
AndroAnalyzer: android malicious
software detection based on deep learning
Recep Sinan Arslan

Department of Computer Engineering, Kayseri University, Kayseri, Türkiye

ABSTRACT
Background: Technological developments have a significant effect on the
development of smart devices. The use of smart devices has become widespread due
to their extensive capabilities. The Android operating system is preferred in smart
devices due to its open-source structure. This is the reason for its being the target of
malware. The advancements in Android malware hiding and detection avoidance
methods have overridden traditional malware detection methods.
Methods: In this study, a model employing AndroAnalyzer that uses static analysis
and deep learning system is proposed. Tests were carried out with an original dataset
consisting of 7,622 applications. Additional tests were conducted with machine
learning techniques to compare it with the deep learning method using the obtained
feature vector.
Results: Accuracy of 98.16% was achieved by presenting a better performance
compared to traditional machine learning techniques. Values of recall, precision, and
F-measure were 98.78, 99.24 and 98.90, respectively. The results showed that deep
learning models using trace-based feature vectors outperform current cutting-edge
technology approaches.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Mobile and Ubiquitous
Computing, Security and Privacy
Keywords Malware detection, Mobile security, Deep learning, Static analysis, Permission

INTRODUCTION
In recent years, smart devices have become the main medium of communication among
people. While phones used to offer only verbal communication, they are now smart
devices. This rich technological equipment enables users to make increasing use of these
devices (Feizollah et al., 2017). In the past, phones were used to send SMS messages
and make phone calls, but today they are used in many areas, primarily in web services and
as a camera, music service provider, and tablet PC. These devices are equipped with
hardware and various sensors with advanced memory and processing power, just like
computers. For this reason, they are very easy to customize (Yen & Sun, 2019).

An operating system is required for users to use smart devices. At present, a variety,
such as IOS, Android, Windows, and Blackberry OS, are available for smart devices
(Alzaylaee, Yerima & Sezer, 2020). Android offers rich media support, optimized graphics
infrastructure, and powerful browser support to its users. Along with working with
different APIs, it also supports structures such as sensor usage and real-time map systems.
The fact that the Android operating system offers such a wide range of free features that
are open source has made it widely preferred among users (Feizollah et al., 2017).

How to cite this articleArslan RS. 2021. AndroAnalyzer: android malicious software detection based on deep learning. PeerJ Comput. Sci.
7:e533 DOI 10.7717/peerj-cs.533

Submitted 14 December 2020
Accepted 15 April 2021
Published 10 May 2021

Corresponding author
Recep Sinan Arslan,
sinanarslanemail@gmail.com

Academic editor
Shadi Aljawarneh

Additional Information and
Declarations can be found on
page 17

DOI 10.7717/peerj-cs.533

Copyright
2021 Arslan

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.533
mailto:sinanarslanemail@�gmail.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.533
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

Applications that allow users to use more features can be developed and distributed via
both Play Store and third-party environments (Saif, El-Gokhy & Sallam, 2018). Since these
applications provide free benefits to users, Android has become the target of malware
developers (Feizollah et al., 2017).

It is possible to repackage Android applications by adding different hidden and
malicious codes to the development files in the binary source structure. Thus, users are
likely to be exposed to these undesirable outcomes without even realizing it. For this
reason, researchers are trying to develop different malware detection tools to detect these
activities and to reveal applications prepared for malicious purposes.

In the Android operating system, if an application is desired to be used on a smart
device, first the application is downloaded from the relevant platform, then the
permissions required for the application to run are accepted, and finally the installation is
performed. It is not possible to install and run an application without accepting all the
permissions claimed to be required to install the application. Many malicious developers
turn this situation to their advantage and request permissions such as camera access,
access to text messages, and reading private information that the application does not
need. Many Android users who do not have sufficient knowledge of computers accept
these permissions and install the application unaware of this malicious purpose. Thus, they
become the clear target of malicious activities (Islam et al., 2020).

Various techniques such as static and dynamic analysis and derivatives of these
techniques have been proposed for the detection of malware and protection of end users
(Yen & Sun, 2019). Information about static analysis, signature-based analysis, application,
and expected behavior includes observations presented explicitly and implicitly in binary
source code. It is a fast and effective method. However, there are other methods such as
hiding the software code or detection bypass that developers use to circumvent this
analysis method. Dynamic analysis, which is also known as behavior-based analysis, is the
collection of information about the runtime of the application, such as system calls,
network access requests, information changes in files, and memory installed in the real
environment or on a sandbox (Jerbi et al., 2020).

Selecting meaningful features from Android applications using static analysis and
modeling them in a better manner enable the development of a powerful malware tool.
Thus, unlike dynamic analysis approaches, downloading of applications to devices is
prevented even on a temporary basis for detection. The method suggested in the present
study is new, with the purpose of learning the requested permissions required by the
application with the proposed model and thus detecting the malicious activities of new
applications. The recommended method can be used in applications produced for all
Android versions, including Android 11 API 30. The following improvements have been
made in the present study and the aim was to detect malware more accurately.

The contributions of the present work are as follows:

� Development of an advanced deep learning-based network for analyzing and developing
malware for all Android versions.

Arslan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.533 2/20

http://dx.doi.org/10.7717/peerj-cs.533
https://peerj.com/computer-science/

� Preparation of specific malicious and benign application datasets for training of network
structure.

� Via running of this process before installation, users are prevented from being exposed
to any dangerous activities, even for a short time.

� Ensuring users are warned about these detected malwares and presenting a model that
enables more perfect detection due to continuous learning and converges false positive
(FP) and false negative (FN) values to the minimum.

� Demonstration of extracting combined features and using them in education is a better
way than signature-based or behavior-based techniques.

� Demonstration of the precision and accuracy of the proposed approach in a comparison
with different machine learning techniques.

The rest of this article is organized as follows. In “Literature Review”, recent studies
performed between 2018 and 2020 using static, dynamic, and machine learning techniques
are mentioned. In “Materials and Methods”, the methodological infrastructure of the
model proposed in the present study, pre-processing processes, the Android application
structure, and details of the original dataset prepared for use in the tests are given. The
evaluation scheme, experimental parameters, and performance results of the proposed
method are presented comparatively in “Results”. In “Conclusions”, the study is evaluated
in general and recommendations for the future are given.

