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ABSTRACT
In this work, DAE Tools modelling, simulation and optimisation software, its

programming paradigms andmain features are presented. The current approaches to

mathematical modelling such as the use of modelling languages and general-purpose

programming languages are analysed. The common set of capabilities required by the

typical simulation software are discussed, and the shortcomings of the current

approaches recognised. A new hybrid approach is introduced, and the modelling

languages and the hybrid approach are compared in terms of the grammar, compiler,

parser and interpreter requirements, maintainability and portability. The most

important characteristics of the new approach are discussed, such as: (1) support

for the runtime model generation; (2) support for the runtime simulation set-up;

(3) support for complex runtime operating procedures; (4) interoperability with the

third party software packages (i.e. NumPy/SciPy); (5) suitability for embedding

and use as a web application or software as a service; and (6) code-generation,

model exchange and co-simulation capabilities. The benefits of an equation-based

approach to modelling, implemented in a fourth generation object-oriented general

purpose programming language such as Python are discussed. The architecture

and the software implementation details as well as the type of problems that can

be solved using DAE Tools software are described. Finally, some applications of

the software at different levels of abstraction are presented, and its embedding

capabilities and suitability for use as a software as a service is demonstrated.

Subjects Scientific Computing and Simulation

Keywords Modelling, Simulation, Optimisation, Modelling languages, Model exchange, Domain

specific languages, Equation-based, DAE, Code generation

INTRODUCTION
In general, two main approaches to mathematical modelling currently exist: (a) use

of modelling languages, either domain specific or multi-domain such as Modelica

(Fritzson & Engelson, 1998), Ascend (Piela et al., 1991), gPROMS (Barton & Pantelides,

1994), GAMS (Brook, Kendrick & Meeraus, 1988), Dymola (Elmqvist, 1978), APMonitor

(Hedengren et al., 2014), and (b) use of general-purpose programming languages, either

lower level third-generation languages such as C, C++ and Fortran (i.e. PETSc–a suite

of data structures and routines for the scalable solution of scientific applications, Balay

et al., 2015, and SUNDIALS–Suite of Nonlinear and Differential/Algebraic Equation

Solvers, Hindmarsh et al., 2005), or higher level fourth-generation languages such as

Python (i.e. Assimulo–a high-level interface for a wide variety of ODE/DAE solvers
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written in C and Fortran, Andersson, Fuhrer & Akesson, 2015) and multi-paradigm

numerical languages: MATLAB (MathWorks, Inc., 2015), Mathematica (Wolfram Research,

Inc., 2015), Maple (Waterloo Maple, Inc., 2015), Scilab (Scilab Enterprises, 2015), and GNU

Octave (Eaton et al., 2015). The lower-level general purpose languages are also often used

for the development of the efficient, tailor-made software (i.e. large-scale finite difference

and finite element solvers) targeting one of the available high-performance computing

architectures such as General Purpose Graphics Processing Units (GPGPU), Field-

Programmable Gate Arrays (FPGA), vector processors and Data Flow Engines (DFE). In

addition, some modelling tools provide the Python scripting interface to the simulator

engine: APMonitor, JModelica (Akesson et al., 2010), and OpenModelica (Fritzson et al.,

2005); however, their API is limited to the loading of developed models, execution of

simulations and processing of the results only. Domain Specific Languages (DSL) are

special-purpose programming or specification languages dedicated to a particular

problem domain and directly support the key concepts necessary to describe the

underlying problems. They are created specifically to solve problems in a particular

domain and usually not intended to be able to solve problems outside it (although

that may be technically possible in some cases). More versatile, multi-domain modelling

languages (such as Modelica or gPROMS) are capable of solving problems in different

application domains. Despite their versatility, modelling languages commonly lack

or have a limited access to the operating system, third-party numerical libraries and

other capabilities that characterise full-featured programming languages, scripting or

otherwise. In contrast, general-purpose languages are created to solve problems in a

wide variety of application domains, do not support concepts from any domain, and

have a direct access to the operating system, low-level functions and third-party libraries.

The most important tasks required to solve a typical simulation or optimisation

problem include: the model specification, the simulation setup, the simulation execution,

the numerical solution of the system of algebraic/differential equations, and the

processing of the results. Each task may require a call or a chained sequence of calls to

other software libraries, the methods in those libraries must be available to be called with

no significant additional pre-processing and must be able to operate on shared/common

data structures. All of these require a two-way interoperability between the software

and third-party libraries. Also, the model structure is often not fully defined beforehand

and a runtime generation of models (“on-the-fly”) using the results from other software

is required. Frequently, simulations can not be limited to a straightforward, step-wise

integration in time but the custom user-defined operating procedures are required, which

can be performed only using the fully-featured programming languages. In addition,

it is often desired to compare/benchmark the simulation results between different

simulators. This requires the code-generation and the model-exchange capabilities to

automatically generate the source code for the target language or export the model

definition to a specified (often simulator-independent) model specification language.

Exposing the functionality of the developed models to another simulator through a

predefined standard interface such as the CAPE-OPEN (http://www.colan.org) and

Functional Mock-up Interface (FMI, http://www.fmi-standard.org) is another common
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functionality. Finally, the current trends in IT industry show that there is a high demand

for cloud solutions, such as Software as a Service (SaaS), Platform as a Service (PaaS) and

web applications.

A modelling language implemented as a single monolithic software package can rarely

deliver all capabilities required. For instance, the Modelica modelling language allows calls

to “C” functions from external shared libraries but with some additional pre-processing.

Simple operating procedures are supported directly by the language but they must be

embedded into a model, rather than separated into an independent section or function.

gPROMS also allows very simple operating procedures to be defined as tasks (only in

simulation mode), and user-defined output channels for custom processing of the results.

The runtime model generation and complex operating procedures are not supported.

Invocation from other software is either not possible or requires an additional application

layer. On the other hand, Python, MATLAB and the software suites such as PETSc have an

access to an immense number of scientific software libraries, support runtime model

generation, completely flexible operating procedures and processing of the results.

However, the procedural nature and lack of object-oriented features in MATLAB and

absence of fundamental modelling concepts in all three types of environments make

development of complex models or model hierarchies difficult.

