
Effect of stemming on text similarity for
Arabic language at sentence level
Mohammad O. Alhawarat1, Hikmat Abdeljaber1 and Anwer Hilal2

1Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam
Bin Abdulaziz University, Alkharj, Saudi Arabia

2 General Department, College of Preparatory Year, Prince Sattam Bin Abdulaziz University,
Alkharj, Saudi Arabia

ABSTRACT
Semantic Text Similarity (STS) has several and important applications in the field of
Natural Language Processing (NLP). The Aim of this study is to investigate the
effect of stemming on text similarity for Arabic language at sentence level. Several
Arabic light and heavy stemmers as well as lemmatization algorithms are used in this
study, with a total of 10 algorithms. Standard training and testing data sets are used
from SemEval-2017 international workshop for Task 1, Track 1 Arabic (ar–ar).
Different features are selected to study the effect of stemming on text similarity based
on different similarity measures. Traditional machine learning algorithms are used
such as Support Vector Machines (SVM), Stochastic Gradient Descent (SGD) and
Naïve Bayesian (NB). Compared to the original text, using the stemmed and
lemmatized documents in experiments achieve enhanced Pearson correlation results.
The best results attained when using Arabic light Stemmer (ARLSTem) and Farasa
light stemmers, Farasa and Qalsadi Lemmatizers and Tashaphyne heavy stemmer.
The best enhancement was about 7.34% in Pearson correlation. In general, stemming
considerably improves the performance of sentence text similarly for Arabic
language. However, some stemmers make results worse than those for original text;
they are Khoja heavy stemmer and AlKhalil light stemmer.

Subjects Artificial Intelligence, Computational Linguistics, Data Mining and Machine Learning,
Natural Language and Speech
Keywords Semantic text similarity, Natural language processing, Stemming, Lemmatization,
Machine learning, Word embedding, TF-IDF

INTRODUCTION
STS is usually used to measure the similarity of the meaning between two words, sentences,
or documents. STS appears to be a challenging task, especially for short text. It has
important and several applications in the field of NLP and computational linguistics.
Examples of applications are documents classification and clustering, information
retrieval, query and question answering, ranking in web search engines, plagiarism
detection and automatic essay scoring.

The Arabic language is an important language; according to United Nations
Educational, Scientific and Cultural Organization (UNESCO), Arabic is one of the six
official languages with more than 422 million speakers in the Arab world and used by more
than 1.5 billion Muslims. Notwithstanding, automatic processing of Arabic language is not
an easy task due to several reasons. Arabic is a very rich derivative and inflectional

How to cite this article Alhawarat MO, Abdeljaber H, Hilal A. 2021. Effect of stemming on text similarity for Arabic language at sentence
level. PeerJ Comput. Sci. 7:e530 DOI 10.7717/peerj-cs.530

Submitted 12 February 2021
Accepted 15 April 2021
Published 14 May 2021

Corresponding author
Mohammad O. Alhawarat,
m.alhawarat@psau.edu.sa

Academic editor
Muhammad Asif

Additional Information and
Declarations can be found on
page 15

DOI 10.7717/peerj-cs.530

Copyright
2021 Alhawarat et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.530
mailto:m.�alhawarat@�psau.�edu.�sa
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.530
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

language; with one lemma it is possible sometimes to build a huge number of different
words with varying meanings (Farghaly & Shaalan, 2009). Diacritical marks are used to
differentiate between two similar words in writing and different in meaning (same
characters but different diacritical marks), which are also called Tashkil or Harakat. Most
available text on the web and on digital resources appear without Tashkil, and hence make
it harder to resolve disambiguation. Arabic exists in different forms, the old historical
Arabic, which is also known as Classic Arabic, Modern Standard Arabic (MSA) which is
used nowadays in formal writing, including newspapers and books, and finally dialectal
Arabic which is the slang language spoken informally in everyday life and is different from
country to another. All of these and other characteristics make Arabic NLP a real
challenging task. Compared to the English language, Arabic has modest resources to use in
NLP and related fields, and is also considered one of the low-resources languages
according to the Association for Computational Linguistics (ACM). Researchers who are
interested in low-resource languages such as Arabic lack adequate tools and data sets
compared to the English language.

Since 2012, STS was one of the main tasks in SemEval event until 2017. SemEval (2021)
is a workshop concerned with the advancement of semantic analysis in NLP and is
sponsored by Special Interest Group on the Lexicon (SIGLEX) of ACM.

This study is the first to investigate the effect of stemming on semantic text similarity at
the sentence level for Arabic language. STS at sentence level is crucial to many applications
in contrast to the word and document levels. Many applications rely on computing the
similarity between two sentences. Examples are machine translation, generation,
summarization, question answering, automatic short answer grading and dialog and
conversational systems. Similar research papers studied the effect of stemming on semantic
similarity at the word level (Froud, Lachkar & Ouatik, 2012a), and at the document level
(Froud et al., 2010), but in the document clustering context. To investigate the effect of
stemming and lemmatization on Arabic sentences, different Arabic stemming and
lemmatization algorithms are adopted with a total of 10. Before that, standard training and
testing data sets are used from SemEval-2017 international workshop for Task 1, Track 1
(Arabic–Arabic).

Also, traditional machine learning algorithms are usually used in text mining and
processing. Such algorithms are: SVM with linear kernel, SGD and NB. These algorithms
are applied to the STS problem. Different features are extracted and used in the study using
String and Character-Based, Statistical-based and Distance-Based similarity measures
(Gomaa & Fahmy, 2013). To extract features from data, then three representations are
used: Term-Frequency Inverse Document Frequency (TF-IDF) vectors, Word Embedding
vectors and the text of the data sets. Word Embedding vectors are used to represent
words in sentences. Word embedding vectors usually contain semantic and syntactic
features of a word according to its context in a sentence or document (Mikolov et al., 2013).