LITERATURE REVIEW
In this section, recent studies related to Android malware detection, feature generation,
and selection, static, dynamic, and machine learning approaches are discussed.

Static analysis
The use of static analysis to determine whether Android applications are malicious or not
is based on inspection of the application code and it remains popular. Using the static
analysis approach, solutions were produced using permissions, API calls, command
systems, and features based on the purpose of use. Although static analysis approaches
allow more comprehensive code inspection, malware developers are able to use different
techniques to avoid static analysis and to hide purposeful code. Data encryption,
hiding, update attacks, or polymorphic techniques are examples of these hiding techniques
(Zhao et al., 2018).

DAPASA is a graphical malware detection tool that calculates the sensitivity of API calls
using a data mining technique called TF-IDF (Fan et al., 2017). Detection is performed
based on two assumptions that indicate how sensitive API calls are called.

In Shahriar, Islam & Clincy (2017) a model was proposed to detect malicious software
by analyzing the permissions requested in the mobile application. In the first stage,
statistics of the permissions requested by most of the malware were produced and their
usage intensities were determined. In the second stage, the application status of the
permissions with high usage intensity was investigated in order to determine malicious
behavior.

Arslan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.533 3/20

http://dx.doi.org/10.7717/peerj-cs.533
https://peerj.com/computer-science/

In Arslan, Doğru & Barışçı (2019) a malware detection tool with a code analysis base
was developed to determine whether the permissions are requested by the application or
not and whether these permissions are used or not. Classification was performed according
to a statistically determined threshold value. A 92% success rate in Android malware
detection was achieved.

In Taheri et al. (2020) a study was reported based on the extraction of properties
including permission, purpose, and API calls of applications and classification of these
extractions with K-nearest neighbors (KNN) derivative algorithms. It is a similarity-based
approach. Malware was detected with an average accuracy of 90% with the proposed
algorithm.

AppPerm analyzer (Doğru & Önder, 2020) is a malware detection tool based on
examining the codes together with the manifest file, creating double and triple permission
groups, and determining the risk scores of the applications accordingly. A TP value of
95.50% and a specificity value of 96.88% were achieved.

Dynamic analysis
Dynamic analysis is another method used to detect security vulnerabilities in Android
applications (Zhao et al., 2018). It involves a more complex process compared to the static
analysis approach. Since the dynamic analysis approach is based on tracking the behavior
of the application during runtime, it is not easy for malicious application developers to
prevent this analysis approach. Researchers often use the dynamic analysis approach to
overcome the problems they encounter during the static analysis approach. There are
many studies that suggest a dynamic analysis model for Android malware detection.
In this section, a number of current studies are mentioned.

MADAM is a malware detection tool that uses a signature- and behavior-based malware
detection approach. It uses different properties to evaluate and classify applications.
Features at four levels, i.e., application, kernel, user and package, were extracted and used
in the study (Saracino, Dini & Martinelli, 2018).

In Amamra et al. (2016), a malware detection mechanism using tracking behavioral
system call traces was proposed. Malicious activities were predicted by examining the
frequency of behavioral system calls with a previously trained classifier.

There are some points in which both static and dynamic analysis approaches are
advantageous and disadvantageous. Static analysis is capable of finding malicious
components and dynamic analysis is capable of observing the application’s status at
runtime. For this reason, some studies suggest both methods be used together in order to
benefit from their advantages (Surendran, Thomas & Emmanuel, 2020; Onwuzurike
et al., 2018).

Machine learning
Machine learning is the approach of allowing algorithms to self-learn the necessary
parameters from the data to predict malware detection in Android applications. Machine
learning techniques (Gibert, Mateu & Planes, 2020), which are successfully applied in
many problems today, have also been implemented in the field of mobile security with

Arslan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.533 4/20

http://dx.doi.org/10.7717/peerj-cs.533
https://peerj.com/computer-science/

deep learning in the present study. In this section, some of the studies that have been
performed in recent years and that have used machine learning techniques are mentioned.
Successful results were obtained in all of the studies.

AspectDroid (Al-Gombe et al., 2018) is a system that allows the monitoring of
suspicious activities such as dynamic class loading during runtime and review of them
afterwards by writing them to log files. Activity tracking code has been added to the source
code of the applications for this process.

NTPDroid (Arora & Peddoju, 2018) is a model using Android permissions and network
traffic-based features. The aim is to determine the probability of malicious behavior. It is
possible to decrease the FP value and thus the level of evaluating benign practices as
malicious practices.

In Naeem et al. (2020) a suggestion was made for the detection of malware on the
Internet of Things. The in-depth analysis of malware is based on visualization by color
image and classification with convolutional neural network (CNN) methodology.
According to the experimental results, more successful results are produced compared to
machine learning and old-style static and dynamic analysis approaches.

In Arshad et al. (2018) a hybrid malware detection model was created for Android
devices. In this model structure, in the first step, features to be obtained by static analysis
such as requested permissions, permissions used, hardware components, intent filters, and
suspicious system calls were extracted. In addition, network usage and file read–write
statistics were obtained by dynamic analysis of the application. Applications with these
extracted features were classified by support vector machine (SVM) technique.

In Xiao et al. (2019) a deep learning-based detection method using system call
sequences and created with an LSTM-based classifier was proposed. It yielded a 96.6%
recall value with a 9.3% FP value.

In Wang et al. (2018) a model using permission patterns extracted from Android
applications was proposed. Required and used permissions were used. While achieving the
highest 94% classification performance, an FP value of 5% and FN value of 1% were
obtained.

In Varna Priya & Visalakshi (2020) a model based on extraction of features based on
static analysis by using manifest files of apk files and selection by KNN and classification by
SVM algorithms of these features was proposed. With that method, a TP ratio of 70%
and above and an FP value close to zero were obtained. Due to feature selection by KNN
and classification by SVM, recognition performance close to that of classification models
with deep learning was achieved.

In Zhu et al. (2018) sensitive API calls, permissions, permission usage rates, and
properties obtained from system events were extracted. An ensemble rotation forest
classification model was proposed and it yielded 88.26% accuracy, 88.40% sensitivity,
and 88.16% precision values. With the proposed model, an improvement of 3.33% was
achieved compared to the classification by SVM.

