
Submitted 9 September 2015
Accepted 8 March 2016
Published 6 April 2016

Corresponding author
Thomas V. Wiecki,
thomas.wiecki@gmail.com

Academic editor
Charles Elkan

Additional Information and
Declarations can be found on
page 22

DOI 10.7717/peerj-cs.55

Copyright
2016 Salvatier et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Probabilistic programming in Python
using PyMC3
John Salvatier1, Thomas V. Wiecki2 and Christopher Fonnesbeck3

1AI Impacts, Berkeley, CA, United States
2Quantopian Inc, Boston, MA, United States
3Department of Biostatistics, Vanderbilt University, Nashville, TN, United States

ABSTRACT
Probabilistic programming allows for automatic Bayesian inference on user-defined
probabilistic models. Recent advances in Markov chain Monte Carlo (MCMC)
sampling allow inference on increasingly complexmodels. This class ofMCMC, known
as Hamiltonian Monte Carlo, requires gradient information which is often not readily
available. PyMC3 is a new open source probabilistic programming framework written
in Python that uses Theano to compute gradients via automatic differentiation as well as
compile probabilistic programs on-the-fly to C for increased speed. Contrary to other
probabilistic programming languages, PyMC3 allows model specification directly in
Python code. The lack of a domain specific language allows for great flexibility and
direct interaction with the model. This paper is a tutorial-style introduction to this
software package.

Subjects Data Mining and Machine Learning, Data Science, Scientific Computing and Simulation
Keywords Bayesian statistic, Probabilistic Programming, Python, Markov chain Monte Carlo,
Statistical modeling

INTRODUCTION
Probabilistic programming (PP) allows for flexible specification and fitting of Bayesian
statistical models. PyMC3 is a new, open-source PP framework with an intuitive and
readable, yet powerful, syntax that is close to the natural syntax statisticians use to
describe models. It features next-generation Markov chain Monte Carlo (MCMC)
sampling algorithms such as the No-U-Turn Sampler (NUTS) (Hoffman & Gelman,
2014), a self-tuning variant of Hamiltonian Monte Carlo (HMC) (Duane et al., 1987). This
class of samplers works well on high dimensional and complex posterior distributions
and allows many complex models to be fit without specialized knowledge about fitting
algorithms. HMC and NUTS take advantage of gradient information from the likelihood
to achieve much faster convergence than traditional sampling methods, especially for larger
models. NUTS also has several self-tuning strategies for adaptively setting the tuneable
parameters of Hamiltonian Monte Carlo, which means specialized knowledge about how
the algorithms work is not required. PyMC3, Stan (Stan Development Team, 2015), and the
LaplacesDemon package for R are currently the only PP packages to offer HMC.

A number of probabilistic programming languages and systems have emerged over
the past 2–3 decades. One of the earliest to enjoy widespread usage was the BUGS
language (Spiegelhalter et al., 1995), which allows for the easy specification of Bayesian

How to cite this article Salvatier et al. (2016), Probabilistic programming in Python using PyMC3. PeerJ Comput. Sci. 2:e55; DOI
10.7717/peerj-cs.55

https://peerj.com
mailto:thomas.wiecki@gmail.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.55
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj-cs.55

models, and fitting them via Markov chain Monte Carlo methods. Newer, more expressive
languages have allowed for the creation of factor graphs and probabilistic graphical
models. Each of these systems are domain-specific languages built on top of existing low-
level languages; notable examples include Church (Goodman et al., 2012) (derived from
Scheme), Anglican (Wood, Van de Meent & Mansinghka, 2014) (integrated with Clojure
and compiled with a Java Virtual Machine), Venture (Mansinghka, Selsam & Perov, 2014)
(built from C++), Infer.NET (Minka et al., 2010) (built upon the .NET framework),
Figaro (Pfeffer, 2014) (embedded into Scala), WebPPL (Goodman & Stuhlmüller, 2014)
(embedded into JavaScript), Picture (Kulkarni et al., 2015) (embedded into Julia), and
Quicksand (Ritchie, 2014) (embedded into Lua).

Probabilistic programming in Python (Python Software Foundation, 2010) confers a
number of advantages including multi-platform compatibility, an expressive yet clean and
readable syntax, easy integration with other scientific libraries, and extensibility via C, C++,
Fortran or Cython (Behnel et al., 2011). These features make it straightforward to write and
use custom statistical distributions, samplers and transformation functions, as required by
Bayesian analysis. While most of PyMC3’s user-facing features are written in pure Python,
it leverages Theano (Bergstra et al., 2010; Bastien et al., 2012) to transparently transcode
models to C and compile them to machine code, thereby boosting performance. Theano
is a library that allows expressions to be defined using generalized vector data structures
called tensors, which are tightly integrated with the popular NumPy (Van der Walt, Colbert,
Varoquaux, 2011) ndarray data structure, and similarly allow for broadcasting and
advanced indexing, just as NumPy arrays do. Theano also automatically optimizes the
likelihood’s computational graph for speed and provides simple GPU integration.

Here, we present a primer on the use of PyMC3 for solving general Bayesian statistical
inference and prediction problems. We will first describe basic PyMC3 usage, including
installation, data creation, model definition, model fitting and posterior analysis. We will
then employ two case studies to illustrate how to define and fit more sophisticated models.
Finally we will show how PyMC3 can be extended and discuss more advanced features,
such as the Generalized Linear Models (GLM) subpackage, custom distributions, custom
transformations and alternative storage backends.

INSTALLATION
Running PyMC3 requires a working Python interpreter (Python Software Foundation,
2010), either version 2.7 (or more recent) or 3.4 (or more recent); we recommend
that new users install version 3.4. A complete Python installation for Mac OSX, Linux
and Windows can most easily be obtained by downloading and installing the free
AnacondaPythonDistribution by ContinuumIO.