In this work, a new approach has been proposed and implemented in DAE Tools

software which offers some of the key advantages of the modelling languages coupled

with the power and flexibility of the general-purpose languages. It is a type of hybrid

approach–it is implemented using the general-purpose programming languages such as

C++ and Python, but provides the Application Programming Interface (API) that

resembles a syntax of modelling languages as much as possible and takes advantage of

the higher level general purpose languages to offer an access to the operating system,

low-level functions and large number of numerical libraries to solve various numerical

problems. To illustrate the new concept, the comparison between Modelica and gPROMS

grammar and DAE Tools API for a very simple dynamical model is given in the Source

Code Listings 1–3, respectively. The model represents a cylindrical tank containing a

liquid inside with an inlet and an outlet flow where the outlet flowrate depends on

the liquid level in the tank. It can be observed that the DAE Tools API mimics the

expressiveness of the grammar of modelling languages to provide the key modelling

concepts while retaining the full power of general purpose programming languages.

More details about the API is given in the section Architecture.

Listing 1 Buffer Tank model (Modelica)

model BufferTank

// Import libs

import Modelica.Math.*;

parameter Real Density;

parameter Real CrossSectionalArea;

parameter Real Alpha;
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Real HoldUp(start = 0.0);

Real FlowIn;

Real FlowOut;

Real Height;

equation

// Mass balance

der(HoldUp) = FlowIn - FlowOut;

// Relation between liquid level and holdup

HoldUp = CrossSectionalArea * Height * Density;

// Outlet flowrate as a function of the liquid level

FlowOut = Alpha * sqrt(Height);

end BufferTank;

Listing 2 Buffer Tank model (gPROMS)

PARAMETER

Density AS Real

CrossSectionalArea AS Real

Alpha AS Real

VARIABLE

HoldUp AS Mass

FlowIn AS Flowrate

FlowOut AS Flowrate

Height AS Length

EQUATION

# Mass balance

$HoldUp = FlowIn - FlowOut;

# Relation between liquid level and holdup

HoldUp = CrossSectionalArea * Height * Density;

# Outlet flowrate as a function of the liquid level

FlowOut = Alpha * sqrt(Height);

Listing 3 Buffer Tank model (DAE Tools)

class BufferTank(daeModel):

def __init__(self, Name, Parent = None, Description = ""):

daeModel.__init__(self, Name, Parent, Description)

self.Density = daeParameter("Density", kg/m**3, self)

self.Area = daeParameter("Area", m**2, self)

self.Alpha = daeParameter("Alpha", unit(), self)
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self.HoldUp = daeVariable("HoldUp", mass_t, self)

self.FlowIn = daeVariable("FlowIn", flowrate_t, self)

self.FlowOut = daeVariable("FlowOut", flowrate_t, self)

self.Height = daeVariable("Height", length_t, self)

def DeclareEquations(self):

# Mass balance

eq = self.CreateEquation("MassBalance")

eq.Residual = self.HoldUp.dt() - self.FlowIn() + self.FlowOut()

# Relation between liquid level and holdup

eq = self.CreateEquation("LiquidLevelHoldup")

eq.Residual = self.HoldUp() - self.Area() * self.Height() * self.Density()

# Outlet flowrate as a function of the liquid level

eq = self.CreateEquation("OutletFlowrate")

eq.Residual = self.FlowOut() - self.Alpha() * Sqrt(self.Height())

The article is organised in the following way. First, the DAE Tools programming

paradigms and the main features are introduced and discussed. Next, its architecture

and the software implementation details are analysed. After that, the algorithm for

the solution of DAE systems is presented and some basic information on how to develop

models in DAE Tools given. Then, two applications of the software are demonstrated:

(a) multi-scale modelling of phase-separating electrodes, and (b) a reference

implementation simulator for a new domain specific language. Finally, a summary

of the most important characteristics of the software is given in the last section.

MAIN FEATURES AND PROGRAMMING PARADIGMS
DAE Tools is free software released under the GNU General Public Licence. The source

code, the installation packages and more information about the software can be found

on the website (http://www.daetools.com). Models can be developed in Python or C++,

compiled into an independent executable and deployed with no additional run time

libraries. Problems that can be solved are initial value problems of implicit form described

by a system of linear, non-linear, and partial-differential equations (only index-1 DAE

systems, at the moment). Systems modelled can be with lumped or distributed

parameters, steady-state or dynamic, and continuous with some elements of event-driven

systems such as discontinuous equations, state transition networks and discrete events.

Automatic differentiation is supported through the operator overloading technique

using the modified ADOL-C library (Walther & Griewank, 2012). All DAE Tools libraries

are written in standard ANSI/ISO C++. The code is therefore portable across different

platforms, and currently runs on all major operating systems such as GNU/Linux, MacOS

and Windows. In general, all platforms with the standards compliant C/C++ and Fortran

compilers and Boost libraries (http://www.boost.org) are supported. To date, it has

been successfully tested on 32/64 bit x86 and ARM architectures making it suitable for

use in embedded systems. Object-oriented capabilities allow a hierarchical model

decomposition and facilitate the model re-use. A large number of numerical solvers is
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supported. Currently, Sundials IDAS (Hindmarsh et al., 2005) variable-order, variable-

coefficient BDF solver is used to solve DAE systems and calculate sensitivities. IPOPT

(Wächter & Biegler, 2006), BONMIN (Bonami et al., 2008), and NLopt (Johnson, 2015)

solvers are employed to solve (mixed integer) non-linear programming problems, and

a range of direct/iterative and sequential/multi-threaded sparse matrix linear solvers

is interfaced such as SuperLU/SuperLU_MT (Li, 2005), PARDISO (Schenk, Wächter &

Hagemann, 2007), Intel PARDISO, and Trilinos Amesos/AztecOO (Sala, Stanley &

Heroux, 2006).

