
Submitted 11 June 2015
Accepted 6 March 2016
Published 13 April 2016

Corresponding author
Rami Puzis, puzis@bgu.ac.il

Academic editor
Mohammad Reza Mousavi

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj-cs.53

Copyright
2016 Dolev et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Efficient online detection of temporal
patterns
Shlomi Dolev1, Jonathan Goldfeld1, Rami Puzis2,3 and Muni Venkateswarlu K.1

1Department of Computer Science, Ben-Gurion University, Beer-Sheva, Israel
2Telekom Innovation Laboratories, Ben-Gurion University, Beer Sheva, Israel
3Department of Information Systems Engineering, Ben-Gurion University, Beer-Sheva, Israel

ABSTRACT
Identifying a temporal pattern of events is a fundamental task of online (real-
time) verification. We present efficient schemes for online monitoring of events for
identifying desired/undesired patterns of events. The schemes use preprocessing to
ensure that the number of comparisons during run-time is minimized. In particular,
the first comparison following the time point when an execution sub-sequence cannot
be further extended to satisfy the temporal requirements halts the process thatmonitors
the sub-sequence.

Subjects Algorithms and Analysis of Algorithms, Theory and Formal Methods
Keywords Pattern matching, Verification, Time series

INTRODUCTION
Many complex systems, both hardware and software, require sound verification of their
operation, usually in the form of safety and liveness properties. One of the prominent
formal verification methods used today is model checking, which models the system as a
state-transition system, and performs an exhaustive search of its state-transition graph for
possible runs where desired properties do not hold. Inmodel checking, a precise description
of the system to check is mandatory as, before actually running the system, all possible
executions must be checked (Bauer, Leucker & Schallhart, 2011). One of the drawbacks of
model checking is the state explosion problem (Rafe, Rahmani & Rashidi, 2013): explosion
due to the need to explore an exponential number of states which grow with relation to
the number of system variables. This yields a costly check. Another significant problem is
in the modeling process itself. The verification is only as good as the model of the (actual
hardware and software) implementation rather than the implementation itself. Online
model checking is presented as a lightweight verification technique to overcome the state
space explosion problem. However, the computational complexity of the proposed online
model checking in time and space is less than that of (off-line) model checking, but greater
than that of runtime verification (Zhao & Rammig, 2012).

An even older classicalmethod to verify system specifications is testing (Luo, 0000).While
testing examines the implemented system (rather than only a model of the system), it is
impossible for complex systems because the number of input sequences grow exponentially
with the given sequence length. Of course, an exhaustive search for specification violations is
not feasible. Thus, runtime verificationmay assist in coping with implementation flaws that
materialize only during (specific, rare) executions. Runtime verification has been developed

How to cite this article Dolev et al. (2016), Efficient online detection of temporal patterns. PeerJ Comput. Sci. 2:e53; DOI
10.7717/peerj-cs.53

https://peerj.com
mailto:puzis@bgu.ac.il
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.53
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj-cs.53

to check for desired properties at runtime on the active execution path. System properties
are written in a formal logic and then transformed into a runtime monitor (Colombo,
Pace & Schneider, 2008). The transformations from design models to implementation are
generally informal, therefore error-prone. Runtime verification validates transformations
indirectly and provides a mechanism to handle exceptions of implementations that are not
detected during development or testing (Dong et al., 2005).

We concentrated on a specific task of runtime verification; namely, the detection of
temporal patterns. Rather thanmodeling the system and searching its entire state-transition
graph, as is done in model checking, we devised an approach toward verification of time
restrictions over sequences of events at system runtime. We used temporal constraint
semantics to describe the specification.
Our contribution. We designed several algorithms which, given a description of
the system as a set of possible events and a specification of safety properties as
desired/undesired temporal patterns, monitor the system and detect when such patterns
occur. We distinguished between several scenarios depending on the pattern profile:
sporadic/continuous patterns, max-/max and min- constrained patterns.

First, we describe how to preprocess the input patterns in graph form to get their
minimized representation by removing redundant constraints. Then, we describe an
automaton which tracks pattern prefixes using tokens and detects pattern completion.
This automaton tracks the system events efficiently. Once a token does not adhere to some
temporal constraint, the token is discarded within one comparison; this is in addition an
earliest possible notification on when a completed pattern is given.
Related work. Runtime verification is being pursued as a lightweight verification technique
complementing verification techniques such as model checking and testing and establishes
another trade-off point between these forces. One of the main distinguishing features of
runtime verification is due to its nature of being performed at runtime, which opens up
the possibility to act whenever incorrect software system behavior is detected (Leucker &
Schallhart, 2009).

Runtime verification of asynchronous systems for ensuring safety and liveness
specifications by monitoring events has been discussed in e.g., Dolev & Stomp (2003);
Brukman & Dolev (2006); Brukman, Dolev & Kolodner (2008); Brukman & Dolev (2008). A
parametric real-time monitoring system with multiple logical structures is proposed in
Jin et al. (2012). Dynamic communicating automata with timers and events to describe
properties of systems which need to be checked for different instances online are introduced
in Colombo, Pace & Schneider (2008). However, the implementation overhead is very high
to implement this method.

In contrast, we are interested in monitoring timed events in synchronous (or semi-
synchronous real-time) systems. The preprocessing phase resembles results in Temporal
Constraint Networks (Dechter, Meiri & Pearl, 1991). In contrast, Dechter, Meiri & Pearl
(1991) does not consider the on-line monitoring task and its composition with the
preprocessing phase. In order to detect desired/undesired patterns of events we employ
methods similar to classical string matching solutions (Crochemore, 1988), though in our
scope, system events must occur in a timely manner to fit a given pattern.

Dolev et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.53 2/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.53

A fundamental discussion of model checking appears in Clarke, Grumberg & Peled
(1999), and a popular method to address the state explosion problem (Groote, Kouters &
Osaiweran, 2012) of model checking is described in Burch et al. (1992), by representing the
state transition graph using propositional logic formulae. Zhao & Rammig (2012) discusses
a special form of online model checking method for runtime verification, which provide
the model and implementation of the system to verify. A temporal logic is proposed in
Baldan et al. (2006) to specify and verify properties on graph transformation systems.
An approach of extending Computation Tree Logic(CTL) to include timing constraints
appears in Alur, Courcoubetis & Dill (1993). In Laroussinie, Markey & Schnoebelen (2006),
transitional durations are added to timed temporal formulae as an extension of Kripke
Structures, and timed versions of CTL are considered. These frameworks however, do not
address real-time verification.

