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ABSTRACT
Complex scientific experiments from various domains are typically modeled as
workflows and executed on large-scale machines using a Parallel Workflow
Management System (WMS). Since such executions usually last for hours or days,
some WMSs provide user steering support, i.e., they allow users to run data analyses
and, depending on the results, adapt the workflows at runtime. A challenge in the
parallel execution control design is to manage workflow data for efficient executions
while enabling user steering support. Data access for high scalability is typically
transaction-oriented, while for data analysis, it is online analytical-oriented so that
managing such hybrid workloads makes the challenge even harder. In this work,
we present SchalaDB, an architecture with a set of design principles and techniques
based on distributed in-memory data management for efficient workflow
execution control and user steering. We propose a distributed data design for scalable
workflow task scheduling and high availability driven by a parallel and distributed
in-memory DBMS. To evaluate our proposal, we develop d-Chiron, a WMS designed
according to SchalaDB’s principles. We carry out an extensive experimental
evaluation on an HPC cluster with up to 960 computing cores. Among other
analyses, we show that even when running data analyses for user steering, SchalaDB’s
overhead is negligible for workloads composed of hundreds of concurrent tasks
on shared data. Our results encourage workflow engine developers to follow a parallel
and distributed data-oriented approach not only for scheduling and monitoring but
also for user steering.

Subjects Databases, Distributed and Parallel Computing
Keywords Parallel workflow management systems, Task scheduling, User steering, Distributed
database, In-memory database

INTRODUCTION
With the evolution of computational tools and hardware, the ever-growing amount of
data, and the increasing use of machine learning methods, more and more scientists from a
wide variety of domains both in industry and academia have been using large-scale
computers to conduct their experiments. A widely adopted strategy is to model the
experiments as workflows and execute them using Parallel Workflow Management
Systems (WMSs) on large-scale machines, such as High-Performance Computing (HPC)
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clusters (Deelman et al., 2017). Since these workflows typically execute for long hours
or even days, users cannot wait until the end of the execution to start analyzing the
workflow data and fine-tune parameters and convergence settings (Atkinson et al., 2017;
Deelman et al., 2017). Despite solutions for self-tuning based on machine learning (Shu
et al., 2020), decisions like changing convergence values, the number of iterations, or levels
of interpolation still need human interference, which complements AI-based solutions
(Gil et al., 2019; Wang et al., 2019). Supporting user steering in scientific experiments
allows users to run data analyses at runtime (e.g., inspect, debug, visualize, monitor) that
may lead to dynamic adaptation of aspects of the workflow (e.g., change the input data,
parameters, convergence criteria) (Cario & Banicescu, 2003; Foster et al., 2017; Klijn et al.,
2019; Marchant et al., 2020; Mattoso et al., 2015).

In our past work with Chiron WMS (Ogasawara et al., 2011; Ogasawara et al., 2013),
we have shown how users can have a better understanding of the data being processed
in their experiments while the workflows are executing (Silva et al., 2017; Silva et al., 2020).
Then, based on such understanding, users may decide to dynamically adapt the workflow,
such as reduce datasets (Souza et al., 2020), change user-defined loop conditions (Dias
et al., 2015), and parameters (Camata et al., 2018; Souza et al., 2019). Chiron adopts
an integrated data management solution to store data dependencies, execution data,
domain data, and provenance data all together in the same database available for
monitoring and user steering. Suppose a parallel parameter sweep workflow with an
Activity 1 that uses a parameter X to calculate a value Y, and an Activity 2, chained with
the Activity 1, that delivers a result Z for each input data of Activity 1. Chiron can answer
queries like: “What is the current average value for parameter X leading to the best Z
results?” or “List the status information about the five computing nodes with the greatest
number of Activity 1 tasks that are consuming input data that contain parameter X values
greater than 70.” These are simple examples of analytical queries that can get overly
complex as the user explores the data in an ad-hoc way, requiring several joins involving
scheduling tables and different provenance tables. However, Chiron employs a centralized
execution control to schedule tasks, which limits its scalability.

WMSs that are able to scale to thousands of CPU cores in HPC clusters, such as
EMEWS (which runs on top of Swift/T) (Ozik et al., 2018; Wozniak et al., 2013) and
Pegasus (Deelman et al., 2020; Deelman et al., 2015), do not allow for user steering.
Scalable workflow executions on HPC clusters require managing several types of data,
e.g., work queues, task data, performance data, provenance data, and other related data
structures used by the workflow execution. Scheduling is fundamental for efficiency and is
driven by work queues, table of events, execution status, and mapping data to tasks
(Anglano et al., 2006). This is particularly critical in Many-Task Computing (MTC) (Raicu,
Foster & Zhao, 2008) applications, where thousands of parallel tasks must be scheduled to
multiple computing nodes, and each task consumes input data, performs computations,
and produces vast amounts of data (Raicu, Foster & Zhao, 2008). Since these features
are efficiently supported by DBMSs, WMSs like Pegasus (Deelman et al., 2020; Deelman
et al., 2015) have migrated their task queue scheduling management to a DBMS, but
register data for user analyses in a separate and different DBMS. The EMEWS workflow
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system (Ozik et al., 2018) makes data available for queries only after the workflow
execution finishes and Pegasus has recently provided a user monitoring dashboard, but
it is disconnected from the workflow engine data. This user data monitoring approach
prevents the WMS from having the human in the loop of the workflow execution, which
is essential for steering. Although user steering has been addressed for decades in
computational steering environments, portals, and application-specific systems (Mulder,
van Wijk & van Liere, 1999) it is still an open problem in the scientific workflow
community (Atkinson et al., 2017; Deelman et al., 2017; Ferreira da Silva et al., 2017;
Mattoso et al., 2015). To the best of our knowledge, there is no scalable workflow execution
management approach capable of integrating, at runtime, execution, domain, and
provenance data aiming at supporting user steering.

In this work, we propose a generic architecture with a set of design principles and
techniques for integrating workflow scheduling data management with provenance and
domain data to provide for an efficient user steering support. We call it SchalaDB: scalable
workflow scheduling driven by an in-memory distributed DBMS. The data shared by
scheduling and provenance is only written once, avoiding redundant operations and
having less data movements. Also, the same DBMS cache can improve main memory
access. Even though task queue data and provenance data are small in terms of size, their
data management during the workflow execution is quite complex. The DBMS has to be
efficient both for analytical queries and for concurrent update transactions. As discussed
by Chavan et al. (2018), the distributed in-memory DBMS approach is efficient even
with mixed transactional and analytic workloads. A distributed data design is elaborated
for providing data to scalable workflow task scheduling and high availability. Data
extraction and ingestion at the DBMS allow for execution, provenance, and domain data to
be available for runtime analytical queries, enabling users to adapt the workflow execution
and improve its overall execution time based on steering.

To evaluate our approach, SchalaDB’s design principles are implemented in Chiron
WMS. Chiron’s engine is modified by replacing its centralized task scheduler with a
distributed one that obtains data through an in-memory DBMS. We call d-Chiron the
resulting WMS that manages its data using SchalaDB principles (d-Chiron, 2021). In an
extensive performance evaluation, we run both synthetic and real workflow workloads on
an HPC cluster using up to 960 computing cores. Among other analyses, we show that
SchalaDB’s overhead is negligible for workloads composed of many concurrent long tasks,
typical in scientific workflows. Our results encourage workflow system developers to follow
a parallel and distributed data-oriented approach, such as SchalaDB, not only for
scheduling and monitoring, but also for user steering support.