Compared to the original text, most of the used Arabic stemming algorithms in this
study appear superior. Generally, the best on average was ARLSTem and Farasa light
stemmers, Farasa and Qalsadi lemmatizers and Tashaphyne heavy stemmer. Hence, it is
evident that stemming improves the performance of text similarly for Arabic language at

Alhawarat et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.530 2/18

http://dx.doi.org/10.7717/peerj-cs.530
https://peerj.com/computer-science/

the sentence level. The rest of the paper is organized as follows: next section discusses the
related work, after that the adopted data sets are introduced, then the methodology used in
the study is explained, then next section illustrates and discusses the results, and finally the
paper is concluded.

RELATED WORK
Semantic text similarity aims to determine the degree of likeness or closeness of two pieces
of texts. For achieving this task, several similarity measurement methods have been
developed. These have become the bases for many natural language processing
applications. Examples of such applications are information retrieval, text classification,
word sense disambiguation and plagiarism detection. Generally, the research community
adopted two typical approaches of text similarity: lexical and semantic (Gomaa & Fahmy,
2013; Wang & Dong, 2020). Lexical similarity means string-based similarity where
two texts are similar lexically if they have a similar character sequence whereas
semantic similarity indicates similar meaning among texts even they have different words
(Farouk, 2019). The methods developed for measuring semantic text similarity at word,
sentence and documents levels of Arabic and English texts are reviewed and compared by
Alian & Awajan (2020). This paper focuses on semantic similarity of Arabic texts at
sentence level and explores mainly the effect of using stemming and lemmatization on
semantic text similarity.

Preprocessing is a key task in semantic text similarity process. Stemming is an
important technique adopted for preprocessing texts due to the fact that it reduces feature
space and improves performance of the similarity process (Alhaj et al., 2019; Almuzaini &
Azmi, 2020).

Stemming effect has been studied and applied to different domains of NLP and
computation linguistics. This includes document categorization (Alhaj et al., 2019;
Almuzaini & Azmi, 2020), information retrieval (Zeroual & Lakhouaja, 2017; Alnaied,
Elbendak & Bulbul, 2020), automatic essay scoring (Al-Shalabi, 2016), and sentiment
analysis (Al-Saqqa, Awajan & Ghoul, 2019). In all these studies it has been reported
that stemming and lemmatization improves the performance of the resulted models.

Al-Ramahi & Mustafa (2012) introduced the importance of stemming in text similarity
process and investigated the application of n-gram based matching techniques for
measuring similarity of Arabic text documents. The authors reported that word-based
bi-gram technique using Cosine similarity provides better accuracy rates than both word-
based and whole document-based bi-gram technique using Dice similarity coefficient
for Arabic text documents. However, this work neither shown empirically the effect of
using stemming on semantic text similarity nor investigated sentence based semantic
similarity.

Alhaj et al. (2019) studied the impact of stemming techniques on Arabic document
classification. Three stemmers were compared, ISRI (Taghva, Elkhoury & Coombs, 2005),
ARLStem (Abainia, Ouamour & Sayoud, 2017) and Tashaphyne (Zerrouki, 2010). Three
typical classifiers are used, NB, SVM and K-Nearest Neighbors (KNN). The experiments
reported that SVM outperformed NB and KNN with Micro-F1 value of 94.64% when

Alhawarat et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.530 3/18

http://dx.doi.org/10.7717/peerj-cs.530
https://peerj.com/computer-science/

using the ARLStem stemmer. However, this work has focused on the impact of stemming
on document categorization rather than semantic text similarity.

Humble work has been performed for the semantic similarity of Arabic sentences (Alian
& Awajan, 2020). These works have used three different approaches. First, hybrid
similarity approach that uses semantic similarity measure, Cosine similarity measure and
N-gram (Kadhem & Abd Alameer, 2017). Second, hybrid feature-based approach that uses
lexical, semantic and syntactic-semantic knowledge using Jaccard coefficient, Cosine
similarity, and Lexical Markup Framework (LMF) standardized dictionaries (Wali,
Gargouri & Hamadou, 2017). Lastly, word embedding using IDF and Part-of-Speech
(POS) tagging weighting methods (El Moatez Billah Nagoudi, 2017) and deep learning
using Convolutional Neural Networks (CNNs) and Long-Short Term Memory (LSTM)
Mahmoud & Zrigui (2019). However, all these works have not studied the effect of
stemming on semantic text similarity.

So far, the research studies presented by Froud et al. (2010) and Froud, Lachkar &
Ouatik (2012b) are the only works that have investigated the effect of using stemming on
semantic similarity of Arabic text. Froud et al. (2010) investigated diverse similarity
measures with document clustering and they applied stemming to words which have
reduced documents representation and provided fast clustering. Froud, Lachkar & Ouatik
(2012b) tested the effect of using stemming and light stemming on the semantic similarity
between Arabic words. The similarity is measured by Latent Semantic Analysis (LSA)
and computed by using different measures. They have used Euclidean Distance, Cosine
Similarity, Jaccard Coefficient and the Pearson Correlation Coefficient. The obtained
results show that light stemming outperforms stemming approach. However, these two
research papers are implemented at document level and word level respectively and not on
sentence level. Also, Froud et al. (2010) is concerned with document clustering rather than
semantic text similarity.

