination of {mfa, ic, noc}.
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Figure 3 Box plot of performance measures.
Full-size DOI: 10.7717/peerjcs.563/fig-3

Table 10 Feature wise minimum rate.

Feature set # F Cross Entropy Accuracy F-Measure AUC

mfa 1 0.0024225 0.1176500 0.2105300 0.4442000
ic,mfa 2 0.0011558 0.1162800 0.2083300 0.4311300
ic,mfa,noc 3 0.0008679 0.1250000 0.2222000 0.4165100
dit,ic,noc,mfa 4 0.0007233 0.1200000 0.0434800 0.5000000
fanIn,fanOut,noc,noai,nomi 5 0.0011961 0.1100000 0.1982000 0.3809100
dit,fanIn,fanOut,noc,noai,nomi 6 0.0011813 0.1089100 0.1964300 0.6171000

3. Considering feature set of five inheritance metrics {fanIn, fanOut, noc, noai,

nomi} the Cross Entropy error rate is 0.0011961. When adding {dit} the r rate is
dropped to 0.0011813.
The graphical representation of Table 10 is depicted in Fig. 4, which shows the results of

two distant feature sets. The first set comprises of {mfa, ic, noc, dit}, and second set
comprises of {dit, fanIn, fanOut, noc, noai, nomi}. Adding inheritance metrics
into {mfa} the Cross Entropy rate is reduced significantly from 1 to 4 features sets. Similarly
adding {dit} into the 5th set will further reduce the Entropy rate. The findings are also
supported by the results of other performance measure Accuracy, F-measure, and AUC in
Table 10.

Feature wise average rate
Regarding the overall exclusive assessment of inheritance metrics on to 365 data sets
comprising 67 unique features, the average is calculated for all unique features to make an
overall assessment. Table 11 shows the results where the first column contains a feature set,
number of inheritance features in the 2nd column, and average score for Cross Entropy
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Figure 4 Feature wise cross entropy rate.
Full-size DOI: 10.7717/peerjcs.563/fig-4

Table 11 Feature wise average rate.

Feature set # F Cross Entropy Accuracy F-Measure AUC

mfa 1 0.007313 0.259780 0.402850 0.611960
ic,mfa 2 0.003154 0.293660 0.437920 0.650720
fanIn,fanOut,nomi 3 0.002065 0.261140 0.398010 0.729210
fanIn,fanOut,noai,nomi 4 0.001773 0.250420 0.385300 0.692090
fanIn,fanOut,noc,noai,nomi 5 0.001720 0.243150 0.376500 0.748270
dit,fanIn,fanOut,noc,noai,nomi 6 0.001743 0.242220 0.375800 0.779040

Loss in 3rd column. In order to support the findings Accuracy, F-measure, and AUC in
column four, five and six respectively. The overall findings are:
1. The results are shown in Table 11 also contain two distant feature sets, feature number

1 to 2, and 3 to 6. The first set comprises on {mfa, ic} and second set comprises on
{dit,fanIn,fanOut, noc, noai, nomi}.

2. Considering the single inheritance feature, {mfa} achieved the highest average of
entropy rate of 0.0073134. After inserting another inheritance feature {ic} with {mfa}

the average is reduced to 0.0031541.
3. Considering feature set of three inheritance metrics {fanIn, fanOut, nomi} the

average entropy rate is 0.0020645. Adding {noai} the average entropy rate is reduced
to 0.0017731. Similarly adding {noc} the average entropy rate is reduced to 0.0017595
and finally adding {dit} the rate further reduced to 0.0017428.
The graphical representation of Table 11 is depicted in Fig. 5, which shows the results of

two distant feature sets. The first set comprises of {mfa,ic} and the second set comprises of
{dit, fanIn, fanOut, noc, noai,{nomi}. Adding inheritance metrics into {mfa}, the
entropy rate is reduced significantly from 1 to 2 features sets. Similarly adding {noai, noc}

and {dit} into {fanIn, fanOut, nomi} will further reduce the error rate. The findings
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Figure 5 Feature wise average.
Full-size DOI: 10.7717/peerjcs.563/fig-5

Figure 6 Entropy error computed across the varying feature sets’ cardinality.
Full-size DOI: 10.7717/peerjcs.563/fig-6

are also validated by the results of other performance measure Accuracy, F-measure and
AUC in Table 11.

Cardinality of features
The cardinality of the feature set is 6 in this paper. Figure 6 shows the average Cross Entropy
rate of a single feature set, double feature set, and up to 6 feature set. This clearly depicted,
adding inheritance metrics will gradually reduce the entropy rate. The average entropy rate
is 83.3 when single inheritance metrics is used. The average rate is reduced to 63.1 when
two inheritance metrics are used. The average rate is further reduced to 39.8 when three
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Table 12 Cardinality of feature sets.