Broadly speaking, DAE Tools is not a modelling language (such as Modelica and

gPROMS) nor an integrated software suite of data structures and routines for scientific

applications (such as PETSc), but rather a higher level structure–an architectural design

of interdependent software components providing an API for: (a) model development/

specification, (b) activities on developed models such as simulation, optimisation and

parameter estimation, (c) processing of the results, (d) report generation, and (e) code

generation and model exchange. However, it can easily be integrated into a software

suite with the Graphical User Interface (GUI), embedded into another software or

even run as a web service on the server (as it was demonstrated in the section NineML

domain specific language). The hybrid approach provides a combination of strengths

of both modelling and general purpose programming languages. The most important

feature of domain-specific/modelling languages is that they allow solutions to be

expressed in the idiom and at the level of abstraction of the problem domain. They

directly support all modelling concepts by the language syntax and provide a clean,

concise and an elegant way of building model descriptions. Also, modelling languages

could be and often are simulator independent making a model exchange easier. However,

all of this comes with a price. For instance, the costs of designing, implementing, and

maintaining a domain-specific language as well as the tools required to develop with it

are high. In all cases, either a compiler or an interpreter with a lexical parser and an

Abstract Syntax Tree (AST) must be developed with all burden that comes with it

such as processing of the AST, error handling, grammar ambiguities and hidden bugs.

In addition, there is a cost of learning a new language versus its limited applicability: users

are required to master a new language with yet another language grammar. Integration of

modelling languages with other components is difficult and limited by the existence of

wrappers around a simulator engine. Models usually cannot be generated in the runtime

or at least not easily and cannot be modified in the runtime. Setting up a simulation is

specified in the language grammar and it is difficult to do it programmatically. Simulation

operating procedures are not fully flexible and manipulation of models is limited to

only those operations provided by the language. Finally, the results typically cannot be

processed in a user-defined fashion without investing an effort to master the protocol

used by the simulator. In contrast, in DAE Tools a compiler/lexical parser/interpreter are

an integral part of the programming language (C++ and Python) with a robust error

handling, universal grammar and massively tested. No learning of a new language is

required, calling external functions/libraries is a built-in feature andmodels can be created

and modified in the runtime. Setting up a simulation is done programmatically and
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the initial values can be easily obtained from the other software. Operating procedures

are completely flexible (within the limits of a programming language itself) and

models can be manipulated in any user-defined way. Processing of the results is also

completely flexible. However, the modelling concepts in DAE Tools cannot be expressed

directly in the programming language and must be emulated in its API. Also, it is

programming language dependent. To certain extent, this can be overcome by the fact

that Python shines as a glue language, used to combine components written in different

programming languages and a large number of scientific software libraries expose its

functionality to Python via their extension modules.

Regarding the available modelling techniques, three approaches currently exist

(Morton, 2003): (a) sequential modular, (b) simultaneous modular, and (c) equation-

based (acausal). The equation-based approach is adopted and implemented in this work.

A brief history of the equation-based solvers and comparison of the sequential-modular

and equation-based approaches can be found in Morton (2003) and a good overview

of the equation-oriented approach and its application in gPROMS is given by Barton &

Pantelides (1993). According to this approach, all equations and variables which

constitute the model representing the process are generated and gathered together. Then,

equations are solved simultaneously using a suitable mathematical algorithm (Morton,

2003). In the equation-based approach, equations are given in an implicit form as

functions of state variables and their derivatives, degrees of freedom (the system variables

that may vary independently), and parameters:

F _x; x; y; pð Þ ¼ 0

where x represents state variables, ẋ their derivatives, y degrees of freedom and p

parameters. Input-output causality is not fixed providing a support for different

simulation scenarios (based on a single model) by fixing different degrees of freedom.

The hybrid approach allows an easy interaction with other software packages/libraries.

First, other numerical libraries can be accessed directly from the code, and since the

Python’s design allows an easy development of extension modules from different

languages, a vast number of numerical libraries is readily available. Second, DAE Tools

are developed with a built-in support for NumPy (http://numpy.scipy.org) and SciPy

(http://scipy.org) numerical packages; therefore, DAE Tools objects can be used as native

NumPy data types and numerical functions from other extension modules can directly

operate on them. This way, a large pool of advanced and massively tested numerical

algorithms is made directly available to DAE Tools.

The automatic differentiation is always utilised to analytically generate the Jacobian

matrix if the direct sparse linear solvers are used, or to generate a preconditioner matrix for

the iterative linear solvers using the software suites such as Trilinos AztecOO, IFPACK, and

ML. The automatic differentiation is also applied to sensitivity analysis where it is used to

calculate derivatives of model equations per parameters with respect to which sensitivities

are requested. Only the continuous-time systems are supported and the forward sensitivity

method provided by the Sundials IDAS solver is available at the moment. The forward

sensitivity equations are integrated together with the original DAE system leading to the
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DAE system of size N(Ns + 1), where N is the size of the original DAE system and Ns is the

number of model parameters. More information about the sensitivity analysis using the

forward sensitivity method can be found in the Sundials documentation.

DAE Tools also provide code generators and co-simulation/model exchange

standards/interfaces for other simulators. This way, the developed models can be

simulated in other simulators either by generating the source code, exporting a model

specification file or through some of the standard co-simulation interfaces. To date,

the source code generators for c99, Modelica and gPROMS languages have been

developed. In addition, DAE Tools functionality can be exposed to MATLAB, Scilab

and GNU Octave via MEX-functions, to Simulink via user-defined S-functions and

to the simulators that support FMI co-simulation capabilities. The future work will

concentrate on support for the additional interfaces (i.e. CAPE-OPEN) and

development of additional code generators.

Parallel computation is supported using only the shared-memory parallel

programming model at the moment. Since a repeated solution of the system of linear

equations typically requires around 90–95% of the total simulation time, the linear

equations solver represents the major bottleneck in the simulation. Therefore, the

main focus was put on performance improvement of the solution of linear equations

using one of the available multi-threaded solvers such as SuperLU_MT, Pardiso and

Intel Pardiso.

ARCHITECTURE
DAE Tools consists of six packages: core, activity, solvers, datareporting, logging, and units.

All packages provide a set of interfaces (abstract classes) that define the required

functionality. Interfaces are realised by the implementation classes. The implementation

classes share the same name with the interface they realise with the suffix _t dropped

(i.e. the class daeVariable implements interface daeVariable_t).