SemEval-2017 task 1 is an event held for measuring the STS of sentences. STS tasks in
SemEval have been held from 2012 to 2017 (Cer et al., 2017). In SemEval-2017, STS shared
task concentrated on the evaluation of semantic similarity between monolingual and
cross-lingual sentences in Arabic, English, Spanish and Turkish which were organized into
a set of six tracks. There were 49 participants for track 1, Arabic (ar–ar). Similarity for
sentence pairs is measured as a real-valued score ranging from 0 for dissimilar sentences
to five for equivalent sentences. Performance is measured by the Pearson correlation
coefficient between machine scores and human judgments. The best performance achieved
for track 1 is Pearson correlation of 75.43% performed by Wu et al. (2017). It is worth
mentioning that the effect of stemming on STS has not been investigated on all tracks
including track 1 in SemEval-2017 task 1. However,Meng et al. (2017) were the only work
in SemEval-2017 task 1 that has demonstrated the effect of lemmatization on all translated
sentence pairs of text to English using Google translator.

In fact, no work has studied the effect of using stemming and lemmatization on
semantic text similarity for Arabic sentences. This limitation was the motivation for the
contribution of this paper.

Alhawarat et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.530 4/18

http://dx.doi.org/10.7717/peerj-cs.530
https://peerj.com/computer-science/

DATA
Arabic language exists in three forms: classical, MSA, and dialectal. As described in the
introduction, MSA is the one used nowadays in media, newspapers and books. To make it
clear, the following are examples of the three forms:

� Classical Arabic:

� MSA:

� Dialectal (Levantine):

In order to investigate the effect of stemming on STS for Arabic language at sentence
level, standard data sets from SemEval2017 (Cer et al., 2017) are adopted for both training
and testing as Tables 1 and 2 show. The form of language used in these data sets is
MSA. The training sentence pairs sum to 1,081 while the gold testing pairs are 250. The
training data is collected from different sources (Cer et al., 2017):

� MSRpar: Microsoft Research Paraphrase Corpus.

� MSRvid: Microsoft Research Video Description Corpus.

� SMTeuroparl: WMT2008 development dataset (Europarl section).

While the gold testing data are taken from the Stanford Natural Language Inference
(SNLI) Corpus.

Training and testing data sets include pairs of sentences with corresponding human
similarity score. The scoring system used is on a scale from 0 to 5 according to Table 3
(Agirre et al., 2013). The table explains the meaning of every score along with an example
in English and Arabic languages. Please note that English and Arabic example are different.

METHODOLOGY
The methodology adopted in this study is divided into four parts. They will be listed here
briefly before being explained in the following subsections:

1. Select stemming algorithms and prepare new training and testing text documents after
preprocessing text and applying the selected stemming algorithms.

Table 1 Arabic training data.

Year Data set Pairs Source

2017 MSRpar 510 Newswire

2017 MSRvid 368 videos

2017 SMTeuroparl 203 WMT eval.

Table 2 Arabic gold test data.

Track Language(s) Pairs Source

1 Arabic (ar–ar) 250 SNLI

Alhawarat et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.530 5/18

http://dx.doi.org/10.7717/peerj-cs.530
https://peerj.com/computer-science/

2. Choose the machine learning algorithms to use in the study and choose the baseline for
experiments.

3. Select the features to use in experiments by applying String and Character-Based, Term-
based and Distance-Based similarity measures into three representations of data sets:
TF-IDF vectors, Word Embedding vectors and text of the data sets.

4. Setup experiments by applying the chosen machine learning algorithms to the original
and prepared text documents using the selected features.

The main steps of the methodology are illustrated in the flowchart given in Fig. 1.
This flowchart represents the process that will be repeated for all similarity measures
according to each representation of the text documents: TF-IDF vectors, Word Embedding
vectors, and text as explained in Table 4.

Prepare documents
There exist several stemming algorithms for Arabic language. Also, there are mainly two
types of stemmer algorithms: light stemmers and heavy stemmers (root extractors).
Besides, lemmatization algorithms may improve the performance results understudy,
lemma is defined as the original of a word. All these three methods are expected to reduce
the dimension space of features and reduce similar words in meaning but different in
morphology to the same stem, root, or lemma, and hence increase the similarity. Similar
studies at word and document levels (Froud et al., 2010), used two stemming algorithms,
one light and the other is heavy. Therefore, to broaden the applicability of this study, from
existing algorithms in the literature, 6 light stemmers, 2 heavy stemmers and 2
lemmatization algorithms are selected which sum to 10. This study uses 11 text documents
including the original text, they are listed in Table 4.

The stemming and lemmatization algorithms are applied to both training and testing
data sets using python where packages are available for some algorithms. For other
stemming algorithms, only java implementation is available, and then the jar files are called
from within python and executed. A couple of algorithms have only online web service;
hence a python request is executed to collect the stem of a word.

Elementary preprocessing algorithm is used in preparing all data sets by simply keeping
only Arabic letters. It is necessary to mention that stop words have not been removed,
because by removing them the performance become worse in all experiments. The
preprocessing algorithm is as following:

1. Remove punctuation marks.

2. Remove non-Arabic characters including English.

3. Remove numbers.

Choose ML algorithms
Different machine learning algorithms are considered for creating models for the STS
scheme. At the beginning, all the following algorithms are used in all experiments: SVM,
SGD, Linear Regression, Bayesian Regression, Decision Trees, Random Forests, Bagging,

Alhawarat et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.530 6/18

http://dx.doi.org/10.7717/peerj-cs.530
https://peerj.com/computer-science/

KNN, Gradient Boosting, Ada Boosting and XG-Boosting. All are abandoned except those
with the best performance: SVM, SGD and NB. These are combined in a fourth model
using Ensemble learning. These algorithms typically give good results when used in text
processing problems, because they are usually linearly separable. Also, most of the
algorithms used in this study are already utilized in some research papers participated in
SemEval-2017 Task 1 competition, and this make results of this study comparable with
their results.