The remainder of this paper is organized as follows. In “Data Management in
Large-scale Workflows”, we discuss the data that need to be managed during a scientific
workflow execution. In “SchalaDB: Scalable Distributed Data Management for Workflow
Executions”, we present SchalaDB design, architecture, and techniques. In “d-Chiron
WMS: An Implementation of SchalaDB”, we present d-Chiron as an implementation of
SchalaDB. In “Experimental Evaluation”, we show the experimental evaluation. In
“Related Work”, we show related work and we conclude in “Conclusion”.
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DATA MANAGEMENT IN LARGE-SCALE WORKFLOWS
Data management in large-scale scientific workflow execution is a major challenge because
it has to deal with several types of data. We can group these types of data into three
categories: (i) execution, (ii) domain, and (iii) provenance. In this section, we briefly
explain each of them. Although presented separately, we notice that those categories share
a lot of data (Ogasawara et al., 2011; Oliveira et al., 2010; Silva et al., 2017; Silva et al., 2020;
Souza et al., 2020). Storing them separately leads to data redundancy and lack of data
integration support for runtime data analysis.

Execution data
Task scheduling is a basic execution control functionality of any WMS. Other parallel
execution control features, such as availability and concurrency are also very important.
By providing efficient parallel access to execution data, there is less contention on
scheduling data structures. More specifically, work queue is the main data structure for
task scheduling in MTC, holding the list of tasks (following specific dependencies) to be
scheduled among the computing nodes (i.e., machine nodes composing an HPC cluster)
(Raicu, Foster & Zhao, 2008). Information such as which tasks should be scheduled to
which computing nodes, number of tasks per node, tasks’ input data, tasks’ duration,
and how much memory or computing power were consumed are examples of execution
data to be managed in an MTC scheduler. Dedicated DBMSs have started to be used by
execution engines to manage scheduling.

Provenance data
Scientific workflows need provenance data, since they allow for analysis, quality
assessment, reliability, reproducibility, and reusability of the scientific results (Davidson &
Freire, 2008; Freire et al., 2008). Provenance data track which and how processes were
utilized to derive each data entity; keep data authorship; and provide powerful means for
analytical queries to perform data reduction, discovery and interpretation (Magagna et al.,
2020). Such features are considered as important as the scientific achievement itself,
since experiment’s reliability can be compromised otherwise (Freire et al., 2008).
Provenance data representation is much more than registering what was executed.
The W3C PROV (Groth & Moreau, 2013) recommendation allows for a generic and
uniform provenance data representation, which promotes interoperability and data
analyses in general. In scientific workflows, provenance data received PROV
specializations, like PROVOne (Butt & Fitch, 2020) and PROV-DfA (Souza & Mattoso,
2018) to cover information about workflows’ specifications, agents, activities and data
derivation paths. Provenance data management requires capturing data, explicitly relating
them to the workflow activities and efficiently storing these data to keep workflow high
performance execution.

Domain data
Although scientific domain data are typically managed by the simulation programs
composing the workflow, the WMS has to be aware of some of them to manage the
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dataflow and register provenance data. Enabling analyses with domain data enhances
analytical capabilities in a WMS. Defining how much domain data should be known by
the WMS and represented in the provenance database is challenging (Silva et al., 2017).

Domain data management in scientific workflows is intrinsically hard. The scenario
typically involves a high number of raw data files, multiple directories and subdirectories,
and a wide variety of file formats, such as text-based (CSV files and plain-text
matrices), and binary-based (like HDF5, FITS, NetCDF, and SEG-Y). Registering
pointers to these large raw data files with some relevant raw data related to the dataflow
is already a significant help in runtime workflow data analysis (Silva et al., 2017).

SCHALADB: SCALABLE DISTRIBUTED DATA
MANAGEMENT FOR WORKFLOW EXECUTIONS
SchalaDB is a reference architecture that follows a set of techniques, based on distributed
data management principles, for scalable user steering support of workflow executions.
Distributed workflow execution control requires managing a large work queue with
concurrent access as well as managing a variety of data about tasks, input and output
domain values, and provenance. Capturing, structuring and loading these data in a DBMS
for runtime data analyses is beneficial to users, but it may interfere on the workflow
execution performance. Our main goal with SchalaDB is to allow users to steer the
workflows, based on runtime analyses of its database, without harming the overall
workflow performance when capturing data for analysis. SchalaDB innovates by exploiting
an in-memory high-performance DBMS as an integrated data provider for workflow
execution and user steering. The motivations to use such a DBMS in SchalaDB are as
follows.

First, DBMSs already implement very efficient mechanisms that are essential in HPC,
such as concurrency control and fault recovery. Particularly, guaranteeing Atomicity,
Consistency, Isolation, and Durability (ACID) properties for update transactions is
useful when task-related data management suffers multiple concurrent updates on the
work queue during scheduling. DBMSs, especially those that are cluster-based, enable
robust parallel cache memory usage. Furthermore, data replication and partitioning into
multiple nodes are well studied and implemented in such DBMSs. A partitioned work
queue is potentially faster to query and update than a centralized one. Inserting and
removing tasks as well as querying parallel tasks’ status are operations directly handled by
the DBMS.

In the following sections, details about how SchalaDB combines high performance
with powerful data analyses support are given. “SchalaDB Architecture and Techniques”
presents SchalaDB architecture and shows how high performance data management
techniques can be used considering different levels of parallelism between workflow
execution and a DBMS; in “SchalaDB Techniques for Data Partitioning”, techniques on
how to partition and distribute data in our context—particularly the work queue—are
described; and, Section 3.3 shows how distributed data management can be used to
implement execution control relying on the DBMS
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SchalaDB architecture and techniques
Several execution control activities (e.g., scheduling, and availability) must be carried out
in the course of a workflow execution. After analyzing and comparing many WMS’
architectures, Liu et al. (2015) identify similarities between them and propose a generic
WMS Functional Architecture. Figure 1 shows this architecture, which comprises five
layers, each of them providing services to be used by the layer immediately above. One
layer, named “Workflow Execution Plan (WEP) Execution”, is dedicated to execution
control activities or modules: “scheduling”, “task execution” and “fault tolerance” (Liu
et al., 2015). Three layers lie above this one, showing how important these activities are to
WMSs. Thus, techniques to improve them, like those proposed by SchalaDB, benefit
WMSs in many ways.

SchalaDB also directly contributes to another layer of the WMS Functional Architecture
(Liu et al., 2015): the “User Services” layer, more specifically to its “workflow monitoring
and steering”, and “provenance data” modules. Supporting these kinds of services is
SchalaDB’s main goal. The “Presentation” layer has modules responsible for interfacing
between the end-users and the WMS. These are discussed in the next section, when
describing the implementation of SchalaDB in a WMS.

In this section, we give an overview of SchalaDB architecture and how it uses a
DBMS to explore workflow parallel execution control and different levels of parallelism.

In an in-memory DBMS, the nodes that run database operations are often called data
nodes, accessing the distributed memory. Each data node typically contains multiple cores.
The DBMS client nodes are called worker nodes. In a workflow execution, each worker
node also contains multiple cores for parallel and distributed computing of the scientific
workflow activities.

SchalaDB Architecture
In Fig. 2, we present SchalaDB architecture. Components responsible for workflow
execution control are organized as a multiple-master/multiple-worker nodes architecture.
Instead of having multiple workflow master nodes that actively distribute tasks for worker
nodes, SchalaDB adopts data nodes to manage data structures like the Work Queue
(WQ) that are queried by worker nodes that demand tasks. In SchalaDB, WQ data is
distributed across D data nodes. Each worker wi executes workflow tasks (the actual
scientific computation). The number of data nodes is typically much smaller than the

Presentation Layer

User Services Layer

WEP Generation Layer

WEP Execution Layer

Infrastructure Layer

Scheduling Task
Execution

Fault
Tolerance

Monitoring 
& Steering

Information
Sharing Provenance

Textual
UI

Desktop
Graphic UI

Web-portal
UI

Figure 1 WMS Functional Architecture (adapted from Liu et al. (2015)).
Full-size DOI: 10.7717/peerj-cs.527/fig-1
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number of worker nodes. The goal is to privilege workflow parallel execution rather than
the database operations, which are much smaller. Connectors are brokers that intermediate
the communication between the DBMS and other components. They are implemented
using DBMS drivers. Supervisor is responsible for adding tasks to the WQ. Secondary
supervisor eliminates the single point of failure by becoming the main supervisor in case
the original main supervisor crashes.

