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ABSTRACT

Background: The brain-computer interface (BCI) is a relatively new but highly
promising special field that is actively used in basic neuroscience. BCI includes
interfaces for human-computer communication based directly on neural activity
concerning mental processes. Fundamental BCI components consist of different
units. In the first stage, the EEG and NIRS signals obtained from the individuals are
preprocessed, and the signals are brought to a certain standard.

Methods: In order to realize proposed framework, a dataset containing Motor
Imaginary and Mental Activity tasks are prepared with Electroencephalography
(EEG) and Near-Infrared Spectroscopy (NIRS) signal. First of all, HbO and HbR
curves are obtained from NIRS signals. Hbo, HbR, HbO+HbR, EEG, EEG+HbO and
EEG+HDR features tables are created with the features obtained by using HbO, HbR,
and EEG signals, and feature weighted is carried out with the k-Means clustering
centers based attribute weighting method (KMCC-based) and the k-Means clustering
centers difference based attribute weighting method (KMCCD-based). Linear
Discriminant Analysis (LDA), Support Vector Machine (SVM), and k-Nearest
Neighbors algorithm (kNN) classifiers are used to see the classifier differences in the
study.

Results: As a result of this study, an accuracy rate of 99.7% (with kNN classifier and
KMCCD-based weighting) is obtained in the data set of Motor Imaginary. Similarly,
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INTRODUCTION

BCI is a special area of recent applications in basic neuroscience. BCI includes interfaces
for human-computer communication based directly on neural activity concerning mental
processes. Some of the BCI research in the literature focuses only on developing direct
communication and control methods based on neural activity in the brain. Some of the
brain's neural sensors with sensor data for vision or sensory values are collected by artificial
sensors over the methods that directly acquire the systems and eliminate the non-
functional sensory organs’ deficiencies (https://dergipark.org.tr/tr/download/article-file/
340760). These essential trading components of BCI are shown in Fig. 1 (https://www.
researchgate.net/publication/267792090_4_Human_Brain-Computer_Interface).

Basic BCI components consist of different units. In the first stage, the EEG and fNIRS
signals obtained from the individuals are preprocessed (filtering and normalization), and
the signals are brought to specific standards. Then, different characteristic features are
extracted from the EEG and fNIRS signals on the time and frequency axis using hand-
crafted or automatic methods. In BCI applications, these extracted features for the desired
purpose are applied to the classification algorithm, and thus high performance is targeted.
By applying the obtained classification result to the real world, it is reached the final result.
There are different methods to measure brain activity. Techniques that measure brain
activity, without intervention, that is, without entering the tissue: EEG, functional
magnetic resonance imaging (fMRI), and NIRS (http://noroblog.net/2019/01/06/beyin-
bilgisayar-arayuzunden-beyinler-arasi-iletisime/). BCIs transform the brain activities
taken from the individual into action or writing through this application. For this purpose,
it uses EEG signals, which is one of the methods that visualize brain activities. The
obtained EEG signals are transformed into meaningful information by using machine
learning methods through computers. EEG signal acquisition is carried out through
electrodes, and a large number of electrodes are used for this process. The excess number
of electrodes increases the required capacity of the electronic and computer equipment
used. This situation causes an increase in both the financial burden and the processing
load. Therefore, the systems’ physical dimensions increase and the cost exceeds the values
accessible to everyone. BCI systems are also tested for applications that require the
assessment of mental states such as attention level, stress, workload. This is called passive
BCI. One of the tested application areas is activities such as driving a car or airplane
where safety is critical and human error can lead to serious consequences. A serious
amount of research focuses on the effect of sleepiness and fatigue on EEG waves in their
studies on drivers. Some BCI works are using EEG, fNIRS, and the combination of
EEG and fNIRS signals in the literature. Among them, some works have been explained
briefly in the following. Shin et al. (2017) proposed a new open-access dataset on brain-
computer design with EEG and fNIRS signals and obtained new results on BCI by using
many different signal processing and machine learning methods. In another study,
Chiarelli et al. (2018) combined EEG and fNIRS signals with the deep learning algorithm,
designed a new BCI system, and applied it to the motor imagery classification problem.
During the classification stage, they used LDA, SVM, and deep neural network (DNN).
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Figure 1 The essential trading components of BCI system.
Full-size K&l DOT: 10.7717/peerj-cs.537/fig-1

Shin, Kwon ¢ Im, (2018) proposed a new hybrid model to classify brain function during
mental arithmetic, motor imagery, and Idle State. They used a shrinkage linear
discriminant analysis (sSLDA) classification algorithm to classify the features obtained from
EEG and fNIRS signals. They achieved classification accuracies of 76.1 + 12.8%, 64.1 +
9.7%, and 82.2 + 10.2% with EEG-BCI, NIRS-BCI, and hBCI models (Shin, Kwon & Im,
2018). In another study, Janani et al. (2020) used fNIRS signals to classify engine imagery
states as a BCI application. They used SVM, multilayer perceptron (MLP) neural network,
and convolutional neural network (CNN) as the classification method in their study and
achieved an accuracy rate of 72.35 + 4.4% with the CNN method (Janani et al., 2020).
Aydin (2020) proposed a new hybrid machine learning model using fNIRS signals to
classify mental arithmetic and motor imagery states. To reduce the number of features
obtained from fNIRS signals, the number of features is reduced with sequential feature
selection and ReliefF feature selection methods, and they achieved classification success for
each case with three different classification algorithms, including Linear discriminant
analysis, k nearest neighborhood, and support vector machines (Aydin, 2020).

