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ABSTRACT
Due to the application of vital signs in expert systems, new approaches have emerged,
and vital signals have been gaining space in biometrics. One of these signals is the
electroencephalogram (EEG). The motor task in which a subject is doing, or even
thinking, influences the pattern of brain waves and disturb the signal acquired. In this
work, biometrics with the EEG signal from a cross-task perspective are explored.
Based on deep convolutional networks (CNN) and Squeeze-and-Excitation Blocks, a
novel method is developed to produce a deep EEG signal descriptor to assess the
impact of the motor task in EEG signal on biometric verification. The Physionet EEG
Motor Movement/Imagery Dataset is used here for method evaluation, which has
64 EEG channels from 109 subjects performing different tasks. Since the volume of
data provided by the dataset is not large enough to effectively train a Deep CNN
model, it is also proposed a data augmentation technique to achieve better
performance. An evaluation protocol is proposed to assess the robustness regarding
the number of EEG channels and also to enforce train and test sets without individual
overlapping. A new state-of-the-art result is achieved for the cross-task scenario
(EER of 0.1%) and the Squeeze-and-Excitation based networks overcome the simple
CNN architecture in three out of four cross-individual scenarios.

Subjects Bioinformatics, Artificial Intelligence, Data Mining and Machine Learning
Keywords CNN, Biometric, Electroencephalogram, Data augmentation, Multi-task

INTRODUCTION
Nowadays, different biometric modalities are being explored. They have been gradually
replacing the logging/password systems, once it represents the future path in terms of
digital security. Among them, one of the categories which has gained attention is the
vital signals based biometric modalities, such as the electrocardiogram (ECG) (Luz et al.,
2018; Silva et al., 2019; Garcia et al., 2017) and the electroencephalogram (EEG)
(Schons et al., 2017; Poulos et al., 1999; Carrión-Ojeda, Fonseca-Delgado & Pineda, 2020).
The EEG, initially used for clinical purposes, have already been used by consumers and
incorporated into portable devices for applications not directly related to medicine, as
in the gaming industry, education systems aimed at monitoring engagement and in
EEG-based brain-computer interface (Sawangjai et al., 2019). Nonetheless, automatic
disease detection (Islam, Rastegarnia & Yang, 2015) and an individual identification
employing brain waves are still challenging tasks (Yang & Deravi, 2017).
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The EEG signal is the measurement of the electrical activity of the brain captured by
electrodes strategically positioned on the scalp (Boubakeur et al., 2017). The first use of the
EEG signal as biometrics dates back to 1980 in Stassen’s seminal work (Stassen, 1980),
using a speech recognition technique to characterize the EEG spectrum pattern of a
person. Since then, several approaches have investigated the EEG as a biometric modality
(Das, Maiorana & Campisi, 2018; Fraschini et al., 2015; Yang, Deravi & Hoque, 2018;
Gui et al., 2019).

Researches on EEG as biometrics have shown that this signal satisfies three out four
requirements to be considered as a biometric modality (Jain, Ross & Prabhakar, 2004):
(1) collectability: it can be measured and quantified; (2) unicity: it provides distinction
among individuals; (3) universality: the element exists in all person. The fourth
requirement, persistence over time, is still an open problem in the literature (Marcel &
Millán, 2007; Kostílek & Št’astny, 2012).

Many authors have addressed the EEG signal as a biometric modality with traditional
machine learning techniques (Fraschini et al., 2015; Singh, Mishra & Tiwary, 2015;
Yang, Deravi & Hoque, 2018). Today, deep learning represents the state-of-the-art for
several computer vision and pattern recognition problems and also there are works in
the literature addressing deep-learning-based biometrics on EEG (Ma et al., 2015;
Das, Maiorana & Campisi, 2017, 2018; Mao, Yao & Huang, 2017; Wang et al., 2019;
Wilaiprasitporn et al., 2019). Although it is well known that methods based on deep
learning need large amounts of data, especially, deep convolution-based architectures, a
workaround for this issue is to artificially create new samples, such as the data
augmentation techniques. In a preliminary work (Schons et al., 2017), a data augmentation
technique was proposed to increase the training data, improving the network performance,
and enabling the deep learning model to converge for the Physionet—EEG Motor
Movement/Imagery Dataset.

It has been shown in previous works evidence that EEG has biometric potential under
the performance of different tasks (Vinothkumar et al., 2018, DelPozo-Banos et al.,
2018; Kong et al., 2018; Kumar et al., 2019; Fraschini et al., 2019). In this work, the
explore EEG as a biometric modality under this challenging multi-task perspective.
In a real situation, a person can be in motion, or even, imagining an action, and with
that, generating interference that can be captured by the EEG signal. Thus, a deep
feature descriptor approach is proposed in order to mitigate the impact of
movement/imagery tasks on the EEG biometrics. A evaluation whether EEG biometrics
benefit from any specific task, or from its nature (motor or imaginary) is conducted.
The relevance of the number of channels is also investigated as well as a more robust
model based on Squeeze-and-Excitation blocks (Hu, Shen & Sun, 2018). The Squeeze-
and-Excitation blocks promote a channel-wise feature response and since the EEG signal
can have up to 64 channels and each channel captures different nuances of brain
movement, these blocks are a promising research path for this type of biometric
modality.
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This work extends the one presented in the 22nd CIARP (Iberoamerican Congress on
Pattern Recognition) (Schons et al., 2017). Here, the following improvements are
described:

� It presents results for a cross-task (one task is used to train and another to test) multi-
task (two or more tasks are used to train and another to test), and cross-individual
scenario (the individual used to train is not used to test) extending the approach showed
in Schons et al. (2017), considering motor task interference.

� It presents an extensive literature review.

� It explores the Squeeze-and-Excitation blocks instead of conventional CNN blocks.

� A better description of the methodology/experimentation process and detailed analysis
regarding parameter tuning.

The contributions of this work are summarized as follow:

� The new state-of-the-art method for EEG-based biometric verification evaluated in a
protocol aiming a cross-task scenario.

� A data augmentation technique based on the exploration of the overlap between signals
used during the training phase.

� Competitive results with fewer EEG channels.

� An in-depth discussion about the implications of using multiple motors/imaginary tasks
for biometrics with EEG.

The results reported in this work corroborates with the feasibility of the EEG as a
biometric modality, once the evaluation carried with different tasks in different runs have

Figure 1 Example of an EEG headband with few electrodes and no need for conductor gel.
Full-size DOI: 10.7717/peerj-cs.549/fig-1
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reported promising results. Although our experiments reveal that physical motor tasks
(not imaginary) hinder the task of identification, making the problem more challenging.

