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ABSTRACT
In this paper, a novel feature selection method called Robust Proportional
Overlapping Score (RPOS), for microarray gene expression datasets has been
proposed, by utilizing the robust measure of dispersion, i.e., Median Absolute
Deviation (MAD). This method robustly identifies the most discriminative genes by
considering the overlapping scores of the gene expression values for binary class
problems. Genes with a high degree of overlap between classes are discarded and the
ones that discriminate between the classes are selected. The results of the proposed
method are compared with five state-of-the-art gene selection methods based on
classification error, Brier score, and sensitivity, by considering eleven gene expression
datasets. Classification of observations for different sets of selected genes by the
proposed method is carried out by three different classifiers, i.e., random forest,
k-nearest neighbors (k-NN), and support vector machine (SVM). Box-plots and
stability scores of the results are also shown in this paper. The results reveal that in
most of the cases the proposed method outperforms the other methods.

Subjects Algorithms and Analysis of Algorithms, Data Mining and Machine Learning,
Data Science
Keywords Overlapping analysis, Feature selection, Binary classification, Functional genomic

INTRODUCTION
Feature or variable selection is the process of selecting a subset of features from a large
feature space, especially in high dimensional datasets such as microarray gene expression,
for model construction. Selecting a subset of genes/features is a necessary task in
classification and regression problems. In regression, the feature or gene selection is carried
out to better estimate the average value of the target or response variable, whereas in
classification it is used to improve the classification accuracy. The motivation behind
feature selection is that there are redundant and/or irrelevant features that do not
contribute in regulating the response variable and adversely affect the underlying
algorithms. So it is necessary to select those features which are discriminative and can help
in simplification of model construction. Moreover, a small number of features help in
reducing the training time, increasing the generalizability of the models by minimizing
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their variances and reducing the curse of dimensionality in n < p problems. Feature
selection can be categorized into three categories, i.e., Wrapper, Embedded and Filter.
The details of these methods are given below.

Wrapper methods
In Wrapper methods, all possible subsets of features in the training set are evaluated by
using a predictive model. Each subset is assigned a score based on model accuracy on
the hold-out (testing) set. These methods are computationally expensive, since for each
feature subset a new predictive model is to be trained. An example of the wrapper method
can be found in Saeys, Inza & Larrañaga (2007).

Embedded methods
These methods are somehow similar to the Wrapper procedures. The embedded feature
selection methods differ from the wrapper procedures in the sense that the former do not
need to train a new model for each feature subset. In these procedures, gene/feature
selection is considered as a constituent of model construction. Some of the most common
embedded methods include decision tree algorithm, regression with LASSO and Ridge
regression. The last two methods shrink the coefficient of non-informative features to zero
and almost zero, respectively. Classification tree based classifier (Breiman et al., 1984) is
another example of this method.

Filter methods
In Filter methods, feature selection is carried out by applying a statistical measure such as
the mutual information criteria (Guyon & Elisseeff, 2003), the pointwise mutual
information criteria (Yang & Pedersen, 1997) and Pearson product-moment correlation,
Relief-based algorithms (Urbanowicz et al., 2018), etc., to each feature independently or by
finding the association of the feature with the target or response variable. Features are
then ranked according to their relevance score. Features with the highest relevance scores
are selected for model construction. Other examples of such methods could be seen in
Ghosh et al. (2020), El-Hasnony et al. (2020), Seo & Cho (2020), Algamal & Lee (2019).

The proposed method is based on a filtering approach, where the discriminative features
or genes that affect the target variable are identified by using the robust measure of
dispersion, i.e., median absolute deviation (MAD) for binary class problems. Eleven
benchmark gene expression datasets are used to assess the discriminative ability of genes
selected by the proposed method. The performance of genes selected through the proposed
method is evaluated by using different classifiers, i.e., Random Forest (RF) (Breiman,
2001), K-Nearest Neighbors (k-NN) (Cover & Hart, 1967) and Support Vector Machine
(SVM) (Liao, Li & Luo, 2006).

