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ABSTRACT
Today, increased attention is drawn towards network representation learning, a
technique that maps nodes of a network into vectors of a low-dimensional
embedding space. A network embedding constructed this way aims to preserve nodes
similarity and other specific network properties. Embedding vectors can later be used
for downstream machine learning problems, such as node classification, link
prediction and network visualization. Naturally, some networks have text
information associated with them. For instance, in a citation network, each node is a
scientific paper associated with its abstract or title; in a social network, all users may
be viewed as nodes of a network and posts of each user as textual attributes. In this
work, we explore how combining existing methods of text and network embeddings
can increase accuracy for downstream tasks and propose modifications to popular
architectures to better capture textual information in network embedding and fusion
frameworks.

Subjects Artificial Intelligence, Computational Linguistics, Data Mining and Machine Learning,
Natural Language and Speech, Network Science and Online Social Networks
Keywords Graph embeddings, Text embeddings, Information fusion, Node classification, Link
prediction, Node clustering, Community detection, Graph visualization, Network science

INTRODUCTION
Many real-world data can be modeled as graphs: citation networks, social networks,
knowledge databases. Ability to analyze such data structures is crucial for a great variety of
applications. For instance, when social networks try to get new users to subscribe, they
need to solve a link prediction problem (LPP) (Backstrom & Leskovec, 2011). Telecom
companies’ marketing departments might want to segment users according to their
behavior within a network of calls, which can be stated as a node clustering problem
(Zhu et al., 2011). Biologists need to find out the structural roles of proteins via analyzing
their interaction network, requiring a solution for node classification problem (Do, Le &
Le, 2020). Recommendations of future collaborations can be constructed via combination
of graph topology and researcher feature engineering (Makarov, Bulanov & Zhukov, 2017;
Makarov et al., 2018; Makarov & Gerasimova, 2019a, 2019b).

All problems mentioned above correspond to classic machine learning problems
applied to networks, with every network represented by a graph and attributes of its
components, such as nodes or edges. Solving machine learning problems on network data
require vector representation for object features, including graph structure. To be able to
solve these problems, one has to develop the efficient representation of a network that
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will preserve attribute features and graph structure, and will be feasible for existing
machine learning frameworks.

Historically, the first way to represent a graph is the adjacency matrix. This
representation has two significant drawbacks. Firstly, it captures only direct relationships
between nodes. Secondly, for real-world networks, the adjacency matrix tends to be
very sparse and does not directly represent structural features apart from first-order
proximity.

Network Representation Learning (NRL) techniques were created to mitigate the
problems mentioned above. The main idea of NRL is to map nodes (or edges) of a network
into low-dimensional space preserving their topological structure from the network.
The first NRL methods were mostly based on matrix factorization (Roweis & Saul, 2000;
Belkin & Niyogi, 2002). These methods do solve the dimensionality problem but are
highly computationally expensive. A more advanced approaches use random walks on
networks to approximate different kinds of similarity matrices (Perozzi, Al-Rfou & Skiena,
2014; Grover & Leskovec, 2016). These methods are very scalable and, therefore, can be
applied even to large networks.

Quite often, nodes of a network have different kinds of attributes associated with them.
This work is concerned with one type of attributes—textual information. The problem of
efficient representation of textual information is very similar to the same problem with
graphs. The classic techniques, such as Bag of Words (BoW) suggested by Harris (1954)
and Term Frequency-Inverse Document Frequency (TF-IDF) suggested by Salton &
Buckley (1988), encode each word as a one-hot vector and represent a document as a
sum of representations of all words (using certain coefficients). These methods are
straightforward but produce very sparse representations and do not consider the order of
words. A more advanced approach, called Word2Vec (Mikolov et al., 2013), employs a
Skip-Gram model to learn semantics of words through their context. This method
produces dense low-dimensional embeddings, thus gaining an advantage over the classic
approaches. There are some extensions of Word2Vec like Pagliardini, Gupta & Jaggi
(2017) and Mikolov & Le (2014). Their aim is to learn document embeddings instead of
embeddings for separate words. The most advanced models use bidirectional transformers
(Reimers & Gurevych, 2019) to learn sensible embeddings.

The fusion of graph and text information for representation learning is still an area that
is not well researched. The most straightforward approach is to learn network and text
embeddings separately and then concatenate them to produce the final embedding. More
sophisticated approaches include TADW (Yang et al., 2015), which incorporates text
attributes into a matrix factorization problem. TriDNR (Pan et al., 2016) uses combined
loss between Doc2Vec and DeepWalk algorithms. Finally, GCN (Kipf & Welling, 2016)
and its variations use graph neural networks to take node attributes into account.