With more ubiquitous acquisition method (as illustrated in Fig. 1) and the advancement
of hardware accelerators for deep learning, there is a large potential for its usage in
real-life applications.

The remaining of this work is organized as follows. Related works are presented in the
second section. In the third section, the proposed methodology is presented, while the
experiments and results are described in the fourth section. Finally, the conclusions are
pointed out in the fifth section.

DATASET AND RELATED WORKS
In this section, a popular benchmark dataset is presented: the EEG Motor Movement/
Imagery dataset (Fraschini et al., 2015; Yang, Deravi & Hoque, 2018; Sun, Lo & Lo, 2019),
available in Physionet Resource (https://physionet.org/content/eegmmidb/1.0.0/). The
EEG Motor Movement/Imagery dataset is one of the most comprehensive datasets of EEG
signals and also contemplates motor tasks during the acquisition sessions.

The majority of the works presented in this section use the EEG Motor Movement/
Imagery dataset (Goldberger et al., 2000; Schalk et al., 2004). However, other datasets were
considered by authors in the literature; thus, the presented methods are categorized
according to the signals type used in the evaluation: baseline task or single-task and
multi-task.

EEG motor movement/imagery dataset
The EEG Motor Movement/Imagery dataset is a popular open-access dataset that consists
of over 1,500 recordings of EEG signals obtained from 109 volunteers, with one-minute
or two-minutes lengths. The EEG signal was obtained from 64 electrodes distributed over
the scalp. The EEG subset contains a total of 109 subjects and 14 acquisition records.
From the acquisition records, there are two motor and two imaginary task types and two
baseline tasks.

The baseline tasks capturing occurred in a controlled scenario in which the individual
follows the command to open and close their eyes during specifics moments. Except for the
baseline, all other tasks have three acquisition sessions.

The records of three sessions of four different motor/imaginary tasks result in 12
sessions. Regarding the 12 sessions, there are four distinct motor or imaginary task types
(T1–T4), each one with three runs (R1–R3). The activities assigned to the tasks are:

� Task 1 (T1): In a screen, a target appears on the left or right side, and a subject is
requested to open and close the corresponding fist on the same side until the target
disappears. After that, the subject may relax.

� Task 2 (T2): In a screen, a target appears on the left or right side, and the subject is
requested to imagine opening and closing the corresponding fist on the same side until
the target disappears. After that, the subject may relax.
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� Task 3 (T3): In a screen, a target appears at the top or bottom of a screen. If the target is
on the top, the subject is asked to open and close both fists. Otherwise, if the target is in
on the bottom, the subject is requested to open and close both feet. This task runs
until the target disappears. After that, the subject may relax.

� Task 4 (T4): On a screen, a target appears at the top or bottom of a screen. If the
target is on the top, the subject is asked to imagine opening and closing both fists.
Otherwise, if the target is in on the bottom, the subject is requested to imagine opening
and closing both feet. This task runs until the target disappears. After that, the subject
may relax.

Related works
It is possible to summarize the related works evaluated under the EEG Motor
Movement/Imagery dataset into two groups: (1) the ones focused on the baseline task,
i.e., eyes close (EC) and eyes open (EO) tasks, and (2) the ones focused on the multi-task
recognition. Regarding the first group, the individuals are in a rest state with the eyes
closed or opened (Del Pozo-Banos et al., 2014). In contrast, in the second group, the
individuals were requested to do simple motor or imaginary tasks.

The work in Gui et al. (2019) presents a survey on EEG signals biometry. The authors
reviewed the state-of-the-art for the recognition task and concluded that the EEG may
has some advantages over other biometrics markers. One of the significant advantages of
the EEG to consider is that the user must agree and consent to record the EEG signal
what difficulties the theft of this kind of signal. Gui et al. (2019) also explored all steps
regarding the EEG signal, from the acquisition to the classification, and described several
EEG datasets from the literature. Moreover, the authors also detected open problems
related to brain biometrics, such as multi-modality and the persistence of the EEG.
According to the authors, the EEG signal has a great potential as biometry from the
theoretical point of view and due to results obtained from empirical experiments.

Singh, Mishra & Tiwary (2015) proposed an approach to find discriminative
characteristics described by unique patterns from the relations generated among the
cerebral regions. The authors preprocessed the data by applying a low-pass filter to reduce
the noise and used a technique called Magnitude Squared Coherence, which relies on the
phase constancy while a brain area is interacting with another, generate the signal
descriptors. The classification process performed the K-Nearest Neighbors (KNN)
algorithm. The proposed approach evaluated 64, 10, 6, and 5 channels for the EEG signal
capturing and achieved a final accuracy score for the identification reported task of
100% with 64 electrodes. This experiment corroborates the hypothesis that the more
channels/information employed, the better will be the result.

Fraschini et al. (2015) evaluated a biometric verification approach using all the 64
electrodes available in the dataset. The proposed approach can be divided into four steps:
(1) filter the raw data to allow a study of the specific frequency data from the cerebral
network; (2) estimate the statistical independency in pairs among EEG temporal series;
(3) create a weighted graph where each edge represents a functional connection among the
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connected electrodes on the head; and (4) perform a characterization of the cerebral
functional organization aiming a centrality measure to qualify the importance of each node
inserted in the graph. The result is a 64-length-vector used to classify and to report the
results segmented by the frequency. The authors reported an EER of 4.4% using the
gamma frequency (30–50 Hz) and observed a difficulty enhancement for individual
verification when the frequency band gets slower.

CNNs are also evaluated for the EEG problem. Ma et al. (2015) created a CNN
architecture with two convolution layers, two pooling layers, and one fully connected layer.
However, the authors did not use all 109 individuals. Instead, Ma et al. (2015) evaluated
their approach with 10 individuals for testing. The authors divided the 60 s of EO and
EC in 55 s in a one-second fragment for training and the remaining 5 s for testing.
The identification rate reported was in the range of 64% to 86%.

Das, Maiorana & Campisi (2017) evaluated a CNN with four convolutional layers, two
max-pooling, one rectified linear unit (ReLU), and a softmax-loss layer. The dataset used
to perform the experiments were acquired from 40 subjects over two distinct sessions
separated by a week in a visual stimuli environment. The correct recognition rate (CRR)
reported was in the range between 80.65% and 98.8% in the best scenario.

Das, Maiorana & Campisi (2018) also performed EEG biometry with a CNN containing
four convolutional layers, two max-pooling, a ReLU, and a softmax-loss layer. The dataset
evaluated consists of 40 subjects performing imaginary arms and legs movements
collected in two sessions with an interval of 2 weeks. The authors achieved the accuracy
scores of 81.25% and 93% for rank-1 and rank-2, respectively.