In Farhan et al. (2019) a CNN-based network model was proposed to test malware
attacks on the Internet by visualizing color images. Improved performance results for
cyber security threats were obtained in the models in which CNNs were used.

Arslan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.533 5/20

http://dx.doi.org/10.7717/peerj-cs.533
https://peerj.com/computer-science/

InHou et al. (2017) the AutoDroid tool, which automatically detects malware according
to API calls extracted using static analysis, was described. The system was developed
using different types of deep neural networks (deep belief networks etc.). In the design
made by DBN, a 95.98% success rate was achieved in the tests performed using 2500
benign and 2500 malicious applications.

Since Android is an open source and extensible platform, it allows us to extract and use
as many application features as we want. The method proposed in the present study has a
robust and scalable perception and uses a deep learning structure. In this manner, the
method has successful detection ability together with low resource consumption. It is
more successful than current deep learning-based Android malware detection tools.
Moreover, it is based on real devices rather than emulators. Due to the 349 features
extracted among the applications available in the dataset consisting of a total of 7,622
applications, more successful results were obtained compared to the existing models. It is a
method that extensively investigates Android malware on real devices and comparatively
evaluates different methods to measure the impact of codes.

MATERIALS AND METHODS
Methodology
In the studies we mentioned in the second section, it was shown that there are some
problems related to both static analysis and dynamic analysis. In the model proposed in the
present study, static analysis and machine learning techniques were used together for
malware detection. In this manner, it became possible to achieve classification with a better
success rate and to create a safer Android environment for users. All of this is carried out
without the apk files being uploaded to the user’s mobile devices.

A flow chart of the proposed model is shown in Fig. 1. In the first stage, the application
datasets were created. Both malicious and benign datasets are need for training the
model. In some of the applications used in the creation of these datasets, there may be
problems in accessing the source code, and, in others, there may be problems in
accessing the readable manifest.xml file. For this reason, first of all, these applications are
determined and removed from the dataset before going on to the feature extraction stage.
This process is applied for both malicious and benevolent applications.

After this preparation, application Java codes and application package files should be
accessed in order to obtain the properties of applications with static analysis. In the second
stage, these operations were performed by using Aapt, dex2jar, Xxd, jdcli.jar libraries.
In this manner, access to the manifest file including the Java code files of the applications,
permissions, intent filters, and manufacturer information was provided. Then a word-
based parsing operation was performed on the manifest.xml file and feature vectors that
would be used for training and that contained meaningful information about the
application were obtained. At this point, separate programs/frameworks are used to access
application codes and the manifest.xml file. The reason for this is that while the manifest
file can be accessed with the aapt library, it is not possible to access Java codes with the
same program. Similarly, Java codes can be only accessed with dex2jar, xxd, or jdcli.jar.
The features to be used in the deep learning model were extracted by reading the data in

Arslan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.533 6/20

http://dx.doi.org/10.7717/peerj-cs.533
https://peerj.com/computer-science/

both the code and the manifest file. A vector is produced from these features. Classification
of test applications was made with the model obtained as a result of the training.

Details related to the success of the classification are compared in “Results”.

Android application basics
Android applications are mainly written in Java language and then they are compiled
with data and source files into an archive file called an Android Application Kit (APK).
The APK is the file that is distributed in the application market and used for installation of
the application. There are four different types of application component: event, services,
broadcast receiver, and content provider. Communication among these components is
provided by using a messaging object called intent. In Android, applications must declare
all of their components in an XML manifest file within the APK. Intent filters define
the limits of each component’s capabilities and they are included in the package.
Additional information declared in the XML file includes the user permissions required by

Figure 1 Overview of the proposed model for android malware detection.
Full-size DOI: 10.7717/peerj-cs.533/fig-1

Arslan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.533 7/20

http://dx.doi.org/10.7717/peerj-cs.533/fig-1
http://dx.doi.org/10.7717/peerj-cs.533
https://peerj.com/computer-science/

the application (CALL_PHONE, SEND_SMS etc.), the minimum API level, and also the
hardware and software features to be used by the application (GPS, camera, multitouch
screen) (Martin, Cabrera & Camacho, 2019).

As shown in Fig. 2, in addition to the XML file, there are one or more dex files
containing all classes in the APK file that will run on its own virtual machine (Dalvik
Virtual Machine), the lib folder containing the files compiled specifically for the processor
layer, application certificates, resource lists, and a META_INF folder that contains the
SHA-1 summary of these resources and a resources.arsc file that contains the precompiled
resources.

Dataset description
One of the biggest challenges in Android malware detection research is that it is not easy to
access an up-to-date and reliable dataset that is large enough. In the present study, the
Drebin (D Arp, 2012) and Genome (M Team, 2012) malicious application datasets
were used to obtain the malicious application set. The Drebin dataset contains 5560
malicious applications. It was created between August 2010 and October 2012. There are
applications from 179 different application families (Islam et al., 2020). On the other hand,
the benign application dataset was created specifically for this study. There are applications
from different categories such as books/references, communication, finance, music/
entertainment, news and magazines, media, sports, tools, transportations, and weather in
the benign dataset. A homogeneous distribution was attempted.

Table 1 shows the details of the dataset used for the study. Applications labeled as
unknown were not used. Out of the total 6,739 applications in the Drebin and Genome
datasets, 6,661 were determined as malicious datasets and they were used in the training
processes. For the benign dataset, 961 out of the total 1,073 applications were determined
as truly benign and they were used in the present study.

