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ABSTRACT
This paper aims to propose a new model for time series forecasting that combines
forecasting with clustering algorithm. It introduces a new scheme to improve the
forecasting results by grouping the time series data using k-means clustering algorithm.
It utilizes the clustering result to get the forecasting data. There are usually some
user-defined parameters affecting the forecasting results, therefore, a learning-based
procedure is proposed to estimate the parameters that will be used for forecasting.
This parameter value is computed in the algorithm simultaneously. The result of the
experiment compared to other forecasting algorithms demonstrates good results for the
proposed model. It has the smallest mean squared error of 13,007.91 and the average
improvement rate of 19.83%.

Subjects Data Mining and Machine Learning, Data Science, Scientific Computing and Simulation
Keywords Forecasting, Clustering, k-means, Learning-based

INTRODUCTION
Currently, climate change affects rainfall patterns. The negative impact of changes in
rainfall patterns is the occurrence of extreme floods and droughts (Hecht, 2016; Mislan
et al., 2015; Strategy, 2011). Rainfall forecast information is an important requirement to
support water resource management and anticipation of disasters, especially when climate
change occurs (Mislan et al., 2015). Forecasting using a time series model basis aims to
study previous observations based on the collected data and build a suitable forecasting
model (Naim, Mahara & Idrisi, 2018). Previous studies on time series data forecasting
show that the errors of forecasting are still significant and the forecasting is still inaccurate
to predict rainfalls and weather. One of the reasons is because the weather data have
a non-linear structure (Haviluddin & Alfred, 2014; Shrivastava et al., 2012). However, in
another study, the statistical methods of rainfall forecasting have been able to produce
accurate forecasts (Farajzadeh, Fard & Lotfi, 2014). Rainfall forecasting with a good and
accurate method is needed to anticipate the negative impact of extreme weather (Manton
et al., 2001; Yusuf & Francisco, 2017). The lack of knowledge about the future, and the
term projections, whether it is short, medium or long term, make forecasting methods
indispensable in planning, management, and anticipation of arising the negative impacts
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(Dantas, 2018). Forecasting methods that can accurately predict the future will have a
significant contribution to calculate uncertainty. It allows a more efficient decision making
(Hyndman & Athanasopoulos, 2014). For decades, there have been many efforts to obtain
an accurate forecasting result. Researchers have also developed statistical models and
forecasting methods (De Goojier, Hyndman, 2006).

The exponential smoothing algorithm is a short-term method and it is often called
an inconsistent forecasting method. One example would be the case of the decrease in
agricultural production in an area caused by drought. However, this exponential smoothing
model will still describe an increase in its production (Burkom, Murphy & Shmueli, 2007;
Hyndman et al., 2002). Forecasting using a smoothing algorithm is only effective for short
term (Hameed, 2015; Ngopya, 2009). In the exponential smoothing method, the important
parameter is the smoothing constant (α) representing the percentage of estimating error
(Karmaker, 2017). The main weakness of this method is the process of determining the
optimal smoothing constant. The evaluation of forecasting accuracy depends on the
smoothing constant value. The optimal value of the constant is processed using the
lowest mean absolute error, mean absolute percentage error, and root mean squared
error (Karmaker, 2017; Khairina et al., 2019; Ostertagová & Ostertag, 2013). In order to
determine the optimal exponential smoothing value with minimum error, forecasting
is made through a trial and error method (Hameed, 2015; Karmaker, 2017; Paul, 2011).
Determination of a smoothing constant through a trial and error method is considered as
an ineffective method. Unsuitable smoothing constant will give inaccurate forecast result.
The experimental results in previous studies indicate that a single exponential smoothing
is not suitable for predicting data with trending cases or seasonal time series (Green &
Armstrong, 2015; Kourentzes, Rostami-Tabar & Barrow, 2017; Lim, 2011; Prema & Rao,
2015).

The exponential smoothing method is a very successful forecasting method and widely
used in theoretical research (Maia & de Carvalho, 2011; Chen & Seneviratna, 2014; Jose
& Winkler, 2008; Kolassa, 2011; Kourentzes, Petropoulos & Trapero, 2014). The conducted
research focuses on improving the performance and accuracy of exponential smoothing
forecasting method, especially the single exponential smoothing. The proposed new model
is based on the single exponential smoothing because it is a simple forecasting method that
requires only small sample data and has a comprehensive statistical framework for short-
term forecasting (Khairina et al., 2019; Hyndman et al., 2002; Zhao, Mbachu & Zhang,
2019). M-Competition found that the simplest extrapolation method which is suitable for
time series data forecasting is the single exponential smoothing. Its forecasting accuracy
is close to 16 more complex forecasting methods (Gardner & Diaz-Saiz, 2008; Green &
Armstrong, 2015). Empirical study shows that forecasting with complex and sophisticated
statistical methods might be less accurate than forecasting using simple methods (Lee, Song
& Mjelde, 2008).

Recently, machine learning has become popular in the world driven by the advancement
and development of computers that have made high performance servers available at low
cost (Dantas & Oliveira, 2018). One part of machine learning is clustering the unsupervised
learning technique category (Haraty, Dimishkieh & Masud, 2015; Nataliani & Yang, 2019;
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Patel & Mehta, 2011). Unlike classification, clustering is a type of unsupervised learning
with unlabeled data, in which the number of class is not used in the method of grouping
(Haraty, Dimishkieh & Masud, 2015). In clustering, large data sets are partitioned into
smaller subgroups or groups based on their similarity measures (Kulis & Jordan, 2012).
This approach is mainly applied to find similarities between data points. One of the
clustering methods that is suitable to use in time series is k-means (Huang et al., 2016;
Liao, 2005). The k-means method is suitable for the pre-processing time series data, in
which the datasets then will be grouped. Finished with that grouping, the outlier data,
the inconsistent data and noise data are removed, which then resulted in only the valid
data from the pre-processing stage are forecasted (Santhanam & Padmavathi, 2015). The
k-means clustering algorithm is used because of the efficient nature, wide scalability, and
simplicity in the process. Besides, this algorithm yields better accuracy than hierarchical
clustering algorithm (Riyadi et al., 2017; Shete & Buchade, 2019).

Forecasting techniques that combine classical statistical models and machine learning is
gaining popularity in the research and literature studies for time series forecasting. Recent
studies on the accuracy of forecasting results with those techniques has shown promising
results (Bergmeir, Hyndman & Benítez, 2016; Štěpnička & Burda, 2017).

