
Submitted 12 November 2020
Accepted 1 May 2021
Published 4 June 2021

Corresponding authors
Elizabeth López-Lozada,
elopezl0807@alumno.ipn.mx
Elsa Rubio-Espino,
erubio@cic.ipn.mx

Academic editor
Alma Y. Alanis

Additional Information and
Declarations can be found on
page 23

DOI 10.7717/peerj-cs.556

Copyright
2021 López-Lozada et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Reactive navigation under a fuzzy rules-
based scheme and reinforcement learning
for mobile robots
Elizabeth López-Lozada, Elsa Rubio-Espino, J. Humberto Sossa-Azuela and
Victor H. Ponce-Ponce
Centro de Investigación en Computación, Instituto Politécnico Nacional, Mexico, Mexico City, Mexico

ABSTRACT
Robot navigation allows mobile robots to navigate among obstacles without hitting
them and reaching the specified goal point. In addition to preventing collisions, it is
also essential formobile robots to sense andmaintain an appropriate battery power level
at all times to avoid failures and non-fulfillment with their scheduled tasks. Therefore,
selecting the proper time to recharge the batteries is crucial to address the navigation
algorithm design for the robot’s prolonged autonomous operation. In this paper, a
machine learning algorithm is used to ensure the extended robot autonomy based
on a reinforcement learning method combined with a fuzzy inference system. The
proposal enables a mobile robot to learn whether to continue through its path toward
the destination or modify its course on the fly, if necessary, to proceed toward the
battery charging station, based on its current state. The proposal performs a flexible
behavior to choose an action that allows a robot tomove from a starting to a destination
point, guaranteeing battery charge availability. This paper shows the obtained results
using an approach with thirty-six states and its reduction with twenty states. The
conducted simulations show that the robot requires fewer training epochs to achieve ten
consecutive successes in the fifteen proposed scenarios than traditional reinforcement
learning methods exhibit. Moreover, in four scenarios, the robot ends up with a battery
level above 80%, that value is higher than the obtained results with two deterministic
methods.

Subjects Artificial Intelligence, Autonomous Systems, Robotics
Keywords Autonomous recharge problem, Fuzzy Q-learning, Artificial potential fields, Rein-
forcement learning, Mobile robots

INTRODUCTION
Autonomous mobile robots are getting a great deal of attention due to their adoption in
many areas such as space exploration, search and rescue tasks, inspection and maintenance
operations, in agricultural, domestic, security, and defense tasks, among many others.
They are generally composed of three main modules that allow them to complete their job.
The first module integrates all the mechanisms and elements that materialized the robot’s
locomotion system, including the pneumatic, electromechanical, electrical, and electronic
components. The second module deals with the environment’s data acquisition based on
sensors and the software needed. The third module is the robot’s brain, i.e., this module is
responsible for data processing, robot control, and navigation.

How to cite this article López-Lozada E, Rubio-Espino E, Sossa-Azuela JH, Ponce-Ponce VH. 2021. Reactive navigation under a fuzzy
rules-based scheme and reinforcement learning for mobile robots. PeerJ Comput. Sci. 7:e556 http://doi.org/10.7717/peerj-cs.556

https://peerj.com/computer-science
mailto:elopezl0807@alumno.ipn.mx
mailto:erubio@cic.ipn.mx
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.556
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.556

Mobile robot navigation involves any programmed activity that allows the robot to
move from its current position to a destination point (Huskić & Zell, 2019), being the path
planning and obstacle avoidance the main tasks performed during this process. Navigation
algorithms commonly use artificial intelligence (AI) to efficiently accomplish their current
mission during obstacle avoidance maneuvers. Various AI approaches are employed to
deal with the complex decision-making problems faced during mobile robot navigation,
such as fuzzy inference systems (FIS), neural networks (NN), genetic algorithms (GA), A*
algorithms, and the artificial potential field method (APF) (Gul, Rahiman & Alhady, 2019).
For these navigation approaches where path planning and obstacle avoidance are sub-tasks
commonly solved during navigation time, the employed methodologies assume that the
environment corresponds to static scenarios with obstacles and destinations that do not
change over time or dynamic scenarios with obstacles and destinations changing over time.
Among the different methods reported in the literature, the APF method demonstrates a
suitable way of generating paths to guide mobile robots from their initial position to their
destination. This method involves using a simple set of equations, easily programmable
under limited computing platforms like themobile robot’s embedded processors, rendering
an adequate reactive response to the environment.

As far as decision-making is concerned, several variants are employed involving using
different methodologies that help in the decision process. When the decision process
implies reaching a predefined goal with obstacle avoidance capability, fuzzy logic or
bioinspired methodologies can be used for a robot to decide between avoiding an obstacle,
following a wall to the right, or to the left (Zapata-Cortes, Acosta-Amaya & Jimnez-Builes,
2020; Khedher., Mziou. & Hadji., 2021; Yang, Bevan & Li, 2020; Wang, Hu & Ma, 2020).
Within the decision-making process, it is possible to increase precision in parameters such
as the speed, or the robot’s angle rotation, improving the executed movements in narrow
paths (Teja S & Alami, 2020). However, these navigation methodologies fail to consider
battery recharging, which is vital to keep a robot working for prolonged periods. Since
robots use batteries to power their motors and the navigation system, the robot’s battery
must supply adequate voltage and current levels for the robot to complete its tasks without
any unexpected energy interruption due to a low battery condition. This problem is known
as the autonomous recharging problem.

In recent years, the number of applications using mobile robots is increasing, and
linked with this growth is the autonomous operation margin. The autonomous recharging
problem (ARP) is getting attention to effectively planning and coordinating when, where,
and how to recharge robots to maximize operational efficiency, improving the robot’s
autonomy. ARP means all the actions required to decide the moment, the destination, and
how to recharge the robot’s battery to maximize operational efficiency (Tomy et al., 2020).
The ARP faces two main problems: how to proceed to the battery charge station and the
precise moment to deviate from the main path to the final destination. The first deals with
designing and testing the hardware and software employed to help the robot maneuver
to the charging station. The second involves deciding when the robot should go to the
charging station (de Lucca Siqueira, Della Mea Plentz & De Pieri, 2016). This work focuses
only on the second problem.

López-Lozada et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.556 2/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.556

This proposal introduces a novel approach to solve the ARP based on machine learning
to determine the robot’s pertinent moment to recharge its battery. The proposed system
consists of a path planning module and a decision-making module. The decision-making
module uses the fuzzy Q-learning (FQL) method for the robot to decide between going to
the destination point or head to the battery charging station or remain static. The paper’s
main contribution lies in a reactive navigation scheme that grants a robot to learn, based
on trial and error, to make decisions to fulfill its tasks with a suitable battery level. The
following sections describe the related work, as well as the analyzed methods and the
proposed approach.

Related work
One of the classical methods used to address the path planning problem is the APF
method, which bases its foundations on attractive and repulsive forces. The APF method
has been widely applied in static real-time path planning. Several works found in literature
addressing the APF method make slight modifications to Khatib’s model, introduced
in 1985, to improve its performance and avoid falling into a minimum local state.
For example, the work of Hosseini Rostami et al. (2019), which uses APF method in a
dynamic environment, showed robot obstacle avoidance capability while moving towards
its target (Matoui et al., 2017). It implemented the APF method and combined a set of
equations to operate mobile robots cooperatively under a decentralized architecture.
Alternatively, this method’s implementation combined with fuzzy logic (Tuazon et al.,
2016) and reinforcement learning (RL) (Liu, Qi & Lu, 2017) is another approach employed
for robot navigation. Other alternatives to solve the path planning are addressed using
NN (Wei, Tsai & Tai, 2019) or FQL (Lachekhab, Tadjine & Kesraoui, 2019).