Benign refers to applications identified after verifying that the applications are not
malicious or do not have potentially unwanted functionality. To detect this situation, the
website https://www.virustotal.com (VT Team, 2020), which contains more than one
antivirus program and can perform scanning simultaneously through different programs,

Figure 2 Apk file structure (Ren et al., 2020). Full-size DOI: 10.7717/peerj-cs.533/fig-2

Arslan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.533 8/20

https://www.virustotal.com
http://dx.doi.org/10.7717/peerj-cs.533/fig-2
http://dx.doi.org/10.7717/peerj-cs.533
https://peerj.com/computer-science/

was used. Creating this kind of benign label is a difficult and costly process. On the
other hand, malicious applications are those that pose a potential danger to users.
This application set was automatically tagged as it was taken from the Drebin and Genome
datasets, which have been used in many studies before. Unknown is the name given to
instances when malicious and benign tags are not assigned. These samples could not
be processed and they could not be examined manually by accessing their codes. All
existing examples were first placed in this category. After the examinations, they were
transferred to the other two labels (benign, malicious). Most of these applications can be
expected to be harmless, but some of them are likely to have malicious purposes as
there are cases when they cannot be detected. For this reason, they were not directly
included in either of the other two groups.

Feature extraction and preprocessing
To develop an effective Android malware model, it is quite critical to obtain robust and
broad representation features such as user permissions, manufacturer and user
information, intent filters, process names, and binary files. With this information, it
becomes possible to detect malware.

In the present study, the processes of obtaining source codes and binary files of
applications by reverse engineering and converting application APK files to Java codes
were carried out. The xxd tool was used to extract Dex files in APK files. Access to Java
source codes of the applications was provided with the Dex2jar and jdcli.jar libraries.
Moreover, the aapt dump AndroidManifest.xml tool offered by the Android SDK was used
to obtain xml files. The keywords and permissions obtained from the AndroidManifest.
xml file were used in the training of the deep learning model proposed in the present study.
A total of 349 features were extracted and used in model training.

RESULTS
In this section, the proposed model testing process is explained in detail. Both the
obtaining of the best deep learning structure and comparison of it with other classification
methods or similar studies are shown in the table.

Experimental setup and parameters
In order to measure the performance and efficiency of the deep neural network model
proposed, experiments with different parameters were conducted. A laptop with CORE I7

Table 1 Statistics of distribution of malware and benign applications in the datasets.

Dataset
Malicious Unknown Total

Drebin 5,498 62 5,560

Genome 1,163 16 1,179

Benign

Proposed model original dataset 961 112 1,073

Arslan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.533 9/20

http://dx.doi.org/10.7717/peerj-cs.533
https://peerj.com/computer-science/

LZ5070, 8 GB RAM memory was used for training of the proposed model. Windows 10
64-bit operating system and an �64-based processor were used to create the presented
malware detection model. The training time of the proposed model varies depending on
the complexity of the deep learning model and has 0.2 MB/s memory usage. In addition,
Python with scikit-learn, pandas and NumPy packages were used for the experiments.
The proposed model was evaluated with TensorFlow.

Many experiments were conducted to create the most successful model in classifier
design for malware detection with a deep learning model. A distinction of 80%/20% was
made, respectively, to use the model with 349 features in the training and testing stages.
After this separation, under-sampling or over-sampling procedures were not used to
balance the training data. In addition, although many permissions available in the Android
OS are not used in most applications, no feature selection process was performed to ensure
objectivity in future tests. After all, the original feature set and the original data vector
were used in the training and testing phase without using any synthetic data generation for
feature selection in the data. In order to obtain the most successful model in the DNN
model, many different DNN models with different layers and nodes in each layer were
created and tests were carried out. Thus, the best model was obtained. While the softmax
function is used in the output layer, reLu is used as the activation function in the input
and hidden layers. The Adam function is used for optimization in the output layer.
Since the model completed the learning process in approximately 50 epochs, the training
stage was terminated at this point. The best practice examples and the best values obtained
as a result of numerous tests were used in the selection of parameters.

Performance measure
The aim of the present study was to create a deep learning-based model for classifying
malicious and benign applications and detecting malicious applications. In the
experiments, our deep learning models were trained in a binary classification problem as
benign or malicious. The created model included an original deep learning architecture.
The effectiveness of the model was evaluated and demonstrated by creating a confusion
matrix. As a result of these tests, performance values between different popular machine
learning techniques were compared to make a comparison of the proposed model.
Moreover, different test sets were created and the results were observed in a repeated
manner. The results of these tests are given in detail in “Comparison of the performance
of Deep Learning with other Machine Learning Algorithms” according to the performance
measurement methods given below.

The true positive ratio (1), true negative ratio (2), false positive ratio (3), false negative
ratio (4), and precision value (5), which are referred to as recall, are calculated as follows:

TPR ¼ TP
TP þ FN

(1)

TNR ¼ TN
TN þ FP

(2)

Arslan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.533 10/20

http://dx.doi.org/10.7717/peerj-cs.533
https://peerj.com/computer-science/

FPR ¼ FP
FP þ TN

(3)

FNR ¼ FN
FN þ TP

(4)

P ¼ TP
TP þ FP

(5)

TP stands for true positive sample amount, TN stands for true negative sample amount,
FP stands for false positive sample amount, and FN stands for false negative sample
amount. P, the precision value, stands for the ratio of malicious applications classified as
true.

The F-measure value is measured according to Eq. (6) separately for both the malicious
and benign datasets. These two calculations are made according to the weighted FM
Eq. (7).

F �measure FMð Þ ¼ 2 � recall � precision
recall þ precision

(6)

WFM ¼ Fbenign � Nbenign
� �þ Fmalware � Nmalwareð Þ

Nbenign þ Nmalware
(7)

Deep learning classifier results
Performance measurement results according to the number of different hidden layers in
the deep learning model are given in Table 2. The results were obtained using an input
vector containing 349 input parameters. In seven different test models 2-, 3-, 4-, and 5-
layered deep learning models were used. Thus, it was aimed to create the best performing
deep learning model. Accordingly, although the results were very close to each other,
the best results were achieved with a four-layer model containing 300, 300, 300 neurons.
An average of 1 min 49 s was required for this training. In total 286,202 parameters were
generated. The results were obtained from data divided into 80% training and 20% test
sets. Training was provided over 50 epochs.