In this work, the following contributions are made:

1. Different combinations of network and text embeddings are studied to improve the
downstream tasks quality.
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2. Some modifications are proposed to existing architectures to better take into account
text and graph information and the way how they are fused.

3. Comprehensive comparison of existing methods is performed on node classification,
link prediction and visualization problems.

The paper is structured as follows. We start with a brief explanation of related work
and the choice of models. Then, we describe experiment methodology: used datasets,
training and validation schemes for all the models and machine learning problems on
networks. Next, we explain the obtained results. Finally, we provide ideas for further
enhancement of fusion techniques in discussion and conclude our study. All sections
describe the content in the following order: text embeddings, then structural network
embeddings, and finally, fusion models of text and network data.

RELATED WORK
In the real-life scenario, networks are often accompanied by additional information. In this
work, the main focus is on one particular case, where each node of a network is associated
with text information. Below, we shortly discuss the chosen text and network embedding
models, as well as several popular strategies of information fusion for the considered
problem.

Text embeddings
Latent dirichlet allocation (LDA)

Martnez & Kak (2001) propose the topic modeling techniques. It is a Bayesian generative
probabilistic model for document clustering. Each document embedding is a vector of
weights for underlying topics, where topics consist of several words with individual
weights.

Word2Vec
The idea of Mikolov et al. (2013) is to predict context from a word (Skip-gram) or a word
from its context (Continuous Bag of Word or just, CBoW).

Sent2Vec
It is an extension of Word2Vec CBoW model, which was explicitly designed to improve
sentence embeddings (Pagliardini, Gupta & Jaggi, 2017). Firstly, it also learns embeddings
for word n-grams. Secondly, it uses a whole sentence as a context window. Such an
approach allows receiving better sentence embedding with n-gram aggregations.

Doc2Vec
Mikolov & Le (2014) extend Word2Vec approach even further to learn continuous
representations for texts of variable length (starting from a short phrase to very long
articles). Its main distinction from Sent2Vec is that Doc2Vec can preserve text context for
very long sequences of words. Doc2Vec additionally creates a lookup table with text
embeddings. When a target word is predicted, this vector is concatenated to a source word
vector.
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SBERT
SBERT (Reimers & Gurevych, 2019) is an extension of classic BERT (Devlin et al., 2018).
The main difference is that SBERT is trained in contrastive fashion using Siamese
architecture. In comparison to bidirectional autoencoder with a self-attention mechanism,
it uses more advanced pooling strategies.

Ernie
Sun et al. (2020) suggest increasing the number of pretraining objectives to capture
corpora’s lexical, syntactic, and semantic information. The framework uses continual
multi-task learning to sequentially learn new tasks without “forgetting” the previous ones.

Network embeddings
There is a large variety of network embedding models for different cases. In the current
work, we use in experiments only three models without node attributes, typically called
structural embeddings because of their nature to learn graph structure independently of
node attributes.

DeepWalk
Invented by Perozzi, Al-Rfou & Skiena (2014), the model samples random walks and learns
embeddings using a skip-gram approach similar to Mikolov et al. (2013).

Node2Vec
Grover & Leskovec (2016) propose a more efficient realization of the random walk idea.
It balances between breadth-first and depth-first searches to keep tradeoff between local
and global graph structures.

HOPE
Ou et al. (2016) employ matrix factorization technique to directly reconstruct asymmetric
distance measures like Katz index, Adamic-Adar or common neighbors. So it preserves
asymmetric transitivity, which is important property of directed graphs.

Naive mixture
The most straightforward method to fuse graph and text information is to learn graph and
text embeddings independently. Then combine two types of embeddings, concatenating
them. This method has the following advantages:

1. Graph and text embeddings have been researched separately for quite a long time, so
there are plenty of available methods/libraries etc.

2. Because embeddings for nodes and texts are learned individually, they provide a lot of
freedom to choose a different dimension for graph and text embeddings, pre-train text
embeddings on an entirely different corpus.

The main disadvantage is evident: text information is not taken into account while
learning graph embedding and vice versa. It is essential, because two nodes might have the
same distance in graph proximity but completely different semantic meaning.
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Advanced mixture
Below, we describe chosen well-known fusion methods to use for our comparison of
information fusion methods.

Text attributed deep walk (TADW)
One of the first attempts to incorporate text information into network representation
learning was made in the TADW algorithm (Yang et al. (2015)). The main idea was to
enrich ordinary DeepWalk algorithm by taking into account text attributes. The authors
prove that DeepWalk performs a matrix factorization process and extend it with TF-IDF
feature matrix.