Some strategies have arisen to solve the ARP focus on when and where to recharge the
battery. The traditional charging method refers to move automatically to a charging station
when the battery charge is below a certain threshold. It is a simple strategy to solve the
ARP, but with little flexibility, i.e., the robot could be about to reach the goal, but instead, it
heads to charge the battery by considering only a charge level threshold as the only criteria.
To solve this disadvantage (Rappaport & Bettstetter, 2017) proposed using an adaptative
threshold using five policies to select a charging point (CP). The first policy consists on
select the closest CP, the second is to select a free CP, the third policy is to choose a CP
when there are not more possibilities to explore, the fourth consists of stay as long as
possible before moving to the next one, and the last policy refers to send information to
other robots to avoid redundancies in exploration.

Based on a fuzzy inference system (de Lucca Siqueira, Della Mea Plentz & De Pieri, 2016)
propose a solution for the first sub-problem. It considered three crisp input variables, the
battery level, the distance to the charging station, and the distance to the destination point
for the fuzzymapping rules. Under this approach, if a warning state is set-on due to a sensed
low battery level, and the destination point is closer than the charging station, the robot
will head towards the target, and it will not turn off. An alternative way of resolving ARP is
the scheduling strategy of mobile chargers (MC). The MCs improve the battery charging
process while the robots perform a task, avoiding task execution failure due to a low battery

López-Lozada et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.556 3/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.556

level and prioritizing the task completion. It is necessary to establish a minimum number
of MCs and a charging sequence algorithm to design an operative scheduling strategy.
Some methods used in designing a scheduling strategy are linear programming, nonlinear
programming, clustering analysis, TSP algorithm, queuing theory, and other mathematical
methods. In this way, Cheng et al. (2021) proposed a mesh model to cope with the robot’s
limited movements and the MCs. Considering the distances between the MCs and the
robot and the expended time at the charge station, they developed a scheduling algorithm
of minimum encounter time to solve the recharging problem in a robot that executes a
priority task. Tomy et al. (2020) proposed a recharging strategy based on a learning process
to schedule visits to the charging station. The main contribution reported was the robot’s
capability to predict high-value tasks assigned for execution. Therefore, the robot can find
the specific moment to schedule a visit to a charging station when it is less busy and does
not have essential tasks to execute. This proposal could have more flexibility compared to
a system based on rules only.

Another solution to the ARP is task planning. The main idea is that after solving a task,
the robot goes to a charging station and recharges its battery. In this way, Rappaport &
Bettstetter (2017) proposed a method where a robot has a sequence of tasks, and it has to
segment the sequence to plan when to recharge. In the second stage, multiple robots were
coordinated to recharge using amaximum bipartite graphmatchingmethod. Similarly, Xu,
Wang & Chen (2019) describe a method to solve the ARP with multiple robots capable of
planning regular visitings to the charging station as part of a sequence of tasks they must
follow under a collaborative environment.

Methods
This section summarizes the methods used in this work for the navigation approach,
starting with the classical reinforced learning methods: Q-learning (QL) and the State-
Action-Reward-State-Action (SARSA) algorithm. This section ends up with the fuzzy
Q-Learning (FQL) method description implemented in the decision-making module.

The artificial potential field method
The APF method provides a simple and effective motion planning method for a practical
purpose. Under this method, the attractive force is computed according to Eq. (1):

Fattr (q,g)=−ξp(q,g) (1)

where p(q,g) is the euclidean distance between the robot’s position, denoted by q, and the
destination point’s position g. The term ξ is defined as the attractive factor. The repulsive
force, on the other hand, is calculated with the aid of Eq. (2).

Frep(q)=

η(

1
p(q,qoj)

−
1
poj

)
p2(q,qoj)
p(q,qoj)

, if p(q,qoj)< poj

η(−
1
poj

), if p(q,qoj)= poj

0, if other case

(2)

where p(q,qoj) is the distance between the robot’s position and the jth obstacle’s position
qoj . The obstacle radius threshold is denoted by poj . The term η is the repulsive factor.

López-Lozada et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.556 4/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.556

Furthermore, the resultant force Eq. (3) is the sum of attractive and repulsive forces.

Fres= Fattr (q,g)+Frep(q) (3)

Classical reinforcement learning methods
Reinforcement learning (RL) is a machine learning paradigm, where the main identified
elements are the agents, the states, the actions, the rewards, and punishments. In general,
RL problems involve learning what to do and how to map situations to actions to maximize
a numerical reward signal when the learning agent does not know what steps to take. The
agent involved in the learning process must discover which actions give the best reward
based on a trial and error process (Sutton & Barto, 2018). Essentially, RL involves closed-
loop problems because the learning system’s actions influence its later inputs. Different
methods use this paradigm; among the classic methods are QL and SARSA. QL provides
learning agents with the ability to act optimally in a Markovian domain experiencing the
consequences of their actions, i. e., the agents learn through rewards and punishments
(Sutton & Barto, 2018). QL is a method based on estimating the value of the Q function
of the states and actions, and it can be defined as shown in Eq. (4), where Q(St ,At) is the
expected sum of the discounted reward for the performance of action a in a state s, α is the
learning rate, γ is the discounting factor, St is the current state, St+1 is the new state, Rt+1

is the reward in the new state, and At is the action in St , and a is the action with the best
q-value in St .

Q(St ,At)←Q(St ,At)+α[Rt+1+γmax
a

Q(St+1,a)−Q(St ,At)] (4)

The method called SARSA results from a modification made to QL. The main difference
between these algorithms is that SARSA does not use the max operator from the Q function
during the rule update, as shown in Eq. (5) (Sutton & Barto, 2018).

Q(St ,At)←Q(St ,At)+α[Rt+1+γQ(St+1,At+1)−Q(St ,At)] (5)

Fuzzy Q-learning method
FQL (Anam et al., 2009) is an extension of fuzzy inference systems (FIS) (Ross, 2010), where
the fuzzy rules define the learning agent’s states. At the first step of the process, crisp input
variables are converted into fuzzy inputs through input membership functions. Next, rule
evaluation is conducted, where any convenient fuzzy t -norm can be used at this stage,
a common choice is the MIN operator. Only one fuzzy rule, i.e., the ith fuzzy rule, ri,
determines the learning agent’s state, and i∈ [1,N], N denotes the total number of fuzzy
rules. Each rule has associated a numerical value, αi, called the rule’s strength, defining the
degree to which the agent is in a certain state. This value αi allows the agent to choose an
action from the set of all possible actions A, the jth possible action in the ith rule is called
a(i,j), and its corresponding q-value is q(i,j). Therefore, fuzzy rules can be formulated as:

If x is Si then a(i,1) with q(i,1) or ... or a(i,j) with q(i,j)

López-Lozada et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.556 5/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.556

FQL’s primary goal implies the learning agent finds the best solution for each rule, i.e.,
the action with the higher q-value. This value is rendered from a table of i× j dimensions,
containing q number of values. The table dimension corresponds to the number of fuzzy
rules times the total number of actions. A learning policy selects the right action based on
the quality of a state-action pair, based on the Eq. (6), where V (x,a) is the quality value
of the states, i∗ corresponds to the optimal action index, i.e., the action index with the
highest q-value, and x is the current state. On the other hand, the exploration-exploitation
probability is given by ε= 10

10+T , where T corresponds to the step number, is assumed in
this work.