Linear Temporal logic (LTL) has been used for runtime verification; however, it is best
suited for design-time system verification. Also, the evaluation of LTL properties on finite
traces proved to be an obstacle, as LTL is usually evaluated over infinite traces. The standard
semantics of LTL on finite traces is unsatisfactory for the purpose at hand (Andreas, Martin
& Christian, 2010).

Tools for real-time verification exist in the form of assertion checking, some of
which follow the PSL IEEE standard, notably Colombo, Pace & Schneider (2008); Alur,
Courcoubetis & Dill (1993); Brukman, Dolev & Kolodner (2008); further comparison of
these tools is beyond the scope of this article. While these allow the specification of quite
general properties and employ an automaton for detecting a single property, we focus on
patterns with timing constraints and employ an automaton to detect all pattern instances.

Model programs have been rarely used for runtime verification (see Blum &Wasserman,
(1997) for example). As long as model programs are deterministic and contain no
mandatory calls, they can be verified easily. But, for the model programs containing
non-deterministic expressions or mandatory calls, we need tighter integration (Barnett &
Schulte, 2003).
Organization. The formal setting is presented in the next section, along with detection
of continuous temporal patterns. In ‘Sporadic Pattern Match,’ we study the less restricted
definition of sporadic temporal patterns by analyzing the pattern’s temporal constraints,
semantics, and devise a detection algorithm. Next, we briefly discuss an approach for
estimating the probability of a partial pattern match completing a full pattern match in
‘Prediction and Alert of a Near Pattern Match.’ Finally, concluding remarks and future
research scope appear in ‘Concluding Remarks.’

CONTINUOUS PATTERN MATCH
An event type a is a discrete input to our system taken from a given set of possible inputs,
called the event type set. A timed event, te, is a tuple (a,t) such that a is an event type and t
is the time at which type a event took place. Similar to multi-event segments in simulation
theory (Zeigler, Kim & Praehofer, 2000), we define an execution of a system as an input
stream of timed events te1= (a1,t1),te2= (a2,t2),..., such that for every two timed events

Dolev et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.53 3/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.53

1aj denotes an event of type aj .type.

tei and tei+1 it holds that ti< ti+1. We assume that events in the system occur in discrete
time points (over Z).

A temporal pattern TP is a tuple (A,C), where A= (a1,a2,...,an) is a sequence of typed
(non-timed) events. Each ai has a type ai.type from the event type set. Event types are not
necessarily distinct:C is a set of temporal constraints, such that each c ∈C is a tuple (ai,aj,w),
where the time interval between the events ai and aj is at most w . We call such a constraint
a max constraint; in ‘Adding minimum constraints’ we will address min constraints.
Detection of continuous temporal patterns.We track a stream of timed events to identify
temporal patterns that respect the constraints of TP . We consider the simple case of
a continuous pattern. For every 1< i< n− 1, we call ai and ai+1 consecutive events. A
continuous pattern match is an execution sub-sequence where consecutive events happen
successively. A (type-wise)1 execution a1,...,ai,b,ai+2,...,an where b.type 6= ai+1.type is
not considered a match.
Directed graphs and tokens. A temporal pattern (A,C) is represented by a pattern graph.
The events in A define the graph nodes, and the constraints in C define edges. A constraint
e = (ai,aj,w) where i< j is a directed edge from ai to aj with weight w . We denote ai and
aj by e.src and e.dst , respectively. If there is no constraint between ai and ai+1 for some i,
we define an edge (ai,ai+1,∞), where∞ signifies that any finite time may pass between
ai and ai+1. An edge between consecutive events is a simple edge, and any other edge is an
overpassing edge. A path using only simple edges is a simple path. (a1,a2,...,an) is defined as
the chronological order of the pattern’s events. In particular,G is aWDAG (WeightedDAG).

A preprocessing phase of pattern constraints is explained in ‘Sporadic Pattern Match.’
Execution sub-sequences that partially match a pattern are represented by tokens. A

token resides on an event, and carries with it a history of the time points at which it reached
previous events. HandleEvent (Alg. 1) handles an event log received from the system in the
form of a timed event (type,t), where type is the event type and t is the time point at which
it occurred. If tkn is a token currently residing on the graph, then tkn.evnt and tkn.h are
the events on which the token resides, and the token’s history, respectively. The method
getTime(a) of tkn.h returns the time point at which tkn reached a.

1 tkns := set of graph tokens;
2 ForEach tkn in tkns Do
3 b := successor of tkn.evnt;
4 If (b.type) != type Then discard tkn;
5 ForEach graph edge (a,b) Do
6 If (t - tkn.h.getTime(a) > w(a,b))
7 Then discard tkn;
8 add (b,t) to tkn.h;
9 tkn.evnt := b;
10 If (tkn.evnt is the last event) Then
11 report tkn;
12 discard tkn;
13 If (type matches the first event)
14 Then add a new token;

Alg. 1: HandleEvent(type,t)

Dolev et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.53 4/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.53

Figure 1 An example of token tracking for the event input stream: ((a,0),(b,12),(a,30),(c,37)). z2 be-
comes obsolete when c occurs. z1 reaches the last event c and completes a continuous pattern match.

In (line 1) we receive the set of graph tokens. We handle each such token (line 2). In
(line 3) we obtain the successive event of tkn.evnt . If the event’s type does not match type
(the logged event’s type), we discard tkn (line 4). We check if all edge constraints whose
head is b are satisfied; If not, we discard tkn (lines 5–7). If the constraints are satisfied, we
update the token’s history and move tkn to the next event (lines 8–9). If tkn reaches the last
pattern event, we report the pattern match and provide its history, and then discard tkn
(lines 10–12). Finally, if type matches the type of the first pattern event, we create a new
token on the first event (lines 13–14).

An illustration of token tracking is shown in Fig. 1.