Instead of creating a heavy computational load as in the studies suggested in the
literature, this study proposes a new and efficient machine learning model and applies it to
the problem of motor imagery and mental activity classification. The proposed framework
uses both EEG and fNIRS signals together. It can be summarized as follows: From the
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oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) curves obtained by fNIRS signals
and EEG signals, features are obtained singularly or combined. Secondly, the obtained
singular and hybrid features are weighted according to the classes. The classification
process's contribution with LDA, SVM, and kNN classifiers and hybrid signals and
weighting to the classification performance is examined in the last step.

The methods used in the study are preferred for reasons such as ease of application and
ease of processing. The primary purpose is to reveal the power of weighting algorithms,
which recommend for the first time in Mental Activity and Motor Imaging studies, rather
than to compare classifiers’ performance. There are many advantages of deep learning
algorithms in BCI systems (Zhang et al., 2018; Zhang et al., 2019). However, it is not
possible to interfere with the inner workings of deep learning architectures. Therefore, it
will be difficult for us to distinguish whether the results obtained after the classification
come from the method proposed or the power of deep learning. Thus, traditional features
and classifiers are used to compare the literature and apply it to the suggested method.

The novelties of the study can be listed as follows:

e The features of the singular and combined HbO, HbR, and EEG signals are weighted
with a fast-weighting algorithm and k-means clustering-based weighting algorithms.

e An improvement in classifier performance is achieved with the base classifiers without a
negative effect on processing speed.

MATERIALS & METHODS

EEG+NIRS single-trial classification dataset

“Open Access Dataset for EEG+NIRS Single-Trial Classification” is used to reveal the
proposed framework’s performance in the study (Shin et al., 2017; Blankertz et al., 2010).
This dataset consists of NIRS and EEG signals, including mental activity (MA) and motor
imaginary (MI), two separate tasks. A total of 29 users (15 females, 14 males; 28 right
hands, 1 left hand) participated in the study.

MTI has two functions in itself, right hand and left hand. MA includes mental processing
and resting-state tasks within itself. The experimental setup is designed with the
instructions given to the subject sitting 1.6 m in front of the 50-inch screen. The paradigm
of the experiment is given in Fig. 2. Both tasks started with one-minute rest before the
experiment. Then, 2 s of visual information about the task, 10 s of task execution, and
15-17 s of rest after the task are given.

This process is repeated 20 times in each session. MI and MA tasks are recorded
sequentially and in 3 sessions. As shown in Fig. 3A, fNIRS recordings are taken with 36
physiological channels produced using 14 sources and 16 detectors. The recording is
performed with a sampling frequency of 12.5 Hz. The recordings are then downsampled at
10 Hz. Figure 3B shows that 30 EEG electrodes placed according to the international
10-5 system are given. The signals are collected with a 1,000 Hz sampling frequency and
then downsampled at 200 Hz (Shin et al., 2017).
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Figure 2 Experimental paradigm for MI and MA in one session.
Full-size K&l DOTI: 10.7717/peerj-cs.537/fig-2
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Figure 3 Electrodes placement (A) fNIRS sources (dark blue) and detector (light blue) channels.
(B) EEG electrodes and ground (black) (Shin et al., 2017).
Full-size K&l DOT: 10.7717/peerj-cs.537/fig-3

Preprocessing of the EEG and fNIRS Signals

Raw fNIRS and EEG signals obtained from the dataset are subjected to a series of processes
before classification. The transactions performed are shown in Fig. 4. First, by applying the
Modified Beer-Lambert law given in (1) to fNIRS signals, the concentration changes of
oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) are calculated (Chiarelli et al., 2018;
Trakoolwilaiwan et al., 2017; Shin ¢ Jeong, 2014).

P

[A[Hbo]] 1 [sosz()\l).DPF()\l) SHH;,()\I).DPF()\I)]_I y [ODAI] W
A[HbR] EOZHb()\Z)-DPF()\Z) SHHb(Az).DPF()\z) ()l),\1

The HbO and HbR curves are filtered with a 3rd order 0.01-0.09 Hz Butterworth
bandpass filter. Processes after this step are common for both fNIRS and EEG signals.
Three sessions and 20 repetitions in each session are segmented from the moment
stimulation began (0 s) to the moment it ended (10 s). The obtained signals are subjected to
the baseline correction process with the average of the signal generated at the instruction
stage before stimulation (-2 s to 0 s).
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Figure 4 Diagram of proposed processing and classification method hybrid fNIRS and EEG signals.
Full-size K&l DOT: 10.7717/peerj-cs.537/fig-4
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Feature extraction from the EEG and fNIRS Signals

The representation ability of hand-crafted features is known, especially in the analysis of
complex signals. Mean, maximum, slope, variance, skewness, kurtosis, and median
features frequently used in fNIRS signals are used in the literature (Aydin, 2020; Chiarelli
et al., 2018). The feature combination of the proposed framework is as follows:

(1) Mean: It is the average amplitude value of each epoch signal. It is calculated by Eq. (2).
Here u mean value, N total data points, Xj attribute of the signal to be calculated data
point.

f= i @

(2) Maximum: It is the highest amplitude value of each epoch signal.