RELATED WORK
Feature selection and their utility in classification analyses can be found in several studies.
Dramiński et al. (2008) introduced a method called ‘relative importance’. In this method,
the discriminative genes are identified by constructing a large number of decision trees,
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where the genes that mostly contributed to assigning the samples/observations to their
true classes are selected. Ultsch et al. (2009) proposed a method called ‘PUL’ in which the
informative genes are selected by the help of a measure (PUL-score) based on retrieval
information. A method called minimal redundancy maximal relevance (mRMR) was
introduced by Ding & Peng (2005), in which genes having maximum relevance with the
target class and minimum redundancy are selected. An ensemble version of Ding & Peng
(2005) named ‘mRMRe’ was introduced by De Jay et al. (2013). Principal component
analysis technique was used by Lu et al. (2011), where those genes are considered
informative that corresponded to the component with less variation. A similar study can be
found in Talloen et al. (2007), where the factor analysis technique is used rather than
principal component analysis. Ultsch et al., 2009; Liu et al. (2013) compared different
feature selection methods in their study. Identification of informative genes by calculating
the p-value of the statistical tests such as the Wilcoxon rank-sum test and t-test can be
found in Lausen et al. (2004). Selection of discriminative genes by exploiting impurity
measures, i.e., Gini index, max minority, and information gain can be found in Su et al.
(2003). Features or genes can also be selected by analyzing the overlapping degree between
the different classes for each gene. A large overlapping degree between the different
classes for a particular gene indicates that the gene is non-informative in classifying the
observation to their correct class. A study based on the overlapping score of the genes for a
binary class problem can be found in Apiletti et al. (2007). This method, named as
‘painter’s feature selection method’ calculates the overlapping degree between the two
classes for each gene by considering a single factor, i.e., the size of the overlapping area.
Genes that have maximum overlapped regions are assigned higher scores. Genes are
then sorted in increasing order based on their scores. This idea was further extended by
Apiletti et al. (2012), by taking into account an additional factor, i.e., the number of
overlapped observations in the overlapping area for each gene. Apiletti et al. (2012)
calculated each gene mask by considering the range of training expression intervals, which
represents the capability of a gene to correctly classify the observations into their classes
without any ambiguity. In this method, a minimum subset of genes that unambiguously
assign the maximum number of training samples to their correct classes is identified by
considering the gene masks and overlapping scores through the set covering approach. The
final subset of discriminative genes is obtained by considering all the genes in the minimum
subset and the genes with the smallest overlapping scores. A robust version of Apiletti
et al. (2012) can be found inMahmoud et al. (2014), where expression interval for each gene
is calculated by using the Interquartile Range. Mahmoud et al. (2014) also considered the
proportion of overlapping samples (POS) in each class for each gene. Genes with lower POS,
i.e., proportional overlapping scores were considered informative. After obtaining the
POS, the relative dominant class (RDC) for each gene was also calculated which associates
each gene with the class for which it has a stronger distinguishing capability. The final
set of genes/features is obtained by combining the minimum gene set via gene masks top
ranked genes based on proportional overlapping scores (POS). Li & Gu (2015) proposed a
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method called more relevance less redundancy algorithm. Another study by Nardone,
Ciaramella & Staiano (2019) introduced a two step procedure for the feature selection, where
extensive experiments were performed to evaluate the performance of their proposed
method on the publicly available datasets related to computational biology field. A novel
supervised learning technique is introduced in Bidgoli, Ebrahimpour-Komleh &
Rahnamayan (2020). This method is designed particularly for the multi class problems.
Furthermore this method is an extended version of decomposition-based multi-objective
optimization approach. A feature selection method for binary classification problems
was introduced by Dashtban, Balafar & Suravajhala (2018), in which the traditional bat
algorithm is extended with more refined formulations, improved and multi-objective
operators and a novel local search strategy. Other examples of feature selection methods
could be found inMotieGhader et al. (2020), Dashtban & Balafar (2017), Nematzadeh et al.
(2019), Maghsoudloo et al. (2020), Rostami et al. (2020), Shamsara & Shamsara (2020),
Ao et al. (2020), Statnikov et al. (2005), Rana et al. (2019), Chamikara et al. (2016), Nardone,
Ciaramella & Staiano (2019) and the references cited therein.

METHOD
Microarray gene expression data is usually in the form of a matrix, i.e., Z = [zji], where
Z ∈ Rp× n and zji is the observed expression value of jth gene for ith tissue sample, for
j = 1,2,3,…,p and i = 1,2,3,…,n. Each tissue sample is categorized into one of the two
classes, i.e., 0 or 1. LetW ∈Rn be the class labels vector such that its ith component wi takes
a unique value c which is in the form of either 0 or 1. The number of samples/observations
in microarray gene expression datasets are usually smaller than the number of features,
which is also called n < p problem. Figure 1 represents the common layout of a gene
expression dataset. Observations/samples are listed in the rows while the genes are given in
the columns. Corresponding to each sample the gene expression values for each gene are
given in the cells.

Figure 1 Gene expression data. Full-size DOI: 10.7717/peerj-cs.562/fig-1
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Further definitions used in this paper are given below:

Class interval
For each class and gene j, two expression intervals are defined as;

Rj;c ¼ ½dj;c; ej;c�; j ¼ 1; 2; 3; . . . ; p; c ¼ 0; 1: (1)

such that dj,c = Q1(j,c) − 0.9MAD(j,c) and ej,c = Q3(j,c) + 0.9MAD(j,c) where Q1(j,c), Q3(j,c)

and MAD(j,c) are the first (lower) quartile, third (upper) quartile and median absolute
deviation (MAD) of gene j for class c respectively.

Overlapped region
The overlapping region between the two classes is represented by Rv

j, which shows the
intersection region between the expression values of the target classes for gene j. It is
defined by;

Rv
j ¼ Rj;1 \ Rj;2: (2)

Non-outlier sample set
The non-outlier sample set is symbolized by Nj, it is a set of observations with expression
values lying within their own response class core intervals. It is given as:

Nj ¼ i : zji 2 Rj;ci ; i ¼ 1; 2; 3; . . . ; n: (3)

Total core interval
Total core interval for gene j is denoted by Rj, it is the area between a global minimum and
global maximum boundaries of both classes’ core intervals. It is given as:

Rj ¼ ½dj; ej�; (4)

such that dj = min(dj,1, dj,2), ej = max(ej,1, ej,2) represent lowest and highest boundaries
of core interval Rj,c of gene/feature with response c = (0,1) respectively.