SPORADIC PATTERN MATCH
Maximum constraints
A sporadic pattern match is an execution sub-sequence where non-sequential system events
may occur between consecutive pattern events. If the temporal pattern events are a1,...,an, a
(type-wise) execution a1,...,ai,b,ai+1,...,an where b.type 6= ai+1.type matches the pattern,
as long as the temporal constraints are satisfied. We designed an algorithm to detect
sporadic pattern matches, so that a token is discarded at the very first constraint check
once it becomes obsolete. We shall describe two phases of the pattern detection paradigm:
a preprocessing phase and an on-line detection phase. The preprocessing phase will yield
an equivalent temporal pattern in a more restrictive form. The online detection phase
will utilize a many-state automaton to keep track of the system’s sub-sequence execution
operation, which partially matching a pattern. The sub-sequences are represented by tokens
that reside on the automaton’s states.
Preprocessing phase. In the preprocessing phase we reduce the pattern constraint set while
maintaining the temporal constraint semantics. For every 1≤ i< n we add to G an edge
(ai+1,ai,0), which we simply call a 0-edge. We compute the shortest path from ai to aj
for 1< i< n−1 and i+1< j < n. This can be done with O(n3) comparisons using the
Floyd–Warshall algorithm. We then update G by removing every overpassing edge that
is not the unique shortest path between its ends. In addition, we update the weight of

Dolev et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.53 5/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.53

Figure 2 Preprocessing phase of a temporal pattern graphG.

every simple edge to the weight of the shortest path between its ends. This update takes
O(n2) comparisons. We denote the ensuing graph modulo the 0-edges as G′. An example
of a graph before, during and after preprocessing can be seen in Figs. 2A, 2B and 2C. The
role of 0 edges in finding the shortest path between the ends and updating edge weights is
illustrated in Fig. 3.
Histories and graph preorder. We call every single update of G an update step. In the
following discussion, the graphs are temporal patterns of n events; the histories consist
of these events. A history is a tuple H = ((a1,t1),...,(an,tn)), where tj is the time-point
at which aj occurred. We denote tj as H (aj). We denote tj− ti by H (ai,aj) or by H (e),
where e = (ai,aj,w) for some w . A history H fits a graph G if: for every (ai,ti) and (aj,tj)
in H , if (ai,aj,t) is a weighted edge in G, then H (ai,aj)6 t . Alternatively, we say H fits the
underlying temporal pattern TP .

We define a preorder� (a reflexive and transitive relation) between graphs as follows:
G1�G2 if for every history H : (H fits G1) implies that (H fits G2). It is easy to show that
� is indeed a preorder.� naturally induces an equivalence relation≡ on graphs: G1≡G2

if G1�G2 and G2�G1. In the following discussion, equivalence of graphs refers to the
graphs modulo the backward 0-edges.

Dolev et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.53 6/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.53

Figure 3 Significance of 0 edges in reducing temporal constraint set.

Proposition 1 Let G and G′ be the graphs before and after the execution of preprocessing,
respectively. Then the following properties hold:
Equivalence: G≡G′.
Minimality: G′ is the minimal graph that is equivalent to G. If any overpassing edge is
removed from G′ or if the weight of some edge is reduced in G′, then it will no longer be
equivalent to G.

Note that for simplicity we refer to G and G′ as the respective graphs both with and without
the 0-edges: with 0-edges when referring to paths, and without 0-edges when referring to
history fittings and graph equivalences.

Dolev et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.53 7/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.53

See Appendix S2 for proof. This result is a special case of the results in ‘Addingminimum
constraints’ and follows the result in Dechter, Meiri & Pearl (1991).
On-line detection phase. We build an automaton TA whose states are the pattern of
events. We may consider the graph as a representation of the automaton, with its events
as different states. At any given time in the execution, an event may hold several tokens. A
token represents a sub-sequence of the execution, partially matching the temporal pattern.
The only transitions are from an event ai to the next event ai+1 for every 1< i< n−1,
where the rule of the transition is that the token must satisfy the constraint of the simple
edge (ai,ai+1). Additionally, a token must satisfy other constraints as explained in the
following schemes.
Deadline Scheme. Every token tkn is associated with a minimum heap tkn.DL (for
DeadLines) which is empty at first, and with a dynamic hash table tkn.DLH . An element in
the heap is a tuple (evnt ,dl,ptr), where dl is the deadline for the token to reach the event
evnt . If the token does not reach evnt by the time dl , it becomes obsolete. ptr is a pointer
to the twin element in tkn.DLH . An element in tkn.DLH is a tuple (evnt ,ptr). The event
evnt is the key, and ptr is a pointer to the twin element tkn.DL. This duplication of data is
necessary to ensure that no more than one instance of some event is in the heap.

1 tkns := tokens awaiting a type event;
2 ForEach tkn in tkns Do
3 m := tkn.DL.min;
4 If (m.dl < t) Then discard tkn;
5 b := successor of tkn.evnt;
6 If b is the last pattern event Then
7 report matched pattern;
8 discard tkn;
9 If (b has a token) Then discard b.tkn;
10 tkn’ := newToken(tkn,b,t)
11 If (m.evnt=b) Then remove m and m.ptr;
12 For (e in opEdges(b)) Do
13 c := e.dst;
14 If (c is in tkn’.DLH) Then
15 m0 := tkn’.DLH.get(c).ptr;
16 If (t+w(e) < m0.dl) Then
17 m0.dl := t+w(e);
18 heapify up m0;
19 Else
20 m0 := (c,t+w,null);
21 m1 := (c,m0);
22 m0.ptr := m1;
23 insert m0 into tkn.DL;
24 insert m1 into tkn.DLH;
25 If (type matches the first event) Then
26 add new token;

Alg. 2.HandleEvent(type,t) for Sporadic Pattern Detection

Dolev et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.53 8/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.53/supp-4
http://dx.doi.org/10.7717/peerj-cs.53

This keeps the space complexity of a token’s heap and hash table to O(n), instead of a
possible 2(n2) for 2(n2) overpassing edges. tkn.evnt is the event on which tkn exists. We
call this scheme the deadline scheme.

If tkn resides on event a and the next chronological event in the pattern b occurs at
time t , we first check tkn against the simple edge (a,b). If the constraint does not hold,
tkn is discarded from TA. HandleEvent (Alg. 2) handles an event log (type,t). The method
newToken(tkn,a,t) spawns a new token a which inherits tkn’s history and adds the element
(a,t) to the history of the new token. opEdges(a) returns the set of overpassing edges whose
source is a.

