Submitted 18 September 2020
Accepted 23 April 2021
Published 22 June 2021

Corresponding author
Daniyal Alghazzawi,
dghazzawi@kau.edu.sa

Academic editor
Lerina Aversano

Additional Information and
Declarations can be found on
page 24

DOI 10.7717/peerj-cs.545

© Copyright
2021 Alghazzawi et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

ScaleUp: middleware for intelligent
environments

Daniyal Alghazzawi, Ghadah Aldabbagh and Abdullah Saad AL-Malaise
AL-Ghamdi

Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah,
Saudi Arabia

ABSTRACT

The development of the Internet of Things (IoT) expands to an ultra-large-scale,
which provides numerous services across different domains and environments.
The use of middleware eases application development by providing the necessary
functional capability. This paper presents a new form of middleware for controlling
smart devices installed in an intelligent environment. This new form of middleware
functioned seamlessly with any manufacturer API or bespoke controller program.
It acts as an all-encompassing top layer of middleware in an intelligent environment
control system capable of handling numerous different types of devices
simultaneously. This protected de-synchronization of data stored in clone devices.
It showed that in this middleware, the clone devices were regularly synchronized with
their original master such as locally stored representations were continuously
updated with the known true state values.

Subjects Artificial Intelligence, Emerging Technologies
Keywords Intelligent environment control systems, Middleware, Pervasive computing, Smart
devices

INTRODUCTION

Architectures for intelligent environments typically require some form of necessary
middleware layer, enabling installed hardware (smart devices) and software, (agents or
controller programs), to link and operate together. Various types of middleware are
created to perform this crucial role, such as Universal Plug and Play (UPnP), Web Services,
and bespoke mechanisms written by device manufacturers (Tan et al., 2015).

Middleware may vary in terms of functionality, with different strengths and weaknesses.
These strengths and weaknesses largely depend on their deployment conditions. This is
challenging for the programmers that adopt unenviable measures when designing control
systems, particularly for complex smart devices or intelligent environments. Selecting a
particular mechanism requires trade-off of resources or functionality to a certain extent
(Rafique et al., 2015). Some bespoke control system middleware designs help recover
functionality loss by reproducing components that help to extend the chosen mechanism.
Alternatively, programmers could implement an architecture where multiple independent
middleware layers run simultaneously within a single control system. Both of these
solutions naturally require a greater coding effort to implement the system, which itself is a
lengthy program processing than the default implementation.

How to cite this article Alghazzawi D, Aldabbagh G, Saad AL-Malaise AL-Ghamdi A. 2021. ScaleUp: middleware for intelligent
environments. Peer] Comput. Sci. 7:e545 DOI 10.7717/peerj-cs.545

http://dx.doi.org/10.7717/peerj-cs.545
mailto:dghazzawi@�kau.�edu.�sa
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.545
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

A potential risk of data synchronization also prevails within the system (Bruneo,
Puliafito & Scarpa, 2006). For instance, the device state variability; updated using one
middleware system, cannot be reflected by all the alternative mechanisms used. If their
state data became desynchronized, smart devices controlled by agents may exhibit
erroneous or undesirable behaviours, which could prove costly and dangerous. These
issues also emerge due to hardware action request response times. If the new state data
needs to be shared amongst several components within the middleware (e.g., to
synchronise the system), this additional processing could be slower to changing events
within the environment. This could frustrate users when updating their device and makes
operating agents more apparent within an intelligent environment; for example, walking
into a dark room and needing to wait for the lights to switch on.

This paper highlights work performed by an ongoing international research project
(ScaleUp project) investigating methods for scaling up intelligent environments. As a
consequence of this research, a new middleware was developed, specifically designed to
address the trade-off issue, when deciding between functionality provided by UPnP and
Web Services implementations. The aim was to amalgamate distinctive beneficial features
offered by the UPnP and Web Services approaches into a new middleware design.

The new mechanism was also structured to protect intelligent environment control
systems against data de-synchronization, and processing action requests in times at
least on par with other existing middleware examples. This work was based on ongoing
international collaboration between the University of Essex and King Abdulaziz
University.

The core contribution of this study is an evaluation of both the state-of-the-art and
state-of-the-practice in the middleware research offered by existing middleware products.
Software engineers progressively utilize middleware for building distributed systems.
Any research into ScaleUp project that avoids this trend will merely have confined effect.
Therefore, this paper has analysed the effects of middleware on the software engineering
research agenda. It is argued that requirements engineering techniques are required
for focusing on non-functional requirements, as these impact the selection and use of
middleware. Software architecture research can develop methods guiding students
towards the selection of right middleware and integrating it so that it fulfils a series of
non-functional requirements.

LITERATURE REVIEW

Related work

Currently, many oft-the-shelf commercial devices possess inbuilt intelligent functionality
(i.e., either contain or can be accessed in some way via a computer system) (Yuan,
Xiaolei & Yitao, 2019). To facilitate usability of their products, hardware manufacturers
include pre-installed middleware designed for computer control. Previously, control
systems were device-centric; for example, the control system for washing machine cycle
programming. However, with the widespread use of networking platforms such as
Ethernet, Wi-Fi, and Bluetooth, the interconnectivity between different devices began

to emerge. Being proponents of Pervasive Computer Science concepts, such as the

Alghazzawi et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.545 2/27

http://dx.doi.org/10.7717/peerj-cs.545
https://peerj.com/computer-science/

PeerJ Computer Science

Internet-of-Things (Gubbi et al., 2013), several hardware manufacturers chose to
implement middleware for their products around established common frameworks, such
as UPnP.

This was due to a belief that by adopting common middleware architecture, customers
would use smart devices created by rival companies, within their proprietary personal
home networks. Though, this concept is yet to be turned into a mainstream commercial
reality. Various larger multinational hardware manufacturers, such as Apple or Sony
are adopting more protectionist marketing strategies, creating interconnectivity between
their products and services. For example, Apple iWatch smart device release will only work
when paired with an Apple iPhone 5 or newer, though it is not compatible with any
other older iPhone models or any rival smart-phone handset (Almusaylim ¢ Noor, 2019).
Such smart devices operate using completely bespoke proprietary middleware systems,
designed solely by a particular company.

The current literature shows that the use of middleware in 10T is limited (Farahzadi
et al., 2018). Ngu et al. (2016) have designed an IoT application for real-time prediction
of blood alcohol content based on smartwatch sensor data. The study has conducted a
survey on the competencies of the current IoT middleware. In addition, the challenges and
the enablers associated to the IoT middleware were presented in order to embrace the
heterogeneity of IoT devices. Fremantle ¢» Scott (2017) have utilized a structured
search approach for identifying 54 particular IoT middleware frameworks and examined
the security frameworks associated to each middleware. A total of 12 requirements
(integrity and confidentiality, access control, consent, policy-based security,
authentication, federated identity, and device identity) were used from the first stage for
validating the competencies of each system.

Elkhodr, Shahrestani ¢» Cheung (2016) have accounted middleware for the emerging
attributes such as seamless communications, lightweight aspects, and mobile across
different heterogeneous networks and domains. It involves a context-adaptive technique,
which allows the user for managing the location information shared by things on the basis
of policy enforcement and context-aware mechanism. This mechanism accounted both
the preferences and informed consent of a user. Jyothi (2016) has managed data volumes
and supported semantic modeling in the open issues, specifically managing the crowd
sourcing of different domains. There is a scope for research work in order to make a
generic IoT-middleware system, which is relevant across all regions by making all the
functional aspects reusable and can be included as enabler to the middleware system.

Razzaque et al. (2015) survey showed that the use of middleware assists in the
development through its integration of heterogeneous communication and computing
devices. It also states that middleware provides interoperability support for application
across different devices and services. Jeon ¢ Jung (2017) have revealed that the average
request rate elevated by 25 percent compared to Californium, which is a middleware for
effective association in IoT environments with vigorous performance, a power
consumption reduced by up to 68% and an average response time reduced by 90% when
resource management was utilized. Lastly, the latency and power consumption of IoT
devices can be reduced by the proposed platform. According to Cruz et al. (2018), an

Alghazzawi et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.545 3/27

http://dx.doi.org/10.7717/peerj-cs.545
https://peerj.com/computer-science/

PeerJ Computer Science

important role is played by middleware as it is accountable for covering the intelligence
part in IoT, which make decisions, allow them to communicate, and integrate data from
devices on the basis of data collected. Afterward, a reference architecture model was
investigated for IoT middleware based on IoT platform requirements, which detail the
effective operational approaches of each proposed module, and proposed fundamental
security features for this software type. Zhao et al. (2018) have proposed a stack of support-
communication-computing for integrating effective open-source projects in order to
devise techniques for allowing sufficient uniform human-thing associations, and
developing implementation foundations for cutting-edge technologies including semantic
reasoning and fog computing.