Mao, Yao & Huang (2017) proposed another approach using CNN. The authors used
convolutional layers with ReLu and max-polling, followed by fully connected layers with
softmax. The evaluation was made in a dataset containing data of 100 subjects using
64 channels during a driving experiment. The CRR achieved was 97%.

Maiorana & Campisi (2018) analyzed the discriminative characteristics of EEG in
longitudinal behavior, aiming to verify the pertinence across time. The study utilized the
signals captured from 45 users during approximately 36 weeks from the first EEG data
recording in five to six sessions. The results showed that aging could damage the EEG
traits, but yet the authors could achieve EER below 2% from one data collection to another
distant in time.

Wang et al. (2019) evaluated the impact of different motor and imaginary tasks in the
identification scenario. The authors used all the 109 individuals of the EEG Motor
Movement/Imagery Dataset and also created a dataset with 59 subjects performing
attention and descriptive tasks. The proposed approach is a Graph Convolutional Neural
Network-based to extract discriminating features from the EEG graphs created by the
Phase Locking Value (PLV) algorithm. Using the same task to train and test, the authors
reported an average CRR of 99.96% and 98.94% for the EEG Motor Movement/Imagery
Dataset and the created datasets, respectively. A degradation of 86.21% was observed
when trained on resting-state data and tested in diverse states in the EEG Motor
Movement/Imagery Dataset. However, mixing signals in different states for training the
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GCNN resulted in an average CRR of 99.98% with the Physionet bank and 99.96% with the
author’s personal acquisition bank.

Yang, Deravi & Hoque (2018) also evaluated the impact of motor/imaginary tasks
during the recognition process in biometric identification and verification tasks. The
authors used a discrete Wavelet transform in each electrode and created the feature vector
as the concatenation of the standard deviations of all electrodes. The vector created is used
as the input for a Linear Discriminant Analysis (LDA) classifier. A majority voting rule
merges all classifier decisions of all time windows. In one of the experiments performed,
the authors trained on tasks T1 + T2, tested on T1R2 using 9 electrodes and reached
an identification accuracy of 100% and an EER of 2.63%. They also analyzed the impact of
using only 3 channels and achieved a maximum accuracy of 89% when training with
T1R1 + T1R3 and testing with T1R2. In the verification scenario, the EER is approximately
three times greater using the reduced number of electrodes.

To find the best set of electrodes for an identification problem, Alyasseri et al. (2020)
used the EEG Motor Movement/Imagery Dataset as a single matrix containing the
signals from all tasks performed by the 109 individuals. The authors propose a hybrid
optimization technique to find the most relevant channels to extract discriminant
characteristics, using the Flower Pollination Algorithm (FPA) and the β-hill-climbing
algorithm (β-hc). Besides, the proposed approach presented a study of the best domain to
extract the characteristics of an EEG signal, comparing the use of characteristics in the time
domain, frequency domain, and both simultaneously. The hybrid method FPAβ-hc
obtained better results than isolated FPA in most cases. The accuracy reported of 96.05%
was achieved using a Support Vector Machine (SVM) classifier with the RBF kernel and
the characteristics in both the time and frequency domain simultaneously.

In the work proposed in Sun, Lo & Lo (2019), the authors applied a hybrid convolution
and recurrent deep neural network with a Long-Short Time Memory (LSTM) for
individual identification. The authors tested the use of 4, 16, 32, and 64 electrodes. Besides,
instead of using 12-seconds length segments, a 1-second length segment was used and
reached 0.41% of EER with 16 electrodes. The focus of their discussion is the trade-off
between performance and the use of the electrodes/recording time. The authors
outweighed the loss in EER to the reduction of the electrodes, and, according to the
authors, 12-second segments are not feasible for real applications. Despite the outstanding
results presented by the authors, it is worth highlighting that the protocol is different
from the one showed in this work and in Yang, Deravi & Hoque (2018). The authors
evaluated two different scenarios compared to the one presented in Yang, Deravi & Hoque
(2018). The rationale for the first scenario is that the authors use 90% to train/validate and
10% to test, that is, the same individual signal is present in training and testing. This
scenario is more straightforward than the one proposed by Yang, Deravi & Hoque (2018).
The reported results cannot be compared to the presented in Yang, Deravi & Hoque
(2018), once it uses only a one-second signal, and the evaluation protocol is different.

Some works in the literature do not use the EEG Motor Movement/Imagery dataset
but present relevant results and alternative techniques that inspired the development of
this work.
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The work of El-Fiqi et al. (2018) proposed a CNN with raw steady-state visual evoked
potentials (SSVEPs) for individual identification and verification. In the SSVEPs
acquisition protocols, the subject focuses its attention on a repetitive visual stimulus while
recording the activity response signals. The study explores two SSVEP datasets with raw
data of four and ten subjects that were seated and focused on three groups of flashing
LED stimuli blinking at 13 Hz, 17 Hz, and 21 Hz frequencies. The signals were recorded at
256 Hz by eight electrodes placed on the parietal-occipital area. The performance of three
classical methods (support vector machine, random forest, and shallow feed-forward
network with one layer) with spectral features were compared against the proposed CNN
method, which works directly with the raw signal. The deep learning-based approach
achieved an averaged identification accuracy of 96.80% and an averaged verification
accuracy of 98.34%. These results outperform those obtained by other classical methods.
Besides, the proposed CNN needs no complex techniques for feature representation or
extraction to achieve good results, making it feasible for real-time systems.

Table 1 summarizes these related works.

PROPOSED APPROACH AND EVALUATION SCENARIOS
In this section, the proposed method is presented and outlined as the pipeline shown in
Fig. 2. The method is evaluated on the EEG Motor Movement/Imagery Dataset
(Goldberger et al., 2000; Schalk et al., 2004), under the three scenarios evaluated in this
work and presented in “Results and Discussion”.

In order to execute the pipeline proposed in Fig. 2, preprocessing methodology is
developed along with the data augmentation protocol, the CNN model, and the respective
data representation along with the evaluation process. The steps presented in Fig. 2 are
described in details in the next subsections.

Data preprocessing
Biometrics, disease detection, and brain death detection are two of many applications that
could be employed based on the EEG signal. Regardless of the application, preprocessing
is required since the signal is very susceptible to noise. Several approaches have been
used in the literature for data processing, such as Common Spatial Pattern (CSP)
(Yong, Ward & Birch, 2008), Wavelet transforms (Kumar et al., 2009; Ghandeharion &
Ahmadi-Noubari, 2009), and Independent Component Analysis (ICA) (Delorme,
Sejnowski & Makeig, 2007).