Package “core”
This package contains the key modelling concepts. The class diagram with interfaces

(abstract classes) is presented in Fig. S1. The most important modelling concepts are

given in Table 1. Interface realisations are given in Fig. S2. Models in DAE Tools are

represented by the daeModel class and contain the following elements: domains, parameters,

variables, equations, state transition networks, ports, event ports, actions to be performed

when a given condition is satisfied, actions to be performed when an event is triggered on a

given event port, and components (instances of other models, used to form a hierarchy of

models). The daeModel UML class diagram is presented in Fig. S3.

Package “activity”
This package contains interfaces that define an API for activities that can be

performed on developed models. To date, only two interfaces are defined and

implemented: daeSimulation_t (defines a functionality used to perfom simulations)

and daeOptimization_t (defines a functionality used to perform optimisations).
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Package “solvers”
This package contains interfaces that define an API for numerical solution of systems

of Differential Algebraic Equations (DAE), systems of Linear Equations (LA), and (mixed-

integer) nonlinear programming problems (NLP or MINLP), and auxiliary classes. The

class diagram with the defined interfaces is presented in Fig. S4: daeDAESolver_t (defines a

functionality for the solution of DAE systems), daeNLPSolver_t (defines a functionality for

the solution of (MI)NLP problems), daeLASolver_t (defines functionality for the solution of

systems of linear equations) and daeIDALASolver_t (derived from daeLASolver_t, used by

Sundials IDAS linear solvers). Interface realizations are given in Fig. S5. Current

implementations include Sundials IDAS DAE solver, IPOPT, BONMIN and NLOPT (MI)

NLP solvers and SuperLU, SuperLU_MT, PARDISO, Intel PARDISO and Trilinos (Amesos

and AztecOO) sparse matrix linear solvers. Since all these linear equation solvers use

different sparse matrix representations, a generic interface (template daeMatrix<typename

FLOAT>) has been developed for the basic operations performed by DAE Tools software

such as setting/getting the values and obtaining the matrix properties. This way, DAE Tools

objects can access the matrix data in a generic fashion while hiding the internal

implementation details. To date, three matrix types have been implemented:

daeDenseMatrix, daeLapackMatrix (basically wrappers around C/C++ and Fortran two-

dimensional arrays), a template class daeSparseMatrix<typename FLOAT, typename INT>

(sparse matrix) and its realization daeCSRMatrix<typename FLOAT, typename INT>

implementing the Compressed Row Storage (CSR) sparse matrix representation.

Table 1 The key modelling concepts in DAE Tools software.

Concept Description

daeVariableType_t Defines a variable type that has the units, lower and upper bounds, a default value and an absolute tolerance

daeDomain_t Defines ordinary arrays or spatial distributions such as structured and unstructured grids; parameters, variables,

equations and even models and ports can be distributed on domains

daeParameter_t Defines time invariant quantities that do not change during a simulation, such as a physical constant, number of

discretisation points in a domain etc.

daeVariable_t Defines time varying quantities that change during a simulation

daePort_t Defines connection points between model instances for exchange of continuous quantities; similar to the models, ports

can contain domains, parameters and variables

daeEventPort_t Defines connection points between model instances for exchange of discrete messages/events; events can be triggered

manually or when a specified condition is satisfied; the main difference between event and ordinary ports is that the

former allow a discrete communication between models while latter allow a continuous exchange of information

daePortConnection_t Defines connections between two ports

daeEventPortConnection_t Defines connections between two event ports

daeEquation_t Defines model equations given in an implicit/acausal form

daeSTN_t Defines state transition networks used to model discontinuous equations, that is equations that take different forms

subject to certain conditions; symmetrical/non-symmetrical and reversible/irreversible state transitions are supported

daeOnConditionActions_t Defines actions to be performed when a specified condition is satisfied

daeOnEventActions_t Defines actions to be performed when an event is triggered on the specified event port

daeState_t Defines a state in a state transition network; contains equations and on_event/condition action handlers

daeModel_t Represents a model
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Package “datareporting”
This package contains interfaces that define an API for processing of simulation results

by the daeSimulation_t and daeDAESolver_t classes, and the data structures available to

access those data by the users. Two interfaces are defined: daeDataReporter_t (defines

a functionality used by a simulation object to report the simulation results) and

daeDataReceiver_t (defines a functionality/data structures for accessing the simulation

results). A number of data reporters have been developed for: (a) sending the results

via TCP/IP protocol to the DAE Tools Plotter application (daeTCPIPDataReporter),

(b) plotting the results using the Matplotlib Python library (daePlotDataReporter), and

(c) exporting the results to various file formats (such as MATLAB MAT, Microsoft Excel,

html, xml, json and HDF5). An overview of the implemented classes is given in Fig. S6.

Package “logging”
This package contains only one interface daeLog_t that define an API for sending messages

from the simulation to the user. Interface realizations are given in Fig. S7. Three

implementations exist: daeStdOutLog (prints messages to the standard output), daFileLog

(stores messages to the specified text file), and daeTCPIPLog (sends messages via

TCP/IP protocol to the daeTCPIPLogServer; used when a simulation is running on a

remote computer).

Package “units”
Parameters and variables in DAE Tools have a numerical value in terms of a unit of

measurement (quantity) and units-consistency of equations and logical conditions is

strictly enforced (although it can be switched off, if required). The package contains only

two classes: unit and quantity. Both classes have overloaded operators +, -, �, / and �� to
support creation of derived units and operations on quantities that contain a numerical

value and units. In addition, the package defines the basic mathematical functions

that operate on quantity objects (such as sin, cos, tan, sqrt, pow, log, log10, exp, min, max,

floor, ceil, abs etc.).