Due to the lack of common frameworks adoption for building complex intelligent
environments or devices, the addition of a bespoke middleware layer is critical. This layer
is designed to collectively handle the respective control systems of each installed smart
device type. This extra layer of middleware wraps the individual bespoke device controller
programs into a single API, representing the entire intelligent environment. This is also
created by different Computer Science projects, which create middleware for intelligent
environments, linking their creations into bespoke device controllers. Although all might
concentrate on the same area of the control system architecture, the actual functionality
can have a broad design. For example, Rivera ¢» van der Meulen (2013) created their
bespoke Gaia infrastructure to allow distributed collections of smart objects and
environments, represented and accessed via an interface. Later, Perera et al. (2014) chose to
integrate a control system for a robot into their intelligent environment middleware,
allowing it to seamlessly access sensors and actuators within the smart space. In their
OpenCOPI middleware, Bazzani et al. (2012) utilized a web ontology language based
around semantic web services to create a mediator regulating access between ubiquitous
applications and available service providers. Echelon (2015) also used web Services as the
base for their aWESoME infrastructure, which in addition to being an intelligent
environment controller, focused on promoting “energy savings” by consuming low power
in its operations. Finally, Phidgets (2015) used a context-aware multi-agent system as their
middleware base for controlling ambient intelligence exhibited within an environment.

Different middleware platforms were discussed on these criteria for networked robotic
systems (Mohamed, Al-Jaroodi ¢ Jawhar, 2009). Majority of the middleware platforms
have varied objectives including reusability, development process, self-discovery,
self-configuration, supporting QoS, flexibility, and integration. In addition, several
middleware platforms were discussed in the study for networked robotic systems such as
self-adaptation, discovery and higher-level abstractions, collaborations support, and other
advanced characteristics for integration.

Rodriguez-Molina ¢» Kammen (2018) have apparently demonstrated the collection of
services demonstrated by community of researchers, developers, and scientists.
Furthermore, middleware solution utilizes an API that explains how services were accessed
from both the applications and the hardware that has been embedded for a Smart Grid-like
deployment. Moreover, the authors have indicated that boundaries exist between the
hardware located and the network, which are compliant with a standard demonstrating the

Alghazzawi et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.545 4/27

http://dx.doi.org/10.7717/peerj-cs.545
https://peerj.com/computer-science/

PeerJ Computer Science

Interface Device Device Device
Program Wrapper Controller
Figure 1 An example of a two-tiered middleware architecture for controlling a smart device.
Full-size K&l DOT: 10.7717/peerj-cs.545/fig-1

sub-systems of the software. Vikash, Mishra ¢» Varma (2020) have conducted a survey on
middle-wares of WSNs towards IoT in offering a comparative view of different middle-
wares and how this middleware technology can be utilized for implementing several issues
emerging in the development of IoT applications. Rodriguez-Molina et al. (2017) have
utilized different aspects with several functionalities preferred as essential for a semantic
middleware architecture conjoined with maritime operations including access to the
application layer, context awareness, and device and service registration. On the contrary,
Rodriguez-Molina et al. (2017) have interweaved other technologies with middleware
such as acoustic networks and wireless communications. Under such circumstances,
Rodriguez-Molina et al. (2017) have established an approach for interchanging
information at the data level among independent maritime vehicles, which is of significant
importance as the required information will have to be defined, along with the size of
transferred data. Rodriguez-Molina et al. (2017) have forwarded the Maritime Data
Transfer Protocol for interchanging standardized aspects of information at the data level
for maritime independent maritime vehicles, and the procedures that are needed for
information interchange.

Techniques/Protocols/Paradigms used in the development of
proposed work

Figure 1 highlights the integration of the additional middleware layer within the control
system architecture using the ‘Device Wrapper’ node. Without this layer of middleware, it
would be necessary first to learn the use of interface and to control each smart device
individually. This requires the use of multiple different programming languages, such as
Java, Python, C, C++ or C#, and possibly OS-dependent software packages. For example,
the University of Essex currently has two full-scale intelligent environment test-beds,
each using a different style of additional middleware layer to amalgamate devices from
various manufacturers. These include iClassroom and iSpace.

The iClassroom (Romdn et al., 2002) is an intelligent environment customised to
resemble a university or school teaching room (Fig. 2). Most smart technologies are used
directly to augment presentations or other teaching strategies to enhance student learning
experiences. The middleware in the environment uses Web Services to wrap diverse
collection of devices into a single common interfacing mechanism. The Web Services
system uses Eclipse’s Jetty Web Server (Roalter, Kranz ¢ Moller, 2010) for its operations.

The iClassroom uses a centralized configuration, with all the middleware running from
a single server. In terms of functionality, the main user interface is in bespoke website form
hosted on the environment server. This server contains numerous hyperlinks to the Web
Services used to control each device. The user interface can be loaded onto any standard

Alghazzawi et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.545 5/27

http://dx.doi.org/10.7717/peerj-cs.545/fig-1
http://dx.doi.org/10.7717/peerj-cs.545
https://peerj.com/computer-science/

PeerJ Computer Science

Interface Youpi UPnP Device Actuator
Program Server Controller

Figure 2 The iClassroom intelligent environment and its middleware architecture.
Full-size K&l DOT: 10.7717/peerj-cs.545/fig-2

State Change Requests

v
4—-){ Clone De\'iceHMaster Device

Scheduled
Synchronization Updates

Device
Controller

‘ Interface Control Point

Program

Device

Manufacturer
API

Figure 3 The iSpace intelligent environment and its middleware architecture.
Full-size k&l DOL: 10.7717/peerj-cs.545/fig-3

browser application such as smart phones and tablets. Through the user interface, smart
device in the environment can be connected, controlled, and monitored to the Web
Services system from any remote location capable of accessing the iClassroom network.

The iSpace (Lopes et al., 2014; Stavropoulos et al., 2013) is an intelligent environment
test-bed customized to resemble a typical household environment. The multi-roomed
space includes a full-sized lounge/kitchen, study, bathroom, and bedroom, each connected
by a central hallway. Unlike the iClassroom, most of the smart technologies in the iSpace
are deliberately concealed within hollow walls and ceilings (Fig. 3). This provides
unknowing visitors to space an initial impression that they are in a normal (i.e., non-
augmented) environment. The middleware in this intelligent environment is based upon
UPnP, with controllers for over sixty smart devices linked together into a single API. More
specifically, Youpi UPnP stack (Olaru, Florea ¢ Seghrouchni, 2013) was used to implement
wrappers for each smart device.

The iSpace comprises a distributed configuration, with the middleware and control code
for devices which split across several different computers, each connected via a common
network. The Youpi UPnP wrappers allow each smart device to broadcast its existence

Alghazzawi et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.545 6/27

http://dx.doi.org/10.7717/peerj-cs.545/fig-2
http://dx.doi.org/10.7717/peerj-cs.545/fig-3
http://dx.doi.org/10.7717/peerj-cs.545
https://peerj.com/computer-science/

PeerJ Computer Science

on the same network (Dooley et al., 2011). iSpace allows programmers to create a bespoke
controller code to integrate the smart devices into their projects better. To discover them,
programmers must create a Youpi UPnP control point within their code and perform

a search. This can be either for a specific device or a general search that returns a set of
every smart device discovered on the network. Using a returned smart device instance,
a control program can then isolate specific state variables, actions and arguments to
either monitor or modify the associated hardware. Using UPnP, user control programs can
‘subscribe’ to individual state variables within a smart device instance. The state of a
subscribed variable changes can automatically flag an associated listener within the user’s
interface program.

For a large environment like the iSpace, implementation and maintenance of UPnP
middleware require significant programming effort. To operate a wrapper for each smart
device instance, a significant amount of information concerning hardware and its uses are
required. Initially, each device type needed every state variable, action, and argument
that can be individually declared. These were associated with dedicated UPnP state
listeners to allow the correct functioning of the subscription system. Finally, it was
necessary to individually initialize and start each instance of a smart device in the iSpace,
which included assigning unique attributes such as names and UUIDs.

THE ENVIRONMENT DEVELOPMENT KIT (EDK)

The new system is created from scratch and is not an extension or reconfiguration of a
pre-existing architecture. Thereby, steps should be taken to address the synchronisation
and resource allocation issues. This led to the creation of the Environment Development
Kit (EDK), which was written using only standard Java SDK, with no extensions or
third-party APIs. The EDK architecture design declared smart device present within an
Intelligent Environment to be;

a) Discoverable on a network.

b) Subscribed to using listeners, which monitored for state change events.

¢) Accessible and/or controllable via a common API.

d) Accessible and/or controllable via a set of auto-generated Web Services.

e) Assigned with a unique controller program instance or one collectively shared by a

group.

The system operates in both a centralized or distributed context and is not OS
dependent. Controllers assigned to individual or groups of devices could be updated using
a ‘hot-swap’, without needing to restart any part of the system, (as long as the device is
not being accessed at the time of modification). Additionally, the inventory of devices is
not to be declared before the system could run, as new devices could be discovered and
handled by the system at any time. The case is similar to various middleware previously
designed for intelligent environments, such as UPnP.