Non-overlapped sample set
For gene j, the non-overlapping set is represented by O′j, which contains the non-outlier
samples given by Nj, with expression values not falling inside the overlap interval. It is
given as:

O
0
j ¼ fi : i 2 Nj ^ zji 2 Rj;1�Rj;2g: (5)

Overlapped sample set
The overlapping samples set for gene j is characterized by Oj, which consists of the
observations with expression values falling inside the overlap interval Rv

j. It is given as:

Oj ¼ Nj � O
0
j; (6)

where O′j contains all the non-overlapping samples.
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Gene masks matrix
The matrix of gene masks, i.e., M = [mji]p × n is constructed as follows:

mji ¼ 1; if zji 2 Rj;1 \ Rj;2;
0; otherwise; j ¼ 1; 2; 3; . . . ; p;

�
(7)

such that Rj,1 = [dj,1, ej,1] and Rj,2 = [dj,2, ej,2], dj,1 = Q1(j,1) − 0.9MAD(j,1), ej,1 = Q3(j,1) +
0.9MAD(j,1), dj,2 = Q1(j,2) − 0.9MAD(j,2) and ej,2 = Q3(j,c) + 0.9MAD(j,2) respectively.

In the above expressions Q1(j,c), Q3(j,c) and MAD(j,c) represent the lower (first) quartile,
upper (third) quartile and median absolute deviation respectively for each class c, where c
is either 0 or 1.

Relative dominant class (RDC)
For each gene, Relative dominant class (RDC) is calculated, which associates each feature/
gene with the class it is more capable to differentiate. It is defined as:

RDCj ¼ argmaxc

P
j2Uc

Iðmji ¼ 1Þ
Ucj j

� �
; (8)

where Uc represents class c samples set, i.e., Uc ∈ {i cj = c}.

Proposed (RPOS) score
The proposed method (RPOS) is defined as.

RPOSj ¼ 4
jOjj
jNjj

Y2
c¼1

fc

 !
; (9)

where ,Rv
j . is the length of overlap interval, ,Rj. is the length of total core interval,

|Oj| is the total number of overlapped samples and |Nj| is the total number of non-outlier
samples for gene j. fc ¼ jOj;cj

jOjj , where |Oj,c| represents the overlapped samples lying in
class. The number 4 is multiplied to keep the RPOS scores between 0 and 1. Smaller value
of RPOS represents that a particular gene is more informative in classifying the tissue
sample to its correct class.

The proposed method thus takes the following steps in selecting the most discriminative
genes.

1. The proposed method initially identifies the minimum subset of genes via the greedy
approach given in Apiletti et al. (2012). The greedy approach utilizes gene mask matrix
given in Eq. (7) and RPOS scores in Eq. (9) to form this subset. Gene that has the highest
number of bits equals 1 is included in the subset. If more than one genes having the
same number of bits 1 exist the one with smaller RPOS is selected. Using AND operator,
the gene masks of the remaining genes are updated for the selection of the second gene
and so on. This process is repeated until the desired number of genes are selected, or
the genes have no 1’s in their gene masks. For further details on greedy approach gene
selection, see Apiletti et al. (2012).
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2. The genes that are not selected in the minimum subset are arranged according to the
RPOS scores and relative dominant class (RDC) by round-robin fashion method
in ascending order. A smaller score represents the higher discriminative ability of
gene/feature.

3. After arranging the genes in step (2), the required top most ranked genes are selected.

4. The final set of genes for the model construction is obtained by combining the genes in
steps (1) and (3).

The general workflow of the proposed (RPOS) method, along with its pseudo-code, is
given in Fig. 2 and Algorithm 1, respectively.

The proposed (RPOS) method is novel in the sense that it utilizes median absolute
deviation (MAD) for the construction of core expression intervals of the expression values
of genes. The drawback of POS in Mahmoud et al. (2014) is that the gene masks are
calculated on the basis of expression intervals by using the interquartile range approach.
The construction of gene masks can be affected by outliers because of the smaller
breakdown point, i.e., 25% of interquartile range. The breakdown point of (MAD) is 50%,
which is less vulnerable to outliers, thereby reducing the effect of outliers while
constructing the gene masks.

EXPERIMENTS AND RESULTS
This section provides a detailed description of the experiments executed for assessing the
proposed method against the other methods on benchmark gene expression datasets.
A common practice for investigating the efficacy of gene selection methods is to check the
discriminative ability of the selected genes by using different classifiers. This is usually
done by recording classification accuracy of the classifiers applied on datasets with selected
genes only while discarding the rest of the genes. Golub et al. (1999) have used different
feature/gene selection techniques given in Statnikov et al. (2005), and it has been observed
that gene selection methods have a significant effect on the classifier’s accuracy. This
approach has been widely used in several other studies (Apiletti et al., 2012; Mahmoud
et al., 2014). Before listing the results from the analyses done in this paper following the
above-mentioned approach, a brief description of datasets is given below.

Microarray gene expression datasets
In this research work, a total of 10 microarray gene expression datasets are taken as
standard benchmark binary classification problems. These datasets are taken from various
open sources with a varying number of genes and observations. A brief description of the
benchmark datasets used in the current paper is given in Table 1. The table provides
the number of samples, number of genes, class-wise distribution of samples in the data and
source against each dataset.