V (x,a)=
∑N

i=1αi(x)×q(i,i
∗)∑N

i=1αi(x)
(6)

The functions in Eq. (7) allow to get the inferred action and its corresponding q-value,
where x is the input value in state i, a is the inferred action, io is the inferred action index,
αi is the strength of the rule and N is a positive number, N ∈N+, which corresponds to
the total number of rules.

a(x)=
∑N

i=1αi×a(i,i
o)∑N

i=1αi(x)
; Q(x,a)=

∑N
i=1αi×q(i,i

o)∑N
i=1αi(x)

(7)

Also, it is necessary to calculate an eligibility value, e(i,j), during the q-value updating
phase by means of Eq. (8),

e(i,j)=

λγ e(i,j)+
αi(x)∑N
i=1αi(x)

if j = io

λγ e(i,j) other case
(8)

where j is the selected action, γ is the discount factor 0≤ γ ≤ 1 and λ is the decay parameter
in the range of [0,1). Next, the Eq. (9) is used for the1Q calculation, where r corresponds
to the reward.

1Q= r+γV (x,a)−Q(x,a). (9)

And finally, Eq. (10) updates q-value, where ε is a small number, ε ∈ (0,1), which affect
the learning rate,

1q(i,j)= ε×1Q×e(i,j). (10)

Proposed hardware
The documented results come from navigation simulations, only. The testing results on
a physical robot are left for future work. However, this section presents the hardware
proposal developed to carry out the navigation proposal and explains some technical
details to be considered during the implementation. The proposed hardware shown in
Fig. 1 is the King Spider robot from the BIOLOID Premium kit of ROBOTIS (ROBOTIS,
2019). This robot is configured with six legs with a total of 18 servo-motors with 3 degrees
of freedom per leg. Each actuator uses the AX-12A servo-motors, which have mobility from

López-Lozada et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.556 6/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.556

Figure 1 The King Spider robot, equipped with: 3DOF per leg raspberry pi 3, GPIOS, INA260 and HC-
SR04 ultrasonic sensor.

Full-size DOI: 10.7717/peerjcs.556/fig-1

0◦ to 360◦, equipped with a serial interface to establish communication with the processing
unit, a microcontroller Raspberry Pi, running the Raspbian Buster operating system. The
microcontroller has an I2C interface for energy monitoring and a pair of GPIOS to connect
the ultrasonic sensor. The INA260 high-accuracy current and power monitor were selected
to measure the battery charge level and the power consumption. For detecting obstacles,
the HC-SR04 ultrasonic sensor was chosen, which allows detecting objects at a distance of
40 cm.
The power source considered for use with this robot is an 11.1v Li-Po 3S battery with

a capacity of 4250 mAh. Figure 2 shows in solid line the voltage level versus charge
percentage, named as battery discharge curve, employed to estimate the remaining robot
battery charge (Tom, 2019). For simulation, the expression BL(t)=−1.8245t + 100 is
implemented, where BL corresponds to the battery voltage level in volts, and t is the
corresponding time step. The dashed and doted line in Fig. 2 shows the battery discharge
approximation given by BL(t).
This hardware was selected to employ it in exploration tasks or as a service robot, taking

advantage of its extremity’s ability to travel in irregular terrains. However, other robotic
platforms, as differential robots, may also be used. The selection of the robotic platform
is left to the context specifications. This work’s specifications involve designing software

López-Lozada et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.556 7/25

https://peerj.com
https://doi.org/10.7717/peerjcs.556/fig-1
http://dx.doi.org/10.7717/peerj-cs.556

Figure 2 Battery discharge curve.
Full-size DOI: 10.7717/peerjcs.556/fig-2

to run on a Raspberry Pi with a Linux-based operating system. The proposal seeks to be
modular. Therefore, a path planning module and a decision-making module are handled.
The movements were limited to four movements: forward, backward, left, and right within
the path planning module. The generated route can be saved in a text file. It is suggested
to add a control module that contains the robot’s kinematics, receiving as inputs the
next position where the robot has to move. In case the control module requires other
parameters such as speed or direction angles, or if kinematics has to be adapted to a
determined robot configuration, the software provided in this paper would have to be
modified. The simplest way would be to call a function that interprets the coordinates
within the control module to obtain the required parameters. One of the variables that
could be affected if robotic configuration changes is the battery charge estimation, as other
robotic platforms could occupy batteries with different features. Therefore, the system’s
behavior could change according to the discharge range. This approach uses separated
modules from the program’s main body. The input values come from functions that
update and normalize the battery level and the distances to avoid significant modifications
to the proposal in the implementation with other hardware.

BACKGROUND
The proposed navigation system comprises three main modules, one for the control of the
robot, a module for path planning, and another module for decision making. This section
begins with a description of the path planning module, using the APF method for this
proposal. Then it continues with a description of the decision-making module.

Path planning module
This module implements the APF method, and it considers an operation under
environmentally controlled conditions. This work employs a static environment with
one battery charging station, obstacles, and a defined destination point. The workspace is a
10×10 grid, and each space of the grid is equivalent to one step of the robot. The obstacles
were arbitrarily distributed into the workspace to define diverse scenarios. For this module,
the attraction factor used in Eq. (1) has a value equal to 2.3, while the repulsion factor in
Eq. (2) is 61.5. The robot’s movements were limited to left, right, forward, and backward.
An objects’ position is equivalent to a coordinate pair (x , y). Whereas the robot’s position

López-Lozada et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.556 8/25

https://peerj.com
https://doi.org/10.7717/peerjcs.556/fig-2
http://dx.doi.org/10.7717/peerj-cs.556

is equivalent to the coordinate pair (xrobot ,yrobot), and when the robot experience a position
change, its coordinates increase or decrease one unit. Algorithm 1 shows the steps followed
by this module for the path generation.

Algorithm 1: Path planning

robot_pos← insert the current robot position;
destination_pos← insert destiny or battery charging station;
obstacles_pos← insert obstacles positions;
position;
path_pos_list← initialize an empty list;
res_force_list← compute the resultant force in every space of the grid;
i← 0;
while robot_pos != dest_pos do

path_pos_list[i]← from the neighborhood obtain the position corresponding to
the value of the highest resultant force;
robot_pos← update with path_pos_list[i];
i++;

return path_pos_list;

Algorithm 1 handles the term neighborhood, which refers to the coordinate pairs
(xrobot ,yrobot+1), (xrobot ,yrobot−1), (xrobot+1,yrobot), and (xrobot−1,yrobot). When the path
generation concludes, the result is a list of the robot’s coordinates to reach the destination.
This module requires the robot’s information, i.e., the robot’s position, destination, and
obstacles positions. Themodule plans a path to the destinationwith the known information.
Diverse scenarios used during path planning are depicted in Fig. 3, which shows fifteen
different stages with scattered obstacles, where the squares represent the obstacles, the star
is the destination, and the crossbar is the charging station. There are two paths planned for
each of these scenarios: the path to the destination and the path to the charging station,
identified with two lines, one linked with circles and the other one linked with triangles.