A multicast communications system allows devices to be linked to agents and other user
programs. Multicast is less dependable than alternative communication methods such

Alghazzawi et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.545 7127

http://dx.doi.org/10.7717/peerj-cs.545
https://peerj.com/computer-science/

PeerJ Computer Science

private final int COMMUNICATIONS PORT = 4446:

private final int WEBSERVICES PORT = 8000;

private final String CONTROLLER CLASS = "Controllex";

private final String CONTROLLER PACKAGE = "devicecontrollex";
private final String CONTROLLER DIRECTORY = "controllers";
private final String NETWORK ADDRESS = "230.0.0.1";

Figure 4 The EDK middleware architecture. Full-size Kal DOI: 10.7717/peerj-cs.545/fig-4

as TCP. It is because there is no guarantee that intended targets would receive the message
broadcasted to a network. However, it is significantly much faster than TCP and can
share message across multiple targets in a subscribed group simultaneously, which
determines the main reasons behind its usage in this middleware system.

Similar multicast systems are in use in computer game virtual worlds, where the
environment is divided into regions, each with their assigned group containing all the
players, objects and other updatable information present in that area (Simo-Ten et al.,
2017; J. Eclipse, 2015). When an entity moves from one region to another, it should also
change its subscription to the corresponding multicast group while simultaneously leaving
the previous one.

Users were able to access the EDK network, search for represented smart devices and
send action requests to specific discovered instances via an inbuilt control point.
Devices discovered by each control point instance were automatically ‘cloned’ and locally
stored. Clone devices were exact copies of their originals, with the exception that they
possessed no controller, so they could not directly interface with real hardware in the
environment. Cloned devices received state updates from the original ‘master’ device.
These synchronisation updates occur regularly. Typically, this requires an update several
times a minute, although the interval period between messages could be increased or
decreased according based on its importance for clones to return the most up-to-date state
information possible.

For actuators, EDK control points bypass the clone representation and transmit a state
change action request directly to the master device. Multicast communication used
received response from the device indicating concerning the change of request wither its
success or failure. However, if the new state was applied to the master device, then
alteration of the local clone would occur during the next synchronisation update. To speed
this process, the EDK was designed where changes are automatically and immediately
prompted to a synchronisation update, temporarily overriding the scheduled system,
(which had its internal timer reset). Figure 4 shows complete EDK system architecture for
controlling a single, smart device via a third-party interface program.

Allowing users to create control points, the API provides a series of expandable classes
and methods that are used with a broad range of bespoke sophistication for devices or
environments. The EDK came packaged with classes for representing several basic actuator
and sensor types, used by master device representations, and subsequently by control point
instances when creating their clones. Furthermore, the system was equally capable of

Alghazzawi et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.545 8/27

http://dx.doi.org/10.7717/peerj-cs.545/fig-4
http://dx.doi.org/10.7717/peerj-cs.545
https://peerj.com/computer-science/

PeerJ Computer Science

BooleanLight lightl =
new BooleanLight ("Lightl", "Power", "Light Mk 1");
lightl.addStateChangelistener(sl);

Figure 5 An example of communication and controller constants.
Full-size 4] DOT: 10.7717/peerj-cs.545/fig-5

handling encountering unknown device types in an ad-hoc manner. This was achieved by
creating a cloned instance of the discovered device using a generic class appropriate for
representing its declared features and variables. Several different generic classes existed
depending on the device, whether the device was an actuator or a sensor and the number
variables it possessed. Because of this feature, control points did not require setup or
inventory of an intelligent environment before being connected. Additionally, it was
possible to use the EDK with intelligent environments based around both centralized and
distributed architectures, as there was no requirement to host master devices and clones on
the same computer to communicate.

Implementing master devices

Three key components are required to exist on an EDK network;

1. A representation identifies the attributes of the device and declaring whether it is an
actuator or sensor.

2. A gateway to the target EDK network from where the device will be accessible.

3. A controller connecting the virtual EDK representation with some counterpart
hardware that exists in the real-world.

Together these components allow a “master” device to be created using the EDK API.
Once deployed on the network, the virtual device representation would monitor or change
the state of the real hardware-based upon received user instructions. It would also
periodically broadcast details of itself and the current state of the hardware to the EDK
network, which is received by any active control points and used to create or synchronize
associated “clone” devices.

Master devices can be implemented and deployed remotely on one or several networked
computers. Depending upon personal preference, a master device application could also be
used to generate one or several different actuators and sensors, with no requirement of
device type. Multiple different control programs can be imported into the same
implementation, and if desired, a group of devices can either share or each is allocated their
instance of the same controller.

Step one: declaring constants

Firstly, several constants need to be declared to allow communication and different control
systems to operate correctly. Figure 5 provide examples of these, where each attribute is
explained further in the implementation process.

Alghazzawi et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.545 9/27

http://dx.doi.org/10.7717/peerj-cs.545/fig-5
http://dx.doi.org/10.7717/peerj-cs.545
https://peerj.com/computer-science/

PeerJ Computer Science

DimmableLight dimmerl = new DimmableLight ("Dimmerl",
new String() { "Powexr", "Brightness" }, "Dimmer Light Mk 1");

dimmerl.addStateChangeListener(sl);

Figure 6 Creating a new single variable smart device. Full-size K] DOI: 10.7717/peerj-cs.545/fig-6

DeviceHub lighthub = new DeviceHub (communications);
lightHub.addDevice (lightl, lightController);
lightHub.addDevice (dimmerl, dimmerController);

Figure 7 Creating a new multi-variable smart device. ~ Full-size Kl DOT: 10.7717/peerj-cs.545/fig-7

Step two: creating device instances
The EDK API contains several different classes that can be used to create new
representations of individual master devices. The selection of the class for a given situation
depends upon several factors, specifically, the number of state variables supported by
the device along with its identification as an actuator or a sensor. For common device
types, the EDK API contains several dedicated classes, many of which contain bespoke
convenience methods that provide better control of specific state variables. For example,
Figs. 6 and 7 show the creation of an instance of two different types of light emitting
devices. Both types have a state variable “Power” declared, which controls whether the
device is on or off. To support these actions, both the “BooleanLight” and
“DimmableLight” classes contain two convenience methods “turnOn” and “turnoff” which
allow the “Power” state variable to be set without the need to declare or process any new
values directly. The “DimmableLight” class used in Fig. 7 additionally contains
“getBrightness” and “setBrightness” methods, as compared to the declared “Brightness”
state variable, used to control the emitted light level.

Without these convenience methods, the state variable name would need to be declared
along with any new state value (if applicable), in a formatted String in order to
perform the same function. If the device being used is uncommon or unknown for
some reason, the EDK API generic series classes can be created. This creates
representations based purely on the number of declared state variables. For actuators, these
would be “SingleVariableActuator” and “MultiVariableActuator”, whereas for sensors the
appropriate generic classes would be “SingleVariableSensor” and “MultiVariableSensor”.
Each class contains several different constructors based on the available information of
the created device. For instance, in Figs. 6 and 7, the constructor is provided with a name
for the device instance, the supported state variables (provided in a string array for
multi-variable devices, as seen in Fig. 7), and a description of the device itself. In this
instance, all other required variables, such as a unique UUID, are allocated to the new
device by the EDK API. Figures 6 and 7 also show how a “StateChangeListener” can be
attached to individual master device instances, which flag whenever the value of any

Alghazzawi et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.545 10/27

http://dx.doi.org/10.7717/peerj-cs.545/fig-6
http://dx.doi.org/10.7717/peerj-cs.545/fig-7
http://dx.doi.org/10.7717/peerj-cs.545
https://peerj.com/computer-science/

PeerJ Computer Science

! Note: When implementing master devi-
ces, it is highly recommended that each
instance is given unique name value. It
should always be ensured that device
instances always have different uuid
values, which can be generated randomly
using the Java SDK UUID class. Note: All
supported state variable names must be
declared when creating a new device
instance. Several pre-formed device types
are included within the EDK API, which
often contain several convenience meth-
ods for performing device-specific
actions. To use these methods, state
variables must be declared using the
specific names specified by the Javadoc
information for the relevant class. Note:
If an application is intended to deploy
multiple master device instances, it is
recommended to create each instance at
this stage before continuing. Note: To
prevent processing errors, individual
state variables should never include the
colon or tilde characters (i.e.: or ~) in
their names or possible returnable values.

InetAddress environmentAddress =

InetAddress. getByName (NETWORK_ADDRESS);
Communications communications =
new Communications (environmentAddress, COMMUNICATIONS_PORT);

Figure 8 Creating the communications system. Full-size Kal DOI: 10.7717/peerj-cs.545/fig-8

File controllerJARFile = new File (CONTROLLER_DIRECTORY +
File.separator + “)
Controller lightController = new Controller (
controllerJARFile, CONTROLLER_PACKAGE, CONTROLLER_CLASS);

Figure 9 Loading device control systems. Full-size k] DOT: 10.7717/peerj-cs.545/fig-9

supported state variable is changed either by some attached hardware or due to a user
request.’