Allocation flexibility
Except for supervisors (one supervisor, one secondary supervisor), SchalaDB does not
require any specific number of components of each type, as long as there are at least one of
each. Also, more than one component may be allocated to the same physical node. While
this gives a lot of flexibility for workflow execution, these allocation choices may impact
performance. For higher availability and locality purposes, we recommend that each
physical node hosts no more than one component of each kind. For example, one given
physical node may run a data and a worker nodes, but neither two worker nodes nor two
data nodes.

Scheduling
Scheduling adopts a passive multi-master approach where worker nodes obtain tasks
from WQ by querying data nodes. By using a DBMS, the capability of serving multiple
concurrent requests from worker nodes is given. This approach differs from traditional
master-worker WQ implementations where worker nodes request tasks from a master
through regular message passing, such as MPI. By exploiting DBMS concurrency
control, SchalaDB avoids the overhead of developing concurrency control algorithms.
Therefore, having a distributed WQ (i.e., no centralized execution data) reduces
contention problems and improves workflow parallel execution performance. Even if
workflow executions of certain experiments do not demand a distributed WQ, having a
distributed in-memory DBMS to manage it would not negatively impact WMS

Figure 2 SchalaDB architecture. Worker nodes directly accessing the DBMS composed of data nodes.
Full-size DOI: 10.7717/peerj-cs.527/fig-2
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performance. Besides, such a WMS would already be prepared for more demanding
workloads.

Availability

Each SchalaDB component may be replicated for high availability. Regarding data
managed by the DBMS, data replication techniques can be directly employed for data
nodes automatic failure recovery. Considering worker nodes, each worker wi may improve
availability by connecting and querying the DBMS via different database connectors.
In Fig. 2, full gray lines represent links between worker nodes and their respective main or
primary connectors while dashed gray lines represent links between worker nodes and
their backup or secondary connectors. If a connector fails, all worker nodes connected to it
are switched to their secondary ones. Therefore, the secondary supervisor removes the
single point of failure from the supervisor node.

Worker nodes to connectors distribution
Connectors are usually responsible for just listening to connections from worker nodes.
We propose a simple strategy for distributing worker nodes to connectors. First, if a worker
node shares a physical node with a connector, then this is its primary connector. Then,
remaining worker nodes are distributed to connectors by using a simple round-robin
strategy.

Adherence to WMS functional architecture
As we can notice, SchalaDB architecture’s components implement all services or modules
described as part of the “WEP Execution” layer from WMS Functional Architecture (Liu
et al., 2015). Besides, having a WQ managed by a high-performance DBMS provides a
good basis for the implementation of the “workflow monitoring and steering” and
“provenance data” modules that belong to the “User Services” layer of the referred
architecture. WQ data is part of provenance data. The DBMS makes it possible to perform
complex queries and updates on such data at runtime, enabling workflow monitoring and
steering.

SchalaDB techniques for data partitioning
In this section, we explain SchalaDB design techniques for data partitioning. DBMSs
typically have several partitioning techniques like round-robin, hashing, and by value
ranges (Özsu & Valduriez, 2020). Considering the number of elements, WQ is typically the
largest scheduler data structure. Without loss of generality, we assume that a Relational
DBMS is used for managing workflow execution data. The same design techniques can
be employed with other data models. This way, we consider WQ is implemented as a
relation comprised by tuples representing tasks.

The first design step is about partitioning WQ data. Our proposal is to hash partition
WQ based on the worker identifier (id) assigned to the task. Considering a SchalaDB
architecture instance with W worker nodes, WQ has W partitions. The goal here is to
initially produce partitions with similar size. The second design step deals with allocating
WQ partitions, i.e., assigning partitions to data nodes. Database processing is much lighter
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than workflow execution. Therefore, there are usually much more partitions than data
nodes. Having more partitions than data nodes gives flexibility to implement more
sophisticated load balancing techniques without data transfer between data nodes and
avoids data transfer and communication overhead. The third design step is about defining
replicas. Replicating database relations may be advantageous for fault tolerance and
query processing. On the downside, worker nodes typically present highly concurrent
transactions during scheduling, as tasks are very often updated when scheduled, executed
and completed, which can be time consuming. Therefore, SchalaDB adopts one replica for
each partition.

Despite having different workers accessing the same data node, data parallelism is
improved when each worker node accesses its own WQ partition as different memory
spaces can be accessed in parallel for each partition. Local processing is also improved
because task lookup for each worker node will go straight to its partition instead of
searching in a potentially large shared partition. This also reduces race conditions among
different worker nodes, which otherwise would be competing for an entire WQ partition.
Each worker node wi gets or modifies tasks within its WQi partition by submitting
queries like “select/update the next ready tasks in the WQ where worker_id = i”. Figure 3
shows an excerpt of a WQ relation with execution data when a synthetic workflow
composed of three activities was running on a small cluster with two worker nodes, each
with two cores, and one data node. Thence, two worker nodes were running, each one on a
different computing node, and the single data node was managing the WQ with two
partitions. This is just an exemplary illustration of the WQ partitioning with execution
data.

D-CHIRON WMS: AN IMPLEMENTATION OF SCHALADB
Chiron WMS is open-source software and, to the best of our knowledge, it is the only
WMS that manages execution, domain, and provenance data, jointly, using a DBMS
(PostgreSQL) at runtime, thus enabling enhanced runtime data analyses through SQL.
Chiron provides W3C PROV compliant provenance data. Since Chiron is already based
on a DBMS, we opted for modifying its engine in order to produce, as a proof of concept, a
functional implementation of SchalaDB’s architecture and design principles. Such an effort
resulted in d-Chiron, a distributed WMS that uses SchalaDB design principles. MySQL

Task 
Id 

Act 
Id 

Worker 
Id 

Core Command Line Work 
space 

Fail. 
Trials 

Std Out Start Time End Time Status 

1 1 1 1 ./run a=1.3 b=27.75 c=16.21 /data/act1 0 x=18.71 y=6.77 2017-06-04 09:55:04 2017-06-04 09:55:58 FINISHED 
3 1 1 2 ./run a=0.67 b=19.18 c=24.26 /data/act1 0 x=4.58 y=0.39 2017-06-04 09:55:04 2017-06-04 09:55:59 FINISHED 
5 2 1 1 ./run a=1.9 b=17.96 c=23.92 /data/act2   2017-06-04 09:56:00  RUNNING 
7 2 1 2 ./run a=2.73 b=35.74 c=24.55 /data/act2 0 x=1.74 y=7.17 2017-06-04 09:55:59 2017-06-04 09:56:13 FINISHED 
9 3 1 1 ./run a=0.55 b=29.48 c=16.66 /data/act3     READY 

11 3 1 2 ./run a=2.6 b=30.1 c=13.66 /data/act3   2017-06-04 09:56:13  RUNNING 
2 1 2 1 ./run a=1.49 b=6.64 c=9.22 /data/act1   2017-06-04 09:55:04  RUNNING 
4 1 2 2 ./run a=0.17 b=30.65 c=12.61 /data/act1 0 x=8.08 y=8.5 2017-06-04 09:55:03 2017-06-04 09:56:04 FINISHED 
6 2 2 1 ./run a=0.54 b=23.45 c=24.57 /data/act2     READY 
8 2 2 2 ./run a=2.2 b=13.87 c=19.84 /data/act2   2017-06-04 09:56:05  RUNNING 

10 3 2 1 ./run a=0.48 b=18.39 c=16.79 /data/act3     READY 
12 3 2 2 ./run a=0.59 b=15.67 c=13.06 /data/act3     READY 

Figure 3 Excerpt of a WQ relation with 2 partitions. Background colors represent WQ partitions.
Full-size DOI: 10.7717/peerj-cs.527/fig-3
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Cluster (Oracle, 2020) was chosen as its DBMS because it is high performant in HPC, open
source, in-memory, distributed, and performs well both for update transactions and for
joining several tables in ad-hoc queries. This section explains what was modified in Chiron
to adhere to SchalaDB, originating d-Chiron.