(3) Slope: It is the average of the slopes in a defined time window over the entire signal.
(4) Variance: It is the value showing the distance of the distribution from the mean in the
data. Where V is variance, N total data point, u arithmetic mean and Xj attribute of the
signal to be calculated data point.

R )
Ve— S X - 3
N_lk;! kil 3)

(5) Skewness: It is the value that gives the degree of non-symmetry of a distribution. X is
data, p is the mean, o is the standard deviation, and E represents the expected value.
E(x —p)’
s — % (4)
(6) Kurtosis: It is the value that gives the sharpness or flatness of the curve. Where x, w, o,
and E same value in skewness.
E(x —w)*
oo Bx—p) (5)

p
(7) Median: It is the value in the middle of the sorted data.

These seven features are calculated for each channel. Then, the feature space is created
by adding each channel side by side. Six feature matrices are created for MI and MA
after preprocessing. These matrices are HbO, HbR and Hbo+HDbR obtained from fNIRS
signals, EEG obtained from EEG signals, and their combination EEG+HbO and
EEG+HDbR.

As stated under the title of feature extraction in the study, seven features have been
extracted for each channel. Since fNIRS signals are 36 channels, 36 * 7 = 252 features are
obtained from HbO and HbR values obtained after Beer-Lambert transformation. The
attribute matrix with tags has 253 columns. Similarly, 32 * 7 = 224 features are obtained
from 32 channel EEG signals. Together with the tag column, an attribute matrix of 225
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Table 1 Pseudo code for k-means clustering method.

Step Procedure
Step 1 Choose k = 2 initial cluster centers z;, z; randomly from the n points{x;, x1, ..., x,}
Step 2 Define point x;, i = 1,2,...,n the cluster C;, j = 1,2
If ||x; — z1]| <||xi — 22]|,
Step 3 Calculate new cluster centers;
1 .
zj‘ew:;Zx,»]: 1,2
7 x;€C;
Step 4 If ||z — zj|| < &, j = 1,2, then execute.

Otherwise repeat from step 2 to 4

columns is obtained. In the hybrid studies, 476 features are obtained from 252 + 224
features for EEG+HbO and EEG+HDbR data, while 252 + 252 = 504 features are obtained
from HbO+HDR data. Tag vectors are then added to these. The number of observations
made is; The data belonging to each user is divided into 10-s epochs from the start of the
task. In this setup, 20 observations for each session and 60 observations in a total of 3
sessions are obtained. When 29 users are combined, 60 * 29 = 1740 observations are
obtained. In summary;

a) HbO and HDR feature vectors (1740, 253),

b) HbO+HDbR hybrid feature vectors (1740, 505),

¢) EEG attribute vector (1740, 225),

d) The EEG+HbO and EEG+HDR hybrid feature vectors are of the size (1740, 476).

Feature (attribute) weighting algorithm

The main purpose of the feature weighting process is to transform nonlinearly separable
data into a linearly separable form. In the study, two different k-means clustering methods
are used for the weighting of the features. K-Means clustering methods pseudo-code is
given in Table 1 (Polat ¢» Durduran, 2012).

k-means clustering centers based attribute weighting method
(KMCC-based)

The center of each feature set is found by k-means clustering (KMC), and then the

ratio of the feature means to the cluster center is calculated. The pseudo-code for the
method is given in Table 2 (Polat & Durduran, 2012). Where i is class number, j is features
number, ¢; are feature matrixes for two-class, z; are cluster centers for two feature matrixes,

1;; are the mean value of features for two-class, w;; are weight values of features for two

class and data,eighred is KMCC-based weighted data.

Means clustering centers difference based attribute weighting method
(KMCCD-based)

In this method, the center of each feature set is found by KMC, and then the distance of
each data point to the cluster center is calculated. The ratio of the mean of these distances
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Table 2 Pseudo code for KMCC-based method.