Step three: adding communications

An instance of the “Communications” class must be created in order for master devices to
be able to connect to an EDK network. Figure 8 shows how to do this using two of the
variables from Fig. 5 mentioned earlier to supply values for the network address and
communications port variables. The EDK uses multicast communication to allow master
devices to send updates to any running control points that have joined the same group. As
a consequence, it is important to ensure that the value used for the
“NETWORK_ADDRESS” variable is a valid multicast address. It may also be necessary to
open the value used for “COMMUNICATIONS_PORT” on firewalls, which may be
blocking the sending or receiving of multicast communications packets on the network.

Step four: loading device controllers
Control system programs for individual smart devices are created independently of the
EDK. Once implemented, a device control system can be uploaded into a master device via
the EDK API. Figure 9 shows how to do this. “DeviceController.jar” is the filename of the
controller being uploaded, from the designated “CONTROLLER_DIRECTORY”. To
integrate the controller program with the master device, the EDK needs to know the
package (“CONTROLLER_PACKAGE”) and the name of the main class
(“CONTROLLER_CLASS”).

As before, examples of these values are provided in Fig. 5.

Step five: creating a device processing hub

The next step is to create a hub to process devices. The “communications” variable of the
“DeviceHub” constructor should be the same instance of the “Communications” class
created back in Step Three. Once the hub is initialised, each of the smart device instances
created in Step Two needs to be individually added. As these are master devices, they also

Alghazzawi et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.545 11/27

http://dx.doi.org/10.7717/peerj-cs.545/fig-8
http://dx.doi.org/10.7717/peerj-cs.545/fig-9
http://dx.doi.org/10.7717/peerj-cs.545
https://peerj.com/computer-science/

PeerJ Computer Science

DeviceHub lightHub = new DeviceHub (communications);
lightHub.addDevice (lightl, lightController);
lightHub.addDevice (dimmerl, dimmerController);

Figure 10 Creating a hub and adding master devices. Full-size Kl DOI: 10.7717/peerj-cs.545/fig-10

WebServer webServer = new Webserver (WEBSERVICES_PORT);
lightHub.addWebServices (webSERVER);

Figure 11 Enabling the EDK web services. Full-size K&] DOT: 10.7717/peerj-cs.545/fig-11

need to be associated with their respective controller programs, loaded during Step Four.
Figure 10 provides an example of how to implement this for light devices.

The purpose of the “DeviceHub” class differs slightly depending upon whether it is used
within an implementation for master devices or an EDK control point. For master devices,
the hub liaises with the communication system created in Step Three, to have each of its
stored devices access their associated controllers and perform a live update of their
recorded state variables. Typically, this would involve each device accessing the real-world
hardware to which its control system connects it. Once acquired, the up-to-date state
variable information is then passed back to the communications system, where it is
transmitted to the EDK network and used synchronizing any listening clone device
representations.

Step six: adding web services (optional)

Using the Web Services interface method with an EDK middleware implementation is
optional, so this step can be ignored if desired. However, enabling the Web Services system
only requires the code shown in Fig. 11 to be added after the creation of the device hub.
The variable “WEBSERVICES_PORT” is the last of the declared constants create back
in Step One, which in the case of this example (Fig. 5).

Once added to an instance of the “DeviceHub” class, the EDK mechanism will
auto-generate a Web Services control interface for each of the declared smart devices and
add them to the internal HTTP Server. Currently, two different acceptable commands
are implemented for sensors (i.e., about and get), while three for actuators (i.e., about, get
and set). The Web Services interface can be loaded using any standard Web Browser,
including on most mobile devices, such as smartphones and tablet computers. The syntax
for an EDK Web Service is naturally bespoke to each situation where it is used, but the
basic URL structure is as follows:

http: //<ComputerIPAddress>:<WebServerPort™>/<DeviceName>> /<Command>

So, based upon the “BooleanLight” and “DimmableLight” smart device examples used
throughout this tutorial, some acceptable URLs would be:

http://127.0.0.1:8000/Light1/about

Alghazzawi et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.545 12/27

http://dx.doi.org/10.7717/peerj-cs.545/fig-10
http://dx.doi.org/10.7717/peerj-cs.545/fig-11
http://dx.doi.org/10.7717/peerj-cs.545
https://peerj.com/computer-science/

PeerJ Computer Science

http://127.0.0.1:8000/Light1/get
http://127.0.0.1:8000/Light1/set?Power:1
http://127.0.0.1:8000/Dimmer1/get?Brightness
http://127.0.0.1:8000/Dimmer1/set?Brightness:75

127.0.0.1° The IP address of the computer running the master device representation being accessed, (likely to be different from localhost).
8000’ The port number for the Web Server, as declared by the value of the ,, WEBSERVICES_PORT" constant created back in Step One.
‘Light1’ The names of the smart devices being accessed, as declared when their representations were created in Step Two.

‘Dimmer1’
‘about’ A command to display general information about the specified device.
‘get’ A command to return the name of each state variable supported by the specified device, along with its currently recorded value.
set?Power:1’ A command to set state variable ,,Power™ to a value of ,,1°.

Note: 0 = OFF, 1 = ON

‘get?Brightness’ A command to return the current value of state variable “Brightness”.

‘set?Brightness:75’ A command to set state variable “Brightness” to a value of “75”.

Creating a control point

An instance of the “ControlPoint” class allows external client programs to access devices
via an EDK network. Figure 12 shows the API code required to perform this task. The
String variable used in the “ControlPoint” constructor is a bespoke name for the specific
instance being created. If more than one control point is being used within a client
program, (i.e., to access different EDK networks), this variable can be used to identify
specific instances.

A control point effectively acts as a portal into the EDK middleware system, allowing
users to search for groups or specific master devices on the associated network. Its
associated communications system provides details of the network which is accessed by a
control point. In addition to providing details of an EDK network, the communication
system supplied to a control point is also responsible for processing state update messages
for the master devices. The control point itself automatically generates an internal
“DeviceHub” instance, which is used to create and store clone device instances based on
information received by the communications system from the EDK network. The control
point accesses the stored clone devices and uses their information to provide returnable
results for user searches.

Searching for devices

To search for known master devices, present on an EDK network, a “ControlPoint”
instance can use its “searchForDevices” method (Fig. 13). Instances of “ControlPoint” will
only become aware of master devices upon receiving an update packet from them.
Therefore, upon initially starting, the delay might occur before all master devices present
on a network are discovered, concerning their update cycles when the control point
joins the EDK multicast group. It is typically a good idea to enclose the search command in

Alghazzawi et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.545 13/27

http://dx.doi.org/10.7717/peerj-cs.545
https://peerj.com/computer-science/

PeerJ Computer Science

? Note: When implementing master devi-
ces, it is highly recommended that each
instance is given unique name value. It
should always be ensured that device
instances always have different uuid
values, which can be generated randomly
using the Java SDK UUID class.

InetAddress environmentAddress =

InetAddress. getByName (NETWORK_ADDRESS);
Communications communications =
new Communications (environmentAddress, COMMUNICATIONS_PORT);

ControlPoint controlPoint =
new ControlPoint (communications, “ControlPoint”);

Figure 12 Code for creating an EDK control point instance.
Full-size K&l DOT: 10.7717/peerj-cs.545/fig-12

Device[) deviceList = controlPoin, searchforDevices|);

Figure 13 Searching for known master devices on an EDK network.
Full-size K&l DOT: 10.7717/peerj-cs.545/fig-13

» «

a “for”, “do-while” or “while” loop to keep the control point scanning the network until a
non-empty array is returned or the desired device is found. Alternatively, this command
could also be repeatedly called from within an isolated thread, which runs continuously in
the background, allowing devices that start broadcasting after the control point’s initial
search also to be detected.

Searching for specific devices

If details of the target device or devices are known ahead of time, a client program can
alternatively use one of the more specific search methods of the “ControlPoint” class.
Figure 14 shows three such methods, each targeting different attributes of master devices.
Firstly, the “SearchForDevicesByType” method can be used to filter the known list of
master devices by their type, returning an array of any matching instances stored in the
control point “DeviceHub”. The topmost example in Fig. 14 uses this method to search for
all instances of a “BooleanLight” The “Actuator” and “Sensor” classes in the API both
contain numerous other declared variables that can be used with this method each
representing one of the pre-formed smart device types included in the EDK. Alternatively,
to search for a device type not included within the standard API, programs can use the
“SINGLE_VARIABLE_DEVICE” and “MULTI_VARIABLE_DEVICE” variables, (also
found in the “Actuator” and “Sensor” classes), or a bespoke device name entered as

a String.