SOLUTION OF A DAE SYSTEM
The solution of a DAE system requires the functionality provided by the following

objects: (a) simulation object implementing the daeSimulation_t interface (simulation),

(b) DAE solver object implementing the daeDAESolver_t interface (dae_solver), (c) linear

equations solver object implementing the daeLASolver_t interface (la_solver), (d) data

reporter object implementing the daeDataReporter_t interface (data_reporter), and (e) log

object implementing the daeLog_t interface (log). A diagram illustrating the participating

objects and their associations are given in Fig. 1. Solution of an optimisation problem

includes an identical set of objects with the addition of optimization object implementing

daeOptimization_t interface and nlp_solver object implementing the daeNLPSolver_t

interface. Solution of a DAE system is performed in five phases: (I) creation and

initialisation of objects in the main program, (II) initialisation of the simulation and

runtime checks in daeSimulation::Initialize() function, (III) calculation of initial conditions
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in daeSimulation::SolveInitial() function, (IV) integration of the DAE system in time in

daeSimulation::Run() function, and (V) clean-up in daeSimulation::Finalize() function

followed by destruction of objects in the main program. A typical sequence of calls during

the DAE Tools simulation are given in Fig. 2.

Phase I: creation of objects
simulation, dae_solver, la_solver, data_reporter and log objects are instantiated in the main

program. All distribution domains, parameters, variables and ports are now instantiated.

Figure 1 UML object diagram. DAE Tools simulation/optimisation.
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Figure 2 UML sequence diagram. DAE Tools simulation.
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Phase II: initialisation and runtime checks

A sequence of calls during the initialisation in daeSimulation:Initialize() function is

given in Fig. 3. During stage 1, daeDataProxy_t instance is created. In DAE Tools

approach, variables do not hold the values the values are stored in a proxy object as a

compact block of memory to improve the memory copy performance. A separate

storage is created for state variables and their derivatives and for degrees of freedom.

Figure 3 UML sequence diagram. daeSimulation::Initialize() function.
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The variables access the data using their global index. The user-defined function

SetUpParametersAndDomains() from the daeSimulation-derived class is now called

where the parameters values are assigned and the distribution domains initialised.

In stage 2 of initialisation, the port and model arrays are created and every variable

obtains assigned the global index. Distributed variables obtain a separate index for

every point in domains they are distributed on. In stage 3, based on the number of

variables and their types, the memory storage for variables values and derivatives is

allocated in the data proxy object, the user-defined function DeclareEquations() from

the daeModel-derived classes called to create equations, state transition networks,

port connections and OnCondition/OnEvent handlers, and the initial variables values

and absolute tolerances are set. In the stage 4, the equations get initialised and

expanded into an array of residual expressions (one for every point in domains that

the equation is distributed on). Every residual expression is evaluated to form an

evaluation tree. The concept of representing equations as evaluation trees is employed

for evaluation of residual equations and their gradients (which represent a single row

in the Jacobian matrix). This is achieved by using the operator overloading technique

for automatic differentiation adopted from the ADOL-C library (Walther &

Griewank, 2012). Evaluation trees consist of unary and binary nodes, each node

representing a parameter/variable value, basic mathematical operation (+, -, �, /, ��) or
a mathematical function (sin, cos, tan, arcsin, arccos, arctan, sinh, cosh, tanh, arcsinh,

arccosh, arctanh, arctan2, erf, sqrt, pow, log, log10, exp, min, max, floor, ceil, abs, sum,

product, integral, etc.). The mathematical functions are overloaded to operate on a

heavily modified ADOL-C class adouble, which has been extended to contain

information about domains, parameters and variables. In adition, a new adouble_array

class has been introduced to support the above-mentioned operations on arrays of

parameters and variables. Once built, the evaluation trees can be used for several

purposes: (a) to calculate equation residuals, (b) to calculate equation gradients,

(c) to export equation expressions into the MathML or LaTeX format, (d) to generate

the source code for different languages, and (e) to perform various types of runtime

checks. A typical evaluation tree is presented in Fig. 4. In stage 5, the daeBlock

instance is created which is used by a DAE solver during the integration of the DAE

system. It represents a block of equations and holds the currently active set of

equations (including those from state transition networks) and root functions.

Finally, the whole system is checked for errors/inconsistencies and the DAE solver

initialised.

Phase III: calculation of initial conditions
A sequence of calls during the calculation of initial conditions in daeSimulation:

SolveInitial() function is given in Fig. 5. The consistent set of initial conditions is obtained

using the IDACalcIC() function which repeatedly calls the functions to evaluate equations

residuals, Jacobian matrix and root functions, solves the resulting system of linear

equations and checks for possible occurrences of discontinuities until the specified

tolerance is achieved.
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Phase IV: integration in time
A sequence of calls during the integration of the system in daeSimulation::Run() function

is given in Fig. 6. The default implementation calls daeSimulation::IntegrateUntilTime()

and daeSimulation::ReportData() functions in a loop until the specified time horizon is

Figure 4 Equation evaluation tree.

Figure 5 UML sequence diagram. daeSimulation::SolveInitial() function.
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reached. The IntegrateUntilTime() function uses the IDASolve() function that repeatedly

calls the functions to evaluate equations residuals, Jacobian matrix and root functions,

solves the resulting system of linear equations and checks for possible occurrences of

discontinuities until the specified tolerance is achieved.

Phase V: clean up
This phase includes a call to daeSimulation::Finalize() function which performs internal

clean-up and memory release, followed by destruction of objects instantiated during

phase I.

DEVELOPING MODELS WITH DAE TOOLS
In DAE Tools, models are developed by deriving new classes from the base model class

(daeModel). The procedure consists of two steps: (a) declaration of the model structure

(domains, parameters, variables, ports etc.) in the __init__() function (from Python) or in

the daeModel-derived class constructor (from C++), (b) specification of the model

functionality (equations and state transition networks) in the DeclareEquations() function.

A simple model developed using the Python programming language is given in Source Code

Listing 4 and the same model developed in C++ in the Supplemental Source Code Listing

S2. More information about the API, the user guide and tutorials can be found in the

Figure 6 UML sequence diagram. daeSimulation::Run() function.