Table 3 Similarity scores with explanations, English examples from Agirre et al. (2013), and Arabic
examples from Gold Test Data of SemEval-2017.

Score Meaning, English and Arabic Examples

5 The two sentences are completely equivalent, as they mean the same thing.

The bird is bathing in the sink.

Birdie is washing itself in the water basin.

4 The two sentences are mostly equivalent, but some unimportant details differ.

Two boys on a couch are playing video games.

Two boys are playing a video game.

3 The two sentences are roughly equivalent, but some important information differs/missing.

John said he is considered a witness but not a suspect.

“He is not a suspect anymore.” John said.

2 The two sentences are not equivalent, but share some details.

They flew out of the nest in groups.

They flew into the nest together.

1 The two sentences are not equivalent, but are on the same topic.

The woman is playing the violin.

The young lady enjoys listening to the guitar.

0 The two sentences are completely dissimilar.

The black dog is running through the snow.

A race car driver is driving his car through the mud.

Alhawarat et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.530 7/18

http://dx.doi.org/10.7717/peerj-cs.530
https://peerj.com/computer-science/

The baseline used here is the Pearson correlation for cosine similarity. This is computed
between each pair of the gold test sentences using Binary encoding, TF-IDF encoding and
word embedding vectors. The Pearson Correlation score for these three representations
was: 62.32%, 63.04% and 55.66% respectively. Please note that the Pearson correlation for
cosine similarity between Binary Encodings of gold test sentences is also used as a base line
in SemEval-2017.

Select features
To judge the effect of stemming reliably, different features are computed according to
different similarity measures, and applied to three main feature types: TF-IDF vectors,
word embedding vectors-trained using deep learning models and text sentence pairs. The
similarity measures used belongs to string and character based, statistical based and
distance-based measures. Most of these features are used in SemEval-2017 top-wining

Figure 1 Flowchart illustrating the methodology adopted in this study.
Full-size DOI: 10.7717/peerj-cs.530/fig-1

Table 4 Documents and stemming Algorithms used in the study.

Document Description

Original Text Original Text of SemEval-2017

AlKhalil Stems Stems of Original Text using AlKhalil’s stemmer (Boudchiche et al., 2017)

ARLSTem Stems Stems of Original Text using Arabic light stemmer
(Abainia, Ouamour & Sayoud, 2017)

Assem Stems Stems of Original Text using Assem’s stemmer (Chelli, 2018)

Farasa Lemmas Lemmas of Original Text using Farasa Algorithm (Abdelali et al., 2016)

Farasa Stems Stems of Original Text using Farasa stemmer (Abdelali et al., 2016)

ISRI Stems Stems of Original Text using ISRI stemming (Taghva, Elkhoury & Coombs, 2005)

Khoja Roots Roots of Original Text using Khoja Algorithm (Khoja & Garside, 1999)

Qalsadi Lemmas Lemmas of Original Text using Qalsadi Algorithm (Zerrouki, 2012)

Tashaphyne Roots Stems of Original Text using Tashaphyne Algorithm (Zerrouki, 2010)

Tashaphyne Stems Stems of Original Text using Tashaphyne stemmer (Zerrouki, 2010)

Alhawarat et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.530 8/18

http://dx.doi.org/10.7717/peerj-cs.530/fig-1
http://dx.doi.org/10.7717/peerj-cs.530
https://peerj.com/computer-science/

studies. Both statistical and distance based computed features are used in TF-IDF and
word embedding vectors, while string and character-based features are computed
directly using the text of the data sets. The features and measures are listed in Table 5.
In the case of word embedding vectors, the FastText model for Arabic language is used
(Bojanowski et al., 2016) with dimensionality of 300. Each sentence of the pairs will be
replaced by a vector representing the average of the word embedding vectors for the words
of that sentence.

It is important to observe that only bi-grams and tri-grams overlap measures are used.
This is because 4-grams, 5-grams, and higher grams give worse results in experiments.
This makes sense as the average number of characters for Arabic words is about 5–6
(Alotaiby, Alkharashi & Foda, 2009). Therefore, 4-grams and higher might not retrieve on
average more than the word itself and sometimes two to three sequences. Hence, this
makes the size of the overlapped sequences minimal.

We define Character n-Grams overlap similarity measure as a set-based measure, this
an experiment deduced measure rather than an intuition one:

nGrams� Overlap ¼ jS1 \ S2j
meanðjS1j; jS2jÞ (1)

where S1 and S2 are n-Gram sequences for both sentences 1 and 2, respectively. This
measure improves the performance of Pearson correlation results in matching
experiments. The average of the length of tokens for both sentences gives the best results
compared to min and max functions.

Jaccard Coefficient for text similarity can be defined as:

Jaccard � Overlap ¼ jL1 \ L2j
jL1 [L2j (2)

where L1 and L2 are the set of unique terms for both sentences 1 and 2, respectively.

Table 5 Features and similarity measures used in the study.