The paper aims to improve the forecasting accuracy of one of the forecasting methods,
i.e., single exponential smoothing. A modified single exponential smoothing, named
learning-based single exponential smoothing algorithm (LSES) will be proposed. The
first step is combining the time series forecasting method with unsupervised learning
technique, i.e., k-means clustering algorithm. The second step is to create a new procedure
to calculate smoothing constant (alpha) using learning-based method to find the most
optimal smoothing value. Previous studies determine smoothing constant through trial and
error processes. To evaluate the performance of LSES, the proposed method is compared
to five leading algorithms: single exponential smoothing, double exponential smoothing,
triple exponential smoothing, and auto Arima, and exponential smoothing seasonal
planting index (ESSPI). Experimental results and comparisons show that LSES algorithm
produces better forecasting results.

This paper is presented as follows. ‘Introduction’ provides the background research on
some weaknesses and advantages of the single exponential smoothing and the k-means
methods. From this background, it then proposes a new method of time series data
forecasting based on the single exponential smoothing that has a better accuracy than
that of other forecasting methods. ‘Literature review’ briefly describes the reviews of the
single exponential smoothing and k-means methods in the literature study. ‘The proposed
method: learning-based single exponential smoothing algorithm’ presents the research
method and flowchart, as well as the proposed algorithm. This study proposes a new
method of time series data forecasting by combining the single exponential smoothing
method and the k-means clustering method, called learning-based single exponential
smoothing (LSES) to improve the accuracy of forecasting. The novelty and contribution
include creating a new procedure to calculate the smoothing constant (alpha) in the single
exponential smoothing based on learning method to find the optimal smoothing value.
‘Experimental results’ explains the experiments and comparisons of the proposed method
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with other time series data forecasting methods using real rainfall data. The graphs are
used to present comparisons and analysis of the results of forecasting experiments. Finally,
the conclusions are stated in ‘Conclusions’.

The contributions of the paper can be summarized as follows.

• It proposes a new scheme to improve the forecasting method by clustering the data and
utilize that clustering result to forecast the data.
• It proposes a learning procedure for estimating the smoothing coefficient that will be
used needed on the forecasting method. This smoothing coefficient is computed in the
algorithm, simultaneously.

LITERATURE REVIEW
In this section, some related works are presented. Below are the abbreviations and notations
used in this paper:

• ARIMA: autoregressive integrated moving average
• GM: grey model
• LV: Lotka-Votterra
• SES: single exponential smoothing
• DES: double exponential smoothing
• TES: triple exponential smoothing
• ESSPI: exponential smoothing seasonal planting index
• LSES: learning based single exponential smoothing
• MSE: mean squared error
• MAE: mean absolute error
• MAD: mean absolute deviation
• MAPE: mean absolute percentage error
• MASE: mean absolute scaled error
• MSD: mean squared deviation
• X ={x1,...,xn} is the data, where xi is the ith data and n is the number of data
• V = v1,...,vc is the cluster center, where vk is the kth cluster center and c is the number
of cluster
• Z = [zik]n×c , where zik is the membership partition of the ith data in the kth cluster
• Xt : the actual data in period t
• Ft : the forecast data in period t
• αk : the smoothing value parameter of the kth cluster
• Wk : the clustered data
• Ŵk : the normalized clustered data

Hyndman et al. (2002) proposed a new approach to perform an automatic forecasting
based on various exponential smoothing methods. The results of automatic forecasting
using M-Competition data and IJF-M3 competition data show a good forecasting accuracy
for short-term prediction intervals (up to about six periods ahead) - YEAR 2002 (Hyndman
et al., 2002). Subsequent research was carried out on the background of the importance
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of efficient study of temporal rainfall pattern in hydrological management. They explain
that their study was carried out across the country to model a rainfall trend in Pakistan
over the past six decades. For this purpose, the secondary dataset of average rainfall for
65 years was made for the period 1951 to 2015. In Pakistan, adverse consequences of
rainfall had been observed, which were in the form of drought and flash floods that had
a devastating effect on human settlements, water management, and agriculture. In this
study, data were analyzed using a sliced functional time series model, which was a relatively
new for forecasting method. The results showed a downward trend in the average rainfall
across the country. The monthly forecast for the next ten years (2016–2025) was obtained
along with a prediction interval of 80%. This forecast was also compared with the forecast
obtained from the ARIMA model and exponential smoothing state space (ETS) (Yasmeen
& Hameed, 2018).

Subsequent research was carried out concerning the time series data forecasting
using the single exponential smoothing method with the error measurement methods
of MAPE, MAD, and MSE. Researchers conducted nine trials to determine the most
optimal smoothing constant (α), in which the test results showed that the greater of
smoothing constant value gave a better forecasting accuracy. The values of MAPE, MAD,
and MSE decreased along with increasing smoothing constant value. Research showed
that minimum error occurred at constant optimal smoothing (α= 0.9) which resulted in
MAPE of 13.1, MAD of 117.4, and MSD of 26,912.1 (Karmaker, Halder & Sarker, 2017).

Another research has compared the ability of three forecasting models using limited
historical data. Based on monthly data on tourist arrivals for the period 2001 to 2013, three
simple forecasting models that did not require many historical data were used for model
construction, namely the single exponential smoothing model, GM (Grey Model) model
(1,1), and LV (Lotka-Vottera) model. GM and LVModel were used for predicting, decision
making and conditional analysis. Mathematically, GM model could be used despite of its
limitation on the data in which the model could process. This model has been developed
and extended to Multiple Criteria Decision Making (MCDM) (Chiou, Tzeng & Cheng,
2004; Ji, Zou & Hu, 2010; Liu & Lin, 2010). GM model is a stochastic process in which its
amplitude is varied in time based on generating series rather than on the raw one. GM
Model is also developed using shooting and grey differential equation and needs less data,
minimum of 4 periods of data. Liu & Lin (2010). Meanwhile, Lotka-Vottera Model is
developed based on the different equations of the predator and the prey (Dang et al., 2016).
It could be used for prediction with limited data and proven to be better in short-term
forecasting (Hung, Tsai & Wu, 2014).