Chiron and d-Chiron
With respect to the WMS Functional Architecture (c.f. Fig. 1 (Liu et al., 2015)), Chiron has
some modules in the “Presentation” layer that facilitate its usage in HPC clusters. One
module helps users dispatch the WMS workers in the HPC cluster through a command
line interface (CLI), which is represented by “Textual UI” in the WMS Functional
Architecture. Also, there is a CLI to ease running steering queries to the database. Another
CLI in this layer helps users create domain data tables in the database. In the “WEP
Execution” layer, Chiron has the “scheduling” and “task execution” modules that
implement a centralized execution control with a master-worker scheduling design.
In Chiron, only the master node is able to access the centralized DBMS and to send
tasks to the workers using MPI. In d-Chiron, to implement SchalaDB, we did major
modifications in the “WEP Execution” layer of Chiron. More specifically, the execution
control and task scheduling in d-Chiron is distributed as the workers have now direct
access to the DBMS, using SQL queries, without needing to hop through a master.
d-Chiron also implements the supervisor and secondary supervisor nodes of SchalaDB.
Chiron and d-Chiron architectures are shown in Figs. 4 and 5, respectively.

In Fig. 6, we depict the differences between an MPI-driven master-worker scheduling,
typically found in many scheduling systems in HPC solutions, and a distributed and
parallel DBMS-driven distributed scheduling. In the later, there are less “proxies” between
a worker and their tasks, as shown by the numbered items in Fig. 6: each item is an
operation and its respective number, the order of execution. In d-Chiron (Fig. 6A), a
worker just needs to query the DBMS to get its tasks, update them, and store results.
Using a centralized architecture (Fig. 6B), as in Chiron, since the centralized DBMS
struggles to handle multiple parallel requests, there is the need for a master node to
alleviate a severe bottleneck at the centralized DBMS. In the centralized architecture, the
worker requests are first queued at the master, which submits queries to the centralized

Figure 4 Chiron centralized execution control. Full-size DOI: 10.7717/peerj-cs.527/fig-4
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DBMS according to this auxiliary queue. In the centralized design, an additional
acknowledgement message is needed so the worker can inform the master about tasks’
executions. In summary, because of SchalaDB, d-Chiron’s workers have direct access to
their tasks, whereas, in Chiron, the workers need to ask a centralized master for tasks.
Figures 6A and 6B show that scheduling centralization leads to an increase in the number
of processing steps; messages exchanged; complexity of implementation code regarding
scheduling; and to potential bottlenecks during workflow execution.

d-Chiron DBManager
Instantiating a DBMS in multiple computing nodes is time consuming and error-prone,
even for an experienced user. For this reason, we developed d-Chiron DBManager.
By using this component, the WMS designer simply needs to adjust installation
parameters, like how many of each DBMS components should be instantiated and on
which computing node each of them should run. DBManager automatically instantiates
MySQL Cluster, running its components in the appropriate computing nodes.

Figure 5 d-Chiron distributed control driven by the DBMS.
Full-size DOI: 10.7717/peerj-cs.527/fig-5

Figure 6 Comparison between centralized scheduling vs. DBMS-driven scheduling.
Full-size DOI: 10.7717/peerj-cs.527/fig-6
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We implemented a CLI for the DBManager component. An exemplary sequence of steps
for running a workflow from scratch on an HPC cluster in d-Chiron is shown in Fig. 7.
First, DBManager initializes all DBMS components in preconfigured computing nodes
(line 1). A user needs to run line 1 only once to initialize the WMS and DBMS processes
in the cluster. Then, the database is created (line 2). After that, workflow execution is
started (line 3). During workflow execution, the user may run steering queries, as
illustrated by line 4. After workflow completion and user’s analyses, the user may decide to
leave the DBMS up for future runs or, simply execute a shutdown command (line 5) to
safely shut down the DBMS.

Data partitioning in d-Chiron
Here we explain how we use MySQL Cluster to implement SchalaDB’s data partitioning
techniques in d-Chiron. Following SchalaDB techniques, the number of partitions is set
to W, the number of worker nodes. However, in MTC, several tasks are managed by
the same work queue partition. To reduce the impact caused by concurrent access to a
shared partition, the supervisor circularly assigns a worker id to each task. Then, each
worker wi gets or modifies tasks using queries with a selection predicate “where
worker_id = i”.

Additionally, data allocation is delegated to MySQL Cluster as it efficiently balances the
number of partitions per data nodes. We configure MySQL Cluster to replicate all relations
across computing nodes running with replication factor set to one, meaning that each
relation has one replica.

Finally, d-Chiron keeps the runtime analytical support previously available on Chiron.
Domain, execution, and provenance data are still being captured and managed, but in a
much more efficient and fault tolerant way.

EXPERIMENTAL EVALUATION
In order to assess the benefits of SchalaDB, we perform a series of experiments with
d-Chiron on an HPC cluster with up to 960 cores. This section describes the results
obtained and is organized as follows. In “Experimental Setup”, we present the experimental
setup. In “Scalability Analysis”, we analyze several workloads to understand the impact of
two dimensions in MTC workflows’ scheduling: number of tasks and task duration.
We evaluate long running tasks typical of scientific workflows as well as short running
tasks. In “Assessing DBMS Impact on Performance”, we analyze overhead incurred
by SchalaDB. Finally, in “Centralized vs. Distributed Execution Control and Task
Scheduling”, we show that our implementation of distributed in-memory data

1. $> ./DChironDBManager --start 
2. $> ./DChironSetup --create database 
3. $> ./DChironStarter --start 
4. $> ./DChironQueryProcessor --q "select * from workqueue where status = 'RUNNING' order by starttime" 
5. $> ./DChironDBManager --shutdown 

Figure 7 Typical steps for running a workflow with d-Chiron.
Full-size DOI: 10.7717/peerj-cs.527/fig-7
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management in SchalaDB outperforms the implementation of a scheduler that relies on a
centralized approach for the management of data for scheduling of parallel tasks by two
orders of magnitude.

Experimental setup
This section describes the workflow, workload, software and hardware resources used for
tests.

Workflow case study
Risers Fatigue Analysis Workflow (Souza et al., 2020) is a real case study from the Oil &
Gas industry. This workflow calculates the fatigue of ultra-deep oil platform structures,
such as risers. Input data that represent environmental conditions (e.g., as wind speed and
wave frequency) are combined to evaluate stress on the riser's curvatures using seven
linked workflow activities (Fig. 8). As it takes a long time to calculate the fatigue for
each environmental condition, users have to steer the execution so that some parameter
ranges may be pruned out of the execution (Souza et al., 2020). This parameter tuning
depends on several data analyses and cannot be pre-programed for automatic pruning.
In this workflow, computational engineers know how to fine tune input parameters
values based on the specific behavior of the current workload. That is, the number of
tasks the workflow is expected to run and how long each of them will take to perform
its part of the application computation (i.e., part of the processing that is exclusively related
to the application behavior rather than processing related to workflow execution control).
For this reason, this workflow is a good use case for our experiments, as we can vary such
parameters to generate synthetic workloads we need for the tests.

Workloads
Based on the Risers workflow specification we generated several synthetic workloads with
different combinations for the number of tasks and duration for the workflow activities.
We repeat the experiments until the standard deviation of workflow elapsed times are less
than 1%. The results are the average within the 1% margin.