The two remaining search methods, shown in Fig. 14, are each designed only to return a
single device, matching either a specified name or uuid criterion. If no matching device is
found, then a “null” value is returned. If, for some reason, two different master devices
existed on an EDK network and both were called “Light1”, the “searchForDeviceByName”
method will only return the first instance it encounters upon contents scanning of control
point device hub. This also applies to the “searchForDeviceByUUID” method if both
devices share the same aid value.”

Processing EDK smart devices
The instance of “Device Hub” created by a control point is used to store clones created to
represent networked master devices locally. The device hub creates the clones, which is the

Alghazzawi et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.545 14/27

http://dx.doi.org/10.7717/peerj-cs.545/fig-13
http://dx.doi.org/10.7717/peerj-cs.545/fig-12
http://dx.doi.org/10.7717/peerj-cs.545
https://peerj.com/computer-science/

PeerJ Computer Science

* Note: To prevent processing errors
individual state variables should never
include the colon or tilde characters
(i.e.: or ~) in their names or possible
returnable values.

// Search for all instances of a specific device type
Device [] devicelList = controIPomt.
searchForDevicesByType (Actuator.BOOLEAN_LIGHT);

// Search for a single device with the specified name
De\nce device = controlPoint. searchForDewceByName (nghtl)
// Search for a single device with the specified UUID
uuID Uuld =
UUID. fromString ("2deb19fc-5d41-4ac9-alca-4c6ff7al21e");
Device device = controlPoint.searchForDeviceByUUID (uuid);

Figure 14 Three methods for finding specific devices. Full-size Kl DOI: 10.7717/peerj-cs.545/fig-14

automatic response when information is received from the communication system that
does not match any previously known representation. Clone devices are generally stored
locally on the same computer as the control point used to create them. Aside from not
possessing controllers for hardware, they are identical to the master devices that spawned
them in every way. Even the unique attributes of the original master device are copied,
including its name and quid value. As such, by using the associated classes within the EDK
API, the details and states of each clone can be read, and in the case of actuators
manipulated, in the same manner as if connecting directly to any master device instance.

The EDK API contains several different methods of reading the state of smart devices.
A selection of the possible options is listed in Fig. 15. The determination of best
method largely depends upon what information is required about the state of a device and
how it is subsequently used.

From Fig. 15 examples, the topmost method is a general “getState” command, which is
common to every EDK device. When called, the “getState” command will return a single
string representation of the entire device, or more specifically, its state variable values.
Responses are always sent in pairs, with the name of the state variable and its current value.
For instance, in the case of the “Light1” “BooleanLight” device used in the implementation
examples earlier, an “etState” request could result in either of the following String
responses;

Power : 0
Power : 1

where, “Power” is the name of the only state variable included in a “BooleanLight” object,
while zero (off) and one (on) are the current values of that state. The colon separating
the two values acts as a key in a split command to allow easy separation of variable name
and its value. In the case of multi-variable devices, which contain more than one state
) is added to separate the individual attributes. So, for

« »

variable, an additional tilde key (“~
the “Dimmer1” “DimmableLight” used in earlier examples, a “getState” request could

return;
Power : 0 ~ Brightness : 100
where, “Power” is the first state variable and “Brightness” is the second, with current

recorded values of zero (off) and one hundred (percentage of maximum illumination),
respectively”.

Alghazzawi et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.545 15/27

http://dx.doi.org/10.7717/peerj-cs.545/fig-14
http://dx.doi.org/10.7717/peerj-cs.545
https://peerj.com/computer-science/

PeerJ Computer Science

Stxring deviceState = device.getState():

Stxing powerxrState = device.getState ("Powex")

int brightnessSctate =
Integer.parselInt(device.getState ("Brightness™)) s

int brightnessState =
((Dimmablelight)device) .getBrightness ()

Figure 15 Methods for reading the values of device state variables.
Full-size Kal DOL: 10.7717/peerj-cs.545/fig-15

foxr (Device device : devicelist) (
if (device.getName () .equalsIgnoreCase ("Dimmexl"™) &&
device.getType () .equals ("DimmablelLignt™)) {
if (device.getState ("Powexr") .equalsiIgnorxeCase ("0")) «(
((DimmableLignht)device) .tuxnln() s
}

else {

((DimmableLight)device) .turnOff () ;

Figure 16 An example of sending action state change requests to a master device.
Full-size K&l DOT: 10.7717/peerj-cs.545/fig-16

Figure 15 shows three methods that API can be used to return only the current value of
a specific state variable, rather than the name/value pairs shown above. Generally, this is
achieved by specifying the name of the state variable whose value is required as a variable
in the method. The second and third down examples in Fig. 12 demonstrate this process
for a “BooleanLight” and “DimmableLight” respectively. Typically, the returned state
values are in a String format, but can easily be converted as shown with the “Brightness”
variable example, where the value is converted into an integer once returned.

In many cases, the string can be avoided to integer conversion, as performed in the third
example of Fig. 15. This is based on EDK API device’s inclusion of convenience methods,
which return state variable values in their most appropriate format automatically. This is
demonstrated by the bottommost method in Fig. 15, which uses a “getBrightness” method
found in the “DimmableLight” class, which automatically returns the state value as an
integer. All that is required to use these bespoke convenience methods is to cast the generic
“Device” object returned by a control point search into the appropriate device type class, as
is shown in the example.

Writing to smart devices

In the example provided by Fig. 16, an array returned by a control point search (as
described in “Techniques/Protocols/Paradigms used in the Development of Proposed
Work”), is scanned for a specific device called “Dimmer1”, which is also a

Alghazzawi et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.545 16/27

http://dx.doi.org/10.7717/peerj-cs.545/fig-15
http://dx.doi.org/10.7717/peerj-cs.545/fig-16
http://dx.doi.org/10.7717/peerj-cs.545
https://peerj.com/computer-science/

PeerJ Computer Science

* Note: In the example provided in Fig. 16,
“Actuator. DIMMABLE_LIGHT” could
also have been used instead of the String
value “DimmableLight.”

> Note: Methods used in device controllers
must return state values in as a single
String using the expected EDK formats.
It is recommended that the “setState”
method returns the same value as an
action request to “getState” once com-
pleting its operation.

package devicecontrxollex;

public class Controller {

public Controller () {

}

public String getState () {

}

public String setState (String state) {

}

Figure 17 A controller template for a single variable smart device.
Full-size Ka] DOT: 10.7717/peerj-cs.545/fig-17

“DimmableLight”. If found, the value of the state variable “Power” is requested from the
device. If the value returned for “Power” is zero (off) then a command is sent to turn the
light on. For any other circumstance, the command is to turn the light off.*

In the example, the generic “device” variable taken from the “Device” array is cast into a
“DimmableLight” object. This allows the programmer to access the two convenience
methods “turnoff” and “turnOn,” which are contained within the Actuator class. The EDK
API contains several models for intelligent devices that can be used in place of the
more generic actuator and sensor classes. Some of these classes also contain further
convenience methods specific to that device type. For example, the “DimmableLight” class
also contains a “setBrightness” method to allow a specific value to be entered for a
“Brightness” state variable, controlling the amount of light emitted by the device.

Implementing EDK compatible device controllers

Recalling back to “Step One: Declaring Constants”, two of the constants that needed
to be declared when implementing a master device (as shown in Fig. 5) were
“CONTROLLER_CLASS” and “CONTROLLER_PACKAGE”. The origins of the values
used in the Fig. 5 example, can be seen in Fig. 17. The value that should be used for
the “CONTROLLER_CLASS” constant is the name of the main class of the control
system program, which in the example is simply “Controller”. Additionally, the value for
the “CONTROLLER_PACKAGE?” is the name of the package containing the declared
main class, in this case “devicecontroller”.

When implementing a control program for smart devices to be used with an EDK
middleware system, Fig. 17 shows the minimum classes required for integration. More
specifically, the “getState” and “setState” methods are both essential and should be used to
directly return or update the current state of the associated hardware, respectively. If
additional code is required to create a link with the associated hardware, such as using a
third-party software package (e.g., RXTX or a manufacturer API), then all this code
should be placed into a constructor within the main class, as shown by the “Controller”
constructor in Fig. 17.° If necessary, the constructor code should establish a connection

Alghazzawi et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.545 17/27

http://dx.doi.org/10.7717/peerj-cs.545/fig-17
http://dx.doi.org/10.7717/peerj-cs.545
https://peerj.com/computer-science/

PeerJ Computer Science

¢ Note: Any “set” methods should also
only expect to receive a single variable
containing the new state value to be
processed, as shown in Figs. 17 and 18.
No other variables must be added for the
methods to be compatible. Note: As with
“setState” it is recommended that any
“set” method returns the same value as
an action request to “getState” once
completing its operation.

package devicecontrollermultiple;

public class Controller {

public Controller()

}

public String getBrightness() {

}

public String getState() (

}

public String setBrightness (String value) (

}

public String setState (String state) (

}

Figure 18 A controller template for a dimmable light (multi-variable smart device).
Full-size Ka] DOT: 10.7717/peerj-cs.545/fig-18

with the smart device hardware and then maintain it as a global variable that can be
accessed directly by the “getState” and “setState” methods. Alternatively, the constructor
could be used to start an isolated thread, which uses locally declared variables, also
accessible by the “getState” and “setState” methods, to handle state action requests. It is
essential that no code necessary to directly establish a connection with hardware is
included in either the “getState” or “setState” method as doing so could lead to overall
instability in the EDK middleware system.