For biometrics purposes, the band-pass FIR/IIR filters are popular preprocessing
techniques. Once each frequency is related to a specific cerebral activity (Boubakeur et al.,
2017), filtering out unwanted frequency-bands aids in the detection process. In this work,
a band-pass filter is applied aiming only the intermediate frequency-bands of the
signal spectrum. Since the data acquired by equipment used in Physionet EEG Motor
Movement/Imagery Dataset was sampled at 160 Hz, it has well-defined components up to
80 Hz. Besides, it is not usual to employ the full spectrum, since some frequency bands
are more discriminant than others for biometry (Fraschini et al., 2015). According to
Yang & Deravi (2017), signals related to EEG biometrics have higher energy in the
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frequency spectrum below 50 Hz. In that manner, filters are built for the following bands:
01–50 Hz, 10–30 Hz, and the gamma band (30–50 Hz), following the ones proposed by
Fraschini et al. (2015).

The data division in training and testing dataset is defined according to the evaluated
scenario. For the first one (baseline task evaluation), the EC is used for testing. For the
second scenario (multi-task evaluation), the data division proposed by Yang & Deravi
(2017) is followed. In the third scenario (cross-task evaluation), proposed in this work, the
T1R2 is used as testing. Finally, the forth scenario (cross-individual evaluation), also
proposed in this work, the EC and EO are used for testing.

Data augmentation
The evaluation protocol in Fraschini et al. (2015) proposes the division of the EEG data
into 12-second segments (1,920 samples). Since the recording motor/imagery tasks have
120 s, each task has a total of 10 segments of 12 s without overlap. From both 60-second
baseline recording sessions (EO and EC), five segments are created, disregarding the
overlap. A total of only five or ten segments for each individual is not enough for the CNN
training to converge.

A workaround for this issue is a data augmentation technique for the training set. The
strategy consists of abundantly extract segments with overlapping from the EEG segments.
In this work, the impact of the data augmentation technique based on segments

Table 1 Related works for EEG-based biometric.

Work Database Classes Acquisition Approach Channels Result

Singh, Mishra & Tiwary
(2015)

Physionet 109 Motor/Imaginary
tasks

Magnitude Squared
Coherence

64 Acc = 100%

Fraschini et al. (2015) Physionet 109 Rest Eigenvector 64 EER = 4.4%

Ma et al. (2015) Physionet 10 Rest CNN 64 Acc = 88%

Das, Maiorana &
Campisi (2017)

Own 40 Visual stimuli CNN 17 CRR = 98.8%

Das, Maiorana &
Campisi (2018)

Own 40 Imaginary arms/legs
movement

CNN 17 CRR = 93%

Mao, Yao & Huang (2017) BCIT 100 Driving car CNN 64 CRR = 97%

Maiorana & Campisi
(2018)

Own 45 Sit Hidden Markov
models (HMMs)

9 EER < 2%

Wang et al. (2019) Physionet 109 Motor/Imaginary
tasks

GCNN + PLV 64 CRR = 99.98%
FAR = 1.65%

Yang, Deravi & Hoque
(2018)

Physionet 108 Motor/Imaginary
tasks

Discrete Wavelet
Transform + LDA

9 Acc = 100%
EER = 2.63%

Alyasseri et al. (2020) Physionet 109 Motor/Imaginary
tasks

FPA + β-hill 35 Acc = 96.05%

Sun, Lo & Lo (2019) Physionet 109 Motor/Imaginary
tasks

1D-Conv. LSTM 16 EER = 0.41%

El-Fiqi et al. (2018) SSVEP database 14 Visual stimulus CNN 8 Verification
Acc = 98.34%
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overlapping is investigated. The technique consists of creating new segments by a sliding
window that moves by a constant step called stride. Figure 3 shows an example of the data
augmentation technique used.

From the whole signal of an individual record, new segments are created. The extraction
of the first segment starts from time zero and finishes within 12 s. The 12-second record
represents 1,920 samples at a sampling frequency of 160 Hz. The next segment starts
after a specific stride in stride seconds and finishes in stride + 12 s. The sliding window
finishes at the end of the signal.

Figure 2 Proposed pipeline. Full-size DOI: 10.7717/peerj-cs.549/fig-2

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20

Figure 3 Example of the proposed data augmentation based on overlapping with a step of two-
second size. Each slide of the window produces a new training instance.

Full-size DOI: 10.7717/peerj-cs.549/fig-3
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CNN training and data representation
After the data augmentation step, the data is split into two subsets: train and validation.
The first 90% signals resulted from the data augmentation are used for training, and the
remaining 10% for validation (model adjusting during training), as presented in Fig. 4.
It is worth highlighting that not necessarily 10% of the entire segment is used for
validation, but 10% of the signals resulted from the data augmentation step. For example, if
the Data Augmentation process output is 500 segments, the first 450 segments (90%) are
for training and the last 50 segments (10%) for validation.

At first, the CNN architectures are evaluated with training and validation data. This
evaluation is handled on the baseline evaluation perspective, once it is a more constrained
scenario in comparison to the multi-task scenario perspective.

Two different one-dimensional CNN architectures with large receptive fields are
investigated, once those with small kernels did not converge.

The two architectures are the result of the empirical adjustments in the depth and width
according to the error measured in the validation data, during the training phase.

The first CNN architecture is composed of three convolution layers, each one followed
by max-pooling, and four fully-connected layers with a dropout and a softmax layer.
The convolution stride is set to one and no padding is used. The main among architectures
investigated here is related to the number of convolutional layers. The second architecture
is composed of five convolution layers with larger receptive fields in the initial layers.
Both architectures are presented in Fig. 5.

Both architectures are evaluated according to the protocol proposed by Fraschini et al.
(2015) and thus, the one that best fits the data can be determined.

Each architecture is trained for n epochs, in which n relies on the convergence of the
training and validation error. The training process resembles a simple classification
problem for an identification task (close-gallery) on a biometry context. Thus, a
conventional supervised classification problem. Upon this fact, each sample provided to a
CNN model is feed-forwarded and results in an output. This output is a probability that a
sample belongs to one of the classes.

However, for the verification mode, one needs a feature vector as the output of a
network instead of a probability vector of classes. To address this requirement, layers
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Figure 4 Data split proposed. Full-size DOI: 10.7717/peerj-cs.549/fig-4
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responsible for handling the classification (Soft-max, Dropout, and FC4. See in Fig. 5)
should be removed. The feature extraction uses the FC3 output which can now be used as a
feature vector.