In (line 1) we get the tokens awaiting a type event, in descending chronological order.
We handle each subsequent token (line 2). In (line 3) we check the minimum element m
of tkn.DL. If m.dl < t , tkn is discarded from TA along with its associated data structures,
then we check the next token in tkns (line 4). If tkn is valid and the next event is the last
pattern event, we report a pattern match and discard tkn (lines 6–8). Otherwise, if b, the
next chronological event after tkn.evnt , holds a token, then the old token is discarded
(line 9). We spawn a new token tkn′ on b that inherits tkn.DL and tkn.DLH (line 10).
If m.evnt = b, we remove m from tkn′.DL and m.ptr from tkn′.DLH (line 11), since this
deadline is no longer relevant. Furthermore, every overpassing edge that going from bmay
contribute a deadline to tkn′.DL: for every overpassing edge e = (b,c,w), we check if the
key c appears in tkn′.DLH (line 14). If it appears as (c,ptr1), let ptr1=m0= (c,dl,ptr0). If
t+w(e)< dl , we change the value of dl to t+w , and then move m0 up the heap until the
heap property holds (lines 16–18). If dl ≤ t+w(e), we do nothing. If c does not appear in
tkn′.DLH , we create twin elements m0= (c,t +w,ptr0) and m1= (c,ptr1), such that ptri
points to mi−1, and insert them in tkn.DL and tkn.DLH , respectively (lines 19–24). If type
is the first pattern event type, we create a new token with an attached heap and hash table
and add the appropriate deadlines (lines 25–26).

We handle the tokens by the events they reside, from late to early. The reason for this is
as follows: say we have tokens on events ai and ai+1, and the type of events ai+1 and ai+2
is type, now a type event occurs. If we handle the token on ai first, it will discard the token
on ai+1, though that token may spawn a token on ai+2. Thus, we lose a possible pattern
match.

The reason we spawn a new token tkn′ on ai+1 rather than moving tkn to ai+1 is that
ai+1 may occur again while tkn is still relevant. Thus spawning a new token tkn′′ with
different deadlines than those of tkn′. This algorithm ensures we detect the first instance
of the temporal pattern during an execution. If we wish to detect all instances, we cannot
discard a token (as in line 9), since it has a unique history, and may complete to a unique
instance of the temporal pattern. If max{w(ai,ai+1)|1≤ i≤ n−1} = k, then there are at
most O(kn) tokens at any point during the execution.

Note that the deadline scheme is efficient for a small number of overpassing edges. In the
worst case, we have an edge between all pairs of events that is a total of 2(n2) overpassing
edges in the graph. An update of a deadline in the heap and hash table is O(log(n)). Hence,
the total number of operations per token may be up to2(n2 · log (n)) for this scheme. Note:

Dolev et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.53 9/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.53

Figure 4 The deadline scheme is preferable.

Since we spawn tokens rather than moving them forward, per token here (and whenever
we spawn tokens) refers to a given series of tokens that complete a pattern match.
History scheme. Alternately, to the heap and hash table data structures, we may simply
keep a history of the time points when a token reaches events; each time a token is spawned
on an event, we compare the history with temporal constraints of overpassing edges whose
destinations are the current event. We call this scheme the history scheme. Since there are
n events and each time we check back against O(n) constraints, this adds up to O(n2)
operations per token, which is better than the deadline scheme. We note that in both cases
the token holds an associated data structure of O(n) space.

There is still the matter of whether we detect an obsolete token as soon as it becomes so.
For this to hold, we actually need to add overpassing edges to the graph after finding all
shortest paths between pairs of nodes, with an edge’s weight set to the shortest path weight.
The proof that this in fact ensures an earliest detection of an obsolete token is a special case
of Proposition 2.

On the opposite extreme, we may consider the case presented below in Fig. 4. Here,
according to the history scheme, we add overpassing edges with weight 100 between all
non-consecutive events. Thus, for a series of tokens spawning along the entire graph we will
have2(n2) checks against constraints of overpassing edges, and it will use2(n2) space. On
the other hand, if we do not add edges, but maintain a heap of deadlines as in the deadline
scheme, we will have only one deadline in the heap and one check against this deadline at
each event a token reaches. Thus, the tokens will have only 2(n) checks and will use only
2(n) space between them.

In fact, we used the history scheme in Alg. 1 to detect continuous pattern matches. We
can also benefit from using the deadline scheme to detect such patterns, when there are
few overpassing edges in the pattern graph.

What is the differential line between using one scheme and not the other? A
straightforward calculation follows. Let k be the number of overpassing edges in the
graph. Then in the deadline scheme, a token will have O(k · log (n)+n) operations. In the
history scheme we may have up to O(n2) overpassing edges as in the example in Fig. 4.
Thus a starting point for finding the differential line is k =O(n2/log (n)). Furthermore,
depending on the exact configuration of constraints and their values, it may be that in the
average case a token’s heap has constant size throughout the graph traversal, as in Fig. 4

Dolev et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.53 10/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.53

where k= 1. In this case, we have a better number of operations and space complexity for
the deadline scheme, namely O(n) and O(1), respectively.

Adding minimum constraints
We now broaden our scope by allowing input patterns with both maximum and minimum
constraints. We highlight the differences in definitions and notations that ensue. Here a
temporal pattern input is a triplet TP = (A,CMax,CMin). A is the sequence of events:
A= (a1,a2,...,an). CMax is a set of maximum temporal constraints (max constraints) on
A. An element of CMax is (ai,aj,t), where t is the maximum time allowed between ei and
ej . CMin is a set of minimum temporal constraints (min constraints) on A. An element of
CMin is (ai,aj,t), where t is the minimum time allowed between ei and ej .

We note that a temporal constraint may be 0 or∞. Furthermore, one may change the
model slightly by allowing only strictly positive time intervals for the min constraints,
i.e., each constraint is of value at least 1. This simply amounts to adding the constraints
(ai,ai+1,1) to CMin for every 1< i< n−1. In general, we may define in our model (or
get a restriction as input) that all constraints must be in the time window (m,M) for some
m,M ∈N where m6M . This amounts to adding the constraints (ai,ai+1,m) to CMin and
(ai,ai+1,M) to CMax for every 1< i< n−1.
Preprocessing phase. The definition of a history fitting a temporal pattern is similar
to ‘Maximum constraints,’ only the history should adhere to both min and max
constraints. We describe the preprocessing process. We build a weighted, directed graph
G= (A,E), where nodes are the events in A, and edges are E = {(ai,aj,t)|(ai,aj,t) ∈
CMax}