Both recall and precision values were above a certain level, so this indicated that the
model was not good in one-way detection (only malicious detection or only benign
detection) but it was successful in both cases. In classification problems, when the numbers
of cluster elements are not evenly distributed, simply measuring the accuracy of the
model is often an inadequate metric. For this reason, the performance of the proposed
model was analyzed with precision, recall and F-measure values. The precision value was
99.24%. In malware detection, detecting benign practices as malicious can cause serious
problems. For this reason, a high precision value shows that the model is successful in
FP marking. Furthermore, a more successful value was obtained for the recall value,
98.78%. This also shows that it gives good results in detecting malware. The value of the
F-measure at which precision and recall values are evaluated together and unbalanced
cluster distributions can be observed was 98.9%. Successful results were obtained in this
measurement in which all costs are evaluated. On the other hand, quite successful results

Arslan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.533 11/20

http://dx.doi.org/10.7717/peerj-cs.533
https://peerj.com/computer-science/

were produced even in the two-layer neural network with 50 neurons where the model
is much simpler. For this reason, modeling can be performed using a simpler neural
network depending on the intended use. However, in the present study, details are shown
for the model at which the highest values were obtained.

When the tests were performed with 70% training and 30% test sets, precision,
recall, accuracy, and F-measure values were 0.979, 0.992, 0.980 and 0.986, respectively.
According to the tests performed with 80% training and 20% test sets, there was a 1%
decrease in the results for some measurement metrics. This shows that the increase in the
number of applications assigned for the training set will cause more successful results in
the classification of tested applications.

The scheme of the model with the best results is shown in Fig. 3. According to this
scheme, 349 parameters obtained from the features of mobile applications are given as
inputs and a binary result is produced as a result of one input layer, three hidden layers,
and one output layer. The complexity of the model is at a normal level and model quickly
completes the training process. The input vector with 349 features is reduced to 300 in
the first layer and training is carried out with 300 neurons up to the output layer. In the
output layer, it is reduced to two for a dual classification. The model includes 286,202
trainable parameters. ReLu was used as the activation function in the hidden layers.
Softmax was used as the activation function in the output layer. The optimizer that used
the error back propagation phase was Adam. Increasing the complexity of the model
slowed down the learning process; however, this did not provide a noticeable increase in
classification performance. For this reason, a model that contained more hidden layers
with more neurons was not designed. In addition, considering that this model will work on
devices with limited resources such as mobile devices, it was thought to be beneficial to
work with simpler models.

Figure 4 shows the change in accuracy on the training and test data over 50 epochs.
As can be seen from the graphic, the proposed method overcame the over-fitting problem.
Approximately after the first 10 epochs, it was seen that the model actually reached a
certain level. However, a stable result was not produced in the training and testing phases.
For this reason, the number of epochs was gradually increased and the aim was to obtain a
more stable structure for the results.

Table 2 Deep learning results with different combination of hidden layers.

Total trainable parameters
(DNN Model)

TPR (sensitivity) TNR (specifity) FPR FNR Precision Recall Accuracy AUC WFM Runtime
(min:sec)

20152 (50,50) 0.946 0.987 0.129 0.053 0.987 0.992 0.980 0.955 0.982 00:40

195902 (300,300) 0.942 0.987 0.129 0.057 0.987 0.991 0.980 0.955 0.982 01:45

45352 (100,50,100) 0.954 0.981 0.181 0.045 0.982 0.993 0.980 0.940 0.981 00:50

166002 (300,100,300) 0.937 0.986 0.137 0.062 0.986 0.990 0.980 0.952 0.982 01:49

65502 (100,100,100,100) 0.942 0.986 0.137 0.057 0.988 0.991 0.980 0.957 0.982 00:52

376502 (300,300,300,300) 0.956 0.987 0.129 0.043 0.987 0.993 0.980 0.956 0.983 02:05

75602 (100,100,100,100,100) 0.942 0.986 0.013 0.058 0.986 0.991 0.980 0.953 0.982 00:54

Arslan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.533 12/20

http://dx.doi.org/10.7717/peerj-cs.533
https://peerj.com/computer-science/

The ROC curve is shown in Fig. 5 to observe the best results in consent-based
classification. The ROC curve is used to measure the malware detection rate. It shows
the effect of the learning model on the malware detection rate change and on the increase
or decrease in the false positive value. The curve shows the change between the TP value
and FP value and an increase in one value causes a decrease in the other. The fact that
the ROC curve is close to the left and upper part, as shown in the figure, shows that the
model gives the best results. The area under the curve is measured and gives the value of
the deviation. Accordingly, a value of 0.9 and above is generally stated as a perfect
classification (Feizollah et al., 2017) and it was 0.9515 in the present study. This result
shows that the model was very successful in terms of classification in malware detection.

The confusion matrix of the test is shown in Fig. 6. High classification success was
achieved in TP and TN values. However, the high values of the classification numbers
for FP and FN indicates a very dangerous situation for end users. It will cause users not to
use some useful and safe applications for no reason and, even worse, it will cause users to
be at risk because some malicious applications are considered safe by them. FP and FN

Figure 3 Proposed DNN model layer structure. Full-size DOI: 10.7717/peerj-cs.533/fig-3

Arslan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.533 13/20

http://dx.doi.org/10.7717/peerj-cs.533/fig-3
http://dx.doi.org/10.7717/peerj-cs.533
https://peerj.com/computer-science/

were obtained in only 29 of the total 1,525 tests performed in the present study,
demonstrating the success of this model.

Comparison of the performance of deep learning with other machine
learning algorithms
In this section, the accuracy of the proposed deep learning model and the results of
traditional machine learning algorithms were compared. Nine different classification

Figure 4 Accuracy graph. Full-size DOI: 10.7717/peerj-cs.533/fig-4

Figure 5 ROC curve for Android permissions. Full-size DOI: 10.7717/peerj-cs.533/fig-5

Arslan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.533 14/20

http://dx.doi.org/10.7717/peerj-cs.533/fig-4
http://dx.doi.org/10.7717/peerj-cs.533/fig-5
http://dx.doi.org/10.7717/peerj-cs.533
https://peerj.com/computer-science/

algorithms were selected after several pre-tests and examinations and these are among the
widely used techniques. Accordingly, it is shown in Table 3 that the deep learning
model gave better results than the other classification models. Although the results were
close to each other in general, overall results in the deep learning model were better. In the
other classification algorithms, the weighted F-measure value was 0.9223 at most, while
it was 98.90% in the deep learning model. Apart from the deep learning model, the most
successful classification algorithms were ExtraTree, Random Forest (RF), and SVM. The
successful results achieved with both machine learning algorithms and deep learning
models showed that application features obtained with static analysis could produce quite
favorable results in detecting malware.