Step Procedure

Step 1 Load features matrix and separate by class ¢;, i = 1,2

Step 2 Calculate the z; using Table 1,i=1,2

Step 3 Calculate i value of features for each class, i = 1, 21,4 ] = 1,2,....n

Step 4 Calculate w;; values of features for each class w;; = z_l,]’ i=1,2,j=1,2,..,n
Step 5 Calculate weighted data data,eignted,i = €ij X Wij, i =1,2,j=1,2,...,n

Table 3 Pseudo code for KMCCD-based method.
Step Procedure

Step 1  Load features matrix and separate by class ¢;, i = 1,2

Step 2 Calculate the z; using Table 1, i =1,2

Step 3 Calculate the d;; of each data point to the cluster center d;; = Ilci J—Zi

Li=1,2,j=1,2,..,n
Step 4  Calculate y;; value of distances for each class, i = 1,2, j=1,2,...,n
s
Step 5  Calculate w; J values of features for each class w; = o= 1,2,j=1,2,...,n
. 2

Step 6  Calculate weighted data data,eighreai = Cij X Wij, | = 117 2,j=1,2,...,n

to the cluster centers gives the weight value for each feature. The pseudo-code for the
method is given in Table 3 (Polat, 2018). Where i is class number, j is features number, c;
are feature matrixes for two-class, z; are cluster centers for two feature matrixes, d;; are a
distance of each data point to the cluster center, y;; are the mean value of distances

for two-class, w;; are weight values of features for two class and data,cighzeq is KMCC-based
weighted data.

Classifier algorithms
In this section, LDA, SVM, and kNN classifiers are used to observe the effect of classifiers’
performance.

LDA searches for a vector that best separates data points. It creates a linear combination
that gives the most significant mean differences according to the classes entered. In this
classifier, a primary scoring function is defined, and the coefficients that will maximize this
score are sought (Arican & Polat, 2019; Filho et al., 2014; Parah et al., 2020; Ohata et al.,
2021).

SVM is a machine learning method recommended for classification problems in
datasets where patterns between variables are unknown. SVM is based on statistical
learning theory and structural risk minimization. For classification, it is possible to
separate the two groups by drawing a boundary between two groups on a plane. The place
where this border will be drawn should be the furthest from the members of both groups.
Here SVM determines how this border will be drawn. SVMs are classifiers that do not
take any parameters (nonparametric). There is no prior knowledge or assumption about
the distribution. Inputs and outputs are matched in training sets. Decision functions
that will classify the input variable in test sets and new data sets are obtained through the
peers (Costantini et al., 2009; Parah et al., 2020; Ohata et al., 2021; Dourado et al., 2021).
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kNN is one of the algorithms used for classification in supervised learning. It is
considered to be the simplest machine learning algorithm. In model recognition, the
nearest neighbor algorithm (kNN) is a nonparametric method used for classification. With
kNN, basically, the closest points to the new point are searched. k represents the amount of
the closest neighbors of the unknown point. The quantity k of the algorithm (k = 1 in this
study) is chosen to predict the results (Sahan et al., 2007; Filho et al., 2014).

RESULTS

Classifier performances in the study are evaluated by the accuracy rate obtained from the
confusion matrix. The accuracy (ACC) value is obtained from the confusion matrix by (6).
The sensitivity (Sens) calculates the correct estimation rate of the positive class by (7).
FPR gives the false estimation rate of the negative class by (8). Precision (PRC) calculates
how many of the positive predictions are true positive by (9) (Arican ¢ Polat, 2019).

TP + FP
ACC % — + « 100 ©6)
TP + TN + FP + FN

S TP o)
ns= ————
= TP L EN

FPR— 1T (8)

TP+ TN

pRC—= _ F (9)

~ TP+ FP

Kappa coefficient is a statistical method that measures the reliability of the comparative
agreement between two evaluators, and this coefficient is calculated by (10)-(13) (Cohen,
1960). Here pl is the probability that a tag randomly selected from the data set is positive,
and p2 is the probability that the classifier finds it positive.

ACC — randomACC

K — 10
appa 1 — randomACC (10)
randomACC = plp2 + (1 — p1)(1 — p2) (11)
TP + FN
1= 12
P = I P TN+FP + N (12)
TP + FN
1= 1
P I P Y TINFFP+ N (13)

In this study, classification error consists of two parts. The first is the model's error rate,
while the second part is a confidence interval (CI). The second part is the probability of
falling within this range. In CI, the constant indicates the table value against the chosen
probability, and the 7 is the number of observations used when developing the model.
Error rates for all classifiers have been measure with a 95% confidence interval. The
categorical error is calculated with (14)-(16) (Brownlee, 2020).

FP +FN "
r =
o = TP L IN+ FP+ FN
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error(1 — error)

CI = constant (15)

n
ClassificationError = error &= CI (16)

All classification processes are carried out with k fold cross-validation, k = 10. Cross-
validation separates the data set into ten separate training and test sets, and each time
the classifier is trained and tested with different data (Arican ¢ Polat, 2019). Software
training data is 90%, and test data is 10%, automatically and randomly discriminating from
both classes. In this direction, 174 of 1740 observations, being different for each floor, are
used as training and the rest of the test.

The obtained results with non-weighted features

The classification results of the MI dataset made without applying the weighting process
for the kNN classifier are given in Table 4. Where EEG signal gave the highest result for the
kNN classifier, it remained at 56.781%.

The classification results of the MI dataset made without applying the weighting process
for the LDA classifier are given in Table 5. Similarly, the EEG signal gave the highest result
for the LDA classifier; it remained 60.460%.