Type Measure Applied to

Statistical Correlation Coefficient TF-IDF and Word Embedding vectors

Pearson Coefficient TF-IDF and Word Embedding vectors

Cosine Measure TF-IDF and Word Embedding vectors

Kendall’s tau Coefficient TF-IDF and Word Embedding vectors

Distance Euclidean distance TF-IDF and Word Embedding vectors

Manhattan distance TF-IDF and Word Embedding vectors

String-Character Character Bi-grams Overlap Text of the data sets

Character Tri-grams Overlap Text of the data sets

Common words Overlap Text of the data sets

Jaccard Coefficient Text of the data sets

Alhawarat et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.530 9/18

http://dx.doi.org/10.7717/peerj-cs.530
https://peerj.com/computer-science/

We define the common words overlap measure as:

CommonWords� Overlap ¼ jL1 \ L2j
meanðjL1j; jL2jÞ (3)

Again, this similarity measure is an experimental rather than intuitional. This improves
the performance of Pearson correlation results in matching experiments. Again, the
average of the length of tokens for both sentences gives the best results compared to min
and max functions. Compared to Jaccard-overlap which is defined in Eq. (2), the common-
words overlap measure improves results by around 2–3% in Pearson Correlation.

Setup experiments
Three experiments will be set up to investigate the effect of stemming on Arabic STS task.
According to the features selected in previous section and as described in Table 5, the
following experiments will be used in the study:

1. Experiment I: Apply ML algorithms to features computed by statistical and distance-
based similarity measures and using TF-IDF vectors representation of the data sets.

2. Experiment II: Apply ML algorithms to features computed by statistical and distance-
based similarity measures and using Word Embedding vectors representation of the
data sets.

3. Experiment III: Apply ML algorithms to features computed by string and character-
based similarity measures and directly using text of the data sets.

Each experiment is repeated to compute one feature at a time based on one similarity
measure according to Table 5. For example, Experiment I will be executed 8 times: 4 times
for statistical measures and the fifth for all together, 2 times for distance based measures
and the third for both measures together. All these experiments will run on all ML
algorithms stated in this section.

Moreover, one extra experiment is setup to compute the Pearson Correlation for
different combinations of similarity measures that will give best results. In addition to
several experiments to choose the best ML Algorithm, best similarity measures, …etc.
It is vital here to stress that the main theme of the paper is to study the effect of stemming
and lemmatization on STS problem and not to improve results by providing new
methodology. However, such experiments support the main theme of the paper by
showing how using simple methodology, which is based on stemming and lemmatization,
would improve dramatically the performance in STS problem.

Please notice that in all figures, tables and text in this study, performance is reported by
as Pearson’s r multiplied by 100 values.

RESULTS AND DISCUSSION
The main three experiments described in the previous section are executed and results are
depicted in Figs. 2–4. Figure 2 depicts results of Pearson correlation using similarity
measures applied to TF-IDF vectors. Figure 3 depicts results using similarity measures

Alhawarat et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.530 10/18

http://dx.doi.org/10.7717/peerj-cs.530
https://peerj.com/computer-science/

Figure 2 Pearson correlation for similarity measures applied to TF-IDF vectors.
Full-size DOI: 10.7717/peerj-cs.530/fig-2

Figure 3 Pearson correlation for similarity measures applied to Word Embedding vectors.
Full-size DOI: 10.7717/peerj-cs.530/fig-3

Alhawarat et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.530 11/18

http://dx.doi.org/10.7717/peerj-cs.530/fig-2
http://dx.doi.org/10.7717/peerj-cs.530/fig-3
http://dx.doi.org/10.7717/peerj-cs.530
https://peerj.com/computer-science/

applied to Word Embedding vectors. Lastly, Fig. 4 depicts results using string and
character based similarity measures applied immediately to the text of the data sets. These
are applied to 11 documents as indicated previously.

The results on all experiments show spectacular improvement on Pearson correlation
after applying stemming and lemmatization algorithms as depicted in Fig. 5. For statistical
measures and using TF-IDF representations, the enhancement in Pearson correlation is
in the range of 3.24–7.13% with best results, in order, achieved using: ARLSTem stems,

Figure 4 Pearson correlation for similarity measures applied immediately to the text of the data sets.
Full-size DOI: 10.7717/peerj-cs.530/fig-4

Figure 5 Pearson correlation Improvements after applying Stemming Algorithms for all similarity
measures applied to Text of the dataset, TF-IDF vectors, and Word Embedding vectors.

Full-size DOI: 10.7717/peerj-cs.530/fig-5

Alhawarat et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.530 12/18

http://dx.doi.org/10.7717/peerj-cs.530/fig-4
http://dx.doi.org/10.7717/peerj-cs.530/fig-5
http://dx.doi.org/10.7717/peerj-cs.530
https://peerj.com/computer-science/

Tashaphyne roots, ISRI stems and Qalsadi lemmas. However, using Word Embedding
representations the statistical similarity measures achieve lower results with the range of
−1.42–5.5%, where the negative value means that some stemming algorithms, which is in
this case Khoja heavy stemmer gives results worse than when using the original text.
The best results here are achieved when using: ARLSTem stems, Farasa lemmas, Farasa
stems and Qalsadi lemmas. Note that AlKhalil stems sometimes gives superior results and
other times lowest results, therefore it is not considered among the best.

On the other hand, for distance similarity measures using TF-IDF representations, the
enhancement in Pearson correlation was in the range 1.16–4.18%. Ordered best algorithms
in this case was: Tashaphyne heavy stemmer, ARLSTem stemmer, Farasa stemmer and
Farasa lemmatizer. Whilst using Word embedding representations, distance similarity
measures give results in the range of −2.64–7.17%. Where negative value in this case was
for the worst results using AlKhalil Stemmer. The best results here attained using Assem
stemmer, ARLSTem stemmer, Farasa lemmatizer and Farasa stemmer.