Experimental setup
Experimental setup for the analyses done in the paper is as follow. The datasets considered
in this study are divided into two mutually exclusive parts in the following manner: In the
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first part, seventy percent (70%) of the observations from each dataset randomly selected
without replacement are considered as training part, while the remaining thirty percent
(30%) of the observations are considered as a testing part. In the second part, thirty percent
(30%) of the observations in each dataset randomly selected without replacement are
considered as training part. In comparison, the remaining seventy percent (70%) of the
observation are considered as testing part. A split sample analysis of 500 runs is carried out
for each combination of gene selection methods and the corresponding classifiers using
70% training, 30% testing and 30% training, 70% testing partitions. The classifiers which
are considered in this study are Random forest (RF), support vector machine (SVM)
and k-Nearest neighbours (k-NN). For Random forest, R package, i.e., randomForest
(Liaw & Wiener, 2002) is used with default parameters ntree = 500, mtry ¼ ffiffiffi

p
p

and
nodesize = 1. For the implementation of support vector machine R package kernlab
(Karatzoglou et al., 2004) is used with default parameters. Similarly for k-Nearest neighbor
classifier R package caret from Jed Wing et al. (2019) is used the default parameter
value of k = 5. Using the training parts of each dataset, a set of discriminative genes, i.e.,
5, 10, 15, 20, 25 and 30 are selected by different gene selection methods to train the
classifiers. Gene selection methods considered in this paper are Wilcoxon Rank Sum Test
(Liao, Li & Luo, 2006), Proportional Overlapping Score (POS) based method (Mahmoud
et al., 2014), Genes Selection by Clustering (GClust) (Khan et al., 2019), Maximum
Relevance Minimum Redundancy (mRmR) (Ding & Peng, 2005) and Significant Features
by SVM and t-test (sigF) (Das et al., 2020). The performance of the selected genes are

Figure 2 Workflow of RPOS. Full-size DOI: 10.7717/peerj-cs.562/fig-2
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investigated by the average values of the performance metrics, i.e., classification error rate,
Brier score and sensitivity using the testing parts of each dataset.

RESULTS AND DISCUSSION
The results of the proposed method and other methods included in this study are obtained
for all the datasets. The results of three datasets, i.e., “TumorC”, “Breast” and “Srbct”
are given in Tables 2, 3 and 4. These results are based on 70% training and 30% testing
parts portioning of the datasets. The results of the remaining eight datasets are given in
Supplemental File (Tables S1–S15). From Table 2 given below, it is clear that for “TumorC”
dataset the proposed method (RPOS) performed better than all the other methods in terms
of all the performance metrics considered, except the Wilcoxon rank-sum test, which
performed better for the number of genes, i.e., 5, 10, 15 and 20 on Support vector machine

Algorithm 1 Algorithm of RPOS Method For Gene Selection.

1: Inputs: X,Y and number genes (r) to be selected.

2: Output: Sequence of selected genes T.

3: for all j ∈ H do

4: for c = 0,1 do

5: Compute the relative dominant class for each gene, i.e., R(j,c) in Eq. (1).

6: end for

7: for i→N do

8: Compute the gene mask for each gene, i.e., mji as defined in Eq. (7).

9: Compute the RPOSjscores for each gene as defined in Eq. (9).

10: Assign RDCJ to each gene as defined in Eq. (8).

11: end for

12: let M ∈ RP×N be the gene mask matrix M = [mji], where its i
thvalue for jthgene is either 0 or 1.

13: Compute the total or aggregate mask of genes and denote it by M..(H).

14: Use the Greedy search approach to select the minimum subset of genes from M, M..(H) and RPOSj and denote it by H*.

15: Perform H = H − H*, this will exclude the genes selected in minimum subset from the whole set of genes.

16: Arrange the genes in RDCjin the increasing order of RPOSJ for each class.

17: end for

18: Obtaining final listed or ranked genes.

19: if r ≤ |H*| then

20: Then T includes the genes which are first r genes in H*.

21: while |T| < r do

22: Increase T by one gene in a round-robin fashion method.

23: end while

24: end if

25: return T
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classifier in terms of classification error rate. Similarly, from Table 3, it is evident that for
“Breast” dataset the proposed method (RPOS) outperformed the other methods on all the
classifiers. Table 4, gives the results for the dataset “Srbct”, where the proposed method
(RPOS) shows better results for the number of genes genes, i.e., 5 on on Random forest
(RF) classifier than the other methods. For the number of genes 10, the Wilcoxon rank-
sum test performs better in terms of the classification error rate. In contrast, in terms of

Table 1 Datasets description showing number of samples, number of genes, class wise distribution of samples in the data.

Dataset Samples Genes Class wise distribution Source

Leukeamia 68 7,029 49/23 Alon et al. (1999)

nki 144 76 96/48 Karatzoglou et al. (2004)

Colon 62 2,000 40/22 Golub et al. (1999)

Breast 78 4,948 34/44 Michiels, Koscielny & Hill (2005)

GSE4045 37 22,215 29/8 Laiho et al. (2007)

Prostate 412 10,936 343/69 Statnikov et al. (2005)

Srbct 54 2,308 28/25 Statnikov et al. (2005)

Lung 148 12,600 134/14 Gordon et al. (2002)

DLBCL 76 7,070 58/19 https://file.biolab.si/biolab/supp/bi-cancer/projections/info/DLBCL.html

TumorC 60 7,129 39/21 https://www.openml.org

Table 2 Classification error rate, sensitivity and Brier score produced by Random Forest, k-Nearest Neighbors and Support Vector Machine
classifiers on TumorC dataset based on genes selected by the given methods. The best result is shown in bold.