Controllers for multi-variable devices

Figure 18 highlights how the controller code in Fig. 17 can be extended to handle smart
devices with multiple state variables. The code presented (in Fig. 17), could function with a
multi-variable smart device, but it is often desirable to separate certain state variables to
better structure program code, or for efficiency, etc. Figure 18 shows a template for the
controller used with the “DimmableLight” device “Dimmerl” example mentioned
throughout this guide. Notice how the “getState” and “setState” methods have been
retained (for handling the “Power” state variable), although the “Brightness” state variable
has been separated and given its handling methods, namely “getBrightness” and
“setBrightness.” To add additional “get” and “set” methods, it is necessary to ensure
that their suffix is named the same as the state variable they are expected to handle,

» « » o« » o«

(e.g. “getPower”, “getBrightness”, “setPower”, “setBrightness”, etc.).’

When accessing a loaded device controller, an EDK implementation will first search
through the methods of the declared controller class (i.e. “CONTROLLER_CLASS”) to see
if it contains a bespoke match for the current state variable it needs to process. If no

appropriate method matching the state variable can be found, the system will then

Alghazzawi et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.545 18/27

http://dx.doi.org/10.7717/peerj-cs.545/fig-18
http://dx.doi.org/10.7717/peerj-cs.545
https://peerj.com/computer-science/

PeerJ Computer Science

automatically default to either the “getState” or “setState” method, depending upon which
action is being performed.

Additionally, in Fig. 15, the package name has changed, reflecting that it is a different
device controller program from Fig. 14 example. To be loaded correctly into the EDK and
used with a master device, Fig. 15 example would need to specify
“devicecontrollermultiple” as the value for “CONTROLLER_PACKAGE” during the first
implementation step.

EVALUATION

Evaluation strategy

One of the criteria used to measure the success of the EDK is its effective processing of
action requests for smart devices, compared to existing middleware solutions. Since UPnP
and Web Services largely inspired the new mechanism, examples of these architectures are
used as a benchmark. Additionally, EDK testing with sensors and actuators is necessary, to
acquire accurate results for both sending and receiving state variable data. Therefore, the
middleware was integrated into the control systems of two different intelligent
environments, located at the University of Essex, namely the iClassroom and the iSpace
test-beds.

The intelligent environments chosen for the evaluation were selected as benchmarks to
take advantage of the established middleware in their existing control systems. During
the evaluation, EDK and benchmark middleware systems were tested by controlling a
DMX-based dimmable spotlight and a Phidgets light sensor. Primarily, it assesses the
average processing speed required by the different components of the EDK (i.e., API
control and Web Services) compared to that needed by the equivalent benchmark systems.
If the EDK was capable of performing the same tasks as an existing middleware system in
approximately the same time frame, it is considered a viable alternative for use in an
intelligent environment control system. Incidentally, it was anticipated that the EDK
would actually require a significantly lower processing time than UPnP or Web Services,
mostly due to the greater emphasis on locally processed variables.

Evaluation results

To evaluate the EDK middleware system, each mechanism was tested separately, with no
other programs running at the time. For each middleware system, five hundred ‘get’ or ‘set’
requests were made to the same sensor or actuator, respectively. This workload was
split across five sessions of one hundred requests each. To keep the test fair, each session
was performed using the same computer, which ran both timer program measuring the
processing intervals, plus made the state requests to the relevant middleware
implementation.

System validation: sensors

The first experiment in the project evaluation focused specifically on comparing
middleware used to access sensors. In other words, devices whose functionality consisted
only of sending information about their current state back to a requesting program. The

Alghazzawi et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.545 19/27

http://dx.doi.org/10.7717/peerj-cs.545
https://peerj.com/computer-science/

PeerJ Computer Science

Table 1 Average middleware processing times for taking a reading from a light sensor.

Average Processing Time Required (milliseconds)

Session 1 Session 2 Session 3 Session 4 Session 5
Jetty-based Web Services 80.03 7743 55.58 61.48 60.65
Youpi UPnP 52.51 35.51 99 22.01 106.56
Web Services (EDK) 1.99 1.66 1.61 1.64 1.40
Direct API Control (EDK) 0.00542 0.00532 0.00516 0.00517 0.00519

Jetty-based Web Services system in the iClassroom linked directly into individual device
control programs, which automatically requested a current reading from the relevant
sensor hardware when called. However, the iSpace UPnP mechanism functioned in a very
similar style to the EDK middleware design. Specifically, whenever called, the ‘getState’
command would access the control system for a specific device and return the last recorded
value obtained from the actual sensor itself. A ‘getState’ method call never actually
resulted in the hardware being accessed directly in order to take a reading. Updates to
the recorded light level value were handled by an independent thread located within

the program code for the sensor, which automatically took a new reading from the
hardware intermittently. In the case of the iSpace UPnP system, a new reading was
recorded approximately once every ten seconds. For EDK, this interval was reduced to
approximately three seconds, in order to reduce the margin of error between the recorded
and actual sensor values.

The experiment involved measuring the time required for each middleware system to
return a lux value for a specific light sensor Phidget. As can be seen from the results
displayed in Table 1, on average for each session run, both device interface methods offered
by the EDK middleware required significantly less time to process individual action
requests than both the Jetty-based Web Services or Youpi UPnP implementations. In the
case of the Direct API interface method, the processing time was reduced to nanoseconds
as the sensor value being returned in response to each action request was taken from a
locally stored variable within the clone of the real sensor generated by the EDK. As
mentioned above, the Youpi UPnP middleware used a similar method, but the recorded
values for the light sensor were stored on a remote server, hence required additional
processing time for the system to access and get the data values from. Unlike the API
interface method, action requests made using the EDK Web Services were directed at the
real light sensor, yet they still required a fraction of the processing time of the Jetty-based
system, consistently throughout the evaluation.

System validation: actuators

The second experiment performed for the evaluation focused on actuators. More
specifically, this involved devices that contained one or more variables that could have
their state modified, via the middleware accessing an attached control system. When
setting the state of a variable, the success of the corresponding hardware being updated was
not always guaranteed. This is because many devices do not provide any feedback to

Alghazzawi et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.545 20/27

http://dx.doi.org/10.7717/peerj-cs.545
https://peerj.com/computer-science/

PeerJ Computer Science

Table 2 Average middleware processing times changing the brightness of a dimmable light.

Average Processing Time Required (milliseconds)

Session 1 Session 2 Session 3 Session 4 Session 5
Jetty-based Web Services 127.09 133.46 112.57 113.92 118.29
Youpi UPnP 171.36 232.33 212.22 238.08 180.49
Web Services (EDK) 101.83 102.45 102.35 102.26 102.09
Direct API (EDK) 0.67 0.64 0.60 0.59 0.55

the controller code, concerning whether a transmitted command has been received or
acted. Both, Jetty-based Web Services and Youpi UPnP middleware sent acknowledgments
back to the control programs where action requests originated but always assumed a
positive outcome. In contrast, the EDK did not send any acknowledgments in direct
response to individual state change requests. The success or failure of an update could be
determined by observing the next set of variable settings transmitted by a real device to
its clones.

This experiment involved each middleware system accessing a single DMX-controlled
dimmable spotlight and alternating its brightness level between fifty and one hundred
percent. Table 2 lists the average processing times required by each batch of one hundred
action requests made during the experiment. As with the sensor experimentation, both
EDK interface mechanisms were found on average to require significantly less processing
times than the Jetty-based Web Services and Youpi UPnP systems. It is worth noting
that the difference between the EDK and Jetty-based Web Services was not as profound as
for the sensors. This was due to the controller code for the DMX lights adding a delay of
approximately one hundred milliseconds to the processing of each action request via a
compulsory sleep command. As the EDK Web Services were directed at the representation
of the actual light rather than a local clone, the delay was unavoidable.

Unlike for the sensor ‘getState’ action requests, when setting a device’s state, the EDK’s
Direct API interface method also targeted the original ‘master’ representation rather than a
clone. Effectively, a state change action request was forwarded to the original device by
sending out a state change request using the inbuilt multicast communication system.
As the system did not require any acknowledgment, the process could be ended at that
point, unlike UPnP and the Web Services mechanisms, which required some kind of
response, even if based upon an assumption.

Evaluation summary

Concerning the processing times for action requests, on average, in every session of the
evaluation, both interface mechanisms of the EDK were found to be significantly superior
to the benchmark Jetty-based Web Services and Youpi UPnP middleware systems.