PyMC3 can be installed using ‘pip‘:

pip install git+https://github.com/pymc-devs/pymc3

PyMC3 depends on several third-party Python packages which will be automatically
installed when installing via pip. The four required dependencies are: Theano, NumPy,

Salvatier et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.55 2/24

https://peerj.com
https://store.continuum.io/cshop/anaconda/
http://dx.doi.org/10.7717/peerj-cs.55

SciPy, and Matplotlib. To take full advantage of PyMC3, the optional dependencies
Pandas and Patsy should also be installed.

pip install patsy pandas

The source code for PyMC3 is hosted on GitHub at https://github.com/pymc-
devs/pymc3 and is distributed under the liberal ApacheLicense2.0. On the GitHub site,
users may also report bugs and other issues, as well as contribute code to the project,
which we actively encourage. Comprehensive documentation is readily available at
http://pymc-devs.github.io/pymc3/.

A MOTIVATING EXAMPLE: LINEAR REGRESSION
To introduce model definition, fitting and posterior analysis, we first consider a simple
Bayesian linear regression model with normal priors on the parameters. We are interested
in predicting outcomes Y as normally-distributed observations with an expected value µ
that is a linear function of two predictor variables, X1 and X2.

Y ∼N (µ,σ 2)

µ=α+β1X1+β2X2

where α is the intercept, and βi is the coefficient for covariate Xi, while σ represents the
observation or measurement error. We will apply zero-mean normal priors with variance
of 10 to both regression coefficients, which corresponds to weak information regarding the
true parameter values. Since variances must be positive, we will also choose a half-normal
distribution (normal distribution bounded below at zero) as the prior for σ .

α∼N (0,10)

βi∼N (0,10)

σ ∼ |N (0,1)|.

Generating data
We can simulate some data from this model using NumPy’s randommodule, and then use
PyMC3 to try to recover the corresponding parameters. The following code implements
this simulation, and the resulting data are shown in Fig. 1:

import numpy as np
import matplotlib.pyplot as plt

Intialize random number generator
np.random.seed(123)

True parameter values
alpha, sigma = 1, 1
beta = [1, 2.5]

Salvatier et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.55 3/24

https://peerj.com
https://github.com/pymc-devs/pymc3
https://github.com/pymc-devs/pymc3
https://github.com/pymc-devs/pymc3/blob/master/LICENSE
http://pymc-devs.github.io/pymc3/
http://dx.doi.org/10.7717/peerj-cs.55

Figure 1 Simulated regression data.

Size of dataset
size = 100

Predictor variable
X1 = np.linspace(0, 1, size)
X2 = np.linspace(0,.2, size)

Simulate outcome variable
Y = alpha + beta[0]*X1 + beta[1]*X2 + np.random.randn(size)*sigma

Model specification
Specifying this model in PyMC3 is straightforward because the syntax is similar to the
statistical notation. For the most part, each line of Python code corresponds to a line in the
model notation above. First, we import the components we will need from PyMC3.

from pymc3 import Model, Normal, HalfNormal

The following code implements the model in PyMC:

basic_model = Model()

with basic_model:

Priors for unknown model parameters
alpha = Normal(’alpha’, mu=0, sd=10)
beta = Normal(’beta’, mu=0, sd=10, shape=2)
sigma = HalfNormal(’sigma’, sd=1)

Expected value of outcome
mu = alpha + beta[0]*X1 + beta[1]*X2

Salvatier et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.55 4/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.55

Likelihood (sampling distribution) of observations
Y_obs = Normal(’Y_obs’, mu=mu, sd=sigma, observed=Y)

The first line,

basic_model = Model()

creates a new Model object which is a container for the model random variables. Following
instantiation of the model, the subsequent specification of the model components is
performed inside a with statement:

with basic_model:

This creates a context manager, with our basic_model as the context, that includes all
statements until the indented block ends. This means all PyMC3 objects introduced in the
indented code block below the with statement are added to the model behind the scenes.
Absent this context manager idiom, we would be forced to manually associate each of the
variables with basic_model as they are created, which would result in more verbose code.
If you try to create a new random variable outside of a model context manger, it will raise
an error since there is no obvious model for the variable to be added to.

The first three statements in the contextmanager create stochastic randomvariables with
Normal prior distributions for the regression coefficients, and a half-normal distribution
for the standard deviation of the observations, σ .

alpha = Normal(’alpha’, mu=0, sd=10)
beta = Normal(’beta’, mu=0, sd=10, shape=2)
sigma = HalfNormal(’sigma’, sd=1)

These are stochastic because their values are partly determined by its parents in the
dependency graph of random variables, which for priors are simple constants, and are
partly random, according to the specified probability distribution.

The Normal constructor creates a normal random variable to use as a prior. The first
argument for random variable constructors is always the name of the variable, which
should almost always match the name of the Python variable being assigned to, since
it can be used to retrieve the variable from the model when summarizing output. The
remaining required arguments for a stochastic object are the parameters, which in the
case of the normal distribution are the mean mu and the standard deviation sd, which
we assign hyperparameter values for the model. In general, a distribution’s parameters
are values that determine the location, shape or scale of the random variable, depending
on the parameterization of the distribution. Most commonly used distributions, such as
Beta, Exponential, Categorical, Gamma, Binomial and others, are available as PyMC3
objects, and do not need to be manually coded by the user.

The beta variable has an additional shape argument to denote it as a vector-valued
parameter of size 2. The shape argument is available for all distributions and specifies the
length or shape of the random variable; when unspecified, it defaults to a value of one (i.e.,
a scalar). It can be an integer to specify an array, or a tuple to specify a multidimensional

Salvatier et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.55 5/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.55

array. For example, shape=(5,7) makes random variable that takes a 5 by 7 matrix as its
value.

Detailed notes about distributions, sampling methods and other PyMC3 functions are
available via the help function.

help(Normal)

Help on class Normal in module pymc3.distributions.continuous:

class Normal(pymc3.distributions.distribution.Continuous)
| Normal log-likelihood.
|
| .. math::

ight\}
|
Parameters
mu : float
Mean of the distribution.
tau : float
Precision of the distribution, which corresponds to
:math:‘1/\sigma^2‘ (tau > 0).
sd : float
Standard deviation of the distribution. Alternative parameterization.
.. note::
- :math:‘E(X) = \mu‘
- :math:‘Var(X) = 1 / \tau‘

Having defined the priors, the next statement creates the expected value mu of the
outcomes, specifying the linear relationship:

mu = alpha + beta[0]*X1 + beta[1]*X2

This creates a deterministic random variable, which implies that its value is completely
determined by its parents’ values. That is, there is no uncertainty in the variable beyond
that which is inherent in the parents’ values. Here, mu is just the sum of the intercept alpha
and the two products of the coefficients in beta and the predictor variables, whatever their
current values may be.