⋃
{(aj,ai,−t)|(ai,aj,t)∈CMin}. Also, there’s an edge (ai,ai+1,∞) or (ai+1,ai,0)

for consecutive events without a constraint in CMax or CMin, respectively. The purpose
of this construction is again to utilize the Floyd–Warshall algorithm for finding all shortest
paths. Here we will have a ‘‘window of opportunity’’ for every pair of events ai and aj
that will indicate the exact time frame in which a token residing on ai must reach aj to
hold by the constraints. We call this window a time window for ai and aj . We run the
Floyd–Warshall algorithm to find the shortest paths between all pairs of nodes in G. Our
purpose is to contract the time windows as much as possible for all pairs of events. An
example graph is depicted in Fig. 5.
Time windows. Next we define the time windows. Let min(a,b) be the weight of the
shortest (a,b)-path. For all 1< i< j < n: tw(ai,aj)= (−min(aj,ai),min(ai,aj)). We denote
the set of all time windows of TP as TW (TP). ai and aj are called the source and destination
of tw(ai,aj) respectively, and are denoted by src(tw) and dst (tw), respectively. The first
index of a time window tw is called the lower bound of tw , denoted as tw . The second
index is called the upper bound, denoted as tw . A time window between consecutive
events ai and ai+1 is called a simple time window. If twi(ai,bi) and twj(aj,bj) are time
windows such that (aj ∼< ai∨ aj = ai)∧ (bi ∼< bj ∨ bi = bj), we say that twi is subsumed
by twj . If H is a history and tw is a time window between events a and b, then H (tw)
denotes H (a,b). Formally, we define CMax ′ = {(ai,aj,min(ai,aj)|ai,aj ∈ A,ai ∼< aj)},
CMin′= {(ai,aj,−min(aj,ai)|ai,aj ∈A,ai ∼< aj)}, and TP ′= (A,CMax ′,CMin′), and show

Dolev et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.53 11/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.53

Figure 5 A graph for max andmin constraints temporal pattern. The shortest (b,d)-path, ((b,e)(e,d)),
has weight 20. The shortest (d,b)-path, ((d,e)(e,b)), has weight−15. Following the preprocessing phase,
we get that tw(b,d)= (15,20).

thatTP ≡TP ′.TP ′ is in fact the temporal constraints closure ofTP . These updatesmaintain
temporal constraint semantics (Proposition 2).

Another case to consider is whether the temporal pattern is consistent; whether
there is a history that fits the pattern. If, for example, we have the constraints:
(a,b,10),(b,c,7)∈CMax , and (a,c,24)∈CMin, there is a contradiction in the temporal
semantics of the temporal pattern, and no history can fit the pattern. However, not all
contradictions may manifest in so obvious a fashion. Fortunately, this happens exactly
when there is a negative cycle (a cycle with negative weight) in G, something we can detect
with a slight modification of the Floyd–Warshall algorithm.

Proposition 2 Let TP and TP ′ be the temporal patterns before and after the executing
preprocessing, respectively. Then the following properties hold:
Equivalence: TP ≡TP ′.
No-Negative: There exists a history H that fits TP⇐⇒ there is no negative cycle in G.
Minimality: Assuming there is no negative cycle in G, then: TP ′ is the minimal graph that
is equivalent to TP, i.e., any further contraction of any time window in TP ′ will result in a
temporal pattern TP ′′ that is not equivalent to TP ′.

See Appendix S2 for proof. A different form of the proof has appeared in the framework
of Temporal Constraint Networks (Dechter, Meiri & Pearl, 1991), and in particular the
no-negative result has appeared in Leiserson & Saxe (1983); Liao & Wong (1983).
On-line detection phase. First, we observe that, unlike Alg. 2 (lines 8–9), an older token
from ai+1 cannot be discarded when a new token is spawned, as the older token may
complete a pattern match while the new one does not, and vice versa. See Fig. 6 for an
illustrating example.

Furthermore, we do not have overpassing edges as in ‘Maximum constraints’, but rather
time windows. In other words we have overpassing max and min edges between all pairs of
non-consecutive events, i.e., 2(n2) overpassing edges. As shown in Proposition 2, a token
on an event ai whose history satisfies the temporal constraints of ai with a1,...ai−1 may

Dolev et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.53 12/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.53/supp-4
http://dx.doi.org/10.7717/peerj-cs.53

Figure 6 An example of a temporal pattern for min andmax constraints after preprocessing.Given the
history ((a,0),(b,6),(b,9)) we have two tokens on b with different histories. If (c,13) occurs z1 will ad-
vance while z2 will not, and if (c,17) occurs z2 will advance while z1 will not.

complete a pattern match. Hence, if we use the history scheme in keeping a history for each
token, whenever the token reaches an event we can check back against constraints with
earlier events. Such a simple scheme ensures the earliest detection of an obsolete token.
This amounts to keeping an O(n) space history per token, and performing O(n2) total
checks per token that traverses the entire graph. Since we have 2(n2) overpassing edges,
it seems at a first glance that the deadline scheme is not efficient, since we have n2 · log (n)
operations and O(n) space per token, as in ‘Maximum constraints.’

However, if we examine the temporal pattern depicted in Fig. 4 where all min constraints
are 0, we see that we need to save only one deadline for a token and perform O(n) checks
in total, which is better than the history scheme. Defining all time windows is unnecessary
and is in fact a hindrance, since the time windows do not add information; the given graph
already follows the temporal constraints closure of the temporal pattern. Using the history
scheme here is inefficient: Roughly speaking, as the graph gets richer with more max and
min constraints, the history scheme becomes more plausible, since the preprocessing phase
will yield much more information in the form of contracted time windows.

PREDICTION AND ALERT OF A NEAR PATTERN MATCH
We conduct an analysis to estimate the chances of a token representing a partial pattern to
complete a pattern match, henceforth the token’s completion probability. We assume events
of all types have equal probability p of occurring at any time point.
Probabilistic settings. Our computation advances in parallel to the chronological order
of the pattern events. For each event we reach, we examine the distinct possibilities of the
next event (or rather, its type) occurring in the desired time frame—in the necessary time
window. We start with a basic example to illustrate the computation process.

Assume we have a two event temporal pattern with events a0,a1 and a time window
tw(a0,a1)= (m,M). Let a0 occur at time 0, so that we have a token on a0 representing
a partial pattern P0. We have M −m+ 1 distinct possibilities for P0 to complete. The
probability of a1.type not occurring at times m,m+1,...,m+ j−1 and occurring at time
m+ j for some 0≤ j ≤M−m, is (1−p)jp. We define pj = (1−p)jp. We shall also refer to
elements of the form pj as probability factors.