This result was not entirely unexpected as the EDK utilised locally stored variables much
more than either of the benchmark systems. Furthermore, in cases where remote access is
necessary, (i.e. when setting the state of an actuator), the EDK does not require any

Alghazzawi et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.545 21/27

http://dx.doi.org/10.7717/peerj-cs.545
https://peerj.com/computer-science/

PeerJ Computer Science

—@— Jetty-based Web Services —&+— Youpi UPnP — & —Web Services (EDK) —<— Direct API Control (EDK)
120 +

100 ‘ /J

iy I /

% \o—-——““'
40 \\ /

20 -

(Milliseconds)

Average Request Processing Time

0 = = PP P, PSS S PP S, e @

Session 1 Session 2 Session 3 Session 4 Session §

Session Number

Figure 19 A graph showing average processing times for setting a light (experiment one).
Full-size K&l DOT: 10.7717/peerj-cs.545/fig-19

—o— Jetty-based Web Services —+t2— Youpi UPnP — & — Web Services (EDK) —<— Direct API (EDK)

250 - | | -
* / \n

150 - 3 SRS

Average Request Processing Time
(Milliseconds)

100 y— —— il —_—__—_——__——, —__—_—__—_—_— i~ —__ a
50
0 < < < g <
Session 1 Session 2 Session 3 Session 4 Session 5

Session Number

Figure 20 A graph showing average processing times for setting a light (experiment two).
Full-size K&l DOT: 10.7717/peerj-cs.545/fig-20

confirmation of a device receiving an action state request to be returned, further reducing
the processing times.

For experiment two, the additional ‘power’ state variable of the DMX spotlight was
manually set to an ‘on’ state prior to each experiment session to observe the brightness
changes but was otherwise unused. However, it should be noted that for each action
request sent to the UPnP middleware system, it was necessary for its control point to first
perform a search of all the DMX light state variables in order to isolate the one controlling
the brightness before the new state could be set. As more than one state variable existed
within the device (i.e., power and brightness), this may have caused the action request
processing time to be extended, depending upon which was discovered first. This
additional step was not necessary for the EDK or Jetty-based Web Services, where the
individual state variables were already declared within the device controller code. This may
explain why the UPnP mechanism required more time than any other mechanism in

Alghazzawi et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.545 22/27

http://dx.doi.org/10.7717/peerj-cs.545/fig-19
http://dx.doi.org/10.7717/peerj-cs.545/fig-20
http://dx.doi.org/10.7717/peerj-cs.545
https://peerj.com/computer-science/

PeerJ Computer Science

each session when handling an actuator, despite being faster than Jetty-based Web Services
in three out of five sessions during the earlier sensor experiment.

Finally, another observation made during the evaluation was that for each batch of one
hundred action requests performed, while the average processing times generated by
Jetty-based Web Services and Youpi UPnP fluctuated noticeably between sessions, the
times for both EDK methods remained largely static. This effect is illustrated by the
graphical representations of the results from the evaluation presented in Figs. 19 and 20.
These figures also clearly highlight how the EDK was capable of outperforming the two
benchmark middleware mechanisms consistently throughout the entire evaluation.

CONCLUSIONS

This paper discussed recent work performed into creating a new middleware architecture
for an intelligent environment control system. It shared insights on how control system
developers often require some functionality trade-off when integrating one of the
numerous existing architectures. Alternatively, an existing mechanism may be manually
augmented with additional code to overcome any missing functionality, which could result
in detrimental synchronization issues within the resulting control system. This project
aimed to create a new middleware, capable combining the positive features of two
well-known architectures (namely UPnP and Web Services) into a single mechanism, to
overcome functionality and synchronisation issues. Most importantly, it envisaged that the
new mechanism would be required to process state action requests as quickly as the

two benchmark middleware architectures.

Complex, intelligent environment developers must implement their additional bespoke
layer of middleware to link devices and services provided by different manufacturers.
iClassroom and iSpace control system architectures in two full-scale intelligent
environments are also presented.

It also discusses the Environment Development Kit (EDK) as the new alternative
middleware as an outcome of the research performed by this project. It assesses how viable
the new middleware design was as an alternative to UPnP and Web Services. This strategy
involved two separate experiments testing sensors and actuators independently due to
their different properties. It showed that a comparative analysis of the average action
request processing times required by the EDK, plus implementations of the benchmark
UPnP and Web Services systems.

The evaluation experiments both indicated overwhelmingly that the two interface
methods offered by the EDK architecture implementation could process state action
requests to sensors and actuators faster than either benchmark mechanism. Out of the ten
sessions performed, either benchmark did not outperform the EDK in a single case.
EDK and UPnP used stored variables when returning sensor state data, rather than
accessing the actual device directly. These stored variables were updated periodically by an
independent thread, which noted the actual sensor readings. However, in the UPnP
implementation, a ten-second delay between individual readings was observed along with
an update of the stored variable. For the EDK implementation, this delay was reduced
to three seconds, yet the mechanism was still capable of processing action requests faster

Alghazzawi et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.545 23/27

http://dx.doi.org/10.7717/peerj-cs.545
https://peerj.com/computer-science/

PeerJ Computer Science

than the UPnP benchmark. The results strongly indicated that the EDK is a viable
alternative to UPnP and Web Services in a smart device or intelligent environment
control system.

Another important issue for EDK was to resolve the data de-synchronised using
multiple device interfacing methods. As the new mechanism was designed from the
ground up, steps could be taken to allow synchronisation between the API and Web
Services interface methods to be practically guaranteed. For this, both interface methods
use the same sets of variables to store descriptions of individual master or clone devices.
Also, clone devices were regularly synchronised with their original master; locally
stored representations were constantly being updated with the known true state values.
This helped defense against de-synchronization of data stored in clone devices.

Future work

With the initial framework for the EDK established, future researches can expand the
existing middleware architecture to integrate additional functionality. Firstly, an internal
mechanism can be introduced to add an internal authentication system, which allows
instances of smart devices represented by the mechanism to optionally be assigned with a
password. Unless the correct password was supplied during communication, neither
control points nor other interfaces could access the device, nor a clone of the original be
created as a result of a search request or update processes.

Therefore, future study should focus on EDK development, where its variables and
methods allow control points and other interfaces to identify the specific environment
where an instance of a smart device is located. Technically this could already be achieved to
some extent using the existing mechanism, for example, by manipulating the name
variable when creating device instances. However, with the augmentations would allow the
handling of scenarios such as the device changing locations to a different intelligent
environment. It would also make it easier to represent multiple different environments on
the same network. This could potentially allow the creation of agents or control programs
that use devices from several different environments collaboratively, as part of their
functionality.

ACKNOWLEDGEMENTS

The author is highly grateful for all the associated personnel who contributed in the
completion of this Scale Up Project.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The authors received technical and financial support from the Deanship of Scientific
Research (DSR) at King Abdulaziz University, Jeddah, under Grant No. (RG-7-611-39).
The funders had no role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Alghazzawi et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.545 24/27

http://dx.doi.org/10.7717/peerj-cs.545
https://peerj.com/computer-science/

PeerJ Computer Science

Grant Disclosures
The following grant information was disclosed by the authors:
King Abdulaziz University, Jeddah: RG-7-611-39.

Competing Interests
Daniyal Alghazzawi, James Dooley, Dr. Ghadah Aldabagh & Dr. Abdullah Alghamdi
declare no conflict of interest.

Author Contributions

e Daniyal Alghazzawi conceived and designed the experiments, analyzed the data,
performed the computation work, prepared figures and/or tables, authored or reviewed
drafts of the paper, and approved the final draft.

e Ghadah Aldabbagh analyzed the data, performed the computation work, prepared
figures and/or tables, authored or reviewed drafts of the paper, and approved the final
draft.

e Abdullah Saad AL-Malaise AL-Ghamdi analyzed the data, performed the computation
work, prepared figures and/or tables, authored or reviewed drafts of the paper, and
approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available at figshare: Alghazzawi, Daniyal; Dooley, James (2020):
Environment Development Kit Middleware. figshare. Software. https://doi.org/10.6084/
m9.figshare.12894440.v1.

REFERENCES

Almusaylim ZA, Noor Z. 2019. A review on smart home present state and challenges: linked to
context-awareness internet of things (IoT). Wireless Networks 25(6):3193-3204
DOI 10.1007/s11276-018-1712-5.

Bazzani M, Conzon D, Scalera A, Spirito MA, Trainito CI. 2012. Enabling the IoT paradigm in e-
health solutions through the VIRTUS middleware. In: 2012 IEEE 11th International Conference
on Trust, Security and Privacy in Computing and Communications. Piscataway: IEEE, 1954
1959.

Bruneo D, Puliafito A, Scarpa M. 2006. Mobile Middleware, The Handbook of Mobile Middleware.
Boca Raton: Taylor & Francis Group, LLC, 145-166.

Cruz MAAD, Rodrigues JJPC, Al-Muhtadi J, Korotaev VV, Albuquerque VHCD. 2018. A
reference model for internet of things middleware. IEEE Internet of Things Journal 5(2):871-883
DOI 10.1109/JI0T.2018.2796561.