PyMC3 random variables and data can be arbitrarily added, subtracted, divided, or
multiplied together, as well as indexed (extracting a subset of values) to create new random
variables. Many common mathematical functions like sum, sin, exp and linear algebra
functions like dot (for inner product) and inv (for inverse) are also provided. Applying
operators and functions to PyMC3 objects results in tremendous model expressivity.

The final line of the model defines Y_obs, the sampling distribution of the response
data.

Y_obs = Normal(’Y_obs’, mu=mu, sd=sigma, observed=Y)

This is a special case of a stochastic variable that we call an observed stochastic, and
it is the data likelihood of the model. It is identical to a standard stochastic, except that

Salvatier et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.55 6/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.55

its observed argument, which passes the data to the variable, indicates that the values
for this variable were observed, and should not be changed by any fitting algorithm
applied to the model. The data can be passed in the form of either a numpy.ndarray or
pandas.DataFrame object.

Notice that, unlike the prior distributions, the parameters for the normal distribution
of Y_obs are not fixed values, but rather are the deterministic object mu and the stochastic
sigma. This creates parent-child relationships between the likelihood and these two
variables, as part of the directed acyclic graph of the model.

Model fitting
Having completely specified our model, the next step is to obtain posterior estimates
for the unknown variables in the model. Ideally, we could derive the posterior estimates
analytically, but for most non-trivial models this is not feasible. We will consider two
approaches, whose appropriateness depends on the structure of the model and the goals of
the analysis: finding the maximum a posteriori (MAP) point using optimization methods,
and computing summaries based on samples drawn from the posterior distribution using
MCMC sampling methods.

Maximum a posteriori methods
The maximum a posteriori (MAP) estimate for a model, is the mode of the posterior
distribution and is generally found using numerical optimization methods. This is often
fast and easy to do, but only gives a point estimate for the parameters and can be misleading
if the mode isn’t representative of the distribution. PyMC3 provides this functionality with
the find_MAP function.

Below we find the MAP for our original model. The MAP is returned as a parameter
point, which is always represented by a Python dictionary of variable names to NumPy
arrays of parameter values.

from pymc3 import find_MAP

map_estimate = find_MAP(model=basic_model)

print(map_estimate)

{‘alpha’: array(1.0136638069892534),
‘beta’: array([1.46791629, 0.29358326]),
‘sigma_log’: array(0.11928770010017063)}

By default, find_MAP uses the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
optimization algorithm to find the maximum of the log-posterior but also allows selection
of other optimization algorithms from the scipy.optimizemodule. For example, below
we use Powell’s method to find the MAP.

from scipy import optimize

Salvatier et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.55 7/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.55

map_estimate = find_MAP(model=basic_model, fmin=optimize.fmin_powell)

print(map_estimate)

{’alpha’: array(1.0175522109423465),
’beta’: array([1.51426782, 0.03520891]),
’sigma_log’: array(0.11815106849951475)}

It is important to note that the MAP estimate is not always reasonable, especially if the
mode is at an extreme. This can be a subtle issue; with high dimensional posteriors, one
can have areas of extremely high density but low total probability because the volume is
very small. This will often occur in hierarchical models with the variance parameter for the
random effect. If the individual group means are all the same, the posterior will have near
infinite density if the scale parameter for the group means is almost zero, even though the
probability of such a small scale parameter will be small since the group means must be
extremely close together.

Also, most techniques for finding theMAP estimate only find a local optimium (which is
often good enough), and can therefore fail badly for multimodal posteriors if the different
modes are meaningfully different.

Sampling methods
Though finding the MAP is a fast and easy way of obtaining parameter estimates of
well-behaved models, it is limited because there is no associated estimate of uncertainty
produced with the MAP estimates. Instead, a simulation-based approach such as MCMC
can be used to obtain a Markov chain of values that, given the satisfaction of certain
conditions, are indistinguishable from samples from the posterior distribution.

To conduct MCMC sampling to generate posterior samples in PyMC3, we specify
a step method object that corresponds to a single iteration of a particular MCMC
algorithm, such as Metropolis, Slice sampling, or the No-U-Turn Sampler (NUTS).
PyMC3’s step_methods submodule contains the following samplers: NUTS, Metropolis,
Slice, HamiltonianMC, and BinaryMetropolis.

Gradient-based sampling methods
PyMC3 implements several standard sampling algorithms, such as adaptive Metropolis-
Hastings and adaptive slice sampling, but PyMC3’s most capable step method is the
No-U-Turn Sampler. NUTS is especially useful for sampling from models that have many
continuous parameters, a situation where older MCMC algorithms work very slowly. It
takes advantage of information about where regions of higher probability are, based on the
gradient of the log posterior-density. This helps it achieve dramatically faster convergence
on large problems than traditional sampling methods achieve. PyMC3 relies on Theano to
analytically compute model gradients via automatic differentiation of the posterior density.
NUTS also has several self-tuning strategies for adaptively setting the tunable parameters
of Hamiltonian Monte Carlo. For random variables that are undifferentiable (namely,
discrete variables) NUTS cannot be used, but it may still be used on the differentiable
variables in a model that contains undifferentiable variables.

Salvatier et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.55 8/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.55

NUTS requires a scaling matrix parameter, which is analogous to the variance parameter
for the jump proposal distribution in Metropolis-Hastings, although NUTS uses it
somewhat differently. The matrix gives an approximate shape of the posterior distribution,
so that NUTS does not make jumps that are too large in some directions and too small
in other directions. It is important to set this scaling parameter to a reasonable value to
facilitate efficient sampling. This is especially true for models that have many unobserved
stochastic random variables or models with highly non-normal posterior distributions.
Poor scaling parameters will slow down NUTS significantly, sometimes almost stopping
it completely. A reasonable starting point for sampling can also be important for efficient
sampling, but not as often.