The classification results of the MI dataset made without applying the weighting process
for the SVM classifier are given in Table 6. Again, the EEG signal gave the highest accuracy
for the SVM classifier; it remained 60.402%.

The classification results of the MA dataset made without applying the weighting
process are given in Table 7. Where EEG data gave the highest Accuracy rate for the KNN
classifier, it remained at 62.701%.

The obtained classification results on the MA dataset without applying the weighting
process are given in Table 8. HbO data gave the highest accuracy rate for the LDA
classifier, it remained at 66.332%.

The classification results of the MA dataset made without applying the weighting
process are given in Table 9. Where EEG+HbO data gave the highest Accuracy rate for the
SVM classifier, it remained at 74.138%.

Figure 5 shows the classification results of the non-weighted MI and MA tasks for all
three classifiers. Although the MA task gave higher accuracy than the MI task, it remained
at fairly low levels.

The obtained results with weighted features

In Fig. 6, the data distribution for feature 1 and feature 2 for the EEG+HbO signal
belonging to the randomly selected MI task is given. Figure 6A shows the distribution of
the unweighted data, Fig. 6B the KMCC-based weighted data distribution, and Fig. 6C the
KMCCD-based weighted data distribution. The separation of weighted data can be insight.
Figure 7 shows the comparison of 1st and 2nd features for non-weighted and weighted
data of MA tasks HbO features set.
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Table 4 Non-Weighted MI Dataset kNN Classification Results.

ACC (%) SENS FPR PRC Kappa Classification error
HbO 48.965 0.480 0.519 0.489 -0.020 0.510 + 0.023
HbR 52.011 0.544 0.455 0.519 0.040 0.480 + 0.023
EEG 56.781 0.565 0.434 0.568 0.135 0.432 £ 0.023
EEG+HbO 52.988 0.498 0.501 0.531 0.059 0.470 = 0.023
EEG+HbR 52.586 0.537 0.462 0.525 0.051 0.474 + 0.023
HbO+HbR 49.770 0.514 0.485 0.497 -0.004 0.502 + 0.023
Table 5 Non-Weighted MI Dataset LDA Classification Results.
ACC (%) SENS FPR PRC Kappa Classification error
HbO 51.782 0.511 0.489 0.518 0.036 0.482 £ 0.023
HbR 54.253 0.551 0.449 0.542 0.085 0.457 + 0.023
EEG 60.460 0.615 0.385 0.602 0.209 0.395 + 0.023
EEG+HbO 50.977 0.544 0.456 0.509 0.020 0.490 + 0.023
EEG+HbR 55.460 0.567 0.433 0.553 0.109 0.445 £ 0.023
HbO+HbR 52.816 0.572 0.428 0.526 0.056 0.472 £ 0.023
Table 6 Non-Weighted MI Dataset SVM Classification Results.
ACC (%) SENS FPR PRC Kappa Classification error
HbO 52.184 0.549 0.451 0.521 0.044 0.478 £ 0.023
HbR 53.046 0.551 0.449 0.529 0.061 0.470 £ 0.023
EEG 60.402 0.603 0.397 0.604 0.208 0.396 + 0.023
EEG+HbO 57.874 0.594 0.406 0.576 0.157 0.421 + 0.023
EEG+HbR 59.943 0.632 0.368 0.593 0.199 0.401 + 0.023
HbO+HDbR 53.103 0.530 0.470 0.531 0.062 0.469 + 0.023
Table 7 Non-Weighted MA Dataset KNN Classification Results.
ACC (%) SENS FPR PRC Kappa Classification error
HbO 56.724 0.556 0.444 0.569 0.134 0.433 + 0.023
HbR 57.701 0.586 0.414 0.576 0.154 0.423 £ 0.023
EEG 62.701 0.663 0.337 0.618 0.254 0.373 £ 0.023
EEG+HbO 60.402 0.611 0.389 0.602 0.208 0.396 + 0.023
EEG+HbR 61.552 0.675 0.325 0.603 0.231 0.384 + 0.023
HbO+HbR 56.724 0.556 0.444 0.569 0.134 0.425 £ 0.023
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Table 8 Non-Weighted MA Dataset LDA Classification Results.

ACC (%) SENS FPR PRC Kappa Classification error
HbO 66.322 0.667 0.333 0.662 0.326 0.337 + 0.022
HbR 63.966 0.656 0.344 0.635 0.279 0.360 + 0.023
EEG 65.805 0.676 0.324 0.653 0.316 0.342 + 0.022
EEG+HbO 59.885 0.653 0.347 0.589 0.198 0.401 + 0.023
EEG+HbR 61.494 0.640 0.360 0.609 0.230 0.385 + 0.023
HbO+HbR 63.391 0.725 0.275 0.613 0.268 0.366 = 0.023

Table 9 Non-Weighted MA Dataset SVM Classification Results.