Tri-Party Deep Network Representation (TriDNR)

Pan et al. (2016) try to solve two issues of TADW: computational complexity of matrix
factorization and missed word order in TF-IDF matrix encoding of texts. As the name
suggests, the algorithm learns the network representation using three sources: graph, text
and label information. DeepWalk algorithm is applied to capture graph information. For
text and label information, refined Doc2Vec is used.

Graph Convolutional Network (GCN)
Kipf & Welling (2016) propose Graph Convolution Networks (GCN) as a light-weight
approximation for the spectral convolution. This method provides better computational
efficiency for semi-supervised tasks, such as link prediction or node classification.
One of the main advantages of GCNs is their ability to account for node attributes. GCN
works similarly to the fully-connected layers for neural networks. It multiplies weight
matrices with the original features but masking them with an adjacency matrix. Such a
method allows to account only for node neighbors and node representation from the
previous layer.

Graph attention networks (GAT)
Veličković et al. (2017) utilize the idea of the self-attention mechanism of Vaswani et al.
(2017) for network data. Such an approach allows to balance the weights of neighbors
in node embedding according to structure and node attributes. Because masked self-
attention does not require knowing the graph structure upfront, this model could be used
inductively.

Graph SAmple and aggreGatE (GraphSAGE)
Hamilton, Ying & Leskovec (2017) suggest using sampling over node neighborhood to
learn final embedding. It provides more scalability and different choices for learnable
aggregation functions.

Graph InfoClust (GIC)
GIC (Mavromatis & Karypis, 2020) leverages the cluster-level information to any graph
neural network (GNN) encoder. They propose to add a new part to the loss maximizing
mutual information between node representations on both cluster and global levels.
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Network substructures such as clusters usually correlate with node labels, and link creation
inside a cluster is more likely by their definition.

Generally, described fusion methods outperform text or network embeddings. Still,
there is some room for improvement: as for now, most researchers use BoW or TF-IDF
to produce input feature matrix for fusion methods, such as TADW and GCN. It is
promising to see how the combination of advanced text embedding techniques with these
methods might improve the accuracy of machine learning tasks. Also, one might be
interested in enhancing GCN architecture by adding simultaneously trainable word
embeddings to the network.

EXPERIMENTS
This section explains the experiment pipeline to determine whether the fusion of text
and graph information helps improve the quality of the downstream tasks. Firstly,
we describe the choice of datasets. Then, we define the process of constructing text
embeddings after text preprocessing. Next, we describe our choice of network embeddings
and their hyperparameters. Finally, the fusion techniques and hyperparameters are
provided. In the end, we describe the training and validation scheme for node classification
and link prediction tasks.

Datasets
To be able to compare different kinds of algorithms described above, the chosen dataset
should possess the following properties:

1. It should have a graph structure, i.e. it should contain entities and relations between
them.

2. At least some of the nodes should have text associated with it. It is important to note that
texts associated with nodes should be in raw format (e.g., not in embedding format
already, such as BoW). Although it is not required for every node to have text associated
with it, the more nodes have it, the better the quality is.

3. At least some nodes should be associated with labels. This property is necessary to state
the node classification problem.

Below, we describe three main datasets chosen as benchmarks for network-related
machine learning problems and satisfying conditions above.

Cora (Sen et al., 2008). Cora dataset is a citation network, in which each node represents
a scientific paper, and each link shows that one article cites another one. There are 2708
nodes and 5429 edges in the network. Each node has text with a short description
(abstract) of the paper. Average text length in words is 130. All nodes are grouped into
seven classes: Neural Networks, Rule Learning, Reinforcement Learning, Probabilistic
Methods, Theory, Case-Based, Genetic Algorithms. The network does not contain any
isolated nodes.

CiteSeer-M10 (Lim & Buntine, 2016). This dataset is a subset of original CiteSeer data,
which contains scientific publications in different disciplines grouped into ten different
classes. M10 version consists of 38,996 nodes and 76,630 edges. However, only 10,310
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nodes have the text (paper title) and label information associated with them. Average text
length in words is 9. In this case, text information contains only name of the paper
(rather than the abstract). Some of the nodes are isolated, which makes this dataset
generally more problematic than the previous one.

DBLP (Yang & Leskovec, 2015). DBLP is a bibliographic system for computer science
publications. Citations might connect publications (described by the title). In this work,
we follow the comparison setting suggested by Pan et al. (2016), and consider only subset
of the network, containing 60,744 nodes (all accompanied with text and label attributes)
and 52,890 edges. Average text length in words is 8.