Decision-making module
With the proposed decision-making module, we demonstrate that the mobile robot can
appropriately choose between heading to the goal, going to the battery charging station,
or remaining static. This module comprises three main sections: fuzzification of the input
variables, fuzzy rule evaluation, and the selection of the action to execute. Figure 4 depicts
an overall view of the proposed system’s architecture. Given a robot is powered by a battery,
and it travels from a starting to a destination point, it is a fact that the battery loses electric
charge during displacement. Then, the battery voltage level (BL) is an input to the fuzzy
inference system. Fuzzy rules can be formulated, using common sense, as follows. If the
battery level is low and a charging station is nearby, the robot could select to go to the
charging station to recharge the battery. Even so, if the robot is far from the charging
station but close to the destination point, reaching the destination point would prioritize
instead of changing its course to the charging station. Ergo, the distance between the robot

López-Lozada et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.556 9/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.556

Figure 3 Path planning in diverse scenarios. (A-O) The scenarios used for the simulations showing the
routes generated, in each scenario, from the starting point to the battery charging station and destination.

Full-size DOI: 10.7717/peerjcs.556/fig-3

and the destiny is the second input, and the distance between the robot and the charging
station is considered the third input.

DRD=min
{
100×

CDD
IDD

,100
}
; DRC =min

{
100×

CDC
IDC

,100
}

(11)

By using DRD in Eq. (11), the distance values are normalized to the value interval of [0,
100], where DRD is the distance between the robot and destination, CDD is the current
distance to the goal, and IDD is the initial distance to the goal. Similarly, the system
normalizes the distance between the robot, and the charging station with the equation
DRC in Eq. (11), where DRC is the distance between the robot and charging station, CDC
is the current distance to the charging station, and IDC is the initial distance to the charging

López-Lozada et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.556 10/25

https://peerj.com
https://doi.org/10.7717/peerjcs.556/fig-3
http://dx.doi.org/10.7717/peerj-cs.556

Figure 4 FQL architecture for decision making.
Full-size DOI: 10.7717/peerjcs.556/fig-4

station. Simultaneously, the battery level value corresponds to a percentage value between
0 and 100%.

The first input variable, BL, has four fuzzy sets, labeled as Empty, Very Low, Low, and
Full. The second input variable, DRD, has three fuzzy sets defined as Close, Near, and
Far. Finally, the third input variable, DRC, has three fuzzy sets: Close, Near, and Far.
Figure 5 depicts the three input variables with their corresponding triangle-type fuzzy sets.
By considering all the possible combinations in the rule’s antecedents, the fuzzy system
could operate with a total of 36 fuzzy rules, herein named FQL-36. Each rule is formulated
to perform a specific robot action (RA) in response to the observed inputs.

Actions denoted by a1, a2, and a3 are associated with a numerical value q(i,j), where the
index i, corresponds to the ith fuzzy rule, and j is the index of the jth action. Action index
1 refers to going to the destination point, action index 2 refers to going to the charging
station, and action index 3 means to remain static. The action selection is made with
Algorithm 2. Likewise, the fuzzy actions are implemented by three output singleton-type
fuzzy sets, as depicted in Fig. 6. The exploring-exploitation policy described in the FQL

López-Lozada et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.556 11/25

https://peerj.com
https://doi.org/10.7717/peerjcs.556/fig-4
http://dx.doi.org/10.7717/peerj-cs.556

Algorithm 2: Action selection

r_pos← insert R position;
d_pos← insert D position;
bcs_pos← insert BCS position;
obs_pos_list← initialize an empty list;
state← get current rule;
action← select an action;
output← compute with function a(x) in eq. (7);
q← compute the q value with function q(x) in eq. (7); new_state← get the current
rule;
reward← get the reward from (12);
states_value← compute with the eq. (6));
1Q← compute with eq. (10);
eligibility← get value from eq. (8);
new_q← compute the new q with eq. (10));
Update the Q value in the q-table;
return the action;

Figure 5 Input variables and fuzzy sets. (A) The fuzzy sets of the BL input, where the x-axis is the bat-
tery level from 0 to 100, while the y-axis is the degree of membership. (B) The fuzzy sets of the DRD in-
put, where the x-axis is the distance from 0 to 100, while the y-axis is the degree of membership. (C) The
fuzzy sets of the DRC input, where the x-axis is the distance from 0 to 100, while the y-axis is the degree of
membership.

Full-size DOI: 10.7717/peerjcs.556/fig-5

section serves to make the decision and choose an action. Expression Eq. (12) gives the
reward function used, the discount factor, and the learning rate is equal to 0.5 and 0.01,
respectively.

r =

+10 if robot is close to destination
+5 if robot is close to the charging station
−20 if robot is far of destinations and battery level is very low
−1 other case

(12)

Given that some rules are redundant and that the fuzzy inference system may not fire
any of them, some fuzzy rules are not considered, reducing the fuzzy rule database from

López-Lozada et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.556 12/25

https://peerj.com
https://doi.org/10.7717/peerjcs.556/fig-5
http://dx.doi.org/10.7717/peerj-cs.556

Figure 6 Robot’s action (RA), output variable with singleton-type fuzzy sets defined. Fuzzy singleton
a1 is the action for heading to the goal, a2 refers to going to the charging station, and action a3 means to
remain static.

Full-size DOI: 10.7717/peerjcs.556/fig-6

Table 1 The twenty rules of the reduced FIS used in the FQL-20.

Rule BL DRD DRC Output

1 Full AC AC action=a1 |a2 |a3 with q_value=q(1,1) |q(1,2) |q(1,3)
2 Low Far Far action=a1 |a2 |a3 with q_value=q(2,1) |q(2,2) |q(2,3)
3 Low Far Near action=a1 |a2 |a3 with q_value=q(3,1) |q(3,2) |q(3,3)
4 Low Far Close action=a1 |a2 |a3 with q_value=q(4,1) |q(4,2) |q(4,3)
5 Low Near Far action=a1 |a2 |a3 with q_value=q(5,1) |q(5,2) |q(5,3)
6 Low Near Near action=a1 |a2 |a3 with q_value=q(6,1) |q(6,2) |q(6,3)
7 Low Near Close action=a1 |a2 |a3 with q_value=q(7,1) |q(7,2) |q(7,3)
8 Low Close Far action=a1 |a2 |a3 with q_value=q(8,1) |q(8,2) |q(8,3)
9 Low Close Near action=a1 |a2 |a3 with q_value=q(9,1) |q(9,2) |q(9,3)
10 Low Close Close action=a1 |a2 |a3 with q_value=q(10,1) |q(10,2) |q(10,3)
11 Very Low Far Far action=a1 |a2 |a3 with q_value=q(11,1) |q(11,2) |q(11,3)
12 Very Low Far Near action=a1 |a2 |a3 with q_value=q(12,1) |q(12,2) |q(12,3)
13 Very Low Far Close action=a1 |a2 |a3 with q_value=q(13,1) |q(13,2) |q(13,3)
14 Very Low Near Far action=a1 |a2 |a3 with q_value=q(14,1) |q(14,2) |q(14,3)
15 Very Low Near Near action=a1 |a2 |a3 with q_value=q(15,1) |q(15,2) |q(15,3)
16 Very Low Near Close action=a1 |a2 |a3 with q_value=q(16,1) |q(16,2) |q(16,3)
17 Very Low Close Far action=a1 |a2 |a3 with q_value=q(17,1) |q(17,2) |q(17,3)
18 Very Low Close Near action=a1 |a2 |a3 with q_value=q(18,1) |q(18,2) |q(18,3)
19 Very Low Close Close action=a1 |a2 |a3 with q_value=q(19,1) |q(19,2) |q(19,3)
20 Empty AC AC action=a1 |a2 |a3 with q_value=q(20,1) |q(20,2) |q(20,3)

36 to 20; herein, named FQL-20. Then the reduced number of fuzzy rules are defined
as shown in Table 1, where AC corresponds to any case, and the symbol | refers to logic
function OR.