Nikoli�c (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.54 16/28

http://dx.doi.org/10.7717/peerj-cs.54/supp-2
http://dx.doi.org/10.7717/peerj-cs.54/supp-2
http://dx.doi.org/10.7717/peerj-cs.54
https://peerj.com/


Documentation section of the DAE Toools website (http://www.daetools.com/docs/index.

html), subsections pyDAE User Guide, pyDAE API Reference, and Tutorials, respectively. The

model describes a block of copper at one side exposed to the source of heat and at the other

to the surroundings with the constant temperature and the constant heat transfer

coefficient. The process starts at the temperature of the metal of 283 K. The integral heat

balance can be described by the following ordinary differential equation:

mcp
dT

dt
¼ Qin � �AðT � TsurrÞ

wherem is a mass of the block, cp is the specific heat capacity, T is the temperature,Qin is the

input power of the heater, a is the heat transfer coefficient, A is the surface area of the block

andTsurr is the temperature of the surroundings. The copper blockmodel is simulated for 500

s. At a certain point in time, the heat produced by the heater becomes equal to the heat

removed by natural convection and the system reaches the steady-state.

Listing 4 CopperBlock model (Python)

from daetools.pyDAE import *

from pyUnits import m, kg, s, K, Pa, J, W

# Part 1: creating a model

class CopperBlock(daeModel):

def __init__(self, Name, Parent = None, Description = ""):

daeModel.__init__(self, Name, Parent, Description)

self.m = daeParameter("m", kg, self, "Mass of the copper block")

self.cp = daeParameter("c_p", J/(kg*K), self, "Specific heat capacity")

self.alpha = daeParameter("&alpha;", W/((m**2)*K), self, "Heat transfer coefficient")

self.A = daeParameter("A", m**2, self, "Surface area for the heat transfer")

self.Tsurr = daeParameter("T_surr", K, self, "Temperature of the surroundings")

self.Qin = daeVariable("Q_in", power_t, self, "Power of the heater")

self.T = daeVariable("T", temperature_t, self, "Block temperature")

def DeclareEquations(self):

daeModel.DeclareEquations(self)

eq = self.CreateEquation("HeatBalance", "Integral heat balance equation")

eq.Residual = self.m() * self.cp() * self.T.dt() - self.Qin() + \

self.alpha() * self.A() * (self.T() -self.Tsurr())

Definition of a simulation in DAE Tools requires the following steps: (a) deriving a new

class from the base simulation daeSimulation class; (b) specification of the model to be

simulated in the __init__() function (from Python) or in daeSimulation-derived class

constructor (from C++); (c) setting the values of parameters and distribution domains in

SetUpParametersAndDomains() function; (d) fixing the degrees of freedom by assigning

the values to certain variables, setting the initial conditions for differential variables and

other information such as initial guesses, absolute tolerances, etc. in SetUpVariables();

(e) specification of an operating procedure in Run() function (it can be either a simple run
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for a specified period of time which is default, or a complex one where various actions can

be taken during the simulation). The simulation classes for the copper block model are

shown in Source Code Listing 5 (Python).

Listing 5 CopperBlock simulation (Python)

# Part 2: setting up a simulation

class simCopperBlock(daeSimulation):

def __init__(self):

daeSimulation.__init__(self)

self.m = CopperBlock("CopperBlock")

def SetUpParametersAndDomains(self):

self.m.cp.SetValue(385 * J/(kg*K))

self.m.m.SetValue(1 * kg)

self.m.alpha.SetValue(200 * W/((m**2)*K))

self.m.A.SetValue(0.1 * m**2)

self.m.Tsurr.SetValue(283 * K)

def SetUpVariables(self):

# Set input power of the heater

# It is a degree of freedom (DOF) and must be assigned

self.m.Qin.AssignValue(1500 * W)

# Set an initial condtion for the temperature

self.m.T.SetInitialCondition(283 * K)

Running a simulation requires the following steps: (a) instantiation of DAE and LA

solvers, data reporter, data receiver, and log objects; (b) setting a time horizon and a

reporting interval; (c) initialisation of the simulation; (d) calculation of the initial

conditions; (e) running simulation; and (f) cleaning up. The simulation performed in

Python is given in the Source Code Listing 6. The complete source code of the copper

block models developed in Python and C++ are given in the Supplemental Listings S1 and

S2, respectively. The simulation results for the copper block model are presented in Fig. 7.

Figure 7 Temperature profile from the CopperBlock simulation.
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Listing 6 Running the CopperBlock simulation (Python)

# Part 3: running a simulation

# Create Log, Solver, DataReporter and Simulation object

log = daePythonStdOutLog()

daesolver = daeIDAS()

datareporter = daeTCPIPDataReporter()

simulation = simCopperBlock()

# Enable reporting of all variables

simulation.m.SetReportingOn(True)

# Set the time horizon and the reporting interval

simulation.ReportingInterval = 10

simulation.TimeHorizon = 500

# Connect the TCP/IP data reporter (the default address is "localhost:50000")

datareporter.Connect("", "CopperBlock")

# Initialize the simulation

simulation.Initialize(daesolver, datareporter, log)

# Solve the system at time = 0

simulation.SolveInitial()

# Run the simulation

simulation.Run()

# Clean-up

simulation.Finalize()

The previous example was very simple. DAE Tools also support some advanced

features such as discontinuous equations and state transition networks. More

information about state transition networks and their types can be found in

Barton & Pantelides (1993). Consider a slightly more complex problem now: the

same copper block at the ambient temperature (283 K) is allowed to warm up for

200 s, the heat source is then switched off and the metal cools down to the ambient

temperature. This problem can be modelled using the concept of symmetrical State

Transition Networks (STN); in DAE Tools this type of STN can be created using

IF, ELSE_IF, ELSE, and END_IF functions from the daeModel class. From the

modellers perspective, these function behave in a similar fashion as ordinary

if-else_if-else blocks in all programming languages and select the active set of

equations based on the specified logical conditions. The source code of this model

is given in Source Code Listing 7 and the simulation results in Fig. 8. The

complete source code of the modifed model is given in Supplemental

Listing S3.
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Listing 7 CopperBlock model with the symmetrical reversible STN (Python)

class CopperBlock(daeModel):

: : :

def DeclareEquations(self):

: : :

self.IF(Time() < Constant(200*s))

eq = self.CreateEquation("Q_on", "The heater is on")

eq.Residual = self.Qin() - Constant(1500 * W)

self.ELSE()

eq = self.CreateEquation("Q_off", "The heater is off")

eq.Residual = self.Qin()

self.END_IF()

Another commonly used type of state transition networks is a non-symmetrical

STN. This type of STN in DAE Tools can be created by using STN, STATE, and

END_STN functions from the daeModel class. To illustrate this concept, consider again

the same copper block problem. The process starts again at the temperature of 283 K.