Text embeddings
The first part of the experiments is mostly concerned with estimating whether textual
information alone can efficiently solve machine learning problems on text networks.
Intuitively, in case of citation networks, text description should be correlated with the
target class (the topic of research), so results on text data can provide a good baseline, using
which other types of embeddings are compared. Questions to be addressed in this section:

1. Whether advanced text embedding techniques (Sent2Vec, Doc2Vec, SBERT) generally
outperform classic approaches (such as BoW, TF-IDF) in case of citation networks?

2. How does a share of train data (compared with test) affect the model prediction power?

3. How does average text length influence model quality?

4. Whether models pre-trained on a vast amount of data perform better than models
trained “from scratch”?

One of the most crucial steps to start with the problem is text preprocessing.
We perform preprocessing before embedding algorithm is applied. We follow the standard
pipeline.

Firstly, we remove all special symbols and switch the case to lower. Next, we remove
stop words. Stop words are the set of most frequently used words in a language like “also”.
In addition, we filter the most frequent words for the current dataset (appear in more than
70% of texts) and the rarest (appear less than three times). Finally, each token is converted
to the corresponding lemma, which is the form of a word presented in the dictionary.

Bag of Words and TF-IDF models use only unigrams as input since datasets are
relatively small, and choosing higher ngram_range will lead to poor generalization.
For LDA we use Gensim implementation (https://radimrehurek.com/gensim/models/
ldamodel.html) with following hyperparameters: number of topics (efficient embedding
size) = 20, a = 0.1, β = 0.1.

Word2Vec, Doc2Vec and Sent2Vec models were used with and without pretraining.
Trained models are based on English Wikipedia. Local training of Word2vec and Doc2vec
was performed using Gensim with following hyperparameters: window size is equal to 5,
a = 0.025, ns_exponent parameter equals to 0.75.

SBERT was pre-trained (https://github.com/UKPLab/sentence-transformers) on SNLI
dataset Bowman et al. (2015), which consists of 570,000 sentence pairs divided into 3
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classes: contradiction, entailment and neutral. We use the original pre-trained version of
ERNIE by Baidu (https://huggingface.co/nghuyong/ernie-2.0-en). To achieve sentence
embedding from Ernie, we average last hidden state for all its tokens.

Network embeddings
In citation networks, papers from one field tend to cite each other more frequently than
articles from other areas. Therefore, the graph structure should give significant insights
into the node classification and link prediction tasks. Another critical issue is comparing
how well network embeddings perform compared to text embeddings on different
datasets.

Three network embedding methods were selected for the experiments with structural
network embeddings: HOPE, Node2Vec and DeepWalk. The reason for such a choice is
quite straightforward: these methods tend to outperform others in most settings of
structural network embeddings (Makarov et al. (2021)). We use GEM implementation of
HOPE (https://github.com/palash1992/GEM). Hyperparameter β is chosen to be 0.01
(as used in other papers). For DeepWalk original implementation (https://github.com/
phanein/deepwalk) is used, with the following hyperparameters: vector size—10, number
of walks per-vertex—80, window size—10. Node2Vec also follows original implementation
(https://github.com/aditya-grover/node2vec) with the following hyperparameters: vector
size—10, number of walks per-vertex—80, window size—10 (the same as DeepWalk).

Fusion of text and graph information
Naive combination
Text and network embeddings are learned separately. For every node, the final embedding
is represented as concatenation of the corresponding text embedding and network
embedding. This method can be viewed as a good baseline for fusion methods. In this
combination, we use DeepWalk as network embedding similarly to the more
comprehensive TADWmethod. We concatenate it with BoW, also following the approach
of TADW. Additionally, we test it with concatenations of Sent2Vec embedding as an
advance text encoding approach.

TADW
Two versions of TADW were constructed with the help of TF-IDF or Sent2Vec for the
feature generation. The following hyperparameters are used: vector size = 160, number of
iterations = 20, λ = 0.2. SVD is used on input feature matrix to reduce its dimension to 200
(as in the original paper).

TriDNR
All three sources are used: texts, network and labels to get the final embeddings. Only labels
from the train set are present, while others are masked. The following hyperparameters are
used: vector size = 160 (to match TADW), text weight = 0.8, passes = 50.