Dolev et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.53 13/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.53

Now, assume we have a temporal pattern TP with n+1 events, a0,...,an. We start with
a simple example where the pattern graph has only simple edges (for both max and min
constraints). In such a case, if the probability of a token advancing from a0 to a1 is p(1) and
the probability of it later advancing from a1 to a2 is p(2), then the probability of the token
getting from a0 to a2 is p(1) ·p(2). The overlying fact that governs this result is the lack of
dependencies between the two advancement steps, which is in turn due to the lack of an
overpassing edge that encompasses the interval of events from a0 to a2. To generalize, if
the probability of a token advancing from ai−1 to ai is p(i), then we get in this case that the
completion probability of a token at the beginning of the temporal pattern is

∏n
i=1p(i). If

tw(ai−1,ai)= (mi,Mi), 0≤ i≤ n−1, then we get that the precise completion probability is∏n
i=1

∑Mi−mi
j=0 (1−p)jp= pn

∏n
i=1[1− (1−p)

Mi−mi+1].
Now, assume we have some general pattern where there may be overpassing edges

in the pattern graph. Say we have a token residing on ai, with a partially fitting history
H ={(ar ,tr)}ir=0:H may (and probably does) limit the times at which the token may reach
subsequent events. In other words, it further contracts the time windows of TP for this
token. Next, we examine how a token’s history impacts the subsequent time windows and
the computation of the token’s completion probability.

History restrictions and induced pattern graphs
First we provide some notational groundwork. Let TP = (A,CMax,CMin) and let C(H)=
{(ai,ai+1,H (ai,ai+1))}r−1i=0 . We define TP|H = (A,CMax ∪ C(H),CMin ∪ C(H)). In
other words, C(H) is the set of constraints defined by the history H , and TP|H is the
restriction of TP to temporal patterns that admit only histories that contain H as their
fitting histories. We define G(TP) as the graph (A,E), where the nodes in A are the events
of TP , and the edges are E = {−tw(aj,ai)}1≤i≤j≤n

⋃
{tw(ai,aj)}1≤i≤j≤n. In other words,

G(TP) is the pattern graph induced by TP∗ (the closure of TP , see ‘Adding minimum
constraints’). For a pattern graph G= (A,E) and a partially fitting history H , we define
EMax = {(ai,ai+1,H (ai,ai+1)}1≤i≤|H |−1,EMin= {(ai+1,ai,−H (ai,ai+1)}1≤i≤|H |−1, and
G|H = (A,E∪EMax∪EMin).

Illustrations of a temporal pattern graph and its restriction to a history are shown in
Figs. 7 and 8, respectively.

Note that the new edges defined by H replace the old ones (they are more restrictive).
Simply put, the induced graph represents a new temporal pattern that includes H in its
account of temporal constraints. If the time that passed between events ai and ai+1 in H is
t , and if we wish to define a new temporal pattern that admits only histories containing H
as a subset, we should add the (both max and min) temporal constraint (ai,ai+1,t).

In order to compute the time window defined byH between events ar and ar+1, we need
to find the shortest (ar ,ar+1)-path and (ar+1,ar)-path in G|H . If the probability of this
distinct history is p(H)= pj1pj2 ...pji , and the time window defined by H for reaching ai+1
is of size k ′, then we have k ′+1 branchings of possible continuations ofH and appropriate
probability factors added to p(H). Namely, the branchings and their probabilities are
pj1pj2 ...pjipjl , 0≤ j ≤ k ′. If

∑l
i=1 ji= j, we denote pj1pj2 ...pjl =

∏l
i=1(1−p)

jip= pl ·(1−p)j

as p∗l,j . If l is clear from the context, we simply write p∗j .

Dolev et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.53 14/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.53

Figure 7 A temporal pattern graphG(TP).

Figure 8 A history-restricted pattern graph. The graph G(TP|H) of TP ’s restriction to the history H =
((a,0),(b,7),(c,18)).

Thus, if we have a token residing on the first event of a temporal pattern and we wish
to compute its completion probability, we should sum up all the possible history branches
and their probabilities. We can envision this branching computational process as a tree
of histories, where each (full and fitting) history will be a path from the root of the tree
to a leaf, representing a distinct probability of a token completing to a pattern match. We
therefore sum all the possibilities (defined by distinct histories) of a token completing to a
pattern match, and add-up to get the desired completion probability of the token.

We recall the definition of a temporal pattern’s girth: g (TP)=max{tw− tw+1|tw ∈
TW (TP)∧ tw is a simple time window}. Thus, for a temporal pattern TP with n events,
and g (TP)= k, the calculation of the completion probability for a token on the first event
will take O(d ·kn) time, where d is the time it takes to compute the shortest (ai,ai+1)-path
and (ai+1,ai)-path for every 1≤ i≤ n−1.

Dolev et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.53 15/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.53

Figure 9 An illustration of the shortest paths induced by a history. An illustration of the shortest paths
induced by H. 1. illustrates the shortest (ar ,ar+1)-path and 2. illustrates the shortest (ar+1,ar)-path.

A more tractable problem is predicting the completion probability of a token residing
on an event ai, where n− i is bounded by some small l . We then get an O(d · k l) time
complexity for calculating a token’s completion probability. Hence, for a small enough l ,
say l =O(logkn), we get a time complexity of O(d ·n). To generalize, if l =O(polylogk(n)),
we get a time complexity of O(d ·poly(n)).

Recomputing the shortest paths between consecutive events
Finding the size of the next time window at each level of the probability tree can be done
in linear time due to the following fact: The shortest (ar ,ar+1)-path and (ar+1,ar)-path in
G(TP|H) for some 1≤ r ≤ n−1 and a partially fitting history H = ((ai,ti))ri=1 must take
the form of using a series of edges out of the new simple edges induced by H and a single
overpassing edge from the beginning of this series to ar+1. Fig. 9 is an illustration of these
paths.

The following lemma formalizes this fact.