Dooley J, Henson MM, Callaghan V, Hagras H, Al-Ghazzawi D, A.Malibari A, M.Al-Haddad
M, Al-Ghamdi AA. 2011. A formal model for space based ubiquitous computing. In: 2011
Seventh International Conference on Intelligent Environments. Piscataway: IEEE, 74-79.

Echelon. 2015. Dialog semiconductor. Available at http://www.echelon.com/products/i.lon-600-
lonworks-ip-852-router.

Elkhodr M, Shahrestani S, Cheung H. 2016. A middleware for the internet of things. arXiv
preprint. Available at https://arxiv.org/pdf/1604.04823.

Alghazzawi et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.545 25/27

https://doi.org/10.6084/m9.figshare.12894440.v1
https://doi.org/10.6084/m9.figshare.12894440.v1
http://dx.doi.org/10.1007/s11276-018-1712-5
http://dx.doi.org/10.1109/JIOT.2018.2796561
http://www.echelon.com/products/i.lon-600-lonworks-ip-852-router
http://www.echelon.com/products/i.lon-600-lonworks-ip-852-router
https://arxiv.org/pdf/1604.04823
http://dx.doi.org/10.7717/peerj-cs.545
https://peerj.com/computer-science/

PeerJ Computer Science

Farahzadi A, Pooyan S, Javad R, Reza F. 2018. Middleware technologies for cloud of things: a
survey. Digital Communications and Networks (DCN) 4(3):176-188
DOI 10.1016/j.dcan.2017.04.005.

Fremantle P, Scott P. 2017. A survey of secure middleware for the Internet of Things. Peer]
Computer Science 3(15):e114 DOI 10.7717/peerj-cs.114.

Gubbi J, Buyya R, Marusic S, Palaniswami M. 2013. Internet of Things (IoT): a vision,
architectural elements, and future directions. Future Generation Computer Systems 29(7):1645-
1660 DOI 10.1016/j.future.2013.01.010.

J. Eclipse. 2015. The eclipse jetty project. Available at http://www.eclipse.org/jetty.

Jeon S, Jung I. 2017. MinT: middleware for cooperative interaction of things. Sensors 17(6):1452
DOI 10.3390/517061452.

Jyothi T. 2016. Open source middleware for internet of things. International Journal of Innovative

Research in Electrical, Electronics, Instrumentation and Control Engineering 4(11):71-75
DOI 10.17148/IJIREEICE.2016.4219.

Lopes F, Delicato FC, Batista T, Cavalcante E, Pereira T, Pires PF, Ferreira P, Mendes R. 2014.
OpenCOPI: middleware integration for ubiquitous computing. International Journal of Parallel,
Emergent and Distributed Systems 29(2):178-212 DOI 10.1080/17445760.2013.831415.

Mohamed N, Al-Jaroodi J, Jawhar 1. 2009. A review of middleware for networked robots.
International Journal of Computer Science and Network Security 9(5):139-148.

Ngu AHH, Gutierrez M, Metsis V, Nepal S, Sheng MZ. 2016. IoT middleware: a survey on issues
and enabling technologies. IEEE Internet of Things Journal 4(1):1-20
DOI 10.1109/ji0t.2016.2615180.

Olaru A, Florea AM, Seghrouchni AEF. 2013. A context-aware multi-agent system as a
middleware for ambient intelligence. Mobile Networks and Applications 18(3):429-443
DOI 10.1007/s11036-012-0408-9.

Perera C, Jayaraman PP, Zaslavsky A, Christen P, Georgakopoulos D. 2014. Mosden: an internet
of things middleware for resource constrained mobile devices. In: 2014 47th Hawaii
International Conference on System Sciences. Piscataway: IEEE, 1053-1062.

Phidgets. 2015. Phidgets. Available at http://www.phidgets.com.

Rafique A, Van Landuyt D, Lagaisse B, Joosen W. 2015. On the performance impact of data
access middleware for nosql data stores a study of the trade-off between performance and
migration cost. IEEE Transactions on Cloud Computing 6(3):843-856
DOI 10.1109/TCC.2015.2511756.

Razzaque MA, Milojevic-Jevric M, Palade A, Clarke S. 2015. Middleware for internet of things: a
survey. IEEE Internet of Things Journal 3(1):70-95 DOI 10.1109/JI0T.2015.2498900.

Rivera J, van der Meulen R. 2013. Gartner says the internet of things installed base will grow to 26
billion units by 2020. Available at https://www.ageinplacetech.com/pressrelease/gartner-says-
internet-things-installed-base-will-grow-26-billion-units-2020.

Roalter L, Kranz M, Méller A. 2010. A middleware for intelligent environments and the internet
of things. In: International Conference on Ubiquitous Intelligence and Computing. Berlin,
Heidelberg: Springer, 267-281.

Rodriguez-Molina J, Kammen DM. 2018. Middleware architectures for the smart grid: a survey

on the state-of-the-art, taxonomy and main open issues. IEEE Communications Surveys &
Tutorials 20(4):2992-3033 DOI 10.1109/COMST.2018.2846284.

Alghazzawi et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.545 26/27

http://dx.doi.org/10.1016/j.dcan.2017.04.005
http://dx.doi.org/10.7717/peerj-cs.114
http://dx.doi.org/10.1016/j.future.2013.01.010
http://www.eclipse.org/jetty
http://dx.doi.org/10.3390/s17061452
http://dx.doi.org/10.17148/IJIREEICE.2016.4219
http://dx.doi.org/10.1080/17445760.2013.831415
http://dx.doi.org/10.1109/jiot.2016.2615180
http://dx.doi.org/10.1007/s11036-012-0408-9
http://www.phidgets.com
http://dx.doi.org/10.1109/TCC.2015.2511756
http://dx.doi.org/10.1109/JIOT.2015.2498900
https://www.ageinplacetech.com/pressrelease/gartner-says-internet-things-installed-base-will-grow-26-billion-units-2020
https://www.ageinplacetech.com/pressrelease/gartner-says-internet-things-installed-base-will-grow-26-billion-units-2020
http://dx.doi.org/10.1109/COMST.2018.2846284
http://dx.doi.org/10.7717/peerj-cs.545
https://peerj.com/computer-science/

PeerJ Computer Science

Rodriguez-Molina J, Bilbao S, Martinez B, Frasheri M, Ciiriiklii B. 2017. An optimized, data
distribution service-based solution for reliable data exchange among autonomous underwater
vehicles. Sensors 17(8):1802.

Rodriguez-Molina J, Martinez B, Bilbao S, Martin-Wanton T. 2017. Maritime data transfer
protocol (MDTP): a proposal for a data transmission protocol in resource-constrained
underwater environments involving cyber-physical systems. Sensors 17(6):1330.

Roman M, Hess C, Cerqueira R, Ranganathan A, Campbell RH, Nahrstedt K. 2002. Gaia: a
middleware platform for active spaces. ACM SIGMOBILE Mobile Computing and
Communications Review 6(4):65-67 DOI 10.1145/643550.643558.

Simo-Ten J-E, Munera E, Poza-Lujan J-L, Posadas-Yagiie J-L, Blanes F. 2017. CKMultipeer:
connecting devices without caring about the network. Advances in Intelligent Systems and
Computing 189-196.

Stavropoulos TG, Gottis K, Vrakas D, Vlahavas I. 2013. aWESoME: a web service middleware for
ambient intelligence. Expert Systems with Applications 40(11):4380-4392
DOI 10.1016/j.eswa.2013.01.061.

Tan S, Zhang J, Sun F, Wang S. 2015. An approach to support the interoperability of intelligent
grouping and resource sharing (IGRS) and universal plug and play (UPnP) in home network
environment. In: 2015 IEEE International Conference on Computational Intelligence ¢
Communication Technology. Piscataway: IEEE, 682-686.

Vikash, Mishra L, Varma S. 2020. Middleware technologies for smart wireldess sensor networks
towards internet of things: a comparative review. Wireless Personal Communications 116:1539-
1574.

Yuan B, Xiaolei Z, Yitao W. 2019. Identifying vehicle’s steer change via commercial smartphones.
In: 2019 International Conference on High Performance Big Data and Intelligent Systems
(HPBD&IS). 181-185.

Zhao R, Wang L, Zhang X, Zhang Y, Wang L, Peng H. 2018. A oneM2M-compliant stacked
middleware promoting [oT research and development. IEEE Access 6:63546-63559
DOI 10.1109/ACCESS.2018.2876197.

Alghazzawi et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.545 27/27

http://dx.doi.org/10.1145/643550.643558
http://dx.doi.org/10.1016/j.eswa.2013.01.061
http://dx.doi.org/10.1109/ACCESS.2018.2876197
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.545

	ScaleUp: middleware for intelligent environments
	Introduction
	Literature review
	The environment development kit (edk)
	Evaluation
	Conclusions
	flink6
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