The forecast results of the three models showed that the single exponential smoothing
had the lowest accuracy estimation, the GM model (1,1) had better accuracy and the LV
Model had the best accuracy. Based on the value results from several measurements, the
error of exponential smoothing model and GM (1,1) was greater than that of LV model.
This means that the accuracy of the LV model was higher than the other two models.
In general, the average precision level of the LV model was 89.7%, while the GM model
(1,1) and exponential smoothing model were 86.36% and 65.94%, respectively. Therefore,
in addition to the LV model, the GM model (1,1) can be an alternative for short-term
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forecasting with limited historical data. Thus, the exponential smoothing model was not
suitable to be applied in this case. This study contributed a useful statistical tool that can
be applied to time series data (Dang et al., 2016).

Exponential smoothing is a method of time series data forecasting that works based on
the previous estimation and the percentage of forecast errors. The main problem of this
technique is determining the optimal smoothing constant. In order tominimize forecasting
errors, choosing an appropriate smoothing constant value is very important. In this study,
a framework is developed for selecting the optimal value for the smoothing constant
which minimizes the size of the forecast error such as the mean square error (MSE) and
mean absolute deviation (MAD). Experiments to determine smoothing constant in this
study were carried out by trial and error methods and the use of a non-linear method was
proposed based on Excel Solver. In order to validate the proposed model, this study used
time series data for demand for goods with monthly periods from 2010–2016. The most
optimal smoothing constants using trial and error methods were 0.31 and 0.14 with MAD
and MSE values of 6.0205 and 53.4287, respectively. While for non-linear methods, the
optimal smoothing constants were 0.314 and 0.143 with MAD value of 6.0199 and MSE
value of 53.4286. Although both methods gave similar results, the non-linear methods
were much easier to use and required less time to obtain the optimal smoothing constant
(Karmaker, 2017).

Hartomo, Subanar & Winarko (2016) conducted a research on rainfall forecasting using
the exponential smoothing method. The research used monthly periods rainfall data from
2003 to 2014. They proposed a new method for finding smoothing constants using the
Seasonal Planting Index (SPI) algorithm with index seasonal planting (ISP). Using ISP ,
the parameter of α was symbolized as αISP which formulated as αISP = 1− exp(−ISP).
Here, the exponential function was chosen to determine the smoothing value (α) since
the smoothing value must be between 0 <α <1. The results of the rainfall data prediction
test were obtained used SPI algorithm for RMSE value of 51.37, MAE value of 35.19, MSE
value of 32.05, and MAPE value of 56.25 (Hartomo, Subanar & Winarko, 2016).

Recent research has successfully improved data time series forecasting accuracy using
Fuzzy Type-2 time series. This time data series model used more observation in its
forecast. The model was then combined with Particle Swarm Optimization (SPO) method.
Combination between PSO and Type-2 Fuzzy model was to adjust the lengths of intervals
in the universe of discourse that are employed in forecasting, without adding any interval
numbers. The testing result showed the effectiveness and resilience of the proposed model
compared to the fuzzy time series model and conventional time series model (Singh &
Borah, 2014). Another relevant research showed the improvement of time series prediction
accuracy using PSO hybrid fuzzy method. This method was used to predict the unknown
future value proven to reduce the means squared error (RMSE). This also improves the
accuracy as compared to the other models based on fuzzy time series (Huang, Hsieh & Lin,
2019).

A bit different from the previous research, there has been research on prediction
model based on machine learning to improve the prediction accuracy of the conventional
method.Machine learning -based prediction was performed using TerminatedHierarchical
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(ETH-CNN) to predict Hierarchical CU PartitionMap (HCPM). The testing result showed
that the coding complexity of High Efficiency Video Coding (HEVC) intra-mode could
be drastically reduced by replacing the brute-force search with ETH-CNN. This approach
exceeded the other sophisticated approaches in terms of reducing the HEVC complexity
(Xu et al., 2018).

A research has been conducted on improving the HEV coding efficiency by optimizing
neural network on Multiframe In-loop Filter (MIF). The research has demonstrated that
the approach could improve the visual quality of each encoded frame by using the adjacent
frames. The testing result revealed that the MIF approach has saved 1.621% of Bjøntegaard
Delta Bit-Rate (BD-BR) on average. In other words, it significantly surpassed the filter
in-loop standard with other cutting-edge approaches (Li et al., 2019). The development
of machine learning-based prediction is carried out by adding the intrinsic feature of the
prediction model. This research uses Python tools combined with web service to process
and predict the data. The testing result demonstrates better prediction accuracy compared
to standard machine learning models (He et al., 2020).

Therefore, improving prediction and classification method should be performed in
a Deep Neural Networks (DNNs) environment on Computer Vision (CV) which are
vulnerable to Adversarial Example (AEs). This research focuses on classification method
by integrating three transformation with random coefficients well-adjusted according to
the number of changes in the retained sample. Compared to the 4 advanced classification
methods published in the Artificial Intelligence (AI) conference for the last two years, the
proposed method shows an accuracy of more than 80% (Zeng et al., 2020).

A very recent research proposes the Ocean of Things (OoT) framework for monitoring
the marine environment based on IoT (Internet of Thinks) technology. The OoT
framework performs temperature predictions using a cloud model. The test results
show that the framework obtain good prediction accuracy (Yang et al., 2020). A different
prediction approach is used to address the limited resources of socially aware networks
on online buying and selling cases using virtual currency. This research proposes an
Equivalent-Exchange-based data forwarding Incentive Scheme (EEIS). This framework
predicts the resource status of the two parties making transactions for optimization and
efficiency of the network used. The test results show that the message delivery ratio has
increased significantly and the EEIS framework can address the limitations of network
resources (Xiong et al., 2020). Research with a different approach was carried out for
scheduling efficiency in order to overcome bottlenecks in mmWave multi-Unmanned
Aerial Vehicles (UAV) communications. The testing results have proved that prediction
of transmission conditions and optimization of the proposed multi-UAV communication
system scheduling algorithm are able to reduce the possibility of bottlenecks and increase
the spectral efficiency of multi-UAV communication (Zhao et al., 2020).