RF kNN SVM

Genes POS RPOS GClust sigF Wilc mRmR POS RPOS GClust sigF Wilc mRmR POS RPOS GClust sigF Wilc mRmR

Err 0.362 0.221 0.334 0.482 0.450 0.451 0.423 0.269 0.383 0.407 0.398 0.396 0.362 0.264 0.333 0.277 0.442 0.373

5 BS 0.013 0.011 0.023 0.274 0.268 0.276 0.017 0.017 0.026 0.259 0.260 0.257 0.035 0.012 0.037 0.188 0.254 0.244

sen 0.311 0.643 0.363 0.217 0.236 0.261 0.344 0.630 0.454 0.346 0.348 0.389 0.557 0.700 0.579 0.773 0.070 0.189

Err 0.336 0.257 0.313 0.482 0.401 0.348 0.332 0.220 0.355 0.471 0.391 0.395 0.341 0.242 0.336 0.302 0.396 0.349

10 BS 0.015 0.015 0.022 0.274 0.252 0.231 0.019 0.015 0.029 0.282 0.254 0.260 0.086 0.015 0.072 0.204 0.241 0.230

sen 0.358 0.569 0.375 0.217 0.278 0.408 0.427 0.722 0.505 0.332 0.365 0.387 0.532 0.699 0.589 0.790 0.150 0.268

Err 0.351 0.288 0.312 0.482 0.391 0.338 0.293 0.242 0.344 0.415 0.382 0.386 0.312 0.249 0.311 0.228 0.400 0.351

15 BS 0.016 0.014 0.026 0.274 0.250 0.228 0.018 0.014 0.039 0.272 0.249 0.249 0.052 0.013 0.066 0.166 0.245 0.232

sen 0.286 0.523 0.399 0.217 0.177 0.439 0.462 0.652 0.511 0.246 0.363 0.398 0.472 0.714 0.588 0.824 0.095 0.279

Err 0.297 0.274 0.303 0.482 0.464 0.371 0.305 0.272 0.345 0.426 0.393 0.383 0.270 0.208 0.313 0.233 0.387 0.387

20 BS 0.015 0.015 0.021 0.274 0.266 0.234 0.016 0.017 0.033 0.280 0.260 0.255 0.074 0.014 0.054 0.170 0.249 0.247

sen 0.440 0.553 0.404 0.217 0.091 0.312 0.478 0.620 0.555 0.245 0.347 0.365 0.561 0.721 0.666 0.754 0.033 0.115

Err 0.306 0.286 0.300 0.482 0.423 0.373 0.336 0.281 0.333 0.459 0.377 0.392 0.281 0.217 0.296 0.211 0.379 0.378

25 BS 0.015 0.013 0.026 0.274 0.263 0.237 0.018 0.015 0.028 0.284 0.245 0.253 0.031 0.012 0.049 0.157 0.245 0.250

sen 0.399 0.497 0.411 0.217 0.120 0.257 0.364 0.623 0.539 0.262 0.331 0.348 0.518 0.716 0.678 0.821 0.044 0.062

Err 0.335 0.275 0.309 0.482 0.441 0.379 0.373 0.302 0.331 0.467 0.388 0.400 0.283 0.226 0.286 0.213 0.380 0.384

30 BS 0.014 0.012 0.020 0.274 0.263 0.240 0.020 0.016 0.025 0.282 0.253 0.259 0.024 0.014 0.039 0.151 0.252 0.248

sen 0.317 0.505 0.423 0.217 0.064 0.304 0.304 0.573 0.560 0.174 0.331 0.382 0.480 0.665 0.661 0.854 0.019 0.066
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Table 3 Classification error rate, sensitivity and Brier score produced by Random Forest, k-Nearest Neighbors and Support Vector Machine
classifiers on Breastcancer dataset based on genes selected by the given methods. The best result is shown in bold.

RF KNN SVM

Genes POS RPOS GClust sigF Wilc mRmR POS RPOS GClust sigF Wilc mRmR POS RPOS GClust sigF Wilc mRmR

5 Err 0.296 0.239 0.261 0.490 0.390 0.455 0.314 0.206 0.313 0.448 0.405 0.402 0.310 0.260 0.512 0.522 0.384 0.367

BS 0.013 0.010 0.165 0.287 0.254 0.277 0.014 0.011 0.290 0.275 0.261 0.254 0.021 0.011 0.262 0.251 0.262 0.244

sen 0.784 0.837 0.810 0.621 0.722 0.661 0.706 0.862 0.798 0.703 0.761 0.760 0.704 0.776 0.558 0.506 0.714 0.791

10 Err 0.308 0.224 0.261 0.514 0.360 0.462 0.276 0.240 0.297 0.501 0.390 0.396 0.272 0.214 0.522 0.484 0.351 0.456

BS 0.013 0.011 0.168 0.278 0.225 0.266 0.013 0.013 0.202 0.304 0.251 0.254 0.022 0.013 0.261 0.260 0.237 0.260

sen 0.757 0.858 0.818 0.613 0.709 0.654 0.786 0.842 0.819 0.677 0.754 0.764 0.750 0.796 0.575 0.412 0.704 0.743

15 Err 0.323 0.179 0.202 0.519 0.337 0.414 0.297 0.204 0.241 0.514 0.391 0.401 0.262 0.215 0.515 0.462 0.350 0.427

BS 0.013 0.009 0.145 0.275 0.222 0.246 0.012 0.008 0.182 0.324 0.255 0.256 0.046 0.010 0.262 0.260 0.235 0.255

sen 0.709 0.864 0.848 0.643 0.767 0.719 0.781 0.835 0.810 0.685 0.768 0.763 0.741 0.781 0.564 0.354 0.742 0.798