Lastly, for string and character similarity measures and using text representation, the
improvement in Pearson correlation was in the range of −2.53–7.34%. Where negative
difference yielded using Khoja heavy stemmer. In this case, results are reluctant using
string and character-based similarity measures. Therefore, best algorithms are ordered
based on using all features resulted from choosing the four measures together. Hence, the
best algorithms in order are: ARLSTem stemmer, Farasa Lemmatizer, Tashaphyne heavy
stemmer and Qalsadi lemmatizer.

Note from Fig. 5 that for statistical based measures; Kendall’s tau gives the best
improvement using TF-IDF representations, while it was Pearson coefficient in the case of
using Word embedding representations. For distance-based measures, the best measure
was Euclidean for TF-IDF vectors, where it was Manhattan for Word embedding vectors.
For String based measures, the best improvement occurs when using common words
measure defined in Eq. (3).

Many experiments are executed to find the best combination of features that will give
the best performance for the model. It is found that the best results are achieved with
character bi-gram along with cosine measure using TF-IDF vectors. The results are shown
in Table 6. Please notice that in one experiment, all features in the study are used.
The results were worst compared with the two best features. Note that the best results are
achieved when using Qalsadi Lemmas, ARLSTem Stems and Farasa Lemmas with around
71.5% of Pearson correlation. Compared to the best results achieved by SemEval-2017
winning team (Tian et al., 2017); this is comparable as the results of this study use only two
features compared to 67 features used in Tian et al. (2017) which achieved 75.43%.

Note that the effect of lemmatization and stemming is clear if Pearson correlation
for the original text is compared to the best algorithms with enhancement of about
5%. Most results show that stemming algorithms improve the Pearson correlation
compared to original text. However, in some cases such as Khoja heavy stemmer results
become worse. This might be because heavy stemmer reduces tokens to their roots, and in
many cases different words which have different meanings might have the same root.
Notwithstanding, they may have at the same time different stems or lemmas. Another

Alhawarat et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.530 13/18

http://dx.doi.org/10.7717/peerj-cs.530
https://peerj.com/computer-science/

reason behind this might be the accuracy of stemmers. For example, while Khoja gives bad
results, as a heavy stemmer, Tashaphyne still gives much better results in comparison.
Another reason might be the accuracy of the algorithm. While two words should have the
same stem, some stemmers would fail to retrieve the same stem. Instead, it gives two
different stems and hence increase the dimensionality of the data representing each
sentence, and as a result will reduce similarity.

Among all results, those given by ARLSTem and Farasa light stemmers on average
are the best when being applied to TF-IDF representations for the data sets. In addition,
Farasa and Qalsadi Lemmatizers also gave particularly good results as lemmas might
decrease the dimensionality of data representing each sentence, and hence would increase
similarity.

CONCLUSION
Semantic text similarity (STS) is considered one of the vital tasks in NLP and
computational linguistics. In this study, the effect of stemming and lemmatization is
studied on STS for Arabic sentences. Many stemming and lemmatization algorithms for
Arabic are considered in this study. These are applied to a standard data set for STS
problems, where data sets used in SemEval-2017 are utilized here. At the same time,
different similarity measures are adopted including string and character, statistical
and distance-based similarity measures. These are applied to three types of data
representations: TF-IDF vectors, Word embedding vectors and the text itself. Different
experimental setups are implemented to achieve the aims of the study.

Results show superior improvement on Pearson correlation when using stemming and
lemmatization algorithms in measuring similarity between Arabic sentences. This study
recommends using the following algorithms for Arabic STS on sentence level: ARLSTem
and Farasa light stemmers, Farasa and Qalsadi Lemmatizers, and Tashaphyne heavy
stemmer. Notwithstanding, Khoja heavy stemmer and AlKhalil light stemmers, in general,
gave the worst results. Also, the results show that the best data representation for data sets

Table 6 Results on Gold Test data for the best two features: character bi-gram and cosine Bold entries
indicate the Pearson Correlation values for the best three stemming and lemmatization algorithms.

Document SVM (%) SGD (%) NB (%) Ensemble (%)

Original Text 66.62 66.75 69.04 69.18

AlKhalil Stems 69.34 69.39 69.76 69.85

ARLSTem Stems 71.55 71.55 70.43 70.69

Assem Stems 69.45 69.55 70.64 70.69

Farasa Lemmas 70.71 70.76 71.51 71.54

Farasa Stems 70.58 70.62 70.61 70.71

ISRI Stems 70.49 70.50 70.03 70.13

Khoja Roots 68.47 68.48 64.98 65.45

Qalsadi Lemmas 71.33 71.37 71.51 71.60

Tashaphyne Roots 70.61 70.61 70.13 70.20

Tashaphyne Stems 69.47 69.49 69.76 69.84

Alhawarat et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.530 14/18

http://dx.doi.org/10.7717/peerj-cs.530
https://peerj.com/computer-science/

is the TF-IDF vectors. Furthermore, the study redefines Jaccard overlap as a “common
words overlaps” and experimentally improves result of Pearson correlation by 2–3%.
Moreover, a search for the best combination of features based on similarity measures is
performed; the best combination was to use bi-grams overlap and cosine similarity for
TF-IDF vectors of sentences.