Figure 8 Risers Fatigue Analysis workflow. Full-size DOI: 10.7717/peerj-cs.527/fig-8
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Software
We use Chiron and d-Chiron. Executables for both systems can be found in the GitHub
repository (d-Chiron, 2021). Chiron uses Postgres 9.5.1 and d-Chiron uses MySQL Cluster
7.4.9.

Hardware
The experiments are conducted on Grid5000 (www.grid5000.fr) using the StRemi cluster.
Hardware specification is described in Table 1.

Component-to-node allocation
During the experiments, unless otherwise specified, d-Chiron components are allocated to
the computing nodes in the cluster as follows. Each computing node runs a d-Chiron
worker. Besides, in one of the computing nodes in the cluster, a supervisor runs alongside
with a worker; and, in another node, a secondary supervisor runs alongside with a worker.
Two SchalaDB’s data nodes run on two other computing nodes in the cluster. Since the
database usually has small sizes even for large workloads, as it stores only workflow’s
metadata (preliminary experiments (Souza, 2015; Souza et al., 2015) show SchalaDB’s
database with tens of MB for large workloads), we opt for using only two nodes for running
in-memory data nodes with occasional on-disk checkpoints, which is the minimum to
achieve fault-tolerance. We set the maximum number of d-Chiron threads to be equal to
the number of cores of each computing node.

Scalability analysis
Scalability refers to the system’s ability to deal with a growth of either the computing nodes
(e.g., addition of nodes) or the workload (e.g., adding more data or tasks) (Hoefler & Belli,
2015). Varying the number of computing nodes is straightforward. With respect to
workload variation in MTC workflows, workloads are composed of thousands of tasks that
must run in parallel and each one may last for seconds, minutes, or even hours (Raicu,
Foster & Zhao, 2008). Usually, the longer the task, the more complex it is, requiring
complex scientific computations or extensive data manipulations.

We assess three types of scalability analysis: (a) Strong scaling (also known as
speedup test), which intends to analyze how workflow execution time varies when we
increase the number of computing nodes, but maintain the same workload. Ideally,
the performance increases proportionally to the amount of computing nodes added.
(b) Weak scaling, which intends to analyze how workflow execution time varies when
we proportionally increase both the number of computing nodes and the workload, so that
workload per processor remains constant. Ideally, the execution time should remain

Table 1 Hardware specification of the HPC cluster in Grid5000.

#Nodes #Cores
per node

Total
cores

RAM
per node

Processors Network Storage

42 24 960 48 GB AMD Opteron 6164
HE 1.7 GHz/12 MB

Gigabit
Ethernet

SATA AHCI & RAID-5
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constant. (c) Workload scalability, which refers to analyzing how workflow execution time
varies when we vary the workload but maintain the number of computing nodes fixed.
Ideally, performance’s variation should be proportional to workload variation. Since we
consider a workload as composed of two factors (task duration and number of tasks), we
can further fix one of them and increase the other in order to give finer understanding
about the system’s performance.

In the scalability analyses performed in this section, we set a base execution time for
comparisons. When the workload is small, it is possible to execute the system running on a
single CPU core and use this time as the base. However, most of the workloads used in
this section would take weeks or months to completely finish on a single core, prohibiting
this kind of execution. For this reason, in each experiment in this section we specify the
base result, e.g., when the least amount of parallel processes was used, and plot a linear
execution time according to this base time.

Experiment 1: Strong scaling with variation on the number of threads per
process
In this experiment, we investigate d-Chiron’s strong scalability and the impact caused by
concurrency on a larger cluster. Four cluster setups were employed: 120, 240, 480, and
960 cores (5, 10, 20 and 40 nodes, respectively). In order to investigate concurrency,
for each setup we executed experiments varying the number of threads used by each
worker: 12, 24 and 48 threads. Base execution time is set to the smallest number of cores
evaluated, i.e., 120 cores. We used a workload with 13 thousand tasks with mean task
duration of 1 min each. The results are in Fig. 9A, where we plot six curves: one for each
setting of number of threads per process, along with calculated execution time for each
setting if linear speedup was achieved. For simplicity, we refer to the latter curves as “linear
time” or “linear executions”, according to the context.

Figure 9A shows that d-Chiron speedup attains close to linear in almost all cases.
d-Chiron’s speedup was almost linear with 12 and 24 threads per process for all
configurations of nodes. However, it started to degrade speedup in the configuration with
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Figure 9 Scaling analyses: (A) strong scaling and (B) weak scaling.
Full-size DOI: 10.7717/peerj-cs.527/fig-9
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48 threads per process and 40 allocated nodes (i.e., 960 cores in x-axis) since the number of
threads was the double of the number of available cores (1920 SchalaDB workers).
Despite of this speedup degradation, strong scalability experiment provides an important
result, as we can use all CPU cores of a large cluster to perform the actual scientific
computation of the managed application and d-Chiron still maintains high scalability.

Experiment 2: Weak scaling
Now we analyze how d-Chiron performs when we add computing nodes as we add more
tasks to the workload. More specifically, we measure the execution time on 10 computing
nodes (240 cores), 20 nodes (480 cores), and 39 nodes (936 cores) running about six, 12,
and 23.4 thousand tasks, respectively. The mean task duration is one minute in these
workloads. Figure 9B shows the results, where the base time is for the smallest number of
cores tested (i.e., 240) and the linear time means that by doubling the workload and
number of computing nodes, ideally the execution time should remain constant. We use 24
threads per processor since it provided the best performance vs. efficient usage of the
available computational resources in the Experiment 1.

d-Chiron succeeds with weak scalability, as its curve remains close to the linear line.
With 240 cores executing about 6 thousand tasks, the workflow finishes in 29 min. In 480
cores executing 12 thousand tasks, it takes 32.7 min. Ideally, it should also have taken
about 29 min, i.e., 3.5 min (or 12%) longer than the if linear scalability was achieved. With
936 cores nodes running about 23.4 thousand tasks, it takes 39 min, i.e., 10.4 min (or 35%)
longer than the linear time. Considering that d-Chiron is running up to almost 24
thousand tasks, from which 936 tasks are running in parallel and distributed among 39
computing nodes with 24 cores each, and that the linear time ignores intrinsic parallel
management overhead, we find that these results are satisfying. Moreover, d-Chiron
maintains a DBMS with online data for user queries and monitoring, which also
introduces overhead, despite their advantages. This overhead is the subject of another
experiment.

These results lead us to further investigate d-Chiron’s performance by exploring a wider
variety of workloads. Even though in MTC scientific workflows, tasks are considered to be
long-term, i.e., they may take many seconds or few minutes on average each (Raicu, Foster
& Zhao, 2008), we now evaluate d-Chiron on a wider variety of workloads, including
short-term tasks. The objective is to analyze d-Chiron’s performance when we scale the
workload in two dimensions: number of tasks and task duration. We run two experiments
on 39 computing nodes (936 cores): fixed task durations, varying number of tasks; and
fixed number of tasks, varying task duration.

Experiment 3: Workload scalability—fixed task duration, varying number of
tasks
In this experiment, we analyze how d-Chiron performs when we vary number of tasks:
from small (about 4.6 thousand), to mid (about 12 thousand), and large (about 23.4
thousand); and fixing two different task durations: short tasks (mean task duration of 5 s)
and long tasks (mean task duration of 60 s). Similarly to the previous experiments, Fig. 10.
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Workload scalability analysis when varying (a) number of tasks and (b) task duration on
average.