20 Err 0.290 0.195 0.199 0.481 0.377 0.468 0.279 0.207 0.257 0.473 0.408 0.395 0.225 0.215 0.542 0.409 0.386 0.474

BS 0.014 0.011 0.155 0.265 0.234 0.258 0.014 0.010 0.188 0.284 0.260 0.256 0.041 0.013 0.259 0.254 0.251 0.265

sen 0.767 0.853 0.851 0.694 0.717 0.686 0.794 0.815 0.840 0.734 0.745 0.763 0.793 0.798 0.526 0.390 0.673 0.781

25 Err 0.300 0.186 0.223 0.495 0.366 0.473 0.256 0.186 0.271 0.462 0.404 0.393 0.250 0.223 0.523 0.406 0.377 0.427

BS 0.012 0.010 0.156 0.270 0.229 0.265 0.012 0.010 0.178 0.279 0.260 0.251 0.033 0.010 0.264 0.254 0.246 0.259

sen 0.777 0.883 0.832 0.694 0.726 0.659 0.801 0.829 0.838 0.693 0.753 0.759 0.790 0.798 0.567 0.397 0.691 0.790

30 Err 0.268 0.197 0.242 0.411 0.350 0.454 0.261 0.192 0.258 0.436 0.387 0.394 0.249 0.198 0.455 0.418 0.351 0.457

BS 0.009 0.008 0.158 0.248 0.222 0.261 0.011 0.009 0.182 0.281 0.250 0.253 0.031 0.009 0.260 0.253 0.236 0.262

sen 0.823 0.870 0.836 0.733 0.736 0.694 0.813 0.834 0.818 0.708 0.776 0.767 0.787 0.794 0.661 0.365 0.698 0.767

Table 4 Classification error rate, sensitivity and Brier score produced by Random Forest, k-Nearest Neighbors and Support Vector Machine
classifiers on srbct dataset based on genes selected by the given methods. The best result is shown in bold.

RF kNN SVM

Genes POS RPOS GClust sigF Wilc mRmR POS RPOS GClust sigF Wilc mRmR POS RPOS GClust sigF Wilc mRmR

5 Err 0.048 0.019 0.096 0.040 0.021 0.390 0.078 0.034 0.100 0.000 0.074 0.078 0.086 0.021 0.035 0.007 0.328 0.412

BS 0.005 0.002 0.096 0.029 0.023 0.236 0.007 0.001 0.057 0.002 0.071 0.074 0.037 0.003 0.028 0.011 0.217 0.255

sen 0.919 0.988 0.961 0.980 0.978 0.549 1.000 1.000 0.718 1.000 0.915 0.914 0.878 0.998 0.942 0.984 0.608 0.574

10 Err 0.018 0.021 0.027 0.035 0.013 0.086 0.039 0.038 0.055 0.000 0.071 0.069 0.016 0.011 0.029 0.006 0.204 0.143

BS 0.002 0.003 0.029 0.027 0.022 0.089 0.004 0.002 0.041 0.000 0.076 0.071 0.016 0.002 0.031 0.013 0.138 0.093

sen 0.999 0.991 0.957 0.981 0.977 0.879 1.000 1.000 0.852 1.000 0.925 0.918 0.992 0.995 0.943 0.998 0.766 0.785

15 Err 0.004 0.014 0.016 0.001 0.013 0.165 0.039 0.035 0.075 0.000 0.074 0.071 0.004 0.004 0.015 0.002 0.188 0.182

BS 0.002 0.002 0.028 0.021 0.024 0.142 0.002 0.002 0.047 0.000 0.071 0.073 0.005 0.001 0.015 0.010 0.118 0.129

sen 0.995 0.991 0.956 0.998 0.977 0.805 1.000 1.000 0.807 1.000 0.927 0.910 0.995 1.000 0.962 1.000 0.756 0.764

20 Err 0.009 0.007 0.016 0.010 0.009 0.081 0.036 0.036 0.053 0.000 0.066 0.071 0.011 0.003 0.020 0.002 0.144 0.130

BS 0.002 0.002 0.029 0.021 0.023 0.088 0.002 0.002 0.041 0.000 0.069 0.072 0.007 0.001 0.019 0.010 0.098 0.082

sen 0.987 0.990 0.956 1.000 0.986 0.875 1.000 1.000 0.895 1.000 0.919 0.911 0.997 0.999 0.986 1.000 0.797 0.816

25 Err 0.009 0.004 0.017 0.011 0.009 0.067 0.038 0.020 0.060 0.000 0.066 0.074 0.011 0.008 0.030 0.000 0.134 0.098

BS 0.002 0.002 0.031 0.021 0.024 0.084 0.002 0.001 0.039 0.001 0.071 0.072 0.006 0.002 0.023 0.008 0.087 0.067

sen 0.992 0.997 0.956 1.000 0.987 0.881 1.000 1.000 0.870 1.000 0.923 0.915 0.999 0.997 0.977 1.000 0.826 0.885