Navigation system proposal
The modules described so far integrate the robot’s navigation system. The system plans
two paths to conduct the robot to the goal and the other one to proceed to the battery
charging station. If the robot encounters an obstacle during its movement, it re-plans its
path to the current destiny. If the robot’s action changes between going to the goal or the

López-Lozada et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.556 13/25

https://peerj.com
https://doi.org/10.7717/peerjcs.556/fig-6
http://dx.doi.org/10.7717/peerj-cs.556

charging station or vice versa, it plans a new course if necessary. These changes depend on
the results of the decision-making module. The following steps in Algorithm 3 describe the
navigation proposal.

Algorithm 3: Navigation

r_pos← initial position;
d_pos← insert D position;
bcs_pos← insert BCS position;
Initialize obs_pos_list;
destiny← d_pos;
Generate the MF’s and rules;
D_path, BCS_path← generate the paths;
while r_pos != destiny do

action← get from action selection;
next_destiny← update the destiny;
if next_destiny != destiny then

Update the path to next_destiny;
destiny← next_destiny

Update next_r_pos ;
if there is an obstacle in next_r_pos then

Set obstacle in obs_pos_list ;
Update the D_path, and BCS_path;

else
Move to new position;
Update r_pos;

RESULTS
This section introduces the simulated results obtained from this navigation proposal.
The system simulation with 36 fuzzy-rules is denoted as FQL-36, and the reduced
proposal with only 20 rules is referred as FQL-20. The proposal implementation was
programmed using Python 3.8 with the PyCharm Community Edition IDE on a computer
with an Ubuntu 20.04 operating system. The source code designed for this research can
be obtained at https://github.com/ElizBth/Reactive-Navigation-Under-a-Fuzzy-Rules-
Based-Scheme-and-Reinforcement-Learning. This proposal can be implemented from
scratch by employing the equations related to the APF and fuzzy q-learning section,
following Algorithms 1, 2 and 3 of the Background Section. Some methods may serve to
compare this proposal’s performance. Firstly, with a simple two threshold-based method,
where the input is the battery level: the first threshold is 40%, so, if the battery level is above
this value, the selected action is a1; the second threshold is 20%, so, if the battery level
is above this value the selected action is a2; otherwise the selected action is a3. Secondly,

López-Lozada et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.556 14/25

https://peerj.com
https://github.com/ElizBth/Reactive-Navigation-Under-a-Fuzzy-Rules-Based-Scheme-and-Reinforcement-Learning
https://github.com/ElizBth/Reactive-Navigation-Under-a-Fuzzy-Rules-Based-Scheme-and-Reinforcement-Learning
http://dx.doi.org/10.7717/peerj-cs.556

Figure 7 Number of positions computed to reach the destination or the charging station from the
point of departure (A) and computing time lag observed for path planning (B).

Full-size DOI: 10.7717/peerjcs.556/fig-7

being the FQL method resulting from the combination of the QL method with a FIS, they
are a good starting point to compare these methods’ performance with the introduced
proposal. Like the FQL proposal, this work uses two FIS, denoted as FIS-36 and FIS-20.
Moreover, the last method considered is the SARSA method, which is similar to the QL
method. The inputs of these methods correspond to the battery level and the distances to
the destination and the charging station; additionally, the RL methods occupy the reward
function expressed in Eq. (12).

Path planning simulations
Figure 7A shows the planned number of steps to reach the goal for the 15 scenarios proposed
in Fig. 3. The number of movements the robot must complete reaching the destination or
the charging station, starting from the departing point, is similar in all cases, resulting in
average planned paths of 14 positions. Figure 7B shows the module’s computing time lag
since it performs the parameter initialization until it finds a path free from collisions. The
average period consumed to generate the path in each scenario was registered between 3.2
and 3.8 ms from this graph. The navigation system’s first planned paths serve during the
early navigation stages under each scenario since the system is prone to change direction
during the path. The new computations take as reference the new current position to
calculate a new path.

System simulations
The variables used to model the system behavior are the accumulated reward and the
number of steps taken to complete the robot’s task in each scenario. The simulations
initiate with the battery at the maximum charge level. Figure 8 shows the accumulated
reward obtained at each scenario after reaching ten task successes. By comparing the
performance between FQL-36 and FQL-20, the reward does not significantly change in
either case. There are some slight behavior variations in the choice actions, which may have
been random or greedy.
There is similar behavior only when the tenth success was reached by observing the

accumulative reward. Figure 9 shows the accumulated reward in this attempt with QL,
SARSA, FQL-36, and FQL-20. However, there is a more significant difference in behavior
when comparing with QL and SARSA; this indicates that there were more cases where the
simulation was close to the destination or the charging station, and if there were more

López-Lozada et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.556 15/25

https://peerj.com
https://doi.org/10.7717/peerjcs.556/fig-7
http://dx.doi.org/10.7717/peerj-cs.556

Figure 8 Accumulated reward obtained at each scenario under simulated test after reaching ten task
successes.

Full-size DOI: 10.7717/peerjcs.556/fig-8

Figure 9 Accumulated reward on tenth success.
Full-size DOI: 10.7717/peerjcs.556/fig-9

Figure 10 Number of epochs needed to reach the ten successes.
Full-size DOI: 10.7717/peerjcs.556/fig-10

steps executed, it is logical to see a more generous amount of reward than with FQL-36 and
FQL-20. To confirm this behavior, it should observe the number of steps executed during
the simulation and the number of epochs it took to reach the destination.
Figure 10 shows the number of epochs it took for the QL, SARSA, FQL-36, and FQL-20

methods. Here, FQL-20 presents better results than the other methods since. In 80% of
the scenarios, it only requires ten epochs to reach the ten successes followed by FQL-36,
while the other two methods take more epochs to reach the goal. Given these results, this
paper’s proposal already presents an advantage over classical RL methods by requiring
fewer epochs for the system to learn which decisions to make to complete its goal. Figure

López-Lozada et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.556 16/25

https://peerj.com
https://doi.org/10.7717/peerjcs.556/fig-8
https://doi.org/10.7717/peerjcs.556/fig-9
https://doi.org/10.7717/peerjcs.556/fig-10
http://dx.doi.org/10.7717/peerj-cs.556

Figure 11 Number of simulated steps involved in reaching the goal by using any of the systems driven
by 32 or 20 fuzzy rules.