Figure 6 Confusion matrix. Full-size DOI: 10.7717/peerj-cs.533/fig-6

Table 3 Results for 11 machine learning algorithms and deep learning.

Algorithms TPR TNR FPR FNR Precision Recall Accuracy WFM

KNeighbours 0.8901 0.9777 0.022 0.109 0.8438 0.8901 0.9672 0.8663

RF 0.9489 0.9815 0.018 0.051 0.8698 0.9489 0.9777 0.9076

SVC 0.9588 0.9786 0.021 0.041 0.8490 0.9588 0.9764 0.9006

Decision tree 0.9535 0.9793 0.020 0.046 0.8542 0.9535 0.9764 0.9011

GaussianNB 0.7835 0.9188 0.081 0.216 0.3958 0.7835 0.9102 0.5260

LinearDiscriminant 0.9416 0.9657 0.034 0.584 0.7552 0.9416 0.9633 0.8382

AdaBoost 0.9419 0.9778 0.022 0.058 0.8434 0.9419 0.9738 0.8901

GradientBoosting 0.9689 0.9736 0.026 0.031 0.8125 0.9689 0.9731 0.8839

ExtraTree 0.9503 0.9851 0.014 0.104 0.8958 0.9503 0.9810 0.9223

XGBoost 0.9530 0.9800 0.020 0.046 0.8594 0.9530 0.9770 0.9041

DL(376502(300,300,300,300)) 0.9910 0.9870 0.029 0.043 0.9890 0.9910 0.9803 0.9820

Arslan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.533 15/20

http://dx.doi.org/10.7717/peerj-cs.533/fig-6
http://dx.doi.org/10.7717/peerj-cs.533
https://peerj.com/computer-science/

Discussion
The model proposed in the present study is compared with similar deep learning or
machine learning techniques used in previous studies in Table 4. It was observed that
artificial intelligence modeling was used in almost all studies in 2019 and 2020. One of the
main distinguishing differences among these studies is the dataset used and the second
one is the feature vectors obtained from the applications in this dataset. In some studies,
only the static property obtained from the manifest.xml file is used, while in other studies,
intent filters, activity services, and API calls are used. The richness and homogeneity of
the dataset are another factor with a direct effect on the results. In addition, the use of
different classification methods was another reason for the difference in the results.

When the results were evaluated comparatively according to similar parameters, it was
seen that the model proposed in the present study produced successful results with respect
to other studies. While much better results were produced in some studies, better
results were obtained with slight differences with the studies using similar modeling.
Very good performance results were obtained according to studies with similar dataset
sizes. This shows that existing classification performance values were taken one step
further with the model proposed in the present study.

CONCLUSIONS
The Android platform is the target of malicious mobile application developers and black
hat hackers. Many antimalware tools aim to combat these applications and protect users.

Table 4 The comparison of classification performance among former methods and proposed method.

Similar works Selected features Num of
benign
apps

Num of
malware
apps

Num of neurons or
classification
method

Precision Recall Accuracy F-
measure

ASAEF (Zhang, Thing & Cheng,
2019)

Metadata, permissions,
intent filter, activity,
services

37,224 33,259 N-gram, signature 96.4% 96.1% 97.2% 96.2%

FingerPrinting (Karbab, Debbabi &
Mouheb, 2016)

Family DNA 100 928 Signature 89% 84% N/A 85%

DroidChain (Wang et al., 2016) Permissions, API call,
behaviour chain

– 1,260 Warshall 91% 92% 93% N/A

Shhadat (Shhadat et al., 2020) Heuristic strategy,
dynamic analysis

172 984 RF 96.4% 87.3% 97.8% 91.2%

DroidDet (Zhu et al., 2018) Permissions, system
events, sensitive API and
URL

1,065 1,065 SVM 88.16% 88.40% 88.26% N/A

DL-Droid (Alzaylaee, Yerima &
Sezer, 2020)

Application attributes,
actions, events,
permissions

11,505 19,620 300, 100, 300 94.08% 97.78% 94.95% 95.89%

SRBM (Liu et al., 2021) Static and dynamic feature 39,931 40,923 RBM – – 0.804 84.3%

Lu (Lu et al., 2021) API calls 1,400 1,400 Correntropy, CNN 95.0% 76.0% 84.25% 84.0%

ProDroid (Sasidharan & Thomas,
2021)

API calls 500 1,500 HMM 93.0% 95.0% 94.5% 93.9%

Proposed model
DL (376502(300,300,300,300))

Application permissions 961 6,661 300, 300, 300, 300 98.9% 99.1% 98.03% 99.0%

Arslan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.533 16/20

http://dx.doi.org/10.7717/peerj-cs.533
https://peerj.com/computer-science/

In the present study, a model for Android malware detection was proposed. Models with
high classification accuracy are needed in the development of this model. In these
structures, there are two stages: selection of the features that best represent the problem
and classification with high accuracy. In the current study, a deep neural network
structure with three hidden layers to classify the permissions they request to represent
applications was proposed. Reverse engineering applications were used to obtain feature
vectors and a vector containing 349 features was obtained. The permissions requested by
the applications are one of the most important parameters that reveal their purpose.
The features used in the present study were obtained by static analysis having the
advantages of low cost, high efficiency, and low risk. A total of 6,661 malicious samples
taken from the Drebin and Genome datasets and 961 original benign application samples
were used. In the experimental results, a 0.9924 precision value, 0.9878 recall value, 0.9816
accuracy and 0.9890 F-measure value were obtained. The results showed that Android
permissions contain very good information for understanding the purposes of
applications. The high classification performance obtained with the obtained dataset
showed that the deep learning structure and Android permissions were a suggestion
that could be adopted in the development of malware detection tools.

The model proposed in the present study can be developed easily and better
performance results can be obtained with feature vectors using properties obtained by
dynamic analysis. This will be part of my future work.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The author received no funding for this work.

Competing Interests
The author declares that he has no competing interests.

Author Contributions
� Recep Sinan Arslan conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures and/
or tables, authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The dataset is available as a Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.533#supplemental-information.