In this experiment, d-Chiron attains close-to-linear performance for both task
durations, for all number of tasks tested. For 5 s, d-Chiron performs 2.7% and 6.3% worse
than linear for 12 thousand and 23.4 thousand tasks, respectively. For 60 s, d-Chiron
performs 1.1% and 1.88% away from linear for 12 thousand and 23.4 thousand tasks,
respectively. Therefore, by analyzing the increase in number of tasks, we see that
d-Chiron’s performance tends to decrease when the number of tasks increases, for both
task durations (5 s and 60 s). More tasks mean larger WQ and more parallel management
overhead. Also, the performance loss is slighter for the workload composed of longer
tasks (60 s) than for short tasks (5 s). (a) shows linear time for each setting; in this case, for
each task duration (5 s and 60 s). We set the base case for the linear time to be the smallest
number of tasks tested.

In this experiment, d-Chiron attains close-to-linear performance for both task
durations, for all number of tasks tested. For 5 s, d-Chiron performs 2.7% and 6.3% worse
than linear for 12 thousand and 23.4 thousand tasks, respectively. For 60s, d-Chiron
performs 1.1% and 1.88% away from linear for 12 thousand and 23.4 thousand tasks,
respectively. Therefore, by analyzing the increase in number of tasks, we see that
d-Chiron’s performance tends to decrease when the number of tasks increases, for
both task durations (5 s and 60 s). More tasks mean larger WQ and more parallel
management overhead. Also, the performance loss is slighter for the workload composed
of longer tasks (60 s) than for short tasks (5 s). This result indicates that for longer tasks,
d-Chiron attains higher scalability. We analyze this in more details in the next experiment.

Experiment 4: Workload scaling—varying task duration, fixed number of

tasks
In this experiment, we analyze task duration variation more deeply to see how d-Chiron
performs when we vary mean task duration from short (5 s as mean task duration) to
longer (120 s), fixing two different number of tasks: small (4.6 thousand) and large
(23.4 thousand, about 5 times larger).
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Figure 10 Workload scalability analysis when varying (A) number of tasks and (B) task duration on
average. Full-size DOI: 10.7717/peerj-cs.527/fig-10
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We plot the linear line by setting the base result (where d-Chiron achieves best
performance) as the longest task durations evaluated in this experiment, i.e., the workload
with mean task duration of 120 s. So, for instance, for a fixed number of tasks, if d-Chiron
takes T minutes to execute the workload composed of 120-s tasks, it should ideally
take approximately 120/60 * T minutes to execute the workload composed of 60-s tasks.
Figure 10. Workload scalability analysis when varying (a) number of tasks and (b) task
duration on average.

In this experiment, d-Chiron attains close-to-linear performance for both task
durations, for all number of tasks tested. For 5 s, d-Chiron performs 2.7% and 6.3% worse
than linear for 12 thousand and 23.4 thousand tasks, respectively. For 60 s, d-Chiron
performs 1.1% and 1.88% away from linear for 12 thousand and 23.4 thousand tasks,
respectively. Therefore, by analyzing the increase in number of tasks, we see that
d-Chiron’s performance tends to decrease when the number of tasks increases, for
both task durations (5 s and 60 s). More tasks mean larger WQ and more parallel
management overhead. Also, the performance loss is slighter for the workload composed
of longer tasks (60 s) than for short tasks (5 s). (b) shows two linear curves, one for each
fixed number of tasks evaluated (4.6 thousand and 23.4 thousand).

Analyzing the curves for 4.6 thousand tasks, we see d-Chiron runs close to the
linear curve. We see that the longer each task takes, the closer to linear d-Chiron’s
performance tends to be. For the worst result, i.e., for very short-term tasks, d-Chiron runs
4.6 thousand tasks in 3.1 min, whereas the linear would be in 0.6 min. Comparing the lines
for 23.4 thousand tasks with the lines for 4.6 thousand, we see that d-Chiron is farther
from the linear line. The worst result also occurs for the workload of 5-s tasks, but for
longer tasks, d-Chiron performs well, even for the higher number of tasks. For example,
for 60-s tasks, d-Chiron runs in 39.6 min, whereas the linear would be in 32 min (about
20% away from linear).

Key findings

From Experiments 3 and 4, we can conclude that our implementation of SchalaDB
performs better when tasks take longer, i.e., when they are more complex, which is the
expected workload for real scientific workflows as discussed in “Experimental Setup”.
Also, as the number of tasks increases, the performance difference between short and long
tasks becomes more significant. The reason for this is that too many small parallel tasks
overload WQ, introducing large parallel management overhead and jeopardizing task
scheduler’s performance. In d-Chiron’s case, most of this overhead is caused by an
excessive amount of accesses to the DBMS in order to retrieve tasks from WQ. However,
SchalaDB was designed targeting at scientific workflows, where real workloads are typically
composed of long-lasting complex tasks, making runtime analysis a requirement.

Assessing DBMS impact on performance
In this section we measure every single DBMS access and see how they compare with the
overall workflow execution time. Regarding software and hardware settings used for all
experiments in this section, we use 39 computing nodes (936 CPU cores) in StRemi cluster.
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Experiment 5: Analysis of time spent accessing the DBMS
In this experiment, we want to further understand the details of the overhead caused by
DBMS accesses during workflow execution. In addition to the number of tasks, we
investigate how much the spacing between multiple parallel accesses to the database
(mimicked by the task duration) affects the performance, and how much of the total
workflow time was dominated by DBMS accesses. We measure the elapsed time of
every single query on the database made by each node at runtime. Then, for each node, we
add up all elapsed times. As each node executes in parallel, we consider the time spent
accessing the DBMS in a workflow execution as the maximum sum obtained this way.

We execute eight workloads composed of 23.4 thousand tasks each, with the following
mean task durations, in seconds: 1, 2, 3, 4, 5, 10, 30 and 60 s. Each workload represents
different DBMS access patterns, varying from frequent concurrent accesses from many
requesting worker nodes (1 s tasks) to more sparse accesses (60 s tasks). The results are in
Fig. 11, where the black bar represents the time spent in the DBMS and the gray bar
represents the total workflow time, which include the time spent by the actual application
being managed by the WMS and some other times—not related to DBMS accesses—spent
for workflow execution management. These DBMS accesses occur in parallel and in
background with the other operations.

From Fig. 11, we can identify a pattern for workloads where concurrent accesses
occur more frequently (more evident from 1 to 3 s): the more frequent the concurrent
DBMS accesses are, the greater the time spent accessing the DBMS. For such frequent
accesses in a significant amount of tasks (23.4 thousand) and cores (936), the DBMS
struggles to deal with so many frequent concurrent transactions, making it a bottleneck.
This experiment also reveals that for workloads with such frequent accesses the DBMS
access time is very close to the overall execution time. In other words, the overall execution
time was almost completely dominated by time spent doing DBMS accesses. This result
is important because we see that when the workload is composed of tasks that take at
least 5 s, the DBMS access times do not depend on task duration. Thus, the negative impact
of DBMS accesses is more significant for workloads composed of short-term tasks because
the WMS takes more time performing DBMS accesses than application computation.
However, when the workflow execution time is at least greater than two times the time
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Figure 11 Analyzing impact of DBMS accesses in d-Chiron.
Full-size DOI: 10.7717/peerj-cs.527/fig-11
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spent with DBMS accesses, which happens for tasks that take about 25 s on average,
the overhead introduced by the DBMS-based scheduler solution pays off, as the DBMS is
not overwhelmed by so many concurrent transactions. Since DBMS operations run in
background, for workloads dominated by tasks with mean duration of 25 s, d-Chiron is
highly scalable as the DBMS overhead starts to become negligible when compared to
application computation time.

Therefore, when the application computation time is greater than the time spent in
accessing the DBMS, the overhead is amortized. This is the scenario where d-Chiron
achieves best performance and is the case for most scientific applications, which often
process workloads composed of tasks that take longer than one minute.