Cardinality of
feature set

Average Minimum

Cross
entropy

Accuracy F-measure AUC Cross
entropy

Accuracy F-measure AUC

1 0.008327 0.286594 0.433572 0.551595 0.006422 0.212055 0.329825 0.380276
2 0.006312 0.321061 0.461427 0.668689 0.004722 0.147710 0.255616 0.486920
3 0.003984 0.277080 0.417081 0.664414 0.002659 0.133590 0.235035 0.416297
4 0.002626 0.280166 0.416391 0.705459 0.001642 0.144752 0.237041 0.438186
5 0.002029 0.254057 0.389057 0.668134 0.001409 0.117403 0.210084 0.449521
6 0.001743 0.242223 0.375799 0.779036 0.001181 0.108911 0.196429 0.617097

inheritance metrics are used. The average rate is gradually reduced further to 26.3, 20.3
and 17.4 when four, five and six inheritance metrics are used respectively.

Averages of minimum and average performance measures for single, double, triple and
up to six feature set are calculated from Table 9 and depicts in Table 12. The first column
shows the Cardinality of Feature set and column two, three, four and five contains averages
of Cross entropy, Accuracy, F-Measure and AUC. The average of minimum values of Cross
Entropy, Accuracy, F-Measue, AUC in column six, seven eight and nine. The graphical
representation of Cross Entropy Loss is shown in Fig. 6 which proves our objects that
adding inheritance matrices will reduce the cross entropy rate. Similarly, the results of
Accuracy, F-Measure and AUC depicts in Table 12 also endorse these findings.

Furthermore, we conduct an experimental study to see how significantly metrics of
inheritance assist in the prediction of software faults. Thus we made compassion of
inheritance metrics and Chidamber and Kemerer (C&K) metrics suite. The findings
demonstrate an appropriate impact of metrics of inheritance in software fault prediction
(Aziz, Khan & Nadeem, 2019).

THREATS, CONCLUSION AND FUTURE WORK
Threats to validity
Our study relies on the data sets obtained from the repositories of tera-PROMISE, NASA
and D’Ambros. In these repositories, insufficient information is available regarding the
faults nor it indicates any certain type of software fault.

Primarily, faults are not indicated for the specific category of software fault. Therefore the
projection might not be generalized for all categories of faults associated with the software.
Likewise selected data set to encompass limited software products by diversification in
team, design, scope, etc. The circumstance of fault might not be due to the inheritance
aspect only.

Since the information associated with the projects are not available in the selected data
sets, therefore, the identification of most associated factor to faults cannot be determined.
Though the experiments do advocate the predictive ability of inheritance metrics yet the
causation relationship may not be guaranteed.
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We do not claim the general representation of the results across the algorithm. Yet the
applicability of the result may conclude the mapping of independent variable over the
dependent variable.

We selected SVM as a modeling algorithm, for being its general acceptance by the SFP
community. Since the training process is heavily dependent on the data set available thus
results may vary by varying the modeling algorithm. Likewise, results may also differ by
varying the kernel function of SVM.

Lastly, selectedmetrics of inheritance are not covering every aspect related to inheritance
in software products. Therefore generalization of selected metrics of inheritance might not
possibly be the effect of every aspect of inheritance.

Conclusion and future work
In this paper, we assessed software metrics of inheritance exclusively for their viability on
software fault prediction. Experiments on forty distinct data sets argue inheritance metrics
viability to faults prediction. The consensus of SVM revealed that inheritance metrics
may accomplish the least entropy rate with a set of common characteristics. Overall
{fanIn, fanOut, noc, noai, nomi} and individually {dit, ic, noc, mfa} proved
to be the best predictor with the least entropy rate, whereas {dit}, {noc}, {ic} are
helpful in reduction of entropy rate. We report that adding inheritance metrics is useful
for predicting faults. These findings are also validated through performance measures of
Accuracy, F-Measure, and AUC.

Regarding future work, we anticipate that some scholars may rebuild our
experimentation and attempt to assess other metrics of inheritance than those we have
employed. Since only nine metrics of inheritance are reviewed and assessed in this article
and several other metrics of inheritance are defined in the literature. Due to the lack of
availability of public data sets for these remaining metrics, these may not be assessed. This
stimulates the requirement to build a data set that transmits data for the rest of the metrics.
Also in this paper classification has been used due to less availability of continuous labels.
So, the data set for the continuous value might be used for regression, to further evaluate
the performance of inheritance metrics.
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