Full-size DOI: 10.7717/peerjcs.556/fig-11

Figure 12 Number of steps executed on the 10th success.
Full-size DOI: 10.7717/peerjcs.556/fig-12

10 does not include the threshold-based method or the FIS as they do not require a learning
stage.
Figure 11 shows the average number of steps involved in reaching the goal, whose average

resulted from the ten successes obtained by using any of the systems driven by 36 or 20 fuzzy
rules. The results show that only a difference of three steps was obtained in two scenarios.
It is also interesting to verify that the system’s overall behavior is better with the base of 20
fuzzy rules. Therefore, the simplicity in the design of the FIS agrees with the effectiveness
of the results. Figure 12 shows the comparison with the number of executed steps to obtain
the tenth success with the methods mentioned above. Similarly to the epochs, the number
of steps performed with the QL and SARSA methods was higher than the proposal made
with the FQL-36 and FQL-20. However, at this point, with the number of training epochs,
none of them match the number of steps executed with the deterministic methods. The
FQL-36 shows the least amount of deviations towards the loading station, followed by the
FQL-20, while the other two methods present a higher number of deviations than this
proposal. Table 2 shows the total deviations computed in each scenario.
Likewise, Fig. 13 shows the distribution of the selection of actions made during the

simulation. Where the action a3 was the one that was chosen the least times, while the
action of going to the destination was the one that was chosen the most times, with these

López-Lozada et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.556 17/25

https://peerj.com
https://doi.org/10.7717/peerjcs.556/fig-11
https://doi.org/10.7717/peerjcs.556/fig-12
http://dx.doi.org/10.7717/peerj-cs.556

Table 2 Number of registered deviations per scenario andmethod.

Method/Scen. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

QL 19 76 324 35 154 17 191 84 234 16 9 25 69 8 28
SARSA 187 134 104 12 54 14 110 9 7 59 91 11 27 208 38
FQL-36 7 2 5 2 2 13 7 11 10 10 1 3 3 3 4
FQL-20 6 5 2 3 4 24 22 2 5 4 21 2 1 37 4

Figure 13 Distribution of action selection for each scenario concerning the approaches for (A)
Threshold, (B) FIS, (C) QL, (D) SARSA, (E) FQL-36 and, (F) FQL-20.

Full-size DOI: 10.7717/peerjcs.556/fig-13

graphs, it is possible to observe how this selection of actions affects from the point of view
that it takes more steps to reach the destination.
Besides, Fig. 14 shows the remaining battery level at the end of the simulations in each

of the scenarios. The threshold method and the FIS end up with very similar battery levels.
These values correspond to the maximum remaining battery levels attainable in each
scenario since these are the methods that perform the fewest steps to reach the destination.
A possible event can occur if the robot changes its direction to the battery charging

station and then continues on its way to its destination. This behavior happens with the
FQL-20 method in scenarios 6, 7, 11, and 14. Table 2 shows that system FQL-20 deviated
from their destination along the 24, 22, 21, and 37 steps. There is a particular advantage
in letting the system learn what decisions to make since it makes it more flexible, unlike a
deterministic method that could be more rigid.

The spent execution time is a variable that helps to analyze the proposal’s performance.
Table 3 shows the spent execution time for the simulation to complete the task of going
to the goal successfully ten times. The threshold method and the FIS finished with the
shortest delay, employing less than 20 ms. While the QL and SARSAmethods take the most

López-Lozada et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.556 18/25

https://peerj.com
https://doi.org/10.7717/peerjcs.556/fig-13
http://dx.doi.org/10.7717/peerj-cs.556

Figure 14 Remaining battery level at the end of the simulations in each scenario and according to the
evaluated approaches.

Full-size DOI: 10.7717/peerjcs.556/fig-14

Table 3 Simulation execution time to complete the task of going to the goal successfully ten times, for each scenario and according to the evalu-
ated approach.

Threshold
(ms)

FIS-36
(ms)

FIS-20
(ms)

QL
(min)

SARSA
(min)

FQL-36
(s)

FQL-20
(s)

1 17.60 18.42 17.96 3.53 1.93 0.36 0.26
2 7.91 17.87 17.65 4.85 2.91 0.33 0.35
3 8.00 8.52 8.48 4.42 1.26 0.26 0.26
4 7.63 8.29 8.39 2.83 1.29 0.26 0.26
5 7.73 8.36 8.21 9.16 3.99 0.26 0.23
6 7.75 18.16 17.75 6.75 3.24 0.83 0.51
7 7.92 19.42 35.61 6.01 2.29 0.80 0.40
8 7.87 8.32 10.44 2.97 1.64 2.15 0.28
9 7.76 8.38 8.36 3.72 1.76 0.44 0.29
10 8.14 9.61 8.28 65.38 33.63 0.90 0.30
11 8.15 8.78 8.81 2.61 1.15 1.19 0.43
12 7.80 8.26 8.30 28.91 15.64 18.70 0.27
13 8.46 8.32 8.41 5.94 2.36 19.76 0.26
14 15.31 8.26 8.37 1.56 0.98 18.47 0.34
15 8.44 8.12 8.64 2.40 2.04 0.60 0.30

Table 4 Number of states or rules for each method.

Method Threshold FIS-36 FIS-20 QL SARSA FQL-36 FQL-20

Rules/States 3 36 20 1,030,301 1,030,301 36 20

prolonged latency, exceeding 1 min, and in one case, even reaching 65 min. The proposal
made in this paper has an intermediate-range execution time of up to 19 s.

One of the reasons why the FQL proposal is advantageous is the reduced number of
states that a robot can take during navigation, which is reflected in thememory usage, being
this number less than SARSA and QL, as shown in Table 4. This proposal only involves 20
or 36 states, while the QL and SARSA methods, with the same number of entries, involve

López-Lozada et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.556 19/25

https://peerj.com
https://doi.org/10.7717/peerjcs.556/fig-14
http://dx.doi.org/10.7717/peerj-cs.556

Table 5 Amount of memory occupied by eachmethod.

Method Threshold FIS approach QL SARSA FQL approach

Memory (MB) 48.9 49.2 121.1 121.1 49.2

1,030,301 states. Table 5 shows the memory usage comparison occupied compared to
this article’s proposal, obtained with the aid of profiler python, measured throughout the
simulated navigation process.

During the development of this work, a validation process was used during the execution
of the simulations. The validation procedure consisted of the following: first, after the
execution of a new step, it was validated if the coordinates of the simulated robot were at
the destination; if so, the task was terminated. Then it was validated if the robot had reached
the charging station; if so, the battery charge was restored to 100%, and the simulation
continued. Finally, with the robot’s coordinates and the obstacles, it was verified if the
robot had collided; if so, the simulation indicated a failure and it was restarted; if not, the
simulation continued. On average, per scenario, the time taken for validation was 74 ms.

DISCUSSION
The proposed navigation system enables a mobile robot to move from a starting to a
destination point or decide to change its course to go to the battery charging station
under a fuzzy rule-based combined with a reinforced learning system. The proposed path
planning module enables a robot to move in partial and known environments using a
scheme where the robot knows obstacles and senses them, it then plans the path while
moving. This module’s use provides the system with a reactive behavior in the face of
environmental conditions, and thanks to its simplicity, the implementation is painless in
embedded systems.