Future work might investigate the effect of stemming and lemmatization on STS task
using deep learning models, although the results of this study suggest that TF-IDF
representations give much better results compared to word embedding representations.
Word embedding vectors are trained and evolved from deep learning models. However,
training STS data after applying stemming and lemmatization algorithms using deep
learning models might improve similarity results.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This project was supported by the Deanship of Scientific Research at Prince Sattam bin
Abdulaziz University under the research project No. 2019/01/9840. The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Prince Sattam bin Abdulaziz University: 2019/01/9840.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Mohammad O. Alhawarat conceived and designed the experiments, performed the
experiments, performed the computation work, prepared figures and/or tables, and
approved the final draft.

� Hikmat Abdeljaber conceived and designed the experiments, performed the
experiments, performed the computation work, authored or reviewed drafts of the
paper, and approved the final draft.

� Anwer Hilal conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The raw data and stemmed files and code for experiments are available in the
Supplemental Files.

The raw testing and training data are also available at GitHub https://github.com/
malhawarat/STS_Ara_Stem_Effect.

Alhawarat et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.530 15/18

http://dx.doi.org/10.7717/peerj-cs.530#supplemental-information
https://github.com/malhawarat/STS_Ara_Stem_Effect
https://github.com/malhawarat/STS_Ara_Stem_Effect
http://dx.doi.org/10.7717/peerj-cs.530
https://peerj.com/computer-science/

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.530#supplemental-information.

REFERENCES
Abainia K, Ouamour S, Sayoud H. 2017. A novel robust arabic light stemmer. Journal of

Experimental & Theoretical Artificial Intelligence 29(3):557–573
DOI 10.1080/0952813X.2016.1212100.

Abdelali A, Darwish K, Durrani N, Mubarak H. 2016. Farasa: A fast and furious segmenter for
arabic. In: Proceedings of the 2016 conference of the North American chapter of the association for
computational linguistics: Demonstrations. Stroudsburg: ACL, 11–16.

Agirre E, Cer D, Diab M, Gonzalez-Agirre A, Guo W. 2013. * Sem 2013 shared task: semantic
textual similarity. In: Second Joint Conference on Lexical and Computational Semantics (* SEM):
Proceedings of the Main Conference and the Shared Task: Semantic Textual Similarity. Vol. 1.
Stroudsburg: ACL, 32–43.

Al-Ramahi MA, Mustafa SH. 2012. N-gram-based techniques for arabic text document matching;
case study: courses accreditation. Abhath Al-Yarmouk. Basic Sciences and Engineering
21(1):85–105.

Al-Saqqa S, Awajan A, Ghoul S. 2019. Stemming effects on sentiment analysis using large arabic
multi-domain resources. In: 2019 Sixth International Conference on Social Networks Analysis,
Management and Security (SNAMS). Piscataway: IEEE, 211–216.

Al-Shalabi EF. 2016. An automated system for essay scoring of online exams in arabic based on
stemming techniques and levenshtein edit operations. Available at https://arxiv.org/abs/1611.
02815.

Alhaj YA, Xiang J, Zhao D, Al-Qaness MA, Abd Elaziz M, Dahou A. 2019. A study of the effects
of stemming strategies on arabic document classification. IEEE Access 7:32664–32671
DOI 10.1109/ACCESS.2019.2903331.

Alian M, Awajan A. 2020. Semantic similarity for english and arabic texts: a review. Journal of
Information & Knowledge Management 19(4):2050033 DOI 10.1142/S0219649220500331.

Almuzaini HA, Azmi AM. 2020. Impact of stemming and word embedding on deep learning-
based arabic text categorization. IEEE Access 8:127913–127928
DOI 10.1109/ACCESS.2020.3009217.

Alnaied A, Elbendak M, Bulbul A. 2020. An intelligent use of stemmer and morphology analysis
for arabic information retrieval. Egyptian Informatics Journal 21(4):209–217
DOI 10.1016/j.eij.2020.02.004.

Alotaiby F, Alkharashi I, Foda S. 2009. Processing large arabic text corpora: preliminary analysis
and results. In: Proceedings of the Second International Conference on Arabic Language Resources
and Tools. Citeseer, 78–82.

Bojanowski P, Grave E, Joulin A, Mikolov T. 2016. Enriching word vectors with subword
information. Available at https://arxiv.org/abs/1607.04606.

Boudchiche M, Mazroui A, Ould Abdallahi Ould Bebah M, Lakhouaja A, Boudlal A. 2017.
Alkhalil morpho sys 2: a robust arabic morpho-syntactic analyzer. Journal of King Saud
University—Computer and Information Sciences 29(2):141–146
DOI 10.1016/j.jksuci.2016.05.002.

Alhawarat et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.530 16/18

http://dx.doi.org/10.7717/peerj-cs.530#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.530#supplemental-information
http://dx.doi.org/10.1080/0952813X.2016.1212100
https://arxiv.org/abs/1611.02815
https://arxiv.org/abs/1611.02815
http://dx.doi.org/10.1109/ACCESS.2019.2903331
http://dx.doi.org/10.1142/S0219649220500331
http://dx.doi.org/10.1109/ACCESS.2020.3009217
http://dx.doi.org/10.1016/j.eij.2020.02.004
https://arxiv.org/abs/1607.04606
http://dx.doi.org/10.1016/j.jksuci.2016.05.002
http://dx.doi.org/10.7717/peerj-cs.530
https://peerj.com/computer-science/

Cer D, Diab M, Agirre E, Lopez-Gazpio I, Specia L. 2017. SemEval-2017 task 1: semantic textual
similarity-multilingual and cross-lingual focused evaluation. Available at https://arxiv.org/abs/
1708.00055.

Chelli A. 2018. Assem’s Arabic Stemmer. figshare. Available at https://figshare.com/articles/code/
Assem_s_Arabic_Stemmer/7295690.