Fortunately, NUTS can often make good guesses for the scaling parameters. If you pass
a point in parameter space (as a dictionary of variable names to parameter values, the same
format as returned by find_MAP) to NUTS, it will look at the local curvature of the log
posterior-density (the diagonal of the Hessian matrix) at that point to guess values for a
good scaling vector, which can result in a good value. The MAP estimate is often a good
point to use to initiate sampling. It is also possible to supply your own vector or scaling
matrix to NUTS. Additionally, the find_hessian or find_hessian_diag functions can
be used to modify a Hessian at a specific point to be used as the scaling matrix or vector.

Here, we will use NUTS to sample 2000 draws from the posterior using the MAP as
the starting and scaling point. Sampling must also be performed inside the context of the
model.

from pymc3 import NUTS, sample

with basic_model:

obtain starting values via MAP
start = find_MAP(fmin=optimize.fmin_powell)

instantiate sampler
step = NUTS(scaling=start)

draw 2000 posterior samples
trace = sample(2000, step, start=start)

[-----------------100%-----------------] 2000 of 2000 complete in 4.6 sec

The sample function runs the step method(s) passed to it for the given number of
iterations and returns a Trace object containing the samples collected, in the order they
were collected. The trace object can be queried in a similar way to a dict containing
a map from variable names to numpy.arrays. The first dimension of the array is the
sampling index and the later dimensions match the shape of the variable. We can extract
the last 5 values for the alpha variable as follows

trace[’alpha’][-5:]

Salvatier et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.55 9/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.55

array([0.98134501, 1.04901676, 1.03638451, 0.88261935, 0.95910723])

Posterior analysis
PyMC3 provides plotting and summarization functions for inspecting the sampling output.
A simple posterior plot can be created using traceplot, its output is shown in Fig. 2.

from pymc3 import traceplot

traceplot(trace)

The left column consists of a smoothed histogram (using kernel density estimation) of
the marginal posteriors of each stochastic random variable while the right column contains
the samples of the Markov chain plotted in sequential order. The beta variable, being
vector-valued, produces two histograms and two sample traces, corresponding to both
predictor coefficients.

For a tabular summary, the summary function provides a text-based output of common
posterior statistics:
from pymc3 import summary

summary(trace[’alpha’])

alpha:

Mean SD MC Error 95% HPD interval

1.024 0.244 0.007 [0.489, 1.457]

Posterior quantiles:
2.5 25 50 75 97.5
|--------------|==============|==============|--------------|

0.523 0.865 1.024 1.200 1.501

CASE STUDY 1: STOCHASTIC VOLATILITY
We present a case study of stochastic volatility, time varying stock market volatility, to
illustrate PyMC3’s capability for addressing more realistic problems. The distribution of
market returns is highly non-normal, which makes sampling the volatilities significantly
more difficult. This example has 400+ parameters so using older sampling algorithms like
Metropolis-Hastings would be inefficient, generating highly auto-correlated samples with
a low effective sample size. Instead, we use NUTS, which is dramatically more efficient.

Salvatier et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.55 10/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.55

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Fr
eq

ue
nc

y

alpha

0 1000 2000 3000 4000 5000
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

Sa
m

pl
e

va
lu

e

alpha

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Fr
eq

ue
nc

y

beta

0 1000 2000 3000 4000 5000
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Sa
m

pl
e

va
lu

e

beta

0.3 0.2 0.1 0.0 0.1 0.2 0.3
0
1
2
3
4
5
6

Fr
eq

ue
nc

y

sigma_log

0 1000 2000 3000 4000 5000
0.3
0.2
0.1
0.0
0.1
0.2
0.3

Sa
m

pl
e

va
lu

e

sigma_log

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
0
1
2
3
4
5
6

Fr
eq

ue
nc

y

sigma

0 1000 2000 3000 4000 5000
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

Sa
m

pl
e

va
lu

e

sigma

Figure 2 Kernel density estimates and simulated trace for each variable in the linear regressionmodel.

The model
Asset prices have time-varying volatility (variance of day over day returns). In some
periods, returns are highly variable, while in others they are very stable. Stochastic volatility
models address this with a latent volatility variable, which is allowed to change over time.
The following model is similar to the one described in the NUTS paper (Hoffman &
Gelman, 2014, p. 21).

σ ∼ exp(50)

ν∼ exp(.1)

si∼N (si−1,σ−2)

log(yi)∼T (ν,0,exp(−2si)).

Here, y is the response variable, a daily return series which we model with a Student-T
distribution having an unknown degrees of freedom parameter, and a scale parameter
determined by a latent process s. The individual si are the individual daily log volatilities in
the latent log volatility process.

Salvatier et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.55 11/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.55

Figure 3 Historical daily returns of the S&P500 during the 2008 financial crisis.

The data
Our data consist of daily returns of the S&P 500 during the 2008 financial crisis.

import pandas as pd
returns = pd.read_csv(’data/SP500.csv’, index_col=0, parse_dates=True)

See Fig. 3 for a plot of the daily returns data. As can be seen, stock market volatility
increased remarkably during the 2008 financial crisis.

Model implementation
As with the linear regression example, implementing the model in PyMC3 mirrors its
statistical specification. This model employs several new distributions: the Exponential
distribution for the ν and σ priors, the Student-T (StudentT) distribution for distribution
of returns, and the GaussianRandomWalk for the prior for the latent volatilities.

In PyMC3, variables with positive support like Exponential are transformed with a log
transform, making sampling more robust. Behind the scenes, the variable is transformed
to the unconstrained space (named ‘‘variableName_log’’) and added to the model for
sampling. In this model this happens behind the scenes for both the degrees of freedom, nu,
and the scale parameter for the volatility process, sigma, since they both have exponential
priors. Variables with priors that are constrained on both sides, like Beta or Uniform, are
also transformed to be unconstrained, here with a log odds transform.