Continuous development of artificial intelligence is increasing. Further research evaluates
and warns the security risks of large-scale group activities based on the random forest
algorithm. This research combines several model parameters from the random forest
algorithm. Optimization experiments and random forest model training experiments are
used for risk analysis with a classification accuracy of up to a maximum of 0.86. It can be
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concluded that the random forest algorithm has a good predictive ability in risk assessment
in large-scale group activities (Chen et al., 2021). Another approach uses a semi-supervised
prediction model, which utilizes an unsupervised clustering algorithm to form a fuzzy
partition function. It then combines it with a neural network model to construct an
information prediction function. The research results show that the proposed method
produces better predictive accuracy than the conventional methods (Wen et al., 2021).

Another research combined the classical time series forecasting methods and machine
learning methods. Starting with validating the methodology in combining the Bootstrap
Aggregating (Bagging) with Exponential Smoothing method (Bergmeir, Hyndman &
Benítez, 2016), this research used time series data for air freight demands which was further
expanded with other time series data. After identifying previous researches on time series
data forecasting in order to find aspects and problems, the new method i.e., Bagged Cluster
ETS method was proposed because it uses the basic method of Bagging, Clusters and
Exponential Refining.

Single exponential smoothing
Single Exponential Smoothing (SES) model has been used by some researchers in
previous studies for smoothing fluctuation in sequential demand patterns to provide
stable estimations (Sopipan, 2015; Pagourtzi & Assimakopoulos, 2018). SES can be used for
rainfall predictions (Wichitarapongsakun et al., 2016) using Eq. (1).

Ft = Ft−1+α(Xt−1−Ft−1)=αXt−1+(1−α)Ft−1 (1)

where Ft is the predicted rainfall at time t , Xt−1 is the actual rainfall data at time t −1
and α = [0,1] is the smoothing parameter constant, as well as, the significance or weight
assigned to the data in time t−1. If α is low, more weight will be given to the data in the
past. If α is high, more weight will be given to the most recent data.

Time series clustering
The method of identification and classification of large-scale time series data is done by
grouping the time series data. This type of grouping differs from the grouping process for
the cross-section data, especially in determining the distance technique for each cluster
(Riyadi et al., 2017). The grouping on time series data requires a clustering algorithm or
procedure to form clusters. If there is a set of unlabeled data objects, the choice of the
correct clustering algorithm depends on the types of data available and the purpose of using
the cluster. If the data to be clustered are the time series data, it can be analyzed whether
the data have discrete or real values, whether data samples are uniform, whether they are
univariate or multivariate, and whether data have the same length of series. Non-uniform
sample data must be converted into uniform data before clustering operations can be
performed. Grouping can be done using a variety of methods, from simple samplings
based on the roughest sampling interval, up to sophisticated modelling and estimation
approaches (Liao, 2005).

Various algorithms have been developed to classify different types of time series data.
The aim of developing and modifying algorithms for static data grouping is that the time
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series data can be handled into static data so that the static data grouping algorithm can
be used immediately (Chiou, Tzeng & Cheng, 2004). In general, the steps of grouping
algorithm are described as follows.

Step 1: Starting with the initial cluster, denoted by C , it has a number of defined k
clusters.

Step 2: For each time point, dissimilarity matrices are computed and all resultant
matrices that have been calculated for all time points are saved for the calculation of
trajectory similarity.

Step 3: In term of the generalized Ward criterion function, find cluster C ′ that is better
than cluster C . The cluster C ′ is obtained from C by relocating one member of Cp to Cq

or by swapping two members between Cp and Cq, where Cp,Cq ∈C;p,q = 1 ,2,...,k and
p 6= q. If there are no such cluster, then stop; otherwise replace C with C ′ and go back to
Step 3.

This algorithm only works for time-series which have the same length because the
distance between two time-series at some intersection is unclear (a point of time where
one series has no value).

k-means clustering algorithm
Clustering is a useful tool for data analysis. It is a method to find groups within data with
the most similarity in the same cluster and the most dissimilarity between different clusters.
One of the popular clustering algorithm is k-means algorithm (Macqueen, 1967).

Let X = {x1,...,xn} be a data in a d-dimensional Euclidean space Rd . For a given
2≤ c ≤ n, V = {v1,...,vc} be the c cluster centers with Euclidean distance denoted by
‖xi− vk‖ and Z = [zik]n×c be a partition matrix, where zik is the membership of data
xi ∈Xk satisfying zik ∈ {0,1},

∑c
k=1zik = 1, ∀i, ∀k. The k-means objective function can be

written as,

J (Z ,V )=
c∑

k=1

n∑
i=1

zik‖xi−vk‖2 (2)

where zik = 1 if xi ∈Xk and zik = 0 if xi 6∈Xk .
The updating equations for memberships and cluster centers by minimizing J (Z ,V ) are

as follows,

zik =
{
1,if ‖xi−vk‖2=‖xi−vt‖20,otherwise (3)

vk =
∑n

i=1zikxi∑n
i=1zik

(4)

The k-means clustering algorithm is described below.
Algorithm 1: k-Means Clustering
Input: data (X) and cluster number (c).
Given ε > 0 and v(0). Let t = 1.
Step 1: Compute the membership z (t ) with v(t−1) using (3).
Step 2: Update v(t ) with z (t ) using (4).

Hartomo and Nataliani (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.534 9/29

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.534


Figure 1 The idea of LSES algorithm.
Full-size DOI: 10.7717/peerjcs.534/fig-1

Step 3: Compare v(t ) and v(t−1). IF ‖v(t )−v(t−1)‖<ε, then STOP,
ELSE t = t+1 and return to Step 1.
Output: clustered data (Wk), k= 1,2,...,c .

THE PROPOSED METHOD: LEARNING-BASED SINGLE
EXPONENTIAL SMOOTHING ALGORITHM
As known in forecasting, Single Exponential Smoothing (SES) is used for data without
trend or seasonal pattern. Meanwhile, Double Exponential Smoothing (DES) is used for
trend data, and Triple Exponential Smoothing (TES) is used for seasonal data. Besides that,
SES, DES, and TES need one (called alpha), two (called alpha and beta), and three (called
alpha, beta, and gamma) parameters, respectively as their smoothing coefficients.

To simplify the seasonal pattern data, Hartomo, Subanar & Winarko (2016) proposed
Exponential Smoothing Seasonal Planting Index (ESSPI) to group the data into three
groups according to their seasonal planting term. There are three seasonal planting term
in one year with four months long for each term, i.e., January-April, May-August, and
September-December. The drawback of ESSPI is the grouping data have fixed terms for
every year, even the seasonal planting period is changed for the coming years (Hartomo,
Subanar & Winarko, 2016).