From this point, the trained model starts to operate as a deep feature descriptor. Once a
12-seconds segment is provided to the network, the output is a feature vector of the same
size as the FC3 output. For architecture A this size corresponds to 256 dimensions,
while for architecture B, 4,096 dimensions.

Biometric verification
Different from the training data in which data augmentation techniques were applied,
there is no overlap for the testing data. That is, for the EC session, five segments of 12 s are
extracted for each subject, while in the motor movement/imaginary tasks, ten segments, as
shown in Fig. 4.

One of the most popular measures to compare methods for the verification mode in the
literature is the Equal Error Rate (EER). This measure is the point where the False
Acceptance Rate (FAR) and the False Rejection Rate (FRR) are equal in the Detection
Error Trade-off (DET) curve. Comparing in an all-against-all scheme, a distance score
(such as euclidean distance) is computed for each pair of feature vectors. Ideally, one
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Figure 5 Architecture evaluated in this work. (A) Architecture proposed in which conv1, conv2 and
conv3 have filters size equal to 11 × 1, 9 × 1 and 9 × 1, respectively, and stride equal to 1. Pool1 with stride
equal to 4 and pool2 and pool3 with stride equal to 2 and filter size equal to 2 for all three. The padding is
equal to zero for all convolutional and pooling layers. (B) Architecture proposed in which conv1, conv2,
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should have small scores between vectors from the same class (genuine) and large scores
between vectors from different subjects (impostor).

In biometric verification mode, the number of impostor pairs is much higher than the
genuine ones. A genuine pair occurs when two feature vectors are from the same
individual. In contrast, an impostor pair corresponds to two feature vectors from two
different individuals. As the number of impostor pairs is higher than the genuine ones, the
biometric verification mode simulates a spoofing attack on a system. Thus, usually, the
verification protocols is a challenging scenario.

Evaluation scenarios
The first scenario adopted in this work is the one proposed by Fraschini et al. (2015)
referenced in this work as baseline task evaluation. The evaluation protocol related to first
scenario ensures the acquisition of the training data on the open-eye task, while the
closed-eye task composes the testing data from 109 individuals. It is worth to highlight that
the acquisition of training data and testing data came from two different sessions.

Therefore, the first studied scenario disregards the impact of the motor/imaginary tasks
for the biometric verification. Contrasting to that, Yang, Deravi & Hoque (2018) carried
out experiments to evaluate such conditions, i.e., the impact of motor activity on EGG
signal for biometrics. Those experiments are the second scenario considered here and
referenced as multi-task evaluation.

Yang, Deravi & Hoque (2018) proposed three experimental protocols to evaluate the
EEG biometric in the EEG Motor Movement/Imagery dataset (Goldberger et al., 2000;
Schalk et al., 2004). The protocols are:

1. Protocol P1: aims to investigate the influence of some regions of the scalp for biometric
purposes. Three regions are selected: the frontal lobe (F), with electrodes AF3, AFz,
and AF4, the motor cortex (M), with the electrodes C1, Cz, and C2, and the occipital
lobe (O), with O1, Oz, and O2 electrodes. For each training, the signals from R1 and R3
of one task were selected and R2 from the same task was used for testing.

2. Protocol P2: explores the impact of training in the first and the third runs of the same
motor/imaginary task and testing in the second run of all the remaining tasks and the
baseline ones. Using only a subset of nine electrodes, 24 experiments were evaluated.

3. Protocol P3: aims to explore the impact on the combination of different motor and
imaginary tasks for training. The authors reserve the second run of the first task (T1R2)
to evaluate the performance of the training tasks. They start training with T1R1 and
T1R3 separately and finish with the fusion of both with the other tasks and runs (all runs
of T2, T3, T4, and T4).

The protocols P1 and P2 use the second run of all tasks as testing. In the protocol P3,
only the task T1R2 is used as testing. Furthermore, all protocols are evaluated from both
biometric identification and verification scenarios.

The use of several data acquisition sessions/runs may be unfeasible for real biometric
systems once it is onerous for the user, and, typically, the enroll session occurs only on the
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first time the user gets in touch with the system. Considering that, a third evaluation
scenario is proposed in which a new protocol to validate the proposed approach is
evaluated, using one task from a single run (session) for training referenced as Cross-task
evaluation. Inspired by the third protocol (P3) proposed by Yang, Deravi & Hoque (2018),
the T1R2 is fixed as the testing data, and all the remaining tasks and runs are used for
training. It is worth stressing that different from Yang, Deravi & Hoque (2018), the
remaining tasks and their respective runs are used separately for each training setup,
instead of combining them. In that sense, train and testing in different task types should be
a more challenging scenario when compared with a scenario that uses the same task in
both training and test sets.

In all the three presented scenarios, samples from the same individual were present in
both the training and testing sets. It is well known that such evaluation scheme tend to
favor the classifiers. To avoid this issue and to assess the robustness of the proposed
approach, a fourth protocol is proposed, forcing the division between training sets and test
oriented to individuals. That is, the individual used to train the model is not used to
test/evaluate the approach. This scenario was called cross-individual evaluation. Therefore,
the Deep Learning models are trained with signals from the first 55 individuals from the
Physionet database and tested with the last 54.

Due to the large number of possible combinations involving the 12 imaginary/motor
tasks and the objective of this study, only the Eyes Open and Closed conditions were used
to evaluate this fourth scenario.

Since the cross-individual evaluation is a more complex scenario and could benefit from
a more robust model, the impact of using a state-of-art technique called Squeeze-and-
Excitation Network (Hu, Shen & Sun, 2018) is evaluated. Section details the Squeeze-and-
Excitation Networks.

Squeeze-and-excitation network
The Squeeze-and-Excitation (SE) block is an architecture unit first introduced byHu, Shen
& Sun (2018) in order to capture the dependency between the convolution channels of a
network. It has two main steps: Squeeze and Excitation.

The Squeeze step aggregates the global information of all the input channels and
shrinking the spatial dimensions in a feature map space U by using the global average
pooling. The Excitation step transforms each channel of the feature map U with weights
obtained with the output of the previous step modulated for each channel.

One can easily obtain an SE network by stacking several SE blocks, replacing some
components, or integrating SE blocks in some already known architecture, which is one of
the great advantages of this method. In addition, in Hu, Shen & Sun (2018) the authors
revealed state-of-the-art performance across multiple datasets and applications using
models based on SE blocks.