Lemma 3. Let TP be a temporal pattern, and let H = ((ai,ti))ri=1 for some 1≤ r ≤ n−1 be
some partially fitting history of TP. Then the following hold:
• The shortest (ar ,ar+1)- path in G(TP|H) is ((ar ,ar−1,H (ar−1,ar)),(ar−1,ar−2,H (ar−2,
ar−1)),...,(aj+1,aj,H (aj,aj+1)),(aj,ar+1,w)) for some 1≤ j ≤ r , where (aj,ar+1,w) is a
maximum constraint in TP∗.
•The shortest (ar+1,ar)- path in G(TP|H) is ((ar+1,aj,w),(aj,aj+1,H (aj,aj+1)),(aj+1,aj+2,
H (aj+1,aj+2)),...,(ar−1,ar ,H (ar−1,ar))) for some 1≤ j ≤ r , where (ar+1,aj,−w) is a
minimum constraint in TP∗.

See Appendix S2 for proof.
As a result of Lemma 3, we get that computing the completion probability of a token

residing on an event ai in a temporal pattern TP , where n− i is bounded by some small

Dolev et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.53 16/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.53/supp-4
http://dx.doi.org/10.7717/peerj-cs.53

l takes O(n ·k l) time complexity, where k = g (TP). If l =O(logkn) we get an O(n2) time
complexity. Generally, if l =O(polylogk(n)), we get a time complexity of O(poly(n)).

Also note that if l and k are bounded, we get a time complexity that is linear in n.

Aggregating completion probabilities
We summarize how the completion probability can be computed using a polynomial-
size data structure to reduce the number of arithmetic computations. Due to space
considerations, the complete algorithm is not shown.

We recall our discussion of the tree of histories which we call a probability tree. Each
history is a path from the root down to a leaf. The root represents the token’s relative zero-
time, i.e., the time from which we wish to compute the token’s completion probability. An
edge Pxi to a node in the tree represents a time point with a shift of xi time points relative
to the beginning of the current time window, contributing a factor of pxi to the current
probability path. The set of a node’s children in the tree represents the different possibilities
of the current history’s continuation. In other words, suppose the current probability path
counts the factors px1px2 ...pxd = pd(1− p)

∑d
i=1xi . If we compute x =

∑d
i=1xi, we have∏d

i=1pxi = p∗d,x . Suppose the next time window is of size k ′, then the edges to the current
node’s children are P0,P1,...,Pk ′ , and continuing along an edge Pxd+1,0≤ xd+1≤ k ′ adds
the factor pxd+1 to the above multiple, yielding pd+1(1−p)

∑d+1
i=1 xi = p∗d+1,x+xd+1 .

What we get here is in fact multiple paths that lead to the same probability. Let T be a
probability tree, and let Paths(T) be the set of rooted paths in T ending in a leaf. Then the
token’s completion probability equals

∑
P∈Paths(T)p

∗

ρ(P), where ρ(P) denotes the value of
the last node in P .

Furthermore, if TP is the temporal pattern and k = g (TP), then the maximal value of
a leaf is k · l , since every node along a path from the root to the leaf contributes at most a
factor of p∗k . Hence, there are at most k · l+1 leaves and we can use an array of size k · l+1
to count the instances of every p∗j , 0≤ j ≤ k · l .

CONCLUDING REMARKS
In this work we introduced a novel framework for monitoring real-time systems for
undesired behavior, based upon specifications given as temporal patterns. The system
specifications are described using temporal constraint semantics. Instead of modeling and
searching the system for its entire state-transition graph, as done in model checking, we
proposed an approach to verify sequence of system events at runtime with time restrictions
over the events. We devised a process for finding the closure of the temporal constraints
semantics to reduce the pattern constraint set while maintaining the temporal constraint
semantics, and provided different schemes for on-line detection of temporal patterns. The
earliest possible notification on completed patterns helps the system to reduce number of
comparisons during systems’ pattern match execution. An analysis is provided to predict
and estimate the chances of a token representing a partial pattern to complete a pattern
match.

A summary of complexity measures for handling different pattern types and schemes is
shown in Table S1.

Dolev et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.53 17/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.53/supp-1
http://dx.doi.org/10.7717/peerj-cs.53

Specifications of properties for on-line verification may be more complex. Hence,
another line of research may broaden the input scope of temporal patterns as boolean
formulae, where constraints are variables and histories are assignments. We say H fits a
temporal pattern formula if it evaluates to True under H . We define the language TP-SAT
as all temporal pattern formulae TP , such that there exists a history H that fits TP .
TP-SAT ∈NP , and it is easy to show by a reduction from SAT that TP-SAT is NP-Hard.
However, some families of formulae may be tractable. The DNF formulae, for example,
may be seen as a collection of regular temporal patterns with the same sequence of events
(albeit different temporal constraints), and handled accordingly.

Furthermore, the probabilistic settingsmay be expanded to include different probabilities
for different event types, though the computations would be similar. Setting non-uniform
distributions on the other hand may necessitate a different approach.

ACKNOWLEDGEMENTS
We thank the editor and all the reviewers for their valuable suggestions and ideas to improve
the standards of the paper.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work is partially supported by Deutsche Telekom, the Rita Altura Trust Chair in
Computer Sciences, the Lynne and William Frankel Center for Computer Sciences, the
Israel Science Foundation (grant number 428/11), the Cabarnit Cyber Security MAGNET
Consortium, a grant from the Institute for Future Defense Technologies Research named
for the Medvedi of the Technion, the Israeli Internet Association, and the Israeli Defense
Secretary (MAFAT). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Deutsche Telekom.
Rita Altura Trust Chair in Computer Sciences.
Lynne and William Frankel Center for Computer Sciences.
Israel Science Foundation: 428/11.
Cabarnit Cyber Security MAGNET Consortium.
Institute for Future Defense Technologies Research.
Israeli Internet Association.
Israeli Defense Secretary (MAFAT).

Competing Interests
Shlomi Dolev is an Academic Editor for PeerJ Computer Science.

Dolev et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.53 18/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.53

Author Contributions
• Shlomi Dolev and Rami Puzis contributed reagents/materials/analysis tools, wrote the
paper, reviewed drafts of the paper, proofs and algorithm analysis.
• Jonathan Goldfeld contributed reagents/materials/analysis tools, wrote the paper,
prepared figures and/or tables, performed the computation work, reviewed drafts of the
paper, proofs and algorithm analysis.
• Muni Venkateswarlu K. wrote the paper, prepared figures and/or tables, reviewed drafts
of the paper.

Data Availability
The following information was supplied regarding data availability:

The research in this article did not generate any raw data.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.53#supplemental-information.