To overcome the drawback of ESSPI, this paper uses the clustering algorithm to group
data into seasonal clusters. Since the seasonal period can be changed every year (either
the length of months or the grouped months), then k-means clustering algorithm is used
to group the months with similar characterization. After k-means is applied, then SES is
used to forecast each clustered data. In this case, it only needs one smoothing coefficient.
Thus, in this paper, a modified single exponential smoothing, called Learning-based Single
Exponential Smoothing (LSES) algorithm is proposed. Figure 1 shows the idea of LSES
algorithm.

The existing literature suggests that in order to find the best smoothing value is by
comparing the MSEs of different smoothing values. Smoothing value with the minimum
MSE is chosen as the best smoothing value. This procedure is proven not to be effective.
Therefore, this study provides a procedure to obtain the smoothing value by utilizing the
clustering results.
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Logically, smaller smoothing value is used for data with high changes. Meanwhile, higher
smoothing value is used for data with low changes. The smoothing value that is closer to
zero give higher smoothing effect than the smoothing value that is closer to one. The
problem is how to determine the smoothing value. In this proposed method, the k-means
clustering method is combined with the SES forecasting method. The clustering method is
used to group the data with similar characteristics. These clustering results will be used to
estimate the smoothing value. As known, the mean of data can be used as a point estimator
of the whole data. Therefore, in this method, the mean of each cluster is used to estimate
the smoothing value of each cluster. Since the mean of each cluster is vary, then the data
normalization of each cluster is needed, in order to make the value of each cluster is in
interval [0,1]. This normalization result can be used to determine the smoothing value,
0<α< 1, directly. The procedure to find the smoothing value is described in Algorithm 2.
Algorithm 2: Procedure to find the smoothing value
Input: the clustered data (Wk), k= 1,2,...,c .
IF there is only one data in Wk or all the elements of Wk are 0, then αk = p, where p is a
constant, ELSE:
Step 1: For each cluster obtained from Algorithm 1, normalize each data inWk using

ŵk =
wk−min(Wk)

max(Wk)−min(Wk)
(5)

Step 2: Compute the smoothing value for each cluster (αk) using the average of the
normalized clustered data, as follows,

αk =mean
(
Ŵk
)

(6)

Output: the smoothing value for each cluster (αk), k= 1,2,...,c .
There are two computation steps in LSES, i.e., for the initialization and for the time

period t . As written in Eq. (1), SES uses Xt−1 and Ft−1 to get Ft , where F1 is assumed to be
the same with X0 in the initialization process. In LSES, F1 is computed from the average of
clustered data obtained from X0. Then, in time period t , LSES counts the forecast data Ft
with the actual data Xt−1. Furthermore, the smoothing values obtained from Algorithm 2
might be different for each iteration, depend on the clustered data formed in each iteration.
The detailed LSES algorithm is presented in Algorithm 3.
Algorithm 3: LSES Algorithm
Input: actual data (X), number of clusters (c).
Step 1: For initialization period (t = 0, with actual data = X0 and forecast data = F1)
1. Group the actual data (X0) using k-means clustering algorithm in Algorithm 1 to

obtain W0,k , k= 1,...,c .
2. For each cluster k, compute the forecasting data (F0) by computing the average of each

cluster (W 0,k). All data in one cluster have the same forecasting data.
3. Find the smoothing coefficients for each cluster (αk) using Algorithm 2.
4. For each cluster k, compute the forecasting data (F1) with αk , X0, and F0 using (1), as

follows. F1=αkX0+(1−αk)F0
Step 2: For the time period t (with actual data = Xt−1 and forecast data = Ft )
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Table 1 The rainfall data (in millimeter) from January 2007 until December 2019.

Year

Month 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Jan 390 503 176 561 347 752 215 284 677 566 498 492 521
Feb 419 183 300 318 313 477 510 474 440 295 340 297 339
Mar 548 206 278 383 268 232 532 625 104 341 514 242 462
Apr 244 167 56 195 120 273 331 174 155 432 444 444 198
May 114 65 42 92 20 183 94 143 265 406 241 241 200
Jun 101 1 25 21 147 0 37 17 277 138 101 101 222
Jul 50 0 0 0 101 0 11 0 0 101 76 0 186
Aug 0 0 0 0 8 0 0 0 0 130 0 0 12
Sep 29 0 2 7 76 0 0 1 3 244 34 0 6
Oct 348 1 24 28 85 0 2 311 69 235 80 80 135
Nov 246 120 139 211 178 159 125 360 182 156 340 220 196
Dec 181 105 328 212 483 489 394 169 262 183 283 366 487

1. Group the actual data (Xt−1) using k-means clustering algorithm in Algorithm 1 to
obtain Wt−1,k , k= 1,...,c .

2. AppendWt−1,k withWk . It means that if t = 1, thenWk contains ofW0,k . If t = 2, then
Wk contains ofW0,k andW1,k . If t = 3, thenWk contains ofW0,k ,W1,k andW2,k , etc.

3. Find the smoothing coefficients for each cluster (αk) using Algorithm 2.
4. For each cluster k, compute the forecasting data (Ft ) with αk , Xt−1, and Ft−1 using

Eq. (1), as follows, Ft =αkXt−1+(1−αk)Ft−1
5. Let t = t+1 and go back to Step 2.1 until the prediction time t is reached.
Output: forecast data (F)

For clear understanding, the flowchart for LSES algorithm is given in Fig. 2.

EXPERIMENTAL RESULTS
This section presents the experimental results for the rainfall data in Indonesia to show
the performance of the proposed LSES algorithm. The rainfall data is obtained from
Meteorology, Climatology, and Geophysical Agency (http://www.bmkg.go.id). This agency
has the task to carry out governmental tasks in the fields of meteorology, climatology, air
quality, and geophysics in accordance with applicable law and regulations. Indonesia has
34 provinces and one of them is Central Java. There are 23 climatology stations in Central
Java. A climatology station records the rainfall data of one area in its scope. We use the
rainfall data recorded by Adisumarmo climatology station for this experiment, starts from
January 2007 until December 2019, as seen in Table 1.