The reactive method introduced in this work allows finding a short path to the
destination, although not in all cases since the system can avoid passing through a cluster
of obstacles and go more safely. Nonetheless, the method has its limitations. Under certain
environmental conditions, the system falls into the local minimum problem, which causes
the system to get stuck in a point on the map and not reach destiny. Usually, this occurs
when there are groups of obstacles in the form of a fence, and the robot finishes obstructed.
Besides, being a global navigation method, the system does not learn, and it must know
the destination point, which limits navigation in unknown terrain to a certain degree. In
future work, other hybrid methodologies should be explored to avoid falling into the local
minimum problem to handle this behavior.

The resultant proposal for decision making based on FQL alongside the path planning
module allowed a navigation system with a certain level of autonomy while handling the
ARP, given that the proposed system learns which actions to execute, on a trial and error
basis, as a function of the input variables, named: the battery level and the distances between
the robot and the possible destination points. The tasks chosen within the decision-making
module of this proposal were three; the importance of them lies in the fact that the first

López-Lozada et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.556 20/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.556

action corresponding to the displacement to a destination, which is one of the primary
tasks performed by the mobile robot, a human would expect that the robot executes most
of the time. Likewise, as the battery charge level was paramount to completing the main
task, the second action was to go to a battery charging station. With this, the decision
module would seem to be complete. However, a situation could arise in which the robot
has a shallow battery level and does not reach the destination or the charging station.
This paper considers the third action because a robot should be suspended or shut down
to avoid causing damage to its electrical/electronic system. An expert could easily define
when to take a particular action. Though, the striking about this work lies in observing the
actions selected autonomously by a learning agent. During the simulation, it was possible
to observe the decision-making process and how it improved during the training until
the agent selected the actions that benefited him complete the journey to the destination.
The worst result could be that the robot always remained static; however, the obtained
results show that the robot learned that this was not the essential task, and it reached the
destination. Nevertheless, it is a behavior that does not occur when observing the results
in the proposed scenarios.

During the simulations, the proposed system’s behavior does not improve the number
of steps required to reach the destination than the threshold method and the FIS, but
a significant improvement is observed compared to the QL SARSA methods. This
improvement is present in the number of steps executed and the number of training
epochs required to achieve ten consecutive successes. During the decision-making stage,
the actions that guided the robot to the destination were selected faster than with classic
RL methods. Although the classic RL methods resulted in a higher accumulated reward,
this did not imply that they solved the task in less time, while the proposal with FQL
that had less reward than those methods managed to complete the task in less time. a
shorter time. The execution times occupied to complete the route to the destination were
more significant than the time taken with the threshold method and the FIS; however, it
should note that these methods do not learn, which makes them inflexible compared to
the proposal that uses FQL.

It is worth highlighting the result of the FQL-20 proposal, which manages to complete
the route to the destination with a higher battery level than with the threshold method
and FIS. This result is due to the system’s flexibility when it decides to stop at the battery
charging station and then continue on its way to its destination. This behavior could be an
advantage as long as there are no execution timing restrictions.

On the other hand, the proposal made in this article equates the use of memory to the
threshold method and the FIS, which dramatically improves the RL methods. This result
shows the system’s simplicity in memory usage and its implementation viability in a limited
embedded platform like the raspberry pi.

The navigation proposal improved at the action selection phase through simulations,
compared with the classical methods of reinforced learning QL and SARSA. The system
prioritized and learned to move to a battery charging station when a battery charge
reduction was detected over time or went to a predetermined destination. The system’s
learning depends on the established rules and the reward function that assigns the prizes

López-Lozada et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.556 21/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.556

and punishments. The reduction in the number of fuzzy rules employed involved an
improvement in completing assigned navigation tasks.

For further work, the conducted simulations will be translated to real testing under
the considered scenarios throughout the hexapod-type robot’s use, proposed in the
Introduction Section. Eventually, it will be sought to implement the system in dynamic
environments and less structured to take advantage of the six-legged robot’s adaptability
to verify that the proposal solves the autonomic recharge problem in a mobile robot. It
is expected that the computing performance in a limited embedded platform does not
degrade drastically.

CONCLUSIONS
The proposed system allows amobile robot to have a reactivemovement in an environment
with dispersed static obstacles and can decide to change the way to the charging station as
soon as it considers it necessary or under a critical state to remain static.

System simplification results from using a scheme based on fuzzy rules that allow an
expert to limit the number of states in which the robot may fall, dramatically reducing
its complexity, compared to the classic reinforced learning scheme that takes each sensed
voltage level, or charge percentage point, as a system state. Therefore, consuming more
memory space than this proposal. Hence, a rule-based system is advantageous if working
with systems with limited computing capabilities.

With this in mind, the following observations arise. The proposed system demonstrates
better results than the QL and SARSA methods when observing the number of times it
takes to train the system and the number of steps executed with that amount of training
epochs. The time that the proposed system takes to complete the task is longer than with
the deterministic methods. However, it presents improvements compared to the SARSA
and QL methods. It occupies fewer states and requires less memory than the classic RL
methods, which is a great advantage considering it will equal the memory used by the
threshold-based method and the FIS.

According to the application, the proposal’s flexibility, of going to charge the battery and
then heading to the destination, can be advantageous as long as time is not the fundamental
factor for fulfilling the tasks.

Although this work does not face the energy consumption improvement problem,
instead, we try to guarantee the robot’s battery availability to complete its task, being this
an interesting research topic to develop in future work.

Finally, combining the decision-making module with the FQL method with a path
planning module, the decision-making is critical since the generation of a route to the
destination usually does not consider the robot’s energy levels. In this paper’s case, a simple
planning method was used that does not have a learning curve and, with the elements of
the environment, it generates a path from the resulting forces. It does not consider the
battery charge level. However, it would be attractive to explore using a route planning

López-Lozada et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.556 22/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.556

module that uses deep learning techniques and its implementation in embedded systems
in future work.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Instituto Politécnico Nacional (IPN) and Secretaría
de Investigación y Posgrado (SIP-IPN) under the projects, SIP20200630, SIP20201397,
SIP20200885, SIP20210788, SIP20210124, and SIP20211657, Comisión de Operación y
Fomento de Actividades Académicas (COFAA-IPN), also the Consejo Nacional de Ciencia
y Tecnología (CONACYT-México) under projects 65 (Frontiers of Science 2015) and 6005
(FORDECYT-PRONACES). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Instituto Politécnico Nacional (IPN) and Secretaría de Investigación y Posgrado (SIP-IPN):
SIP20200630, SIP20201397, SIP20200885, SIP20200569, SIP20210788, SIP20210124,
SIP20211657.
Comisión de Operación y Fomento de Actividades Académicas (COFAA-IPN).
Consejo Nacional de Ciencia y Tecnología (CONACYT-México).

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Elizabeth López-Lozada conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, and approved the final draft.
• Elsa Rubio-Espino conceived and designed the experiments, analyzed the data, authored
or reviewed drafts of the paper, and approved the final draft.
• J. Humberto Sossa-Azuela analyzed the data, authored or reviewed drafts of the paper,
and approved the final draft.
• Victor H. Ponce-Ponce analyzed the data, prepared figures and/or tables, authored or
reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available at GitHub: https://github.com/ElizBth/Reactive-Navigation-
Under-a-Fuzzy-Rules-Based-Scheme-and-Reinforcement-Learning.git.