Experiment 6: Describing d-Chiron’s accesses to the DBMS
In this experiment we analyze the time spent by main DBMS accesses at runtime by the
workers. The results are in percentages with respect to the time spent by all DBMS
accesses. We use the same workloads presented in Experiment 5. Since the number of
DBMS accesses is proportional to the number of tasks in all workloads from Experiment 5
(i.e., 23.4 thousand tasks), in this Experiment 6 we only present results for the workload
with tasks with mean duration of 10 s. In Fig. 12, we show percentages of time spent
by each kind of DBMS access, relatively to the total time spent by all DBMS accesses. The
total time is obtained as in Experiment 5, for the 10 s workload.

These accesses are all related to task scheduling. Tasks need to be inserted in the
WQ as “READY” tasks. Then, each worker retrieves ready tasks, updates their status to
“RUNNING”, executes them, and finally updates their status to “FINISH”. We can see that
getREADYtasks by itself accounts for more than 40% of all DBMS accesses. Combined
with getFileFields, these two operations represent 44.7% of read-only time spent accessing
the DBMS. The other seven functions in Fig. 12 are update operations and they account for
53% of the time spent accessing the DBMS. The remaining 2.3% are distributed over
several shorter DBMS operations, both reads and writes. These are all update transaction-
like query patterns (reading or writing specific rows of the WQ relation), confirming the
main query pattern for task execution in d-Chiron, even though interactive analytical
queries are also executed by users during workflow execution, as we show in Experiment 7.

These results also help to understand why DBMS access time is not only sensitive to
mean task duration, but also to the number of tasks. The greater the number of tasks,
the greater the number of those concurrent queries that need to update specific parts of the
WQ relation. Each update makes the DBMS deal with distributed concurrency control,
which is a complex operation. When these queries are not so frequent (i.e., for longer task
duration), concurrency is not so severe, making d-Chiron to achieve better performance.

Experiment 7: Running user analytical queries at runtime
Most of the experiments so far tested d-Chiron performance to understand how the
DBMS-driven scheduling behaves under different workloads. In this experiment, we want
to validate that the performance enhancements obtained after modifying Chiron according
to SchalaDB principles, originating d-Chiron, do not affect system’s ability to support
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user steering through runtime analytical queries. The support is maintained because
d-Chiron still manages runtime provenance, execution, and domain data in its database.
Data schema in d-Chiron is quite the same as in Chiron, it remains W3C PROV
compliant. Therefore, in this experiment, we confirm that user steering support is
maintained. Also, we intend to analyze performance overhead added to the workflow
execution time by running such queries. For this, we run 8 typical user analytical queries in
the Risers Fatigue Analysis domain during workflow execution. Their natural language
descriptions are in Table 2 and their corresponding SQL code are available on GitHub
(d-Chiron, 2021), where we also provide the implemented data schema.

Queries from Q1 to Q6 analyze execution metadata and are of high importance for
debugging and execution profiling. Q7 uses execution and provenance data, being an
example of a query that relates dataflow output data of the fourth activity with output data
of the second one, associated to deviations in execution time. Finally, Q8 represents a
user that has analyzed Q7 results, made a decision, and then adapts the workflow by
modifying input data for an intermediate workflow activity at runtime, illustrating
d-Chiron’s user steering capabilities.

We execute the workflow using a previously tested workload: 23.4 thousand tasks
with mean task duration of 5 s each. We choose this workload because, as assessed in
the previous experiments, workloads dominated by short-term tasks (such as 5-s lasting
tasks) are more susceptible to higher latencies in d-Chiron due to a higher concurrent
scenario. Thus, it is expected that if the overhead caused by the steering runtime queries
is not high for this adversarial scenario, the overhead would remain low in a more
favorable scenario with less concurrency. We conduct the experiment as follows. Using the
936 cores of the cluster, we run the workflow first without executing the set of steering
queries, and then running each query in intervals of 15 s during workflow execution.
The results are in Fig. 13.

Results show that the workflow execution time is approximately the same (less than
5% of difference between the scenarios with and without queries) no matter if running or
not the queries at each 15 s, meaning that the overhead they cause is negligible. This
happens because the database is managed by the DBMS and it is mostly composed of
metadata rather than big raw data, which reside in files on disk, as discussed in the last

ge
tR

EA
DY

tas
ks

ins
ert

Ta
sk
s

up
da

teT
ask

sT
oF

IN
ISH

ED

tas
kID

InD
om

ain
-F
IN

ISH
ED

sto
reO

ut
pu

tD
om

ain
Data

tas
kID

InD
om

ain
-R

UN
NI

NG

up
da

teT
ask

sT
oR

UN
NI

NG

tas
kID

InD
om

ain
-R

EA
DY

ge
tF
ile
Fie

lds

Type of DBMS access

0

20

40

Pe
rc

en
ta

ge
R
el

at
ed

to
A
ll

D
B
M

S
A
cc

es
se

s
(%

)

Figure 12 Analyzing DBMS accesses through specific SQL queries.
Full-size DOI: 10.7717/peerj-cs.527/fig-12

Souza et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.527 21/30

http://dx.doi.org/10.7717/peerj-cs.527/fig-12
http://dx.doi.org/10.7717/peerj-cs.527
https://peerj.com/computer-science/


experiment. Thus, queries run very fast (in the order of hundreds of milliseconds each) due
to the reduced amount of data stored and parallel query processing in the in-memory
DBMS. Additionally, in a typical scenario, there are not multiple scientists simultaneously
monitoring the execution of a same workflow. This way, analytical queries are not expected
to be executed very often. Even in situations where dashboards are employed for
monitoring workflows, issuing queries more frequently (e.g., with refreshing intervals of
one second), there is a small impact in workflows’ execution times. In a previous work
(Souza et al., 2020), we performed an experiment that submitted 30 parallel queries at
every second against a d-Chiron’s database and observed an overhead of 3.19% in an
execution that lasted 17 min.

Centralized vs. distributed execution control and task scheduling
Finally, the last experiment aims at evaluating the impact of decentralization on the
scheduling and management of parallel tasks execution, our main goal when proposing
SchalaDB. For this, we compare d-Chiron with Chiron.

Table 2 Analytical queries executed at runtime.

Q1 Considering just tasks that started from one minute ago to now, determine tasks status, number of tasks that started, finished, and the total
number of failure tries ordered by node.

Q2 Given a node hostname, for each task, determine task status and the total size in bytes of the files consumed by the tasks that finished in the last
minute. Order the results in descending order by bytes and ascending order by task status.

Q3 Determine the hostname(s) of the nodes with the greatest number of tasks aborted or finished with errors in the last minute.

Q4 Given a workflow identification, show how many tasks are left to be executed.

Q5 Considering workflows that are running for more than one minute, determine the name(s) of the activity(ies) with the greatest number of
unfinished tasks so far. Also, show the amount of such tasks.

Q6 Determine the average and maximum execution times of tasks finished for each activity not finished. Show the name of the activity and order by
average and maximum time descending.

Q7 List cx, cy, cz, and raw data file path (output parameters produced in Pre-Processing activity) only when Calculate Wear and Tear activity
produces f1 value greater than 0.5 and when the average time for the tasks in Calculate Wear and Tear activity takes more than average to finish.

Q8 Based on a previous runtime analysis, modify input values to be consumed by the Analyze Risers activity, i.e., modify the input data for the next
ready tasks for Analyze Risers activity.
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Experiment 8: Chiron vs. d-Chiron
We evaluate four typical combinations of workloads of the risers workflow: (a) medium
number of short tasks—5 thousand tasks with mean task duration of 1 s each;
(b) medium number of long-term tasks—5 thousand tasks with mean task duration of 16 s;
(c) large number of short tasks – 20 thousand tasks with mean task duration of 1 s;
and (d) large number of long-term tasks—20 thousand tasks with mean task duration of
16 s. Figure 14 shows the overall execution times with 936 cores.