According to the characteristic of annual rainfall data, the data can be divided into three
categories, i.e., high, moderate, and low rainfall data, within one year (12 months). Thus,
there are three clustered data (X1,X2,X3), with c = 3. For LSES algorithm, one constant
is needed, i.e., p. In this annual rainfall prediction case, this constant can be calculated
with c/nc , where c is the number of clusters and nc is the number of data in one cluster.

Hartomo and Nataliani (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.534 12/29

https://peerj.com
http://www.bmkg.go.id
http://dx.doi.org/10.7717/peerj-cs.534


Figure 2 Flowchart of LSES algorithm.
Full-size DOI: 10.7717/peerjcs.534/fig-2

In general, if 12 months are divided into three groups, equally, then one group has four
months. Therefore, the constant p= 3/4= 0.75 is used in the computation.

The LSES algorithm is divided into two steps. Step 1 is started by grouping the rainfall
data from January-December 2007 into three clusters, using k-means clustering algorithm.
The average of each cluster is computed to obtain the forecast data of January-December
2007. It means that there is the same forecast data for months in the same cluster. After
that, the forecast data for January-December 2008 are computed using (1) with the actual
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Figure 3 The actual and forecasting data for SES.
Full-size DOI: 10.7717/peerjcs.534/fig-3

and forecast data of January-December 2007. Here, the smoothing value for each cluster is
obtained from each clustered data (Wk, k =1 ,2,...,3) of January-December 2007, using
Algorithm 2, therefore three smoothing values are obtained.

Step 2 is run first by grouping the data from January-December 2008 into three clusters.
The corresponding clusters obtained from Step 1 and Step 2 are combined to be the
clustered data (Wk,k = 1 ,2,...,3). Three clustered data are used to get the smoothing
values for each cluster. Then, SES is used to forecast the data of January-December 2009.
Step 2 is continued until the year to be predicted is reached, for this case is 2020.

For comparison, LSES algorithm is compared with five other algorithms, i.e., from
SES, DES, TES, Auto Arima, and ESSPI. The line chart of actual and forecasting data
for all periods of SES, DES, TES, Auto Arima, ESSPI, and LSES are depicted in Figs. 3–8,
respectively. The actual data is from January 2007 until December 2019 and colored by blue
color, while the forecast data is from January 2009 until December 2020 with red color.
The x-axis is for prediction year and the y-axis is for rainfall prediction (in millimeter).

There are some smoothing parameters needed in SES, DES, TES, and Auto Arima. For
SES, DES, TES, function in Python is used to get the best smoothing parameter values. For
ESSPI, since there is no parameter needed, it follows the algorithm and applies to this data.
Moreover, Fig. 9 shows the plot of the actual and forecasting data for all methods in one
figure.

There are some parameters needed in SES, DES, TES, and Auto Arima. For SES, DES,
TES, and Auto Arima, some functions in Python are used to get the best parameter values.
The parameter values needed in SES, DES, TES, and Auto Arima are listed in Tables 2, 3,
4, and 5, respectively. While for ESSPI, since there is no parameter needed, the algorithm
is followed and applied to this data.

Furthermore, for the forecasting accuracy, Mean Squared Error (MSE), Mean Absolute
Error (MAE), Mean Absolute Deviation (MAD), and Mean Absolute Scaled Error (MASE)
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Figure 4 The actual and forecasting data for DES.
Full-size DOI: 10.7717/peerjcs.534/fig-4

Figure 5 The actual and forecasting data for TES.
Full-size DOI: 10.7717/peerjcs.534/fig-5

are computed to find the result performances. The average result of LSES algorithm from
100 experiments is compared with the results from SES, DES, TES, Auto Arima, and ESSPI.

The formula for MSE, MAE, MAD, andMASE are MSE=
∑n

t−1(Ft−Xt )
2

n , MAE=
∑n

t=1|Ft−Xt |

n ,

MAD=
∑n

t=1|Ft−X t |
n , and MASE= |Xt−Ft |

1
n−1(

∑n
i=2|Xt−Xt−1|)

respectively, where F is the forecasting

data, X is the actual data, t is time period, and n is number of time period.
The comparison results of MSE, MAE, MAD, and MASE are given in Tables 6, 7, 8,

and 9 respectively. Figure 10 shows the error values in the form of graphs. The averages of
MSE, MAE, MAD, and MASE for 11 prediction years from 2009 until 2019 are compared.
From those tables, SES gives 13,212, 77.31, 152.23, 0.654; DES gives 14,032.78, 91.12, 147.9,
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Figure 6 The actual and forecasting data for Auto Arima.
Full-size DOI: 10.7717/peerjcs.534/fig-6

Figure 7 The actual and forecasting data for ESSPI.
Full-size DOI: 10.7717/peerjcs.534/fig-7

0.809; TES gives 13,246.39, 90.32, 145.76, 0.818; Auto Arima gives 17,287.5, 99.73, 145.69,
0.901; ESSPI gives 35,866.34, 128.15, 152.06, 1.030; and LSES gives 13,007.91, 75.87, 143.34,
0.648 for average of MSE, MAE, MAD, and MASE, respectively. Thus, LSES obtains the
smallest averages of MSE, MAE, MAD, and MASE compared with other algorithms, i.e.,
SES, DES, TES, Auto Arima, and ESSPI. It means that LSES provides a promising algorithm
in forecasting.

Moreover, coefficient of variation (CoV) is used to find the forecast stability, where
CoV= σ

µ
with σ is the standard deviation and µis the average (mean). Smaller values of a

CoV indicates stability, since the variability of the data around their mean is small. In the
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Figure 8 The actual and forecasting data for LSES.
Full-size DOI: 10.7717/peerjcs.534/fig-8

Figure 9 The actual and forecasting data for SES, DES, TES, Auto Arima, ESSPI, and LSES.
Full-size DOI: 10.7717/peerjcs.534/fig-9

experiments, the rainfall data are divided into three groups with LSES, i.e., high, moderate,
and low rainfall data, so the CoV is computed according to those groups.

As seen from Table 10, the results of CoV for high, moderate, and low rainfall data are
about 0.22, 0.25, and 1.10, respectively, which means their variations are small. Therefore,
LSES is stable and can be used for forecasting data.

Since LSES obtains the best performance, therefore, LSES algorithm is used to predict the
rainfall in 2020 and compare it to the actual data of 2020. The result is shown in Table 11.
Moreover, the predictions obtained from SES, DES, TES, Auto Arima, and ESSPI are also
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Table 2 Parameter value for SES.