REFERENCES
Alur R, Courcoubetis C, Dill D. 1993.Model-checking in dense real-time. Information

and Computation 104(1):2–34 DOI 10.1006/inco.1993.1024.
Andreas B, Martin L, Christian S. 2010. Comparing LTL semantics for runtime verifica-

tion. Journal of Logic and Computation 20(3):651–674 DOI 10.1093/logcom/exn075.
Baldan P, Corradini A, Konig B, Lafuente AL. 2006. A temporal graph logic for

verification of graph transformation systems. In: 18th international workshop on
algebraic development techniques, 1–20.

Barnett M, SchulteW. 2003. Contracts, components, and their runtime verifica-
tion on the .NET platform. Journal of Systems and Software 65(3):199–208
DOI 10.1016/S0164-1212(02)00041-9.

Bauer A, Leucker M, Schallhart C. 2011. Runtime verification for LTL and TLTL. ACM
Transactions on Software Engineering and Methodology 20(4): Article 14.

BlumM,Wasserman H. 1997. Software reliability via run-time result-checking. Journal
of the ACM 44(6):826–849 DOI 10.1145/268999.269003.

Brukman O, Dolev S. 2006. Recovery oriented programming. In: Proceedings of the 8th
international symposium on stabilization, safety, and security of distributed systems
(SSS 2006), LNCS, vol. 4280. New York: Springer, 152–168.

Brukman O, Dolev S. 2008. Self-* programming run-time parallel control search for
reflection-box. In: Proceedings of the 6th NASA langley formal methods workshop. A
poster in the Second IEEE international conference on self-adaptive and self-organizing
systems, (SASO) 2008. Piscataway: IEEE.

Brukman O, Dolev S, Kolodner E. 2008. Self-stabilizing autonomic recoverer for
eventual byzantine software. Journal of Systems and Software 81:2315–2327
DOI 10.1016/j.jss.2008.04.028.

Dolev et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.53 19/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.53#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.53#supplemental-information
http://dx.doi.org/10.1006/inco.1993.1024
http://dx.doi.org/10.1093/logcom/exn075
http://dx.doi.org/10.1016/S0164-1212(02)00041-9
http://dx.doi.org/10.1016/S0164-1212(02)00041-9
http://dx.doi.org/10.1145/268999.269003
http://dx.doi.org/10.1016/j.jss.2008.04.028
http://dx.doi.org/10.1016/j.jss.2008.04.028
http://dx.doi.org/10.7717/peerj-cs.53

Burch JR, Clarke EM,McMillan KL, Dill DL, Hwang LJ. 1992. Symbolic model
checking: 1020 states and beyond. Information and Computation 98(2):142–170
DOI 10.1016/0890-5401(92)90017-A.

Clarke EM, Grumberg O, Peled DA. 1999.Model checking . Cambridge: MIT Press.
Colombo C, Pace GJ, Schneider G. 2008. Dynamic event-based runtime monitoring

of real-time and contextual properties. In: 13th international workshop on formal
methods for industrial critical systems, 135–149.

CrochemoreM. 1988. String matching with constraints. In: Proc. MFCS’88 symp.
Lecture notes in computer science, Vol. 324. Berlin: Springer, 44–58.

Dechter R, Meiri I, Pearl J. 1991. Temporal constraint networks. Artificial Intelligence
49:61–95 DOI 10.1016/0004-3702(91)90006-6.

Dolev S, Stomp F. 2003. Safety assurance via on-line monitoring. Distributed Computing
16(4):269–277 DOI 10.1007/s00446-003-0089-5.

Dong Z, Fu Y, Fu Y, He X. 2005. Automated runtime validation of software architecture
design. In: Second international conference distributed computing and internet
technology—ICDCIT 2005, 446–457.

Groote JF, Kouters TWDM, Osaiweran A. 2012. Specification guidelines to avoid
the state space explosion problem. In: Processdings of the fundamentals of software
engineering . LNCS, vol. 7141. New York: Springer, 112–127.

Jin D, Meredith PO, Lee C, Ros u G. 2012. JavaMOP: efficient parametric runtime
monitoring framework. In: Proceedings of the 34th international conference on software
engineering , 1427–1430.

Laroussinie F, Markey N, Schnoebelen P. 2006. Efficient timed model checking for
discrete-time systems. Theoretical Computer Science 353(1):249–271
DOI 10.1016/j.tcs.2005.11.020.

Leiserson CE, Saxe JB. 1983. A mixed-integer linear programming problem which is
efficiently solvable. 204–213.

Leucker M, Schallhart C. 2009. A brief account of runtime verification. The Journal of
Logic and Algebraic Programming 78(5):293–303 DOI 10.1016/j.jlap.2008.08.004.

Liao YZ,Wong CK. 1983. An algorithm to Compact a VLSI symbolic layout with mixed
constraints. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 2(2):62–69 DOI 10.1109/TCAD.1983.1270022.

Luo L. Software testing techniques: technology maturation and research strategies. In:
International Institute for Software Research. Pittsburge: Carnegie Mellon University.

Rafe V, Rahmani M, Rashidi K. 2013. A survey on coping with the state space explosion
problem in model checking. International Research Journal of Applied and Basic
Sciences 4(6):1379–1384.

Zeigler B, Kim TG, Praehofer H. 2000. Theory of modeling and simulation. Second
edition. New York: Academic Press.

Zhao Y, Rammig F. 2012. Online model checking for dependable real-time systems. In:
15th IEEE international symposium on object/component/service-oriented real-time
distributed computing . Piscataway: IEEE, 154–161.

Dolev et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.53 20/21

https://peerj.com
http://dx.doi.org/10.1016/0890-5401(92)90017-A
http://dx.doi.org/10.1016/0890-5401(92)90017-A
http://dx.doi.org/10.1016/0004-3702(91)90006-6
http://dx.doi.org/10.1007/s00446-003-0089-5
http://dx.doi.org/10.1016/j.tcs.2005.11.020
http://dx.doi.org/10.1016/j.jlap.2008.08.004
http://dx.doi.org/10.1109/TCAD.1983.1270022
http://dx.doi.org/10.7717/peerj-cs.53

FURTHER READING
Kim P,Williams BC, AbramsonM. 2001. Executing reactive, model-based programs

through graph-based temporal planning. In: Proceedings of the 17th international
joint conference on Artificial intelligence, 487–493.

Dolev et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.53 21/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.53