Arslan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.533 17/20

http://dx.doi.org/10.7717/peerj-cs.533#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.533#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.533#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.533
https://peerj.com/computer-science/

REFERENCES
Al-Gombe AG, Saltaformaggio B, Ramanujan JR, Xu D, Richard GG. 2018. Toward a more

dependable hybrid analysis of android malware using aspect-oriented programming.
Computers & Security 73(1):235–248 DOI 10.1016/j.cose.2017.11.006.

Alzaylaee MK, Yerima SY, Sezer S. 2020. DL-Droid: deep learning based android malware
detection using real devices. Computers & Security 89(5):1–11 DOI 10.1016/j.cose.2019.101663.

Amamra A, Robert JM, Abraham A, Talhi C. 2016. Generative versus discriminative classifiers
for android anomaly-based detection system using system calls filtering and abstraction process.
Security and Communication Networks 9(16):3483–3495 DOI 10.1002/sec.1555.

Arora A, Peddoju SK. 2018. Ntpdroid: a hybrid android malware detector using network traffic
and system permissions. In: 17th International Conference on Trust, Security and Privacy in
Computing and Communications. Piscataway: IEEE, 808–813
DOI 10.1109/TrustCom/BigDataSE.2018.00115.

Arshad S, Shah MA, Wahid A, Mehmood A, Song H, Yu H. 2018. SAMADroid: a novel 3-level
hybrid malware detection model for android operating systems. IEEE Access 6:4321–4339
DOI 10.1109/ACCESS.2018.2792941.

Arslan RS, Doğru İ.A, Barışçı N. 2019. Permission-based malware detection system for android
using machine learning techniques. International Journal of Software Engineering and
Knowledge Engineering 29(1):43–61 DOI 10.1142/S0218194019500037.

D Arp. 2012. “Description”—the Drebin dataset. Available at https://www.sec.cs.tu-bs.de/~danarp/
drebin/ (accessed 2 November 2020).

Doğru İA, Önder M. 2020. AppPerm analyzer: malware detection system based on android
permissions and permission groups. International Journal of Software Engineering and
Knowledge Engineering 30(3):427–450 DOI 10.1142/S0218194020500175.

FanM, Liu J, WangW, Li H, Tian Z, Liu T. 2017.DAPASA: detecting android pig- gybacked apps
through sensitive subgraph analysis. IEEE Transactions on Information Forensics and Security
12(8):1772–1785 DOI 10.1109/TIFS.2017.2687880.

Farhan U, Hamad N, Sohail J, Shehzad K, Muhammad AL, Fadi A, Leonardo M. 2019. Cyber
security threats detection in internet of things using deep learning approach. IEEE Access
7:124379–124389 DOI 10.1109/ACCESS.2019.2937347.

Feizollah A, Anuar NB, Salleh R, S.-Tangil G, Furnall S. 2017. AndroDialysis: analysis of android
intent effectiveness in malware detection. Computers & Security 65(3):121–134
DOI 10.1016/j.cose.2016.11.007.

Gibert D, Mateu C, Planes J. 2020. The rise of machine learning for detection and classification of
malware: research developments, trends and challenges. Journal of Network and Computer
Applications 153(4):1–22 DOI 10.1016/j.jnca.2019.102526.

Hou S, Saas A, Chen L, Ye Y, Bourlai T. 2017. Deep neural networks for automatic android
malware detection. In: International Conference on Advances in Social Networks Analysis and
Mining. New York: ACM, 803–810 DOI 10.1145/3110025.3116211.

Islam T, Rahman SS, Hasan A, Sayed A, Jabiullah I. 2020. Evaluation of N-gram based
multi-layer approach to detect malware in Android. Procedia Computer Science 171:1074–1082
DOI 10.1016/j.procs.2020.04.115.

Jerbi M, Dagdia ZC, Bechikh S, Sait LB. 2020. On the use of artificial malicious patterns for
android malware detection. Computers & Security 92(3):1–22 DOI 10.1016/j.cose.2020.101743.

Karbab EB, Debbabi M, Mouheb D. 2016. Fingerprinting android packaging: generating DNA for
malware detection. Digital Investigation 18(5):533–545 DOI 10.1016/j.diin.2016.04.013.

Arslan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.533 18/20

http://dx.doi.org/10.1016/j.cose.2017.11.006
http://dx.doi.org/10.1016/j.cose.2019.101663
http://dx.doi.org/10.1002/sec.1555
http://dx.doi.org/10.1109/TrustCom/BigDataSE.2018.00115
http://dx.doi.org/10.1109/ACCESS.2018.2792941
http://dx.doi.org/10.1142/S0218194019500037
https://www.sec.cs.tu-bs.de/~danarp/drebin/
https://www.sec.cs.tu-bs.de/~danarp/drebin/
http://dx.doi.org/10.1142/S0218194020500175
http://dx.doi.org/10.1109/TIFS.2017.2687880
http://dx.doi.org/10.1109/ACCESS.2019.2937347
http://dx.doi.org/10.1016/j.cose.2016.11.007
http://dx.doi.org/10.1016/j.jnca.2019.102526
http://dx.doi.org/10.1145/3110025.3116211
http://dx.doi.org/10.1016/j.procs.2020.04.115
http://dx.doi.org/10.1016/j.cose.2020.101743
http://dx.doi.org/10.1016/j.diin.2016.04.013
http://dx.doi.org/10.7717/peerj-cs.533
https://peerj.com/computer-science/

Liu Z, Wang R, Japkowicz N, Tang D, Zhang W, Zhao J. 2021. Research on unsupervised
feature learning for Android malware detection based on Restricted Boltzman Machines.
Future Generation Computer Systems 120:91–108.

Lu X, Li J, WangW, Gao Y, ZhaW. 2021. Towards improving detection performance for malware
eith correntropy-based deep learning method. Digital Communication and Networks 1–10.

M Team. 2012. “Malgenome Project”—android malware genome project. Available at
http://www.malgenomeproject.org/ (accessed 2 November 2020).