30 Err 0.006 0.006 0.023 0.007 0.005 0.075 0.034 0.002 0.047 0.000 0.064 0.065 0.009 0.014 0.018 0.000 0.131 0.129

BS 0.002 0.002 0.029 0.022 0.024 0.094 0.002 0.001 0.040 0.001 0.069 0.070 0.006 0.002 0.017 0.006 0.087 0.090

sen 0.992 0.997 0.957 1.000 0.994 0.883 1.000 1.000 0.866 1.000 0.914 0.924 0.998 0.999 0.951 1.000 0.828 0.855
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Brier score and sensitivity, the POS method performs better than all the other methods.
For a set of 15 discriminative genes, POS outperforms all the other methods on Random
forest classifier. For the rest of the gene numbers, i.e., 20, 25 and 30, the proposed method
outperforms all the other methods on Random forest classifier. In the case of k-Nearest
neighbours classifier, the proposed method RPOS gives similar results in terms of
sensitivity for the number of genes 5 and 10. Similarly, for the number of genes 15, the
results of the proposed method RPOS and POS are the same. For a set of 20 discriminative
genes, the performance of the proposed method RPOS and POS equally performs in terms
of classification error rate, Brier score and sensitivity. The proposed method RPOS
outperforms all the other methods for the set of genes, i.e., 25 and 30. On support vector
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Figure 3 Boxplots of classification error rates for 20 number of genes for the datasets; (A) TumorC,
(B) Breast, (C) srbct, (D) DLBCL, (E) Prostate, (F) nki, (G) Lung, (H) GSE4045, (I) Colon and
(J) Leukaemia. Full-size DOI: 10.7717/peerj-cs.562/fig-3
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machine (SVM) classifier, the proposed method RPOS outperforms all the other methods
except for the set of genes 25 and 30 where the method POS performs better than all the
other methods in terms of sensitivity and classification error rate.

Boxplots of the results of the proposed method and the other methods for twenty
number of genes are also constructed given in Fig. 3. From the boxplots in Fig. 3, it is clear
that the proposed method (RPOS) outperforms all the other methods except for the
datasets “Srbct” and “Prostate” where the proposed method RPOS and the method POS
almost provide similar results. In the case of the dataset “GSE4045” the sigF method
outperforms all the other methods. Similarly, in the case of dataset “Colon”, the
performance of the proposed method RPOS and the method POS is similar, while the
method sigF outperforms all the other methods. The proposed method RPOS outperforms
the rest of the methods on the dataset “Leukaemia”. Overall the proposed method RPOS
outperforms all the other methods on 5 out of 10 datasets and provides similar results to
that of the method POS on 3 datasets.

To further investigate the efficiency of the proposed method RPOS, and the other
methods, plots of classification error rates, Brier Scores and sensitivity for a various
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Figure 4 Classification error rates of the methods for different number of genes for the datasets; (A)
TumorC, (B) Breast, (C) srbct, (D) DLBCL, (E) Lung and (F) Leukaemia.

Full-size DOI: 10.7717/peerj-cs.562/fig-4
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number of genes are given in Figs. 4, 5 and 6 respectively. From Fig. 4 it is clear that for the
datasets “Breast”, “DLBCL” and “Lung”, the classification error rate of the proposed
method RPOS is less than all the other methods for various number genes. For “TumorC”
dataset the classification error of the method, i.e., Wilcoxon rank-sum test is less than
all the other methods for the number of genes 5, 10, and 15 while it increases as the number
of genes increases. For the remaining set of genes, the proposed method RPOS performs
better than all the other methods. A similar pattern of classification error rates can be
seen for the dataset “Srbct”. In the case of “Leukeamia” dataset, the performance of the
proposed method RPOS and the method POS for the number of genes 10, 20 and 25 are
almost similar. In contrast, for the remaining set of genes, the proposed method RPOS
performs better than the others.

To assess the performance of the proposed methods RPOS and the remaining methods
in terms of Brier score, the results are shown by the plots given in Fig. 5, where it is
clear that the proposed method RPOS outperforms all the other methods for a various
number of genes. Figure 6 are the plots of the sensitivity of the proposed method RPOS and
the rest of the methods. It is evident from the figure that for the datasets “TumorC”,
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Figure 5 Brier scores of the methods for different number of genes for the datasets; (A) TumorC, (B)
Breast, (C) srbct, (D) DLBCL, (E) Lung and (F) Leukaemia.Full-size DOI: 10.7717/peerj-cs.562/fig-5

Hamraz et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.562 14/22

http://dx.doi.org/10.7717/peerj-cs.562/fig-5
http://dx.doi.org/10.7717/peerj-cs.562
https://peerj.com/computer-science/


“DLBCL” and “Lung” the sensitivity of the proposed method RPOS is higher than the rest
of the methods for various number of genes. For the dataset “Breast” the sensitivity of
the method, i.e., mRmR is more elevated in almost all the cases except the number of genes
20, where the method Wilcoxon performs better than all the other methods. In case of the
dataset “Srbct” POS and sigF methods give higher sensitivity than the other methods.
Wilcoxon rank-sum test outperforms the remaining methods in the case of “Leukaemia”
dataset. Overall the proposed method RPOS outperforms all the other methods in 4 out of
7 datasets in terms of the performance metric, i.e., classification error rate and provides
comparable results in the remaining three datasets. In terms of the performance metric,
i.e., Brier scores of the proposed method RPOS outperforms all the other methods in all the
seven datasets considered. In terms of sensitivity, the proposed method RPOS outperforms
the rest of the methods in 4 out of 7 datasets, while gives comparable results on the
remaining three datasets.