Although (unlike model specification in PyMC2) we do not typically provide starting
points for variables at the model specification stage, it is possible to provide an initial value
for any distribution (called a ‘‘test value’’ in Theano) using the testval argument. This
overrides the default test value for the distribution (usually the mean, median or mode of

Salvatier et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.55 12/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.55

the distribution), and is most often useful if some values are invalid and we want to ensure
we select a valid one. The test values for the distributions are also used as a starting point
for sampling and optimization by default, though this is easily overriden.

The vector of latent volatilities s is given a prior distribution by a GaussianRandomWalk
object. As its name suggests, GaussianRandomWalk is a vector-valued distribution where
the values of the vector form a random normal walk of length n, as specified by the shape
argument. The scale of the innovations of the random walk, sigma, is specified in terms of
the precision of the normally distributed innovations and can be a scalar or vector.

from pymc3 import Exponential, StudentT, exp, Deterministic
from pymc3.distributions.timeseries import GaussianRandomWalk

with Model() as sp500_model:

nu = Exponential(’nu’, 1./10, testval=5.)

sigma = Exponential(’sigma’, 1./.02, testval=.1)

s = GaussianRandomWalk(’s’, sigma**-2, shape=len(returns))

volatility_process = Deterministic(’volatility_process’, exp(-2*s))

r = StudentT(’r’, nu, lam=1/volatility_process, observed=returns[’S&P500’])

Notice that we transform the log volatility process s into the volatility process by
exp(-2*s). Here, exp is a Theano function, rather than the corresponding function in
NumPy; Theano provides a large subset of the mathematical functions that NumPy does.

Also note that we have declared the Model name sp500_model in the first occurrence of
the context manager, rather than splitting it into two lines, as we did for the first example.

Fitting
Before we draw samples from the posterior, it is prudent to find a decent starting value,
by which we mean a point of relatively high probability. For this model, the full maximum
a posteriori (MAP) point over all variables is degenerate and has infinite density. But, if
we fix log_sigma and nu it is no longer degenerate, so we find the MAP with respect
only to the volatility process s keeping log_sigma and nu constant at their default
values (remember that we set testval=.1 for sigma). We use the Limited-memory
BFGS (L-BFGS) optimizer, which is provided by the scipy.optimize package, as it is
more efficient for high dimensional functions; this model includes 400 stochastic random
variables (mostly from s).

As a sampling strategy, we execute a short initial run to locate a volume of high
probability, then start again at the new starting point to obtain a sample that can be used
for inference. trace[-1] gives us the last point in the sampling trace. NUTSwill recalculate
the scaling parameters based on the new point, and in this case it leads to faster sampling
due to better scaling.

import scipy
with sp500_model:

Salvatier et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.55 13/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.55

0 10 20 30 40 50 60 70 80 90
0.00
0.01
0.02
0.03
0.04
0.05
0.06

Fr
eq

ue
nc

y

nu

0 500 1000 1500 2000
0

10
20
30
40
50
60
70
80
90

Sa
m

pl
e

va
lu

e

nu

0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22
0
5

10
15
20
25

Fr
eq

ue
nc

y

sigma

0 500 1000 1500 2000
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22

Sa
m

pl
e

va
lu

e

sigma

Figure 4 Posterior samples of degrees of freedom (nu) and scale (sigma) parameters of the stochastic volatility model. Each plotted line repre-
sents a single independent chain sampled in parallel.

start = find_MAP(vars=[s], fmin=scipy.optimize.fmin_l_bfgs_b)

step = NUTS(scaling=start)
trace = sample(100, step, progressbar=False)

Start next run at the last sampled position.
step = NUTS(scaling=trace[-1], gamma=.25)
trace = sample(2000, step, start=trace[-1], progressbar=False, njobs=2)

Notice that the call to sample includes an optional njobs=2 argument, which enables
the parallel sampling of 4 chains (assuming that we have 2 processors available).

We can check our samples by looking at the traceplot for nu and sigma; each parallel
chain will be plotted within the same set of axes (Fig. 4).

traceplot(trace, [nu, sigma]);

Finally we plot the distribution of volatility paths by plotting many of our sampled
volatility paths on the same graph (Fig. 5). Each is rendered partially transparent (via the
alpha argument in Matplotlib’s plot function) so the regions where many paths overlap
are shaded more darkly.

fig, ax = plt.subplots(figsize=(15, 8))
returns.plot(ax=ax)
ax.plot(returns.index, 1/np.exp(trace[’s’,::30].T), ’r’, alpha=.03);
ax.set(title=’volatility_process’, xlabel=’time’, ylabel=’volatility’);
ax.legend([’S&P500’, ’stochastic volatility process’])

As you can see, the model correctly infers the increase in volatility during the 2008
financial crash.

It is worth emphasizing the complexity of this model due to its high dimensionality and
dependency-structure in the random walk distribution. NUTS as implemented in PyMC3,
however, correctly infers the posterior distribution with ease.

Salvatier et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.55 14/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.55

Feb 2008

Apr 2008

Jun 2008

Aug 2008

Oct 2008

Dec 2008

Feb 2009

Apr 2009

Jun 2009

Aug 2009

time

0.10

0.05

0.00

0.05

0.10

0.15

0.20

vo
la

til
ity

volatility_process
S&P500
stochastic volatility process

Figure 5 Posterior plot of volatility paths (red), alongside market data (blue).

Figure 6 Recorded counts of coal mining disasters in the UK, 1851–1962.

CASE STUDY 2: COAL MINING DISASTERS
This case study implements a change-point model for a time series of recorded coal mining
disasters in the UK from 1851 to 1962 (Jarrett, 1979). The annual number of disasters is
thought to have been affected by changes in safety regulations during this period, as can be
seen in Fig. 6. We have also included a pair of years with missing data, identified as missing
by a NumPy MaskedArray using -999 as a sentinel value.