Toward this direction, it is investigated the use of these units in the best model obtained
in the other three scenarios evaluated. In order to determine the best SE network, the first
step was to reproducing one experiment of the baseline task evaluation scenario (eyes open
for training and eyes closed for testing) and trained a series of SE models using all 109
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individuals for training. The performance of five models obtained by merging SE blocks
with the best architecture are investigated as follows:

� SE Model 1: all convolution layers were replaced by SE blocks;

� SE Model 2: add a single SE block after the input layer;

� SE Model 3: add a single SE block before the fully connected layers, that is, after all
convolution and pooling layers;

� SE Model 4: add a SE block after the input layer and before fully connected layers;

� SE Model 5: add a SE block after each convolution layer.

It is also evaluated the most promising reduction factor (hyper-parameter of SE blocks)
and analyzed six different values for all models.

RESULTS AND DISCUSSION
This section presents and discusses the protocols, the experimental setup and the obtained
results.

Experimental setup
All the CNN operations are conducted using the TensorFlow library, along with the high
level API Keras. The specifications of the experimental computational environment are
64 GB of DDR4 RAM, an Intel (R) Core i7-5820K CPU 3.30 GHz 12-core, and a GeForce
GTX TITAN X GPU. The source is available on GitHub (https://github.com/ufopcsilab/
EEG-Multitask).

Two CNN architectures are evaluated with three band-pass filters for the baseline task:
eyes open (EO) for training/validation and eyes closed (EC) for testing. First, the
performance of the CNN architectures are evaluated on this simple task evaluation
protocol by training for 20 epochs. Then, the effect of using different strides on the CNN
performance is investigated which also tends to change the data volume created by the data
augmentation technique and the time to train the CNN model. Thus, the best stride
parameter is used for the remaining experiments.

Model weights are randomly initialized, and the optimization method used here is the
Stochastic Gradient Descent with momentum coefficient of 0.9. A 10% dropout sub-
sampling operation is placed before the softmax layer in order to minimize the over-fitting.
Using a learning rate sequence of lr = [0.012 , 0.00118], in which the number
superscript represents the amount of epochs using that learning rate. For the present
experimentation, there is no improvement when training for more than 20 epochs. After
the training and the removal of the last layers of the CNN, the model resembles one
embedding model or a deep feature descriptor for a 12 s length EEG input signal.

The data augmentation technique applied to the training data created a total of 384
samples for each individual from the EO data. For the motor (or imaginary) tasks (T1–T4),
it was extracted from each individual a total of 889 or 905 samples (signals with 123 s
and 125 respectively). In the verification mode, the data augmentation technique produces
a total of 1,086 genuine pairs (intra-class) and 146,610 impostor pairs (inter-class) for
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the evaluation on the baseline tasks (EO-EC). A total of 4,809 intra-class pairs and 571,392
inter-class pairs were generated for the multi-task (Motor-Imaginary) evaluation. In that
sense, the multi-task evaluation is a more complex and computationally expensive than
the simple tasks evaluation context.

Baseline tasks evaluation
The results regarding the combination of CNN architectures and the frequencies-bands are
presented in Table 2.

Architecture B, represented by Fig. 5B, reached an EER of 0.65% in 30–50 frequency
band. Architecture A, depicted in Fig. 5A, achieved the best overall figures (0.19% EER) for
the gamma frequency (30–50 Hz). The results in terms of decidability are also reported.
The decidability is a measure of how separable two distributions are Ratha, Senior & Bolle
(2001). In this case, it indicates how far the impostor scores are from the genuine
scores. As one may see in Table 2, architecture A performs better for all frequency bands,
specially for the gamma frequency.

Both architectures A and B perform well for the 30–50 Hz band and worse for
01–50 Hz, but architecture A outperforms architecture B. One of the possible reasons is the
filter sizes, which are smaller in the first one and could lead to more details by extracting
local features.

In Table 3 is presented the EER from the proposed approach against the work proposed
by Fraschini et al. (2015). As one can see, the proposed method with the use of convolution
neural networks significantly reduced the EER.

The experiments are under the same scenario: all electrodes (64), all individuals (109),
training in EO (eyes open), and testing in EC (eyes closed). Furthermore, as the test
protocol used is the same, a comparison becomes valid between both methods.

Table 2 EER and decidability reported of the two proposed architectures. EER presented in
percentage.

Frequency band EER (%) Decidability (%) Architecture

10–30 5.06 3.22

30–50 0.19 7.02 A

01–50 9.73 2.50

10–30 6.85 2.84

30–50 0.65 3.61 B

01–50 9.64 2.20

Table 3 EER reported on EO-EC. EER presented in percentage. #Different evaluation protocol.

Reports Approach EER (%)

Fraschini et al. (2015) Eigenvector Centrality 4.40

Sun, Lo & Lo (2019)# CNN + LSTM 0.41

Proposed Method CNN 0.19
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Despite the outstanding results reported by Sun, Lo & Lo (2019), the evaluated scenario
is different from the one proposed in Fraschini et al. (2015) and used here.

Figure 6 shows the performance of the architecture A employing the DET curve over all
three frequency bands evaluated. The curve related to the spectrum of 30–50 Hz surpasses
all other experiments described in the literature. Those results are in line with the ones
presented in Fraschini et al. (2015) in which the 30–50 Hz range frequency overcomes
the other frequencies for EEG biometrics-based. The reported results in this work differ
from those reported by Fraschini et al. (2015) in the sense that there is a discrepancy in
other frequency ranges, which are more significant here.

Stride evaluation
To evaluate the impact of different strides in data augmentation, the first step started using
a stride of 20, which represents 125 milliseconds (ms) step in the time domain, to generate
the samples aiming the baseline task (EO). Then, the size of the step was successively
increased by 20 up to 200 and trained Architecture A for each one. In that sense, the
impact of overlap from 125 ms to 1,250 ms is analyzed. Baseline task EC, without
overlapping, was reserved for evaluation (test) in all cases. Table 4 shows the EER for
each stride.

One may see from Table 4 that the stride increase harms the proposed approach
performance in the verification task. There is a trade-off on the stride size, the greater the

Figure 6 DET curves comparing all spectrum evaluated with Architecture A.
Full-size DOI: 10.7717/peerj-cs.549/fig-6

Table 4 EER obtained for different strides. EER presented in percentage.

Stride 20 40 60 80 100 120 140 160 180 200

EER 0.09 0.09 0.37 0.76 0.65 0.65 0.74 0.83 0.37 1.11
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stride, the smaller are the number of samples generated and the greater is the EER. Upon
this fact, the smallest stride (20) resulted in 38,208 training samples while the larger one
(200) generated only 3,885. The larger stride obtained the worst result, with an EER of
1,11%. However, the stride of 40 produces the same performance of stride 20 and with half
the number of samples for training. Thus, the stride equal to 40 is the one chosen to be
used in the remaining protocols.