López-Lozada et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.556 23/25

https://peerj.com
https://github.com/ElizBth/Reactive-Navigation-Under-a-Fuzzy-Rules-Based-Scheme-and-Reinforcement-Learning.git
https://github.com/ElizBth/Reactive-Navigation-Under-a-Fuzzy-Rules-Based-Scheme-and-Reinforcement-Learning.git
http://dx.doi.org/10.7717/peerj-cs.556

REFERENCES
AnamK, Prihastono P,Wicaksono H, Effendi R, Sulistijono IA, Kuswadi S, Jazidie

A, Sampei M. 2009. Embedded learning robot with fuzzy Q-learning for obstacle
avoidance behavior. In: LSP-conference proceeding.

Cheng Z, Fu X,Wang J, Xu X. 2021. Research on robot charging strategy based on
the scheduling algorithm of minimum encounter time. Journal of the Operational
Research Society 72(1):237–245 DOI 10.1080/01605682.2019.1654941.

de Lucca Siqueira F, Della Mea Plentz P, De Pieri ER. 2016. A fuzzy approach to the
autonomous recharging problem for mobile robots. In: 2016 12th international
conference on natural computation, fuzzy systems and knowledge discovery (ICNC-
FSKD), 1065–1070.

Gul F, RahimanW, Alhady SSN. 2019. A comprehensive study for robot navigation
techniques. Cogent Engineering 6:1–25 DOI 10.1080/23311916.2019.1632046.

Hosseini Rostami SM, Kumar A,Wang J, Liu X. 2019. Obstacle avoidance of mobile
robots using modified artificial potential field algorithm. EURASIP Journal on
Wireless Communications and Networking 2019:70 DOI 10.1186/s13638-019-1396-2.

Huskić G, Zell A. 2019. GeRoNa: generic robot navigation. Journal of Intelligent and
Robotic Systems 95:419–442 DOI 10.1007/s10846-018-0951-0.

Khedher MI, MziouMS, Hadji M. 2021. Improving decision-making-process for robot
navigation under uncertainty. In: Proceedings of the 13th international conference
on agents and artificial intelligence - Volume 2: ICAART,. SciTePress, 1105–1113
DOI 10.5220/0010323311051113978-989-758-484-8.

Lachekhab F, Tadjine M, Kesraoui M. 2019. Experimental evaluation of new navigator
of mobile robot using fuzzy Q-learning. International Journal of Engineering Systems
Modelling and Simulation 11:50 DOI 10.1504/IJESMS.2019.101670.

Liu J, QiW, Lu X. 2017.Multi-step reinforcement learning algorithm of mobile robot
path planning based on virtual potential field. In: Zou B, Han Q, Sun G, Jing W,
Peng X, Lu Z, eds. Data Science. Singapore: Springer Singapore, 528–538.

Matoui F, Boussaid B, Metoui B, Frej G, AbdelkrimM. 2017. Path planning
of a group of robots with potential field approach: decentralized architec-
ture. IFAC-PapersOnLine 50(1):11473–11478. 20th IFACWorld Congress
DOI 10.1016/j.ifacol.2017.08.1822.

Rappaport M, Bettstetter C. 2017. Coordinated recharging of mobile robots during
exploration. In: 2017 IEEE/RSJ international conference on intelligent robots and
systems (IROS). Piscataway: IEEE, 6809–6816 DOI 10.1109/IROS.2017.8206600.

ROBOTIS. 2019. ROBOTIS e-manual. Available at https:// emanual.robotis.com/docs/ en/
edu/bioloid/premium/ .

Ross TJ. 2010. Logic and fuzzy systems. In: Fuzzy logic with engineering applications.
Chichester: United Kingdom: John Wiley & Sons, Ltd, 117–173
DOI 10.1002/9781119994374.ch5.

Sutton RS, Barto AG. 2018. Reinforcement learning: an introduction. Cambridge, MA,
USA: A Bradford Book.

López-Lozada et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.556 24/25

https://peerj.com
http://dx.doi.org/10.1080/01605682.2019.1654941
http://dx.doi.org/10.1080/23311916.2019.1632046
http://dx.doi.org/10.1186/s13638-019-1396-2
http://dx.doi.org/10.1007/s10846-018-0951-0
http://dx.doi.org/10.5220/0010323311051113978-989-758-484-8
http://dx.doi.org/10.1504/IJESMS.2019.101670
http://dx.doi.org/10.1016/j.ifacol.2017.08.1822
http://dx.doi.org/10.1109/IROS.2017.8206600
https://emanual.robotis.com/docs/en/edu/bioloid/premium/
https://emanual.robotis.com/docs/en/edu/bioloid/premium/
http://dx.doi.org/10.1002/9781119994374.ch5
http://dx.doi.org/10.7717/peerj-cs.556

Teja SP, Alami R. 2020.HATEB-2: reactive planning and decision making in human-
robot co-navigation. In: 2020 29th IEEE international conference on robot and human
interactive communication (RO-MAN). Piscataway: IEEE, 179–186
DOI 10.1109/RO-MAN47096.2020.9223463.

Tom. 2019. Lipo voltage chart: show the relationship of voltage and capacity. Ampow
Blog. Ampow. Available at https:// blog.ampow.com/ lipo-voltage-chart/ .

TomyM, Lacerda B, Hawes N,Wyatt JL. 2020. Battery charge scheduling in long-life
autonomous mobile robots via multi-objective decision making under uncertainty.
Robotics and Autonomous Systems 133:103629
DOI 10.1016/j.robot.2020.103629.

Tuazon JPC, Prado KGV, Cabial NJA, Enriquez RL, Rivera FLC, Serrano KKD. 2016.
An improved collision avoidance scheme using artificial potential field with fuzzy
logic. In: 2016 IEEE region 10 conference (TENCON). Piscataway: IEEE, 291–296.

Wang D, Hu Y, Ma T. 2020.Mobile robot navigation with the combination of supervised
learning in cerebellum and reward-based learning in basal ganglia. Cognitive Systems
Research 59:1–14 DOI 10.1016/j.cogsys.2019.09.006.

Wei P-A, Tsai C, Tai F. 2019. Autonomous navigation of an indoor mecanum-wheeled
omnidirectional robot using segnet. In: Proceedings of 2019 national symposium on
system science and engineering.

Xu J, Wang J, ChenW. 2019. An efficient recharging task planning method for multi-
robot autonomous recharging problem. In: 2019 IEEE international conference on
robotics and biomimetics (ROBIO). Piscataway: IEEE, 1839–1844.

Yang Y, BevanMA, Li B. 2020. Efficient navigation of colloidal robots in an unknown
environment via deep reinforcement learning. Advanced Intelligent Systems
2(1):1900106 DOI 10.1002/aisy.201900106.

Zapata-Cortes O, Acosta-Amaya G, Jiménez-Builes J. 2020. Esquema de control reactivo
basado en comportamientos difusos para la navegacin de un robot mvil en entornos
interiores. Revista Politécnica 16(31):9–18 DOI 10.33571/rpolitec.v16n31a1.

López-Lozada et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.556 25/25

https://peerj.com
http://dx.doi.org/10.1109/RO-MAN47096.2020.9223463
https://blog.ampow.com/lipo-voltage-chart/
http://dx.doi.org/10.1016/j.robot.2020.103629
http://dx.doi.org/10.1016/j.cogsys.2019.09.006
http://dx.doi.org/10.1002/aisy.201900106
http://dx.doi.org/10.33571/rpolitec.v16n31a1
http://dx.doi.org/10.7717/peerj-cs.556