Salvatier et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.55 15/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.55

Our objective is to estimate when the change occurred, in the presence of missing data,
using multiple step methods to allow us to fit a model that includes both discrete and
continuous random variables.

disaster_data = np.ma.masked_values([4, 5, 4, 0, 1, 4, 3, 4, 0, 6, 3, 3, 4, 0, 2, 6,
3, 3, 5, 4, 5, 3, 1, 4, 4, 1, 5, 5, 3, 4, 2, 5,
2, 2, 3, 4, 2, 1, 3, -999, 2, 1, 1, 1, 1, 3, 0, 0,
1, 0, 1, 1, 0, 0, 3, 1, 0, 3, 2, 2, 0, 1, 1, 1,
0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 2,
3, 3, 1, -999, 2, 1, 1, 1, 1, 2, 4, 2, 0, 0, 1, 4,
0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1], value=-999)

year = np.arange(1851, 1962)

plot(year, disaster_data, ’o’, markersize=8);
ylabel("Disaster count")
xlabel("Year")

Counts of disasters in the time series is thought to follow a Poisson process, with a
relatively large rate parameter in the early part of the time series, and a smaller rate in
the later part. The Bayesian approach to such a problem is to treat the change point as an
unknown quantity in the model, and assign it a prior distribution, which we update to a
posterior using the evidence in the dataset.

In our model,

Dt ∼Pois(rt)

rt =

{
l, if t < s
e, if t ≥ s

s∼Unif(tl ,th)

e∼ exp(1)

l ∼ exp(1)

the parameters are defined as follows:

• Dt : The number of disasters in year t
• rt : The rate parameter of the Poisson distribution of disasters in year t .
• s: The year in which the rate parameter changes (the switchpoint).
• e: The rate parameter before the switchpoint s.
• l : The rate parameter after the switchpoint s.
• tl , th: The lower and upper boundaries of year t .

from pymc3 import DiscreteUniform, Poisson, switch

with Model() as disaster_model:

switchpoint = DiscreteUniform(’switchpoint’, lower=year.min(),
upper=year.max(), testval=1900)

Priors for pre- and post-switch rates number of disasters
early_rate = Exponential(’early_rate’, 1)

Salvatier et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.55 16/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.55

late_rate = Exponential(’late_rate’, 1)

Allocate appropriate Poisson rates to years before and after current
rate = switch(switchpoint >= year, early_rate, late_rate)

disasters = Poisson(’disasters’, rate, observed=disaster_data)

This model introduces discrete variables with the Poisson likelihood and a discrete-
uniform prior on the change-point s. Our implementation of the rate variable is as a
conditional deterministic variable, where its value is conditioned on the current value of s.

rate = switch(switchpoint >= year, early_rate, late_rate)

The conditional statement is realized using the Theano function switch, which uses the
first argument to select either of the next two arguments.

Missing values are handled concisely by passing aMaskedArrayor apandas.DataFrame
with NaN values to the observed argument when creating an observed stochastic
random variable. From this, PyMC3 automatically creates another random variable,
disasters.missing_values, which treats themissing values as unobserved stochastic
nodes. All we need to do to handle the missing values is ensure we assign a step method to
this random variable.

Unfortunately, because they are discrete variables and thus have nomeaningful gradient,
we cannot useNUTS for sampling either switchpoint or themissing disaster observations.
Instead, we will sample using a Metroplis step method, which implements self-tuning
Metropolis-Hastings, because it is designed to handle discrete values.

Here, the sample function receives a list containing both the NUTS and Metropolis
samplers, and sampling proceeds by first applying step1 then step2 at each iteration.

from pymc3 import Metropolis

with disaster_model:
step1 = NUTS([early_rate, late_rate])

step2 = Metropolis([switchpoint, disasters.missing_values[0]])

trace = sample(10000, step=[step1, step2])

[-----------------100%-----------------] 10000 of 10000 complete in 6.9 sec

In the trace plot (Fig. 7) we can see that there is about a 10 year span that’s plausible for
a significant change in safety, but a 5-year span that contains most of the probability mass.
The distribution is jagged because of the jumpy relationship between the year switch-point
and the likelihood and not due to sampling error.

Salvatier et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.55 17/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.55

1885 1890 1895 1900
0

500
1000
1500
2000
2500

Fr
eq

ue
nc

y

switchpoint

0 2000 4000 6000 8000 10000
1880
1885
1890
1895
1900
1905

Sa
m

pl
e

va
lu

e

switchpoint

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Fr
eq

ue
nc

y

early_rate_log

0 2000 4000 6000 8000 10000
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

Sa
m

pl
e

va
lu

e

early_rate_log

0.6 0.4 0.2 0.0 0.2 0.4
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Fr
eq

ue
nc

y

late_rate_log

0 2000 4000 6000 8000 10000
0.6
0.4
0.2
0.0
0.2
0.4

Sa
m

pl
e

va
lu

e

late_rate_log

0 1 2 3 4 5 6 7
0

500
1000
1500
2000
2500
3000
3500
4000
4500

Fr
eq

ue
nc

y

disasters_missing

0 2000 4000 6000 8000 10000
0
2
4
6
8

10
12

Sa
m

pl
e

va
lu

e

disasters_missing

2.0 2.5 3.0 3.5 4.0 4.5
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Fr
eq

ue
nc

y

early_rate

0 2000 4000 6000 8000 10000
2.0
2.5
3.0
3.5
4.0
4.5

Sa
m

pl
e

va
lu

e

early_rate

0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Fr
eq

ue
nc

y

late_rate

0 2000 4000 6000 8000 10000
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Sa
m

pl
e

va
lu

e

late_rate

Figure 7 Posterior distributions and traces from disasters change point model.

Salvatier et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.55 18/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.55

PYMC3 FEATURES
Arbitrary deterministic variables
Due to its reliance on Theano, PyMC3 provides many mathematical functions and
operators for transforming random variables into new random variables. However, the
library of functions in Theano is not exhaustive, therefore PyMC3 provides functionality
for creating arbitrary Theano functions in pure Python, and including these functions in
PyMC3 models. This is supported with the as_op function decorator.

import theano.tensor as T
from theano.compile.ops import as_op

@as_op(itypes=[T.lscalar], otypes=[T.lscalar])
def crazy_modulo3(value):

if value > 0:
return value % 3

else :
return (-value + 1) % 3

with Model() as model_deterministic:
a = Poisson(’a’, 1)
b = crazy_modulo3(a)

Theano requires the types of the inputs and outputs of a function to be declared, which
are specified for as_op by itypes for inputs and otypes for outputs. An important
drawback of this approach is that it is not possible for Theano to inspect these functions
in order to compute the gradient required for the Hamiltonian-based samplers. Therefore,
it is not possible to use the HMC or NUTS samplers for a model that uses such an operator.
However, it is possible to add a gradient if we inherit from theano.Op instead of using
as_op.