Year Alpha for SES

2009 0.6975
2010 0.8055
2011 0.8734
2012 0.9178
2013 1.0000
2014 0.9878
2015 0.9541
2016 0.8947
2017 0.8805
2018 0.8823
2019 0.8866

Table 3 Parameter values for DES.

Year Alpha for DES Beta for DES

2009 0.8000 0.8000
2010 0.4000 0.0000
2011 0.6000 0.0000
2012 0.0000 0.0000
2013 0.1000 0.2000
2014 0.4000 0.0000
2015 0.7000 0.7000
2016 0.8000 0.0000
2017 0.1000 0.5000
2018 0.1000 0.1000
2019 0.4000 0.1000

Table 4 Parameter value for TES.

Year Alpha for TES Beta for TES Gamma for TES

2009 0.0526 0.0526 0.4211
2010 0.2160 0.2155 0.0000
2011 0.2732 7.05E−73 1.62E−71
2012 0.2661 1.17E−55 1.79E−54
2013 0.2936 6.63E−90 4.27E−77
2014 0.1859 3.00E−51 1.51E−49
2015 0.1176 7.91E−35 4.75E−34
2016 1.43E−09 2.91E−31 1.46E−30
2017 8.24E−13 1.33E−79 6.65E−79
2018 4.24E−09 6.47E−44 8.05E−43
2019 6.9E−10 8.19E−84 4.09E−83
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Table 5 Parameter model for Auto Arima.

Year Parameter model for auto arima

2009 ARIMA(1,0,0)
2010 ARIMA(1,0,0)
2011 ARIMA(3,0,2)
2012 ARIMA(2,0,2)
2013 ARIMA(3,0,3)
2014 ARIMA(2,0,2)
2015 ARIMA(4,0,1)
2016 ARIMA(4,0,1)
2017 ARIMA(5,0,1)
2018 ARIMA(5,0,1)
2019 ARIMA(5,0,1)

Table 6 The comparisons of MSE for SES, DES, TES, Auto Arima, ESSPI, and LSES.

Prediction year SES DES TES Auto Arima ESSPI LSES

2009 5705.64 1989.76 10232.94 18750.42 21869.92 10812
2010 10819.15 11792.50 12545.17 21651.31 18647.78 5177
2011 11053.52 2552.99 9456.64 8784.58 11459.18 7495
2012 17028.64 6800.60 18938.27 24943.95 30061.03 17010
2013 13356.17 36473.84 16022.76 9504.77 114328.43 14346
2014 18055.03 16974.25 18354.29 42057.01 21399.73 22574
2015 22447.24 6019.21 19684.06 19296.19 83469.61 24391
2016 21688.82 1022.12 18542.51 19710.83 37136.14 20413
2017 7723.72 34515.61 6603.73 9087.56 23357.79 7084
2018 6303.07 24281.10 9172.22 6196.12 11618.93 3124
2019 11151.01 11938.61 6157.68 10179.73 21181.20 10661
Average of MSE 13212.00 14032.78 13246.39 17287.50 35866.34 13007.91

given in this table for comparison. As can be seen from this table, LSES produces MSE of
1716.39, smaller than MSEs from other methods.

Furthermore, the experiment is extended to better reflect the value of the presented
network intrusion detection model. LSES is used to investigate the applicability of the
model through a real case study of intrusion detection system. The data is obtained
from Canadian Institute for Cybersecurity (https://www.unb.ca/cic/datasets/). In this
data, a two-layered approach is used to generate benign and darknet traffic constitutes
Audio-Stream, Browsing, Chat, Email, P2P, Transfer, Video-Stream, and VOIP which is
generated at the second layer. Intrusion detection can be analyzed and identified visually
by three features, i.e., average packet size, total length of forward packets, and total length
of backward packets. This experiment uses four attributes, i.e., src_port (source port),
dst_port (destination port), timestamp, and total_fwd_packet (total of forward packet),
where the total of forward packet is being predicted (Lopez, 2019). Data with a unique
combination of src_port, dst_port, and timestamp are chosen.
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Table 7 The comparisons of MAE for SES, DES, TES, Auto Arima, ESSPI, and LSES.

Prediction Year SES DES TES Auto Arima ESSPI LSES

2009 48.57 24.63 66.46 128.02 113.42 60.0491
2010 60.28 91.60 87.12 117.66 76.90 43.4652
2011 79.84 39.83 66.89 68.37 89.31 64.3982
2012 72.35 71.73 121.36 112.98 126.54 93.9574
2013 72.83 167.70 102.99 75.50 201.34 75.8877
2014 93.62 120.05 105.93 166.65 108.18 99.9427
2015 101.96 63.75 107.86 94.56 198.20 98.8299
2016 133.69 25.07 118.39 124.96 161.95 119.0163
2017 68.86 173.20 67.42 71.31 135.57 58.3338
2018 38.53 133.98 80.93 59.57 86.66 42.4869
2019 79.82 90.76 68.12 77.43 111.58 78.2242
Average of MAE 77.31 91.12 90.32 99.73 128.15 75.87

Table 8 The comparisons of MAD for SES, DES, TES, Auto Arima, ESSPI, and LSES.

Prediction Year SES DES TES Auto Arima ESSPI LSES

2009 109.57 110.21 109.56 126.88 61.28 114.90
2010 147.92 150.38 146.84 144.33 72.52 144.33
2011 120.00 120.16 110.70 111.72 106.54 110.50
2012 211.43 196.82 194.37 187.25 144.33 187.25
2013 174.13 175.06 176.45 171.44 115.13 170.56
2014 169.84 172.14 159.18 159.05 187.25 158.17
2015 157.20 151.96 152.06 147.67 213.15 147.67
2016 131.26 117.72 115.25 118.94 165.39 118.44
2017 157.25 157.25 157.25 166.00 162.30 159.18
2018 146.65 140.08 144.38 144.44 114.94 140.08
2019 149.24 135.09 137.25 124.83 160.17 125.70
Average of MAD 152.23 147.90 145.76 145.69 152.06 143.34

Table 12 shows the prediction of intrusion detection with six methods. Since LSES uses
clustering results for the prediction, then the result of LSES can detect which ports have
high and low values of total forward packet. Table 13 is the MSE, MAE, MAD, and MASE
of SES, DES, TES, Auto Arima, ESSPI, and LSES. From Table 13, LSES gives the smallest
MSE, MAE, and MASE, while for MAD, since LSES works with clustering method and
MAD uses the average of all forecasting data, then the MASE for LSES cannot obtain the
smallest one. Figure 11 expresses the error values in the form of graphs.