ACC (%) SENS FPR PRC Kappa Classification error

HbO 65.460 0.653 0.347 0.655 0.309 0.345 + 0.022

HbR 64.770 0.647 0.353 0.648 0.295 0.352 + 0.022

EEG 70.920 0.721 0.279 0.704 0.418 0.291 + 0.021

EEG+HbO 74.138 0.743 0.257 0.741 0.483 0.259 + 0.021

EEG+HbR 72.241 0.707 0.293 0.730 0.445 0.278 £ 0.021

HbO+HbR 70.287 0.694 0.306 0.706 0.406 0.297 + 0.021
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Figure 5 The comparison of non-weighted MI and MA tasks for all classifiers.
Full-size K&l DOTI: 10.7717/peerj-cs.537/fig-5

k-means clustering centers based attribute weighting method
(KMCC-based)

Table 10 shows the feature datasets’ results for the MI task for which KMCC based
weighting algorithm is applied. The EEG+HBR data reaches an accuracy rate of 99.540%.
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Figure 6 The comparison of 1st and 2nd features for the non-weighted and weighted data using MI
tasks EEG features set, (A) non-weighted EEG features, (B) KMCC weighted EEG features, and
(C) KMCCD weighted EEG features. Full-size K&l DOT: 10.7717/peerj-cs.537/fig-6
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Figure 7 The comparison of 1st and 2nd features for the non-weighted and weighted data using MA
tasks HbO features set, (A) Non-weighted HbO features, (B) KMCC weighted HbO features, and
(C) KMCCD weighted HbO features. Full-size 4] DOI: 10.7717/peetj-cs.537/fig-7
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Table 10 KMCC Based Weighted MI Dataset kNN Classification Results.

ACC (%) SENS FPR PRC Kappa Classification error
HbO 95.920 0.962 0.038 0.957 0.918 0.041 + 0.009
HbR 95.747 0.924 0.076 0.990 0.915 0.043 £ 0.009
EEG 95.172 0.922 0.078 0.980 0.903 0.048 + 0.010
EEG+HbO 98.966 0.993 0.007 0.986 0.979 0.010 = 0.005
EEG+HbR 99.540 0.997 0.003 0.994 0.991 0.005 + 0.003
HbO+HbR 97.644 0.980 0.020 0.973 0.953 0.024 + 0.007

Table 11 KMCC Based Weighted MI

Dataset LDA Classification Results.

ACC (%) SENS FPR PRC Kappa Classification error
HbO 84.655 0.829 0.171 0.859 0.693 0.153 £ 0.017
HbR 88.908 0.853 0.147 0.919 0.778 0.111 £ 0.015
EEG 97.816 0.982 0.018 0.975 0.956 0.022 + 0.007
EEG+HbO 91.667 0.994 0.006 0.861 0.833 0.083 + 0.013
EEG+HbR 91.322 0.993 0.007 0.856 0.826 0.087 £ 0.013
HbO+HbR 70.575 0.618 0.382 0.749 0.411 0.294 + 0.021

Table 12 KMCC Based Weighted MI

Dataset SVM Classification Results.

ACC (%) SENS FPR PRC Kappa Classification error
HbO 97.816 0.999 0.001 0.959 0.956 0.022 + 0.007
HbR 98.736 0.980 0.020 0.994 0.975 0.013 + 0.005
EEG 97.816 0.979 0.021 0.977 0.956 0.022 + 0.007
EEG+HbO 98.678 0.992 0.008 0.982 0.974 0.013 + 0.005
EEG+HbR 98.621 0.997 0.003 0.976 0.972 0.014 + 0.005
HbO+HbR 99.943 0.999 0.001 1.000 0.999 0.001 + 0.001

Table 11 shows the KMCC based weighted MI dataset for LDA classification results.
The EEG data give the highest value for the LDA classifier, the same as non-weighted EEG
data for the LDA classifier with 97.816%.

Table 12 shows the KMCC based weighted MI dataset for SVM classifier results. The
fNIRS hybrid data give the highest value for the SVM classifier; it remained at 99.943%.

Table 13 shows the KMCC based weighted MA dataset for the kNN classifier results.
The fNIRS hybrid data give the highest value for EEG+HbR hybrid data and it remained at

98.793%.

Table 14 shows the KMCC based weighted MA dataset for LDA classification results.

The fNIRS hybrid data give the highest value for the LDA classifier; it remained at

97.356%.
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Table 13 KMCC Based Weighted MA Dataset KNN Classification Results.

ACC (%) SENS FPR PRC Kappa Classification error
HbO 98.736 0.983 0.017 0.992 0.975 0.013 + 0.005
HbR 89.138 0.783 0.217 1.000 0.783 0.109 £ 0.015
EEG 95.000 0.905 0.095 0.995 0.900 0.050 + 0.010
EEG+HbO 98.563 0.971 0.029 1.000 0.971 0.014 = 0.006
EEG+HbR 98.793 0.976 0.024 1.000 0.976 0.012 + 0.005
HbO+HbR 94.425 0.889 0.111 1.000 0.889 0.056 + 0.011

Table 14 KMCC Based Weighted MA Dataset LDA Classification Results.