Arbitrary distributions
The library of statistical distributions in PyMC3, though large, is not exhaustive, but PyMC
allows for the creation of user-defined probability distributions. For simple statistical
distributions, the DensityDist function takes as an argument any function that calculates
a log-probability log(p(x)). This function may employ other parent random variables in
its calculation. Here is an example inspired by a blog post by VanderPlas (2014), where
Jeffreys priors are used to specify priors that are invariant to transformation. In the case of
simple linear regression, these are:

β ∝ (1+β2)3/2

σ ∝
1
σ
.

The logarithms of these functions can be specified as the argument to DensityDist
and inserted into the model.

Salvatier et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.55 19/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.55

import theano.tensor as T
from pymc3 import DensityDist, Uniform

with Model() as model:
alpha = Uniform(’intercept’, -100, 100)

Create custom densities
beta = DensityDist(’beta’, lambda value: -1.5 * T.log(1 + value**2), testval=0)
eps = DensityDist(’eps’, lambda value: -T.log(T.abs_(value)), testval=1)

Create likelihood
like = Normal(’y_est’, mu=alpha + beta * X, sd=eps, observed=Y)

For more complex distributions, one can create a subclass of Continuous or Discrete
and provide the custom logp function, as required. This is how the built-in distributions in
PyMC3 are specified. As an example, fields like psychology and astrophysics have complex
likelihood functions for a particular process that may require numerical approximation. In
these cases, it is impossible to write the function in terms of predefined Theano operators
and we must use a custom Theano operator using as_op or inheriting from theano.Op.

Implementing the beta variable above as a Continuous subclass is shown below, along
with a sub-function using the as_op decorator, though this is not strictly necessary.

from pymc3.distributions import Continuous

class Beta(Continuous):
def __init__(self, mu, *args, **kwargs):

super(Beta, self).__init__(*args, **kwargs)
self.mu = mu
self.mode = mu

def logp(self, value):
mu = self.mu
return beta_logp(value - mu)

@as_op(itypes=[T.dscalar], otypes=[T.dscalar])
def beta_logp(value):

return -1.5 * np.log(1 + (value)**2)

with Model() as model:
beta = Beta(’slope’, mu=0, testval=0)

Generalized linear models
The generalized linear model (GLM) is a class of flexible models that is widely used to
estimate regression relationships between a single outcome variable and one or multiple
predictors. Because these models are so common, PyMC3 offers a glm submodule that

Salvatier et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.55 20/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.55

allows flexible creation of simple GLMs with an intuitive R-like syntax that is implemented
via the patsy module.

The glm submodule requires data to be included as a pandas DataFrame. Hence, for
our linear regression example:

Convert X and Y to a pandas DataFrame
import pandas
df = pandas.DataFrame({’x1’: X1, ’x2’: X2, ’y’: Y})

The model can then be very concisely specified in one line of code.

from pymc3.glm import glm

with Model() as model_glm:
glm(’y ~ x1 + x2’, df)

The error distribution, if not specified via the family argument, is assumed to be
normal. In the case of logistic regression, this can be modified by passing in a Binomial
family object.

from pymc3.glm.families import Binomial

df_logistic = pandas.DataFrame({’x1’: X1, ’x2’: X2, ’y’: Y > 0})

with Model() as model_glm_logistic:
glm(’y ~ x1 + x2’, df_logistic, family=Binomial())

Models specified via glm can be sampled using the same sample function as standard
PyMC3 models.

Backends
PyMC3 has support for different ways to store samples from MCMC simulation, called
backends. These include storing output in-memory, in text files, or in a SQLite database.
By default, an in-memory ndarray is used but for very large models run for a long time,
this can exceed the available RAM, and cause failure. Specifying a SQLite backend, for
example, as the trace argument to sample will instead result in samples being saved to a
database that is initialized automatically by the model.

from pymc3.backends import SQLite

with model_glm_logistic:
backend = SQLite(’logistic_trace.sqlite’)
trace = sample(5000, Metropolis(), trace=backend)

[-----------------100%-----------------] 5000 of 5000 complete in 2.0 sec

A secondary advantage to using an on-disk backend is the portability of model output,
as the stored trace can then later (e.g., in another session) be re-loaded using the load
function:

Salvatier et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.55 21/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.55

from pymc3.backends.sqlite import load

with basic_model:
trace_loaded = load(’logistic_trace.sqlite’)

DISCUSSION
Probabilistic programming is an emerging paradigm in statistical learning, of which
Bayesian modeling is an important sub-discipline. The signature characteristics of prob-
abilistic programming–specifying variables as probability distributions and conditioning
variables on other variables and on observations–makes it a powerful tool for building
models in a variety of settings, and over a range ofmodel complexity. Accompanying the rise
of probabilistic programming has been a burst of innovation in fittingmethods for Bayesian
models that represent notable improvement over existingMCMCmethods. Yet, despite this
expansion, there are few software packages available that have kept pace with the method-
ological innovation, and still fewer that allow non-expert users to implement models.

PyMC3 provides a probabilistic programming platform for quantitative researchers
to implement statistical models flexibly and succinctly. A large library of statistical
distributions and several pre-defined fitting algorithms allows users to focus on the
scientific problem at hand, rather than the implementation details of Bayesian modeling.
The choice of Python as a development language, rather than a domain-specific language,
means that PyMC3 users are able to work interactively to build models, introspect model
objects, and debug or profile their work, using a dynamic, high-level programming language
that is easy to learn. The modular, object-oriented design of PyMC3 means that adding
new fitting algorithms or other features is straightforward. In addition, PyMC3 comes
with several features not found in most other packages, most notably Hamiltonian-based
samplers as well as automatical transforms of constrained random variables which is only
offered by STAN. Unlike STAN, however, PyMC3 supports discrete variables as well as
non-gradient based sampling algorithms like Metropolis-Hastings and Slice sampling.