CONCLUSIONS
To sum up with, the paper proposed the learning-based single exponential smoothing
(LSES) forecasting algorithm. By using k-means clustering algorithm and single exponential
smoothing, LSES produce good forecasting results. This algorithm groups the data in the
past by using k-means clustering algorithm, according to their characteristics. Since
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Table 9 The comparisons of MASE for SES, DES, TES, Auto Arima, ESSPI, and LSES.

Prediction Year SES DES TES Auto Arima ESSPI LSES

2009 0.54 0.39 0.80 1.99 1.42 0.53
2010 0.46 1.01 0.91 1.17 0.56 0.34
2011 0.72 0.40 0.71 0.72 0.82 0.68
2012 0.38 0.54 0.88 0.70 0.80 0.59
2013 0.53 1.59 0.78 0.53 0.62 0.51
2014 0.70 0.94 0.74 1.20 0.81 0.76
2015 0.66 0.50 0.82 0.64 1.52 0.68
2016 1.51 0.24 1.33 1.31 1.89 1.36
2017 0.62 1.50 0.65 0.58 1.15 0.56
2018 0.36 1.08 0.75 0.46 0.74 0.39
2019 0.72 0.70 0.62 0.60 1.02 0.71
Average of MAE 0.654 0.809 0.818 0.901 1.030 0.648

Table 10 CoV of LSES.

High rainfall data Moderate rainfall data Low rainfall data

Standard deviation 83.60 32.65 30.81
Mean 336.31 149.52 28.13
Coefficient of variation 0.25 0.22 1.10

Figure 10 Comparisons of MSE, MAE, MAD, andMASE in the form of graphs.
Full-size DOI: 10.7717/peerjcs.534/fig-10

single exponential smoothing needs one smoothing parameter value, LSES computes this
smoothing value with the clustering result by learning-based procedure, automatically.
Experimental result and comparisons demonstrate the effectiveness of the proposed LSES
algorithm to obtain the prediction data in the future. It has the smallest mean squared error
of 13,007.91 and the average improvement rate of 19.83%. For future research, since there
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Table 11 Rainfall prediction for 2020.

Month Actual SES DES TES AA ESSPI LSES

Forecast MSE Forecast MSE Forecast MSE Forecast MSE Forecast MSE Forecast MSE

Jan 451 521.00 4900.00 220.40 53174.63 509.99 3479.87 501.49 2549.73 549.67 9735.92 498.36 2242.97

Feb 367 339.00 784.00 325.51 1721.50 417.51 2550.93 423.40 3181.00 382.40 237.12 329.71 1390.54

Mar 296 462.00 27556.00 454.91 25253.00 424.88 16609.07 354.84 3462.41 531.53 55475.48 340.48 1978.47

Apr 248 198.00 2500.00 358.96 12311.49 304.78 3223.82 255.02 49.32 216.25 1007.79 283.68 1273.06

May 226 200.00 676.00 281.59 3089.80 216.86 83.48 190.21 1281.00 183.15 1835.94 224.47 2.34

Jun 83 222.00 19321.00 179.22 9258.26 146.29 4005.62 248.75 27474.47 259.49 31148.01 129.73 2183.69

Jul 41 186.00 21025.00 104.51 4033.70 92.96 2699.67 125.17 7084.47 241.31 40124.53 53.56 157.75

Aug 2 12.00 100.00 55.51 2862.88 61.75 3570.21 76.42 5537.98 28.51 702.82 3.25 1.56

Sep 43 6.00 1369.00 24.28 350.35 81.82 1506.77 15.01 783.64 52.92 98.40 8.67 1178.55

Oct 124 135.00 121.00 128.62 21.32 169.50 2070.24 62.67 3761.72 99.54 598.20 92.37 1000.46

Nov 249 196.00 2809.00 218.11 954.01 255.43 41.32 150.29 9744.28 244.62 19.19 214.72 1175.12

Dec 273 487.00 45796.00 203.31 4856.58 350.57 6016.82 248.00 625.18 526.05 64033.66 362.51 8012.04

Average 10579.75 9823.96 3821.48 5461.27 17084.75 1716.38
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Table 12 Intrusion detection predictions.

Total fwd packet SES DES TES Auto Arima ESSPI LSES

250 273.58 488.00 289.26 271.91 265.55 252.42
270 484.94 247.00 174.57 243.56 256.43 264.07
264 250.39 248.10 183.20 275.18 234.66 260.58
258 274.65 263.70 173.90 271.50 256.79 257.08
265 268.09 268.74 162.54 272.42 256.00 261.16
260 268.00 262.35 162.91 272.42 244.17 258.25
236 261.10 256.12 234.24 273.34 219.80 244.27
263 256.07 266.20 119.56 274.00 222.86 259.99
244 267.83 257.87 128.18 272.42 239.33 248.93
248 256.17 244.72 118.89 274.00 261.99 251.26
37 244.17 223.02 107.52 275.57 44.09 28.00
1 222.32 228.93 107.89 278.46 40.79 10.00

Table 13 Intrusion detection prediction errors.

Forecast method MSE MAE MAD MASE

SES 11708.86 64.37 60.944 0.96
DES 12054.28 61.92 54.895 0.67
TES 9269.64 88.89 100.963 1.13
Auto Arima 11549.40 59.30 54.898 1.03
ESSPI 445.33 17.20 68.752 0.48
LSES 28.81 4.65 65.778 0.16

Figure 11 Forecasting performances of intrusion detection prediction.
Full-size DOI: 10.7717/peerjcs.534/fig-11

is still a certain gap between the actual and forecast data of LSES, it would be better if some
deep learningmethods, such asMLP (Multilayer Perceptron), CNN (Convolutional Neural

Hartomo and Nataliani (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.534 23/29

https://peerj.com
https://doi.org/10.7717/peerjcs.534/fig-11
http://dx.doi.org/10.7717/peerj-cs.534


Network), or LSTM (Long-Short Term Memory Network) are used to automatically learn
the temporal dependencies and handling the temporal structures, like trends or seasonality.
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