The primary aim of this research article was to devise a gene selection method to
improve classification performance of machine learning algorithms on high dimensional
microarray gene expression datasets. We, however, provide indices of the top 10
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Figure 6 Sensitivity of the methods for different number of genes for the datasets; (A) TumorC,
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selected genes by our proposed method for two of the datasets, i.e., leukemia and breast.
This is done for readers who might want to further assess the biological significance of the
selected genes by our proposed method. Indices of the genes selected for the Leukemia
dataset are (15,29,38,48,312,338,459,573,760,4847) while those of Breast dataset are
(346,1481,1726,1873,2942,3259,3857,4067,4174,4435). Based on the top 10 genes selected
by RPOS, we achieved 95.4% classification accuracy via SVM classifier for Leukemia
dataset, and for the Breast dataset the accuracy achieved is 98.6%. Studies based on
biological significance of the genes for the two datasets are given in Kuang et al. (2010),
Chen & Lin (2011), Bhojwani et al. (2008), Castillo et al. (2019), Savitsky et al. (1995),
Beckman et al. (1999).

CONCLUSION
This paper has presented the idea of gene selection for microarray datasets via
proportional overlapping analysis with the help of a more robust measure of dispersion,
i.e., median absolute deviation (MAD). The core intervals of the classes in the binary class
problems are constructed in a robust manner so as to minimize the effect of outliers
present in the gene expression datasets in conjunction with the minimum subset of genes
selected via greedy search approach. The genes having the smallest RPOS score are
considered as the most discriminative, because they will have no or minimum overlapping
region between the binary classes. The relative dominant class (RDC) for each gene is
also calculated. Genes in the relative dominant class are arranged according to an
increasing order of RPOS scores. This forms two mutually exclusive groups of genes based
on RDC and RPOS scores. The genes are arranged according to RDC and RPOS scores in a
round robin-fashion to develop a gene ranking list. These ranked genes do not contain
the genes selected via greedy search approach. The final set of genes is selected by
combining the chosen genes via greedy search approach, and the topmost ranked genes in
the genes ranking list. The dimension of datasets is then reduced by including the selected
genes only and discarding the rest. Classification methods; random forest, support
vector machine and k-nearest neighbour methods have been used to assess the
performance of the proposed method in comparison with other widely used gene selection
methods.

The results of the proposed method indicate that it performs better in terms of almost
all the performance metrics considered, i.e., classification error rate, Brier score and
sensitivity. The efficiency of the proposed method is also supported by constructing
boxplots for the error rate. Furthermore, the stability of the proposed method is also
assessed for various number of genes. The results show that the proposed method is more
stable for varying number of genes as compared to the rest of the methods.

The reason for selecting the most discriminative gene for binary classification by the
proposed method is that the core intervals of the classes are constructed by the more robust
measure of dispersion, i.e., median absolute deviation (MAD) than the measure of the
interquartile range (IQR) used in Mahmoud et al. (2014). Moreover, the breakdown point
of MAD is 50% while that of IQR is 25%, which make the former less vulnerable to the
outliers present in the gene expression datasets.
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For future work in the direction of the current study, one could use the robust measures
of dispersions like Qn and Sn statistics rather than median absolute deviation (MAD). This
study can be extended to multiclass problems as well. Moreover, one could use this
technique in situations where the response variable is continuous.

Although this method is efficient and selects the most discriminative genes, however,
there is still the possibility that two (or more) genes selected in the final set might be
similar. This could cause the problem of redundancy in the selected set. One of the possible
ways to eliminate this problem is to use the Least Absolute Shrinkage and Selection
Operator (LASSO) method in conjunction with the proposed method. Another way to deal
with this issue is to divide the entire set of features into a set of clusters and then apply
the proposed method on each cluster (Khan et al., 2019; Shamsara & Shamsara, 2020;
Sharbaf, Mosafer & Moattar, 2016). The final set of genes, in that case, will be the
combination of genes selected from all the clusters. Extending performance assessment of
selected genes to other recent classification methods (Khan et al., 2020a, Gul et al.,
2018; Khanal et al., 2020; Khan et al., 2020b) could further validate the proposed gene
selection methods.
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Data Availability
The following information was supplied regarding data availability:

Leukemia data is available at CRAN: https://cran.r-project.org/web/packages/
propOverlap/index.html. The data can be loaded in R by installing and loading the R
library propOverlap and then using the command data (leukemia).

nki data is available at CRAN: https://cran.r-project.org/web/packages/penalized/index.html
The data can be loaded in R by installing and loading the R library penalized and then

using the command data (nki70).
Colon data is available at: https://www.openml.org/d/1432.
Breast data is available at the following:
- http://llmpp.nih.gov/DLBCL/ (accessed Oct 29, 2003).
- http://www.stjuderesearch.org/data/ALL1 (accessed Nov 5, 2003).
- http://www.ncbi.nlm.nih.gov/geo (accessed Nov 5, 2003).
- http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi (accessed Nov 5, 2003).
- http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi (accessed Nov 5, 2003).
- http://portals.broadinstitute.org/cgi-bin/cancer/datasets.cgi.
The GSE4045 data is available at NCBI: 200004045.
https://www.ncbi.nlm.nih.gov/gds/?term=GSE4045.
Prostate data is available at https://www.openml.org/search?q=AP_Breast_

Prostate&type=data
Srbct data is available at CRAN: https://file.biolab.si/biolab/supp/bi-cancer/projections/

info/SRBCT.html.
Lung data is available at: https://file.biolab.si/biolab/supp/bi-cancer/projections/info/

lung.html.
DLBCL data is available at: https://file.biolab.si/biolab/supp/bi-cancer/projections/info/

DLBCL.html.
TumorC data is available at: https://www.openml.org/d/1107.
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