In the best setting (i.e., large number of short tasks), d-Chiron runs 91% faster than
centralized Chiron. By analyzing all results together, we see that the centralized WQ
scheduling in Chiron clearly does not scale on this number of cores since it takes
approximately the same time executing (a) and (b) and also (c) and (d); hence, almost no
performance gain. d-Chiron, on the other hand, completely executes the workload (a) 48%
faster than workload (b), and executes (c) 42% faster than (d). Thus, either in large
workloads with short-term tasks, or in smaller workloads with long-term tasks, or any
combination of these, the in-memory DBMS-driven MTC scheduler outperforms the
centralized DBMS-based one. This is because Chiron’s centralized design struggles much
more than d-Chiron’s design following SchalaDB, which allows for direct access from
worker nodes to the WQ managed by an in-memory DBMS.

RELATED WORK
We discuss recent workflow execution approaches that take advantage of a DBMS, as
SchalaDB proposes. There are DBMS provenance-based systems that support runtime data
analysis, which may help workflow adapting (Silva et al., 2020; Souza et al., 2019; Souza
et al., 2010; Suriarachchi & Plale, 2016), but they are disconnected from the workflow
execution engine. There are several advantages when the workflow engine integrates
workflow execution data and provenance in a unified data management solution.
Provenance databases share a lot of information used in task scheduling like tasks, task
parameter values, task input data values, dependencies, and task execution time. These
information allow for analyses of task execution time, detecting outliers, in addition to a
task execution derivation path with its associated input and parameter data (Dias et al.,
2015; Klijn et al., 2019; Marchant et al., 2020).
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Several scheduling approaches are moving towards using a DBMS to support their
algorithms, like Radical Pilot (Merzky et al., 2018) and Ray (Moritz et al., 2018). Since
scheduling needs high concurrent update transactional support, most solutions adopt
MongoDB or similar document DBMSs. Querying MongoDB added with provenance data
allows for monitoring the workflow execution. However, similarly to other WMSs that
use a DBMS for scheduling, a document-oriented DBMS has limited capabilities for
analytical queries, particularly queries that join multiple collections like the ones in
Table 2. Next, we analyze WMS related approaches.

EMEWS (Hiden et al., 2013) is a workflow system that uses the Swift/T (Duro et al.,
2016;Wozniak et al., 2013) workflow engine, a highly scalable solution, for task scheduling.
To keep its scalability, Swift/T engine stores analytical data in log files, which are loaded to
a relational DBMS only when the workflow execution finishes, i.e., for post-mortem
analysis. Still, there are different databases using different DBMSs and data models to
manage, and the user does not have access to the data for scheduling, jeopardizing the user
steering support. Moreover, e-Science Central (Hiden et al., 2013) is another WMS that
uses a graph-oriented DBMS to store execution data at runtime and, after execution, it
inserts execution data into a relational DBMS for post-mortem analysis.

Pegasus is a scalable WMS that has been used for a large number of real world scientific
applications, like LIGO for gravitational wave discovery (Deelman et al., 2020; Deelman
et al., 2015; da Silva & Pegasus, 2016). Pegasus uses a DBMS to store workflow data,
which is available for the user to do runtime execution monitoring and debugging, but
provides a different one through a dashboard for event monitoring, which makes it
difficult to do integrated data analyses for user steering.

Stampede (Gunter et al., 2011) is a similar approach to SchalaDB in the sense that it is
a DBMS based execution monitoring tool that can be plugged into a WMS. Stampede
adopts a centralized DBMS solution and has been evaluated with two different WMSs
(Pegasus and Triana) to show its monitoring facilities. However, it is also a solution that
does not integrate monitoring to domain or provenance data.

FireWorks is a scalable WMS (Jain et al., 2015) that also has a DBMS-driven workflow
execution engine. FireWorks uses data stored in MongoDB, a document-oriented DBMS,
to manage states in queues of the tasks. Querying MongoDB allows for monitoring the
workflow execution. However, similarly to other systems that use a DBMS for scheduling,
a document-oriented DBMS has limited capabilities for analytical queries that join
multiple collections. Moreover, its provenance data representation does not contemplate
domain, execution, and provenance data in a same database.

Chiron (Ogasawara et al., 2011; Ogasawara et al., 2013) collects provenance data
following user’s interests and uses a relational DBMS to integrate provenance, execution,
and domain data both for the management of parallel execution of tasks and to allow
for runtime analytical queries. Chiron is W3C PROC compliant, which helps users in using
a uniform provenance data representation for different workflows. However, Chiron
employs a centralized approach for the management of data for scheduling of parallel
tasks, severely limiting its scalability. Although the DBMS is continuously populated with
data for analyses, Chiron implements a traditional master-workers architecture, where
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the central master node is the only one that is able to access the centralized DBMS.
This not only introduces two single points of failure (at the master node and at the
centralized DBMS), but also, when the number of worker nodes or the WQ is large, Chiron
suffers from performance limitations.

We are not aware of any approach that supports user steering and attains high
performance workflow execution on large clusters. SchalaDB addresses open challenges
described by the scientific community (Atkinson et al., 2017; Deelman et al., 2017; Ferreira
da Silva et al., 2017), such as enabling human in the loop for steering and data-aware
workload scheduling. When provenance, domain and execution data are all related,
integrated in the same database, a user can run analytical queries to help steering
(Dias et al., 2015; Souza et al., 2020), analyze the results and monitor performance with
domain data (Silva et al., 2020) at runtime. Like Chiron, SchalaDB takes advantage of
in-situ processing. According to Ayachit et al. (2016), in-situ processing uses network or
shared memory to pass intermediate results. This is the case of the workflow engine
working with in-memory distributed DBMS to support workflow data management.
Provenance databases register entities (e.g., intermediate results) that are used by workflow
activities and that are generated by them. When the workflow intermediate results are
directly passed by the workflow engine to the in-memory provenance database, data
movements are avoided, particularly IO with logs. Additionally, the workflow engine can
make use of these data for runtime optimizations or adaptive scheduling, without
jeopardizing the workflow execution performance.

CONCLUSION
In this paper, we proposed SchalaDB, an architecture and a set of techniques based on
distributed data management for efficient workflow execution control and for user
steering support. Distributed data management techniques such as distributed
concurrency control, in-memory data processing, fault tolerance, and others improve
the implementation effort in managing scheduling data and other distributed workflow
execution data. Using the same DBMS also for workflow provenance data analysis
makes the solution more appealing for applications when both high performance and
runtime data analyses are essential.

To evaluate its architecture and techniques, we implemented SchalaDB by modifying
the management of data for parallel task scheduling and for runtime data analysis of an
existing WMS, called Chiron, and we call d-Chiron the newer version with SchalaDB.
With SchalaDB we were able to remove all message passing communication related to
tasks scheduling, which was present in original Chiron. This approach reduces source
code complexity and effort on developing an efficient distributed concurrency control.
By doing this, SchalaDB addresses issues inherent to dataflow management, such as data
pipelining.

We ran several experiments to validate the scalability of the implementation. We
showed that SchalaDB supports scalability very well when executing thousands of
long-term tasks (that last at least one minute each), with high scalability in all cases
with longer tasks. It is known that tasks in scientific applications require complex
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calculations usually taking more than a minute each to execute (Raicu, Foster & Zhao,
2008). Finally, we showed that because of SchalaDB, d-Chiron is at least two orders of
magnitude faster than original Chiron. Therefore, in addition to attaining high efficiencies
on up to 960 cores in an HPC cluster for typical scientific workloads SchalaDB manages
provenance, domain, and execution data in the same DBMS providing complex
runtime analytical queries, as shown in the experiments. We expect these results to
motivate workflow execution engine scientists and engineers to adopt a data-centered
solution in their engines. Future work will investigate how SchalaDB can explore different
hardware architectures, including GPUs, to manage machine learning workflows.
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