However, this time the temperature of the copper block is allowed to reach 340 K

and once that is done its temperature is kept in the interval between 320–340 K

for 350 s by switching the heater on and off. After 350 s, the heat source

is permanently switched off and the block cools down to the ambient temperature.

The source code of the new model is given in Source Code Listing 8 and the

simulation results in Fig. 9. The complete source code is given in Supplemental

Listing S4.

Figure 8 Temperature profile from the CopperBlock simulation (symmetrical reversible STN).
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Listing 8 CopperBlock model with the non-symmetrical irreversible STN (Python)

class CopperBlock(daeModel):

: : :

def DeclareEquations(self):

: : :

self.stnRegulator = self.STN("Regulator")

self.STATE("HeaterOn")

eq = self.CreateEquation("HeaterInput")

eq.Residual = self.Qin() - Constant(1500 * W)

self.ON_CONDITION(self.T()> Constant(340*K),

switchToStates = [ (′Regulator′, ′HeaterOff′) ] )

self.ON_CONDITION(Time() > Constant(350*s),

switchToStates = [ (′Regulator′, ′RegulatorOff′) ] )

self.STATE("HeaterOff")

eq = self.CreateEquation("HeaterInput")

eq.Residual = self.Qin()

self.ON_CONDITION(self.T() < Constant(320*K),

switchToStates = [ (′Regulator′, ′HeaterOn′) ])

self.ON_CONDITION(Time() > Constant(350*s),

switchToStates = [ (′Regulator′, ′RegulatorOff′) ] )

self.STATE("RegulatorOff")

eq = self.CreateEquation("HeaterInput")

eq.Residual = self.Qin()

self.END_STN()

Figure 9 Temperature profile from the CopperBlock simulation (non-symmetrical irreversible

STN).
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APPLICATIONS
To date, DAE Tools have been applied to several diverse scientific areas such as gas

adsorption, porous membranes, crystallisation, electrochemistry and biological neural

networks. Two projects utilising DAE Tools software at different levels of abstraction

are presented in this work. The first example illustrates applicability of DAE Tools to

development of multi-scale models. In this example, the authors took advantage of the

built-in interoperability with Python NumPy library to perform vector operations on

NumPy arrays to form the DAE system. The second example illustrates two important

DAE Tools capabilities: (a) embedding into another software (a domain specific language

simulator) running on a server and providing its functionality through a web service

or web application, and (b) defining the modelling concepts from a new application

domain using the DAE Tools fundamental modelling concepts.

Multi-scale model of phase-separating battery electrodes
In the work of Li et al. (2014), DAE Tools has been applied to modelling of lithium-ion

batteries. Lithium-ion batteries operate by shuttling lithium ions from one electrode to

the other. In a charged state, the lithium ions are stored in the negative electrode

(anode), and the positive electrode (cathode) has almost no lithium. During a discharge,

lithium exits the anode, sending an electron through the outer circuit. Lithium ions then

move through an electrolyte phase to the cathode, where they recombine with an

electron as they enter the cathode. To correctly describe the physics of this process,

transport of lithium within the electrodes and within the electrolyte has to be modelled

as well as the electrochemical reactions in which lithium ions separate/combine with an

electron to exit/enter the electrode materials. Complicating the modelling process,

battery electrodes are typically made out of a porous material composed of large

numbers of small, solid active particles with a percolating electrolyte. This provides a

large surface area for electrochemical reactions to drive electrons through the outer

circuit but also creates a strong separation of length scales. The electrode may have a

typical thickness of hundreds of microns, whereas single electrode particles range from

tens of nanometers to tens of microns. In addition, the system inherently has highly

separated time scales. Particles may have transport time scales less than one second, but

the imposed time scale for battery discharge is typically on the order of hours. One

approach to simulating this system is referred to as porous electrode theory. Porous

electrode theory for battery simulations is a method of systematically coupling the

different length scales and physical phenomena involved in battery operation. The basic

approach involves writing conservation equations both for lithium transport within the

particles (small length scale) and for lithium ion transport through the electrolyte (large

length scale). Directly simulating the full micro-structure of the electrode particles and

electrolyte pores within the porous electrode would require enormous computational

effort. Instead, the two phases are coupled via a volume-averaged approach in which

simulated particles act as volumetric source/sink terms as they interact with the

electrolyte via reactions. More details about the governing equations of such a model

applied to a battery electrode made of LiFePO4 can be found in Li et al. (2014) and its
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Supplemental Information. Spatial discretisation of the governing equations is carried

out using the finite volume method, as solid particles are described as residing within

individual electrode volumes, as depicted in Fig. 10.

The resulting discretised set of equations is a large system of DAE’s. Differential

equations come from the discretised transport equations, and algebraic constraints

arise from electrostatic equations and constraints on the total integrated reaction rate

(current). In Li et al. (2014), the discretised system of DAE’s was integrated in time using

MATLAB’s ode15s solver and subsequently reimplemented using DAE Tools, allowing a

direct comparison between the two integrators. Using default solver tolerances for both

(10-3 in MATLAB and 10-5 in DAE Tools), a number of simulations were carried out

using both the MATLAB implementation and the DAE Tools implementation, and in each

case the simulation outputs were indistinguishable. Despite obtaining equivalent outputs,

the implementation using DAE Tools consistently ran more quickly (Fig. 11), up to ten

times faster (4.22 times, in average). This speedup is a result of its built-in support for

automatic differentiation facilitating rapid and accurate derivative evaluation for solution

of the highly non-linear system of equations involved in time stepping. In contrast,

the ode15s solver creates a numerical approximation of the Jacobian matrix if the Jacobian

calculation function is not provided as an input; therefore, the convergence rate is

much slower. The significant loss in performance illustrates the benefits of the object-

oriented DAE Tools API and the automatic differentiation capabilities it provides, since

the calculation of derivatives by hand for all functions in the MATLAB model is very

difficult and error-prone for a system of this size and complexity. In addition, the

equation-oriented modelling approach made the implementation both easier to code and

easier to read in comparison to the non-intuitive mass-matrix approach for coupled

differential variables used in the MATLAB version. Finally, the object-oriented approach

and clear model separation of DAE Tools also facilitates a much more maintainable and

extensible code base in which particle models can be easily interchanged, added, and

incorporated into other electrode models.