Multi-task evaluation
The following experiments were based on the protocols proposed by Yang, Deravi &
Hoque (2018), which were presented in “Introduction”. It was used the best CNN
architecture and stride obtained on the above experiments to perform the experiments on
the verification scenario.

Protocol P1: region/task pairing
Figure 7 shows the location of the nine selected electrodes to perform this experiment.

The proposed method is evaluated with signals from the three regions of the scalp
(see Fig. 7) combined. The results have shown that the performance is better using all nine
electrodes. The best result is reported for T1R1 + T1R3 as training and T1R2 as test (EER
of 0.12%). Among the experiments carried with only three electrodes, the best result is
obtained with task four (T4) and motor cortex electrodes (EER of 0.85%). The worst results
are related to the frontal lobe. A comparative analysis can be made with the results
obtained in Yang, Deravi & Hoque (2018), witch reached an EER of 7.83% when training
and testing with the same task T1 using only the data from the occipital lobe. The same
experiment performed here achieved 1.07% EER, showing that the proposed approach is
robust even with a reduction in the number of channels.

C2CzC1

AF4

AFz
AF3

O2
Oz

O1

Figure 7 Selected electrodes on motor cortex, frontal and occipital lobule. Based on Yang, Deravi &
Hoque (2018). Full-size DOI: 10.7717/peerj-cs.549/fig-7
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Protocol P2: mismatch training/testing test
After applying the methodology described in “Introduction” with protocol P2, results
showed no improvement when the train and the test come from the same task. The lowest
EER, 0.08%, came from training with T2R1 + T2R3 and testing with the baseline task EO.
Table 5 synthesizes the EER obtained for each experiment.

The proposed approach outperformed in all scenarios the best figures reported by
Yang, Deravi & Hoque (2018) when training with T1 and testing with T2.

It is worth emphasizing that the physical (non-imaginary) tasks T3 and T4 are the most
difficult for the biometric problem. Even when training and testing with tasks of the same
nature (See Table 5), the results are worse. Our hypothesis is that in these cases, noise
from muscle movement can interfere with signal acquisition.

Protocol P3: heterogeneous training
In this protocol, the samples of the individuals are organized in mini-batches of size 100
and shuffled. All the nine electrodes from Fig. 7 are used and T1R2 fixed as test set for
all experiments. Table 6 shows the tasks used for training and the EER obtained for
each one.

As one may see on Table 6, stacking up different tasks hinder the proposed approach
verification performance. The worst-case occurred in P3.11, which has a larger training set
(EER of 1.91%). The best scenario occurs when the system is trained and evaluated

Table 5 EER reported of mismatch training/testing. EER presented in percentage.

Test T1R2 T2R2 T3R2 T4R2 EO EC

Train

T1R1+T1R3 0.12 0.29 0.42 0.42 0.10 0.37

T2R1+T2R3 0.19 0.29 0.56 0.69 0.08 0.56

T3R1+T3R3 0.21 0.19 0.29 0.19 0.18 0.36

T4R1+T4R3 0.12 0,13 0.27 0.27 0.20 0.36

Table 6 EER obtained by accumulating tasks/runs. EER presented in percentage.

Protocol Train Test EER (%)

P3.1 T1R1 T1R2 0.10

P3.2 T1R3 T1R2 0.44

P3.3 T1R1, T1R3 T1R2 0.22

P3.4 T2R1, T2R2, T2R3 T1R2 0.25

P3.5 T1R1, T1R3, T2R1 T1R2 1.25

P3.6 T1R1, T2R1, T2R2, T2R3 T1R2 1.14

P3.7 T1R1, T1R3, T2R1, T2R2 T1R2 1.29

P3.8 T1R1, T1R3, T2R1, T2R2, T2R3 T1R2 1.27

P3.9 T1R1, T1R3, T2R1, T2R2, T2R3, T3R1 T1R2 1.58

P3.10 T1R1, T1R3, T2R1, T2R2, T2R3, T3R1, T4R1 T1R2 1.47

P3.11 T1R1, T1R3, T2R1, T2R2, T2R3, T3R1, T4R1, T4R2 T1R2 1.91
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with one run from the same task (EER of 0.1%). In some cases, accumulate tasks do not
significantly affect performance.

Comparative analysis
Protocol 1 led to the same conclusion then Yang, Deravi & Hoque (2018): one could not
determinate the most relevant electrode placement among the different regions of the
scalp, but using all of them (all nine electrodes) enhances performance.

Protocol 2, both in this work and presented in Yang, Deravi & Hoque (2018), showed
that using different tasks to train and test does not affect performance. However, the
proposed approach does not improve with the accumulation of tasks for training, different
from reported by Yang, Deravi & Hoque (2018). Moreover, a lower EER for all scenarios
was reported, including Protocol 3.

One may see that the proposed CNN method has a significant improvement over the
SOTA method proposed by Yang, Deravi & Hoque (2018), considering that, the
experiments were conducted under the same scenario with nine electrodes (See Table 7).

Cross-task evaluation

To evaluate the cross-task scenario, a new protocol based in Yang, Deravi & Hoque (2018)
is proposed. Among the 12 sessions, it is selected the T1R2 for testing. Besides, the
remaining tasks (and runs) are used as training and validation. In that manner, eleven
models to evaluate the T1R2 set are created. It is conducted the training following the
methodology described in “Introduction”. Also, the impact of using only nine electrodes
(channels) instead of the 64 electrodes available on the Physionet Dataset is analyzed.

From the results presented in Table 8, one may see that CNN has converged for all
training data, and the EER is lower than 0.39% for all of them. With 64 channels, the best
scenario reaches 0.02% for T3R3 and an error, on average, of 0.16%. With nine channels,
the lower EER achieved was 0.06% for T1R3 and the average error was 0.15%.

From these results, five questions arises:
What is the impact of using different tasks from the same run in biometric verification?

Despite the parity of reported EER, the model trained with task T2 (same task as in T1,
but in the imaginary state) presented a small and similar EER with both nine channels
and 64, outperforming the models trained with tasks T3–T4. Despite task T3 showing the
smallest EER with nine channels, it increased significantly with 64. In that sense, tasks
from the same nature, even if it is imaginary, perform better than other ones. Although, the
proposed CNN still performs well for the different tasks.

What is the impact of using the same task but different runs in biometric verification?
From all experiments with 64 channels, the ones that use the same tasks from different
runs had a good performance and a small variation. Upon this fact, one may affirm that

Table 7 EER reported on T1R2. Both metrics are presented in percentages.