Martin A, Cabrera RL, Camacho D. 2019. Android malware detection through hybrid features
fusion and ensemble classifiers: the AndroPyTool framework and the OmniDroid dataset.
Information Fusion 52(7):128–142 DOI 10.1016/j.inffus.2018.12.006.

Naeem H, Ullah F, NaeemMR, Khalid S, Vasan D, Jabbar S, Saeed S. 2020.Malware detection in
industrial internet of things based on hybrid image visualization and deep learning model. Ad
Hoc Networks 105(1):1–12 DOI 10.1016/j.adhoc.2020.102154.

Onwuzurike L, Almeida M, Mariconti E, Blackburn J, Stringhini G, Cristofaro EDe. 2018.
A family of droids-android malware detection via behavioral modeling: static vs. dynamic
analysis. In: 16th Annual Conference on Privacy, Security and Trust (PST). Piscataway: IEEE,
1–10 DOI 10.1109/PST.2018.8514191.

Ren Z, Wu H, Ning Q, Hussain I, Chen B. 2020. End-to-end malware detection for android IoT
devices using deep learning. Ad Hoc Networks 101(4):1–11 DOI 10.1016/j.adhoc.2020.102098.

Saif D, El-Gokhy SM, Sallam E. 2018. Deep belief networks-based framework for malware
detection in android systems. Alexandria Engineering Journal 57:4049–4057.

Saracino DS, Dini G, Martinelli F. 2018. Madam: effective and efficient behavior-based android
malware detection and prevention. IEEE Transactions on Dependable and Secure Computing
15(1):83–97 DOI 10.1109/TDSC.2016.2536605.

Sasidharan S, Thomas C. 2021. ProDroid-an android malware detection framework based on
profile hidden Markov model. Pervasive and Mobile Computing 72:1–16.

Shahriar H, Islam M, Clincy V. 2017. Android malware detection using permission analysis. In:
Southeast Conference. Piscataway: IEEE, 1–6 DOI 10.1109/SECON.2017.7925347.

Shhadat I, Bataineh B, Hayajneh A, Al-Sharif ZA. 2020. The use of machine learning techniques
to advance the detection and classification of unknown malware. In: International Workshop on
Data-Driven Security. Procedia Computer Science. Vol. 170. 917–922
DOI 10.1016/j.procs.2020.03.110.

Surendran R, Thomas T, Emmanuel S. 2020. A TAN based model for android malware detection.
Journal of Information Security and Applications 54(3):1–11 DOI 10.1016/j.jisa.2020.102483.

Taheri R, Ghahramani M, Javidan R, Shojafar M, Pooranian Z, Conti M. 2020. Similarity-based
Android malware detection using Hamming distance of static binary features. Future
Generation Computer Systems 105(6):230–247 DOI 10.1016/j.future.2019.11.034.

Varna Priya D, Visalakshi P. 2020. Detecting android malware using an improved filter based
technique in embedded software. Microprocessors and Microsystems 76:1–8.

VT Team. 2020. Virus analysis—VirusTotal. Available at https://www.virustotal.com/gui/home/
upload (accessed 2 November 2020).

Wang Z, Chenglogn L, Zhenlong Y, Guan Y, Xue Y. 2016. DroidChain: a novel Android malware
detection method based on behavior chains. Pervasive and Mobile Computing 32(9):3–14
DOI 10.1016/j.pmcj.2016.06.018.

Wang C, Xu Q, Lin X, Liu S. 2018. Research on data mining of permissions mode for Android
malware detection. Cluster Computing 22:13337–13350 DOI 10.1007/s10586-018-1904-x.

Arslan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.533 19/20

http://www.malgenomeproject.org/
http://dx.doi.org/10.1016/j.inffus.2018.12.006
http://dx.doi.org/10.1016/j.adhoc.2020.102154
http://dx.doi.org/10.1109/PST.2018.8514191
http://dx.doi.org/10.1016/j.adhoc.2020.102098
http://dx.doi.org/10.1109/TDSC.2016.2536605
http://dx.doi.org/10.1109/SECON.2017.7925347
http://dx.doi.org/10.1016/j.procs.2020.03.110
http://dx.doi.org/10.1016/j.jisa.2020.102483
http://dx.doi.org/10.1016/j.future.2019.11.034
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
http://dx.doi.org/10.1016/j.pmcj.2016.06.018
http://dx.doi.org/10.1007/s10586-018-1904-x
http://dx.doi.org/10.7717/peerj-cs.533
https://peerj.com/computer-science/

Xiao X, Zhang S, Mercaldo F, Hu G, Sangaiah AK. 2019. Android malware detection based on
system call sequences and LSTM. Multimedia Tools and Applications 78(4):3979–3999
DOI 10.1007/s11042-017-5104-0.

Yen YS, Sun H. 2019. An Android mutation malware detection based on deep learning using
visualization of importance from codes. Microelectronics Reliability 93(1):109–114
DOI 10.1016/j.microrel.2019.01.007.

Zhang L, Thing WL, Cheng Y. 2019. A scalable and extensible framework for android malware
detection and family attribution. Computers & Security 80(1):120–133
DOI 10.1016/j.cose.2018.10.001.

Zhao C, Zheng W, Gong L, Zhang M, Wang C. 2018. Quick and accurate android malware
detection based on sensitive APIs. In: IEEE International Conference on Smart Internet of Things
(SmartIoT). Piscataway: IEEE, 143–148 DOI 10.1109/ACCESS.2020.3006143.

Zhu H, Yo Z, Zhu Z, Shi W. 2018. DroidDet: effective and robust detection of android malware
using static analysis along with rotation forest model. Neurocomputing 272(5):638–646
DOI 10.1016/j.neucom.2017.07.030.

Arslan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.533 20/20

http://dx.doi.org/10.1007/s11042-017-5104-0
http://dx.doi.org/10.1016/j.microrel.2019.01.007
http://dx.doi.org/10.1016/j.cose.2018.10.001
http://dx.doi.org/10.1109/ACCESS.2020.3006143
http://dx.doi.org/10.1016/j.neucom.2017.07.030
http://dx.doi.org/10.7717/peerj-cs.533
https://peerj.com/computer-science/

	AndroAnalyzer: android malicious software detection based on deep learning
	Introduction
	Literature review
	Materials and Methods
	Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