NineML domain specific language
DAE Tools software has been used as a reference implementation simulator for the

“Network Interchange format for NEuroscience” (NineML) Modelling Language.

NineML is an open source xml-based domain specific language for modelling of networks

of spiking neurones. It is a simulator-independent language with the aim of providing an

unambiguous description of neuronal network models for efficient model sharing and

reusability between different simulators (such as NEURON, NEST, NeuroML/LEMS etc.).

The language has emerged from a joint effort of experts in the fields of computational

neuroscience, simulator development and simulator-independent language initiatives

(NeuroML, PyNN), grouped in the INCF Multiscale Modelling Task Force (http://www.

incf.org). NineML consists of two layers: an Abstraction Layer (AL) contains

mathematical description and concepts, and a User Layer (UL) contains parameters

values and instantiations. The key modelling concepts in the language are: (a) cell

models (spiking neurons); (b) synapse models; (c) groups of neurons such as populations
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and layers; and (d) connectivity patterns–projections, connection probabilities, etc.

Apart from the specification, the language contains a set of additional tools: (a) Python

library (lib9ml); (b) abstraction layer component tester and report generator (DAE

Tools based); and (c) the reference implementation simulator (DAE Tools based). The

source code and more information about the language and the whole project can be

found on the INCF’s portal (http://software.incf.org/software/nineml).

Abstraction layer component tester and report generator
The purpose of the application is validation and testing of abstraction layer components

and generation of model reports (as a help to components developers). The application

is available in three flavours: (a) desktop applicationwith the pyQt graphical user interface;

(b) web application with the jQuery user interface; and (c) web service with the

REpresentational State Transfer (REST) API. The latter two were implemented using

the Web Service Gateway Interface (WSGI) running under Apache HTTP Debian

GNU/Linux server with themod_python servermodule. The application inputs are: the AL

component, one or more tests (optional), parameters values, initial conditions and

inputs to the analogue and event ports. The application produces themodel report (in PDF

Figure 11 Parity plot for simulation runs with different inputs (MATLAB vs. DAE Tools).

Figure 10 Schematic of the multi-scale porous electrode model.

Nikoli�c (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.54 24/28

http://software.incf.org/software/nineml
http://dx.doi.org/10.7717/peerj-cs.54
https://peerj.com/


or html format) and tests results (variable plots). The role of DAE Tools software is

to process NineML xml input files, generate the model structure using the lib9ml library,

execute the server-side simulations, produce reports and deliver them to the clients.

NineML reference implementation simulator

The NineML reference implementation simulator represents a small scale simulator

for testing and validating purposes, with the full support for the NineML language. All input

information are given in a simulator-independent format: NineML xml files (mathematical

models) and SED-ML xml file (simulation settings). SED-ML is the Simulation Experiment

Description Markup Language an xml-based format for encoding simulation experiments

(http://sed-ml.org). It is based on the Minimal Information About a Simulation

Experiment guidelines (MIASE, http://biomodels.net/miase) and used to specify: (a) the

definition of themodel(s) to be used; (b) the definition of the simulation settings to be used;

(c) the experimental tasks to be run; and (d) the post processing of the results and outputs

(2D-plots, 3D-plots, data tables etc.). The simulator utilises the fundamental modelling

concepts in DAE Tools: parameters, variables, equations, ports, models, state transition

networks and discrete events as a basis for implementation of the higher-level concepts from

the NineML language such as neurons, synapses, connectivity patterns, populations of

neurons and projections. Again, the role of DAE Tools software is to process NineML and

SED-ML xml input files, generate the model structure, execute the simulation, and produce

the results based on inputs from SED-ML file. The simulator implements the synchronous

(clock-driven) simulation algorithm and the system of equations is integrated continuously

using the variable-step variable-order backward differentiation formula using Sundials IDA

DAE solver. The exact event times (spike occurrences) are calculated by detecting

discontinuities in model equations using root functions. An overview of the simulator is

presented in Fig. 12.

Figure 12 An overview of the NineML reference implementation simulator.
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CONCLUSIONS
DAE Tools modelling, simulation and optimisation software, its programming paradigms,

the main features and capabilities have been presented in this work. Some shortcomings of

the current approaches tomathematical modelling have been recognised and analysed, and a

new hybrid approach proposed. The hybrid approach offers some of the key advantages of

modelling languages paired with the flexibility of the general purpose languages. Its benefits

have been discussed such as the support for the runtime model generation, runtime

simulation set-up and complex runtime operating procedures, interoperability with the

third party software packages, and embedding and code-generation capabilities. The

software architecture and the procedure for transformation of the model hierarchy into a

DAE system as well as the algorithm for the solution of the DAE system have been presented.

The most important modelling concepts available in the DAE Tools API required for model

development and simulation execution have been outlined.

The software has successfully been applied to two different scientific problems. In the

first example, the authors took advantage of the object-oriented characteristics of the

software and the interoperability with the NumPy library for the development of a model

hierarchy to mathematically describe operation of lithium-ion batteries at different

physical scales. In the second example, the DAE Tools software has been used as a reference

implementation simulator for the new XML-based domain specific language (NineML).

DAE Tools embedding capabilities have been utilised to provide a simulator available in

three versions: (a) desktop application, (b) web application and (c) web service.

The current work concentrates on a further support for systems with distributed

parameters (i.e. high-resolution finite volume schemes with flux limiters), the additional

optimisation algorithms and the parallel computation using the general purpose graphics

processing units and systems with the distributed memory. The parallel computation will

rely on the code generation capabilities to produce the C source code for the DAE/ODE

solvers that support the MPI interface such as PETSc and Sundials IDAS/PVODE, including

the data partitioning and the routines for the inter-process communication of data.
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