Reports Train Test EER (%)

Yang, Deravi & Hoque (2018) T1 & T2 T1R2 2.63

Proposed Approach T1 & T2 T1R2 0.27
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EEG biometry benefits of data acquisition in which the same task is performed. Using nine
electrodes, the results presented high variance, which may happen due to the reduction in
the number of channels used to train the model.

What is the impact of using the same task but imaginary from different runs in biometric
verification? Different from the experiments using the T1 task, the experiments engaging
the T2 task have a noticeable variation both with nine and 64 electrodes. Despite this
fact, imaginary tasks perform similar to the ones which are not imaginary but with more
variance. Toward this direction, EEG biometry benefits from data acquisition in which the
task performed are the same in training and testing, even if it is imaginary or not.

What is the impact of using different tasks (imaginary or not) in biometric verification?
Different tasks, motor or imaginary, for training and testing did not affect the performance
of the system substantially. The biggest errors came from training with T4, a task
completely different from the one used for test. On the other hand, training with a different
motor task (T3) presented the same behavior from training with the same imagine task,
aleatory, but satisfactory.

In that manner, EEG biometric may benefit from using tasks of the same nature, both
motor tasks. In the same manner, it benefits from using the same task (imaginary or not).
One possible hypothesis is that the activated areas from the brain are different from
each task and the respective nature. The electrodes capture this behavior that directly
influences the EEG curve. However, those changes are not substantial enough to affect very
much the biometric verification process.

What is the impact of the number of electrodes used in biometric verification? Using
fewer electrodes for training and testing did not affect considerably the performance of the
system. Among all the performed experiments, the best result, 0.02% EER for training with
T3R3, occurred with 64 channels, and the worst occurred with nine channels and an
EER of 0.39%. This could indicate that EEG biometric benefits from using more channels,
but the training accomplished with T3R1, T4R1, T2R2, T3R3, and T1R3, almost half of
them, showed better performance with only nine.

Table 8 EER reported on T1R2. EER presented in percentage.

Test Train EER (%)
9 channels

EER (%)
64 channels

T1R1 0.21 0.17

T2R1 0.25 0.15

T3R1 0.10 0.19

T4R1 0.09 0.19

T2R2 0.15 0.17

T1R2 T3R2 0.12 0.25

T4R2 0.39 0.26

T1R3 0.06 0.17

T2R3 0.12 0.04

T3R3 0.08 0.02

T4R3 0.27 0.06
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One hypothesis to justify this result is that the use of 64 electrodes has redundancies and
that using nine is enough to capture the most important signals emitted during the
performance of a task, motor, or imaginary. Even in cases where the EER was higher using
fewer channels, this increase was not significant. In that sense, one may conclude that
using 64 channels adds unnecessary financial and computational cost since nine channels
proved to be enough to achieve good results.

Cross-individual evaluation
Since the Cross-individual evaluation is more challenging, it has more room for
improvement. Thus, in this scenario, we evaluate the SE Blocks. We also compared
networks based on SE blocks against networks based on simple CNN blocks under the
same conditions.

In total, 30 models were evaluated on training data by changing the hyper-parameter r
six times for each of the five SE models proposed. The r given by r = 2x ranged from 1 to
32 (x = 0, 1, 2, 3, 4, 5). The r hyper-parameter is used to enhance the information of
the channels in the excitation operation and it is related to the division of the original
number of channels. If r = 64, the 64 original signals were divided 64 and the result will be
only one channel in middle, which could mix up the original channels information.

The best results were achieved for SE Model 2 with r = 2, reaching an EER of 0.18% and
even better for SE Model 3 with r = 32, with an EER of 0.11%, both greater than the
results reported without the SE blocks. These two models are then used to evaluate the
proposed Cross-individual scenario.

To refer to the first half of the dataset (55 first individuals), EO1 and EC1 are used. EO1 is
used to refer to the first half of the individuals present on the eyes open task and EC1, for
the first half of the eyes close task. EO2 and EC2 are the second half of the eyes open and
eyes closed task respectively.

Table 9 shows the obtained results. One can observe that all reported results are closer to
the reported in the baseline task evaluation (EER = 0,19%). This endorses the robustness of
the proposed approach. SE Model 2 reached the best EER, 0.18% when testing with a
different set of individuals under the same condition (eyes open). When trained with EC1

the best result occurred for test with E01 (EER = 0.36%).
SE Model 3 showed lower performance than SE Model 2 for most experiments. Thus,

we believe SE-block based network is a promising approach as a feature extractor for EEG
signals.

Table 9 Results obtained with SE Model 2 with r = 2 (SE2r2) and SE Model 3 with r = 32 (SE3r32)
both trained with signs of half of the individuals.

Train Test CNN Arch. A SE2r2 EER (%) SE3r32 EER (%)

EO1 EO2 0.55 0.18 0.92

EC2 0.93 0.51 0.39

EC1 EO2 0.40 0.41 0.55

EC2 0.97 0.36 1.11
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CONCLUSION
In the present work, it was evaluated the use of deep descriptors to extract features from
the EEG signal for biometric purposes. The main focus was on one particular aspect:
what is the impact of a motor (or even imaginary) activity in the EEG biometric modality?
To investigate this question, the proposed approach with the Physionet EEG Motor
Movement/Imagery Dataset was evaluated.

The proposed deep learning-based method achieved outstanding figures, overcoming
the state-of-the-art methods even for the multi-task scenario. It is worth emphasizing
that the proposed method is capable of performing well, even when trained on
different tasks. For instance, it reaches an EER of 0.12% when trained with the task T4,
corresponding to imagining moving the feet, and tested with the task T1, equivalent to
performing the motor movement of closing the fists. One can conclude that the electrodes
capture the motor (or imaginary) interference, however, those changes are not
substantial enough to inhibit the biometric verification process. This work also evaluated
the impact of the Squeeze-and-Excitation blocks for the EEG biometric problem.
The Squeeze-and-Excitation blocks explore the interdependence between the channels of
the signal, allowing better quality feature extraction and, therefore, better results.

Due to the nature of the proposed CNN-based approach, it allows simultaneous
processing of all EEG channels, which is an advantage from a computational point of view.
However, the use of multiple channels could turn the biometric modality impractical for
real-world applications. Thus, the impact of using fewer channels (electrodes) is investigated,
and a possible conclusion is that the use of all channels does not necessarily improve the
result. The reported results showed that only nine electrodes allowed to achieve competitive
results, or even better, compared to the use of 64 electrodes in similar tasks.
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