ACC (%) SENS FPR PRC Kappa Classification error
HbO 91.724 0.870 0.130 0.961 0.834 0.083 £ 0.013
HbR 88.621 0.832 0.168 0.933 0.772 0.114 + 0.015
EEG 96.034 0.944 0.056 0.976 0.921 0.040 + 0.009
EEG+HbO 97.356 0.985 0.015 0.963 0.947 0.026 + 0.008
EEG+HbR 96.724 0.999 0.001 0.939 0.934 0.033 £ 0.008
HbO+HbR 76.782 0.746 0.254 0.780 0.536 0.232 £ 0.020

Table 15 KMCC Based Weighted MA Dataset SVM Classification Results.

ACC (%) SENS FPR PRC Kappa Classification error
HbO 99.138 0.990 0.010 0.993 0.983 0.009 £ 0.004
HbR 97.989 0.960 0.040 1.000 0.960 0.020 £ 0.007
EEG 98.966 0.990 0.010 0.990 0.979 0.010 £ 0.005
EEG+HbO 99.425 0.999 0.001 0.990 0.989 0.006 £ 0.004
EEG+HbR 99.655 0.999 0.001 0.994 0.993 0.003 + 0.003
HbO+HDbR 94.598 0.902 0.098 0.989 0.892 0.054 £ 0.011

Table 15 shows the KMCC based weighted MA dataset for SVM classification results.
The fNIRS hybrid data give the highest value for EEG+HDbR hybrid data, and it remained at

99.655%.

All classification results for MI and MA tasks are given comparatively in Fig. 8 for the
KMCC-based weighted algorithm.

k-means clustering centers difference based attribute weighting
method (KMCCD-based)
Table 16 shows the feature datasets’ results for the MI task for which KMCCD based

weighting algorithm is applied for the kNN classifier. The kNN classifier, which has the
lowest accuracy rates in the non-weighted classification process, reached an accuracy rate
of 99.655% (for EEG+HDR features) as in KMCC.
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Figure 8 Comparison of KMCC-based weighted MI and MA tasks for all classifiers.
Full-size K&l DOT: 10.7717/peerj-cs.537/fig-8

Table 16 KMCCD Based Weighted MI Dataset KNN Classification Results.

ACC (%) SENS FPR PRC Kappa Classification error
HbO 91.494 0.964 0.036 0.878 0.830 0.085 + 0.013
HbR 90.920 0.972 0.028 0.863 0.818 0.091 + 0.014
EEG 98.448 0.999 0.001 0.971 0.969 0.016 + 0.006
EEG+HbO 99.540 0.998 0.002 0.993 0.991 0.005 £ 0.003
EEG+HbR 99.655 0.997 0.003 0.997 0.993 0.003 + 0.003
HbO+HbR 94.598 0.930 0.070 0.961 0.892 0.054 = 0.011

Table 17 shows the KMCCD based weighted MI dataset for LDA classification results.
The EEG data give the highest value for the LDA classifier, and it remained at 96.724%.

Table 18 shows the KMCCD based weighted MI dataset for SVM classification results.
The EEG + HbO data give the highest value for the SVM classifier, and it remained at
99.080%.

Table 19 shows the KMCCD based weighted MA dataset for KNN classification results.
The EEG+HDR data give the highest value for the kNN classifier, and it remained at
99.885%.

Table 20 shows the KMCCD based weighted MA dataset for LDA classification results.
The EEG + HbR data give the highest value for the LDA classifier, which remained at
98.793%.

Table 21 shows the KMCCD based weighted MA dataset for SVM classification results.
The EEG+HDR data give the highest value for the LDA classifier, and it remained at
99.943%.
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Table 17 KMCCD Based Weighted MI Dataset LDA Classification Results.

ACC (%) SENS FPR PRC Kappa Classification error
HbO 74.253 0.720 0.280 0.754 0.485 0.257 + 0.021
HbR 75.000 0.757 0.243 0.746 0.500 0.250 £ 0.020
EEG 96.724 0.992 0.008 0.945 0.934 0.033 + 0.008
EEG+HbO 93.046 0.998 0.002 0.879 0.861 0.070 = 0.012
EEG+HbR 93.103 0.997 0.003 0.881 0.862 0.069 + 0.012
HbO+HbR 70.230 0.832 0.168 0.661 0.405 0.298 + 0.021

Table 18 KMCCD Based Weighted MI Dataset SVM Classification Results.

ACC (%) SENS FPR PRC Kappa Classification error
HbO 94.885 0.963 0.037 0.936 0.898 0.051 £ 0.010
HbR 96.437 0.943 0.057 0.986 0.929 0.036 + 0.009
EEG 96.379 0.990 0.010 0.941 0.928 0.036 + 0.009
EEG+HbO 99.080 0.993 0.007 0.989 0.982 0.009 * 0.004
EEG+HbR 98.851 0.993 0.007 0.984 0.977 0.011 £ 0.005
HbO+HbR 81.954 0.871 0.129 0.790 0.639 0.180 + 0.018

Table 19 KMCCD Based Weighted MA Dataset kNN Classification Results.