Development of PyMC3 is an ongoing effort and several features are planned for
future versions. Most notably, variational inference techniques are often more efficient
than MCMC sampling, at the cost of generalizability. More recently, however, black-box
variational inference algorithms have been developed, such as automatic differentiation
variational inference (ADVI) (Kucukelbir et al., 2015). This algorithm is slated for
addition to PyMC3. As an open-source scientific computing toolkit, we encourage
researchers developing new fitting algorithms for Bayesian models to provide reference
implementations in PyMC3. Since samplers can be written in pure Python code, they can
be implemented generally to make them work on arbitrary PyMC3 models, giving authors
a larger audience to put their methods into use.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Salvatier et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.55 22/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.55

Competing Interests
Thomas V. Wiecki is an employee of Quantopian Inc. John Salvatier is an employee of AI
Impacts.

Author Contributions
• John Salvatier, Thomas V. Wiecki and Christopher Fonnesbeck conceived and designed
the experiments, performed the experiments, analyzed the data, wrote the paper,
prepared figures and/or tables, performed the computation work, reviewed drafts of the
paper.

Data Availability
The following information was supplied regarding data availability:

https://github.com/pymc-devs/uq_chapter.

REFERENCES
Bastien F, Lamblin P, Pascanu R, Bergstra J, Goodfellow I, Bergeron A, Bouchard N,

Warde-Farley D, Bengio Y. 2012. Theano: new features and speed improvements.
ArXiv preprint. arXiv:1211.5590.

Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn DS, Smith K. 2011. Cython:
the best of both worlds. Computing in Science & Engineering 13(2):31–39
DOI 10.1109/MCSE.2010.118.

Bergstra J, Breuleux O, Bastien F, Lamblin P, Pascanu R, Desjardins G, Turian J,
Warde-Farley D, Bengio Y. 2010. Theano: a CPU and GPU math expression
compiler. In: Proceedings of the Python for scientific computing conference (SciPy), vol.
4. Austin: SciPy, 3. Available at http://www.iro.umontreal.ca/~lisa/pointeurs/ theano_
scipy2010.pdf .

Duane S, Kennedy AD, Pendleton BJ, Roweth D. 1987.Hybrid Monte Carlo. Physics
Letters B 195(2):216–222 DOI 10.1016/0370-2693(87)91197-X.

Goodman N, Mansinghka V, Roy D, Bonawitz K, Tarlow D. 2012. Church: a language
for generative models. ArXiv preprint. arXiv:1206.3255.

Goodman ND, Stuhlmüller A. 2014. The design and implementation of probabilistic
programming languages. Available at http://webppl.org/ .

HoffmanMD, Gelman A. 2014. The No-U-Turn Sampler: adaptively setting path lengths
in Hamiltonian Monte Carlo. Journal of Machine Learning Research 15:1593–1623.

Jarrett R. 1979. A note on the intervals between coal-mining disasters. Biometrika
66(1):191–193 DOI 10.1093/biomet/66.1.191.

Kucukelbir A, Ranganath R, Gelman A, Blei D. 2015. Automatic variational inference
in Stan. In: Advances in neural information processing systems. Red Hook: Curran &
Associates, Inc., 568–576.

Kulkarni T, Kohli P, Tenenbaum J, Mansinghka V. 2015. Picture: an imperative
probabilistic programming language for scene perception. Available at https://
mrkulk.github.io/www_cvpr15/1999.pdf .

Salvatier et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.55 23/24

https://peerj.com
https://github.com/pymc-devs/uq_chapter
http://arXiv.org/abs/1211.5590
http://dx.doi.org/10.1109/MCSE.2010.118
http://dx.doi.org/10.1109/MCSE.2010.118
http://www.iro.umontreal.ca/~lisa/pointeurs/theano_scipy2010.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/theano_scipy2010.pdf
http://dx.doi.org/10.1016/0370-2693(87)91197-X
http://arXiv.org/abs/1206.3255
http://webppl.org/
http://dx.doi.org/10.1093/biomet/66.1.191
https://mrkulk.github.io/www_cvpr15/1999.pdf
https://mrkulk.github.io/www_cvpr15/1999.pdf
http://dx.doi.org/10.7717/peerj-cs.55

Mansinghka V, SelsamD, Perov Y. 2014. Venture: a higher-order probabilistic program-
ming platform with programmable inference. ArXiv preprint. arXiv:1404.0099v1.

Minka T,Winn J, Guiver J, Knowles D. 2010. Infer.NET 2.6 . Cambridge: Microsoft
Research.

Pfeffer A. 2014. Figaro: a language for probabalistic programming. Available at http:
//www.github.com/p2t2/ figaro.

Python Software Foundation. 2010. Python language reference. Version 2.7. Available at
http://www.python.org .

Ritchie D. 2014. Quicksand: a low-level probabilistic programming framework embed-
ded in Terra. Available at http://dritchie.github.io/quicksand/ .

Spiegelhalter DJ, Thomas A, Best NG, GilksWR. 1995. Bugs: Bayesian inference using
Gibbs sampling, version 0.50. Cambridge: MRC Biostatistics Unit.

Stan Development Team. 2015. Stan: a c++ library for probability and sampling . Version
2.5. Available at http://mc-stan.org/ .

VanderPlas J. 2014. Frequentism and bayesianism: a python-driven primer. ArXiv
preprint. arXiv:1411.5018.

Van derWalt S, Colbert SC, Varoquaux G. 2011. The NumPy Array: a structure for
efficient numerical computation. Computing in Science & Engineering 13:22–30.

Wood F, Van deMeent JW,Mansinghka V. 2014. A new approach to probabilistic
programming inference. In: Proceedings of the 17th international conference on
artificial intelligence and statistics, 2–46.

Salvatier et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.55 24/24

https://peerj.com
http://arXiv.org/abs/1404.0099v1
http://www.github.com/p2t2/figaro
http://www.github.com/p2t2/figaro
http://www.python.org
http://dritchie.github.io/quicksand/
http://mc-stan.org/
http://arXiv.org/abs/1411.5018
http://dx.doi.org/10.7717/peerj-cs.55