El Moatez Billah Nagoudi DS. 2017. Semantic similarity of arabic sentences with word
embeddings. In: Third Arabic Natural Language Processing Workshop. Valencia, France18–24.

Farghaly A, Shaalan K. 2009. Arabic natural language processing: challenges and solutions. ACM
Transactions on Asian Language Information Processing 8(4):1–22
DOI 10.1145/1644879.1644881.

Farouk M. 2019. Measuring sentences similarity: a survey. Available at https://arxiv.org/abs/1910.
03940.

Froud H, Benslimane R, Lachkar A, Ouatik SA. 2010. Stemming and similarity measures for
arabic documents clustering. In: 2010 5th International Symposium on I/V Communications and
Mobile Network. Piscataway: IEEE, 1–4.

Froud H, Lachkar A, Ouatik SA. 2012a. A comparative study of root-based and stem-based
approaches for measuring the similarity between arabic words for arabic text mining
applications. Available at https://arxiv.org/abs/1212.3634.

Froud H, Lachkar A, Ouatik SA. 2012b. Stemming versus light stemming for measuring the
simitilarity between arabic words with latent semantic analysis model. In: 2012 Colloquium in
Information Science and Technology. Piscataway: IEEE, 69–73.

Gomaa WH, Fahmy AA. 2013. A survey of text similarity approaches. International Journal of
Computer Applications 68(13):13–18 DOI 10.5120/11638-7118.

Kadhem S, Abd Alameer AQ. 2017. Finding the similarity between two arabic texts. Iraqi Journal
of Science 58(1A):152–162.

Khoja S, Garside R. 1999. Stemming arabic text. Master’s thesis, Computing Department,
Lancaster University.

Mahmoud A, Zrigui M. 2019. Sentence embedding and convolutional neural network for semantic
textual similarity detection in arabic language. Arabian Journal for Science and Engineering
44(11):9263–9274 DOI 10.1007/s13369-019-04039-7.

Meng F, Lu W, Zhang Y, Cheng J, Du Y, Han S. 2017. Qlut at semeval-2017 task 1: semantic
textual similarity based on word embeddings. In: Proceedings of the 11th International Workshop
on Semantic Evaluation (SemEval-2017). Stroudsburg: ACL, 150–153.

Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J. 2013. Distributed representations of words
and phrases and their compositionality. Advances in Neural Information Processing Systems
26:3111–3119.

SemEval. 2021. International workshop on semantic evaluation. Available at https://semeval.
github.io/.

Taghva K, Elkhoury R, Coombs J. 2005. Arabic stemming without a root dictionary. In:
International Conference on Information Technology: Coding and Computing (ITCC’05)-
Volume II. Vol. 1. Piscataway: IEEE, 152–157.

Tian J, Zhou Z, LanM,Wu Y. 2017. Ecnu at semeval-2017 task 1: leverage kernel-based traditional
nlp features and neural networks to build a universal model for multilingual and cross-lingual
semantic textual similarity. In: Proceedings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017). Stroudsburg: ACL, 191–197.

Alhawarat et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.530 17/18

https://arxiv.org/abs/1708.00055
https://arxiv.org/abs/1708.00055
https://figshare.com/articles/code/Assem_s_Arabic_Stemmer/7295690
https://figshare.com/articles/code/Assem_s_Arabic_Stemmer/7295690
http://dx.doi.org/10.1145/1644879.1644881
https://arxiv.org/abs/1910.03940
https://arxiv.org/abs/1910.03940
https://arxiv.org/abs/1212.3634
http://dx.doi.org/10.5120/11638-7118
http://dx.doi.org/10.1007/s13369-019-04039-7
https://semeval.github.io/
https://semeval.github.io/
http://dx.doi.org/10.7717/peerj-cs.530
https://peerj.com/computer-science/

Wali W, Gargouri B, Hamadou AB. 2017. Enhancing the sentence similarity measure by semantic
and syntactico-semantic knowledge. Vietnam Journal of Computer Science 4(1):51–60
DOI 10.1007/s40595-016-0080-2.

Wang J, Dong Y. 2020. Measurement of text similarity: a survey. Information: an International
Interdisciplinary Journal 11(9):421 DOI 10.3390/info11090421.

Wu H, Huang H-Y, Jian P, Guo Y, Su C. 2017. Bit at semeval-2017 task 1: using semantic
information space to evaluate semantic textual similarity. In: Proceedings of the 11th
International Workshop on Semantic Evaluation (SemEval-2017). Stroudsburg: ACL, 77–84.

Zeroual I, Lakhouaja A. 2017. Arabic information retrieval: stemming or lemmatization? In: 2017
Intelligent Systems and Computer Vision (ISCV). Piscataway: IEEE, 1–6.

Zerrouki T. 2010. Tashaphyne, arabic light stemmer. Available at https://pypi.python.org/pypi/
Tashaphyne/0.2.

Zerrouki T. 2012. Qalsadi, arabic mophological analyzer library for python. Available at
https://pypi.python.org/pypi/qalsadi.

Alhawarat et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.530 18/18

http://dx.doi.org/10.1007/s40595-016-0080-2
http://dx.doi.org/10.3390/info11090421
https://pypi.python.org/pypi/Tashaphyne/0.2
https://pypi.python.org/pypi/Tashaphyne/0.2
https://pypi.python.org/pypi/qalsadi
http://dx.doi.org/10.7717/peerj-cs.530
https://peerj.com/computer-science/

	Effect of stemming on text similarity for Arabic language at sentence level
	Introduction
	Related work
	Data
	Methodology
	Results and discussion
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