ACC (%) SENS FPR PRC Kappa Classification error
HbO 92.471 0.955 0.045 0.900 0.849 0.075 £ 0.012
HbR 87.874 0.976 0.024 0.817 0.757 0.121 £ 0.015
EEG 93.966 0.886 0.114 0.992 0.879 0.060 £ 0.011
EEG+HbO 99.885 0.998 0.002 1.000 0.998 0.001 £ 0.002
EEG+HbR 99.770 0.995 0.005 1.000 0.995 0.002 + 0.002
HbO+HDbR 92.299 0.852 0.148 0.993 0.846 0.077 £ 0.013

Table 20 KMCCD Based Weighted MA Dataset LDA Classification Results.

ACC (%) SENS FPR PRC Kappa Classification error
HbO 78.851 0.782 0.218 0.793 0.577 0.211 + 0.019
HbR 73.046 0.741 0.259 0.726 0.461 0.270 £+ 0.021
EEG 94.713 0.962 0.038 0.934 0.894 0.053 + 0.011
EEG+HbO 98.103 0.999 0.001 0.964 0.962 0.019 + 0.006
EEG+HbR 98.793 0.998 0.002 0.979 0.976 0.012 £ 0.005
HbO+HbR 76.724 0.693 0.307 0.814 0.534 0.233 £+ 0.020
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Table 21 KMCCD Based Weighted MA Dataset SVM Classification Results.

ACC (%) SENS FPR PRC Kappa Classification error

HbO 96.609 0.962 0.038 0.970 0.932 0.034 + 0.009

HbR 97.816 0.979 0.021 0.977 0.956 0.022 + 0.007

EEG 98.448 0.980 0.020 0.988 0.969 0.016 + 0.006

EEG+HbO 99.713 0.997 0.003 0.998 0.994 0.003 + 0.003

EEG+HbR 99.943 0.999 0.001 1.000 0.999 0.001 + 0.001

HbO+HbR 85.690 0.801 0.199 0.902 0.714 0.143 + 0.016
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Figure 9 Comparison of KMCCD-based weighted MI and MA tasks for all classifiers.
Full-size k&l DOT: 10.7717/peerj-cs.537/fig-9

All classification results for MI and MA tasks are given comparatively in Fig. 9 for the
KMCCD-based weighted algorithm. Higher performances of EEG signal features and
Hybrid features are seen.

The Classification Error-values are close to 0 here indicates that the rate of making an
error in the label selected for externally entered data is low.

DISCUSSION

With the proposed model, an average 55% increase in accuracy is achieved in classification
performances. However, an average performance increase of 65% is achieved in the MI
task (85% for kNN). An increase in kNN classifier performance is obtained in both tasks.
This shows that using the proposed fNIRS and EEG combined signals with the weighting
method positively affects the system. Especially these results obtained with more basic
classifiers such as kNN and SVM give hope for future studies

Table 22 lists the studies in the literature using the same data set. This study stands
out with the simplicity of the model and the obtained accuracy rate compared to the
literature studies. The results obtained show that the proposed model is a suitable method for
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Table 22 Studies in the literature using the same data set.

Authors  Year Task Signal Type Method Classifier ACC (%)
Aydin 2020 MA Hbo SWR-SFS + SVM for MA SVM 89 (Aydin, 2020)
Hbr SWR-SFS + LDA for MI) LDA 86
MI  Hbo 78
Hbr 77
Jiang et.al. 2019 MA  Hybrid Indipendent Decision Path Fusion PCA+LDA 91 (Jiang et al., 2019)
MI 78
Ergun etal 2018 MA Hbo Features extraction by Katz fractal dimension Knn 83 (Ergiin & Aydemir, 2018)
Hbr 85
MI  Hbo 72
Hbr 70
Shin etal 2017 MA  Hybrid CSP+Mean Value and Avarage Slope Features LDA 91 (Shin et al., 2017)
MI 78
Proposed MA  Hybrid KMCC kNN/SVM 99
Method KMCCD KNN/LDA/SVM
MI KMCC kNN/SVM 99
KMCCD kNN/LDA/SVM

hybrid BCI systems. When the accuracy rates, error amounts, and weighting algorithms are
examined according to the classifier types specific to the MI and MA tasks, it is seen in the
experimental results that the results are proportionally consistent with each other.

Table 22. The conducted works using MI and MA tasks with the other state of the art
methods in the literature

CONCLUSIONS

BCI systems will become more applicable with the measurements of the brain, which are
expected to become easier in the developing and progressive process. There are some
difficulties in the implementation of the systems designed at this stage. Although it gives
relatively good results, especially in systems that require more data and more capacity,
such as deep learning, it makes application conditions difficult. For this reason, improving
traditional techniques like the proposed method will bring the applicability of BCI
systems one step forward. The studies will be made more applicable by transferring the
theoretical calculations to applied studies and compacting the measurement systems. The
results show that the proposed method increases classifiers' performance, offering less
processing power and ease of application. In the future, the new studies could be carried
out by combining the k-means clustering center-based weighted hybrid BCI method with
deep learning architectures.
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