Graph neural networks (GCN, GAT, GraphSAGE and GIC)
In most papers, authors use simple BoW or TF-IDF matrices as a feature matrix for GCN.
It might be sensible to experiment with more advanced text embedding techniques to
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improve the results, as we have already seen that Sent2Vec or Word2Vec outperform
BoW and TF-IDF for some settings. The model is trained for 200 epochs using Adam
optimizer. The best model (according to validation results) is saved. The vector size is
equal to 64, and the model contains two convolutional layers.

Also, it is interesting to try new modification for GCN architecture. Instead of using a
fixed feature matrix as input, one can replace it with a lookup table with learnable
embeddings. This way model can simultaneously learn text embeddings as well as network
embeddings. In this case, padded sentences of tokens are fed as input, then the lookup table
with embeddings is used. Next, to obtain embeddings for sentences, mean and max
functions are applied for word embeddings of each sentence. In the end, the rest of the
network is treated the same way as for ordinary GCN.

Training and validation
Input network data consists of nodes of the graph with associated text information and
edges between them. Before the validation procedure, text information is preprocessed
using the steps described in Section 3.2.

Node classification
We start with encoding nodes using one of the embedding techniques: text, graph or their
fusion. Next, we split the dataset into train and test subsets in different proportions (5%,
10%, 30% and 50% of labeled nodes). Finally, Logistic Regression classifier is trained.

We use Logistic Regression for two reasons. Firstly, almost all learned embeddings
are non-linear in nature (except for TF-IDF and BoW). So Logistic Regression is sufficient
for the final classification task. Secondly, it could be pipelined in GNN models by
simply adding one fully-connected output layer. Such a technique allows training neural
networks in an end-to-end fashion.

Link prediction

The edges of the graph are split randomly into train and test sets with specified train ratios
(5%, 10%, 30% and 50% train edges). Then test edges are masked (effectively removed)
from the graph.

Usually, most graphs are sparse, so the number of existing edges dramatically less
than the number of all possible links. We keep the LPP as a binary classification problem.
So in general, LPP has highly imbalanced classes. One of the popular techniques to handle
it is to use undersampling of the dominant class. To make the final classifier more
powerful, we sample non-existing links between most similar nodes because it is the most
probable connection to appear. Existing edges are marked as “ones” and non-existing as
“zeros”. The same is done for the test set.

The masked graph is then used to learn node embeddings (using text or graph
information or both). We use simple element-wise (Hadamard) product of node
embeddings as encoding for the corresponding edge, leaving other edge encoder operators
for future work (see Makarov et al., 2019, 2018a, 2018b). Finally, we train Logistic
Regression on obtained vectors to classify the presence or absence of the links between
pairs of nodes in the graph.

Makarov et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.526 9/26

http://dx.doi.org/10.7717/peerj-cs.526
https://peerj.com/computer-science/


Evaluation process
The procedures described above are repeated five times with random train/test splits for
different train/test ratio values in both cases. The mean and standard deviation of the
results are reported for F1 quality metric.

For Logistic Regression sklearn (https://scikit-learn.org/stable/modules/generated/
sklearn.linear_model.LogisticRegression.html) implementation (in python) is used with
lbfgs solver, L2 penalty and C = 1. For multi-class classification (number of classes greater
than 2) One-Vs-Rest setting is applied, which means that one classifier is trained for
every class, besides each model use samples from all other classes as “zero” class.

RESULTS
Firstly, we present the node classification task results, then we discuss results for link
prediction and explain node visualization. Similarly to other blocks, subsections have the
following order: text embedding, network embedding, their fusion.

Node classification
Text methods
Table 1 shows the comparison between text approaches on Cora dataset. Classic
techniques show very promising metrics, especially when the percentage of labeled
nodes is not very small. The best algorithm is the Bag of Words, which outperforms every
other classic method. It also shows quite a good quality for different percentage of known
labels. TF-IDF performs similarly on 30% and 50% of labeled nodes but degrades
significantly on the lower values. Although LDA results are not very high, it shows
consistent results across different shares of labeled nodes.

Table 1 Text methods on Cora for node classification (micro-F1, metric lies between (0,1) and higher
value means better results).

% Labels 5% 10% 30% 50%

BoW 0.63 ± 0.01 0.68 ± 0.01 0.76 ± 0.01 0.78 ± 0.01

TF-IDF 0.35 ± 0.01 0.49 ± 0.01 0.70 ± 0.01 0.76 ± 0.01

LDA 0.49 ± 0.01 0.57 ± 0.01 0.60 ± 0.01 0.61 ± 0.01

SBERT pretrained 0.57 ± 0.01 0.61 ± 0.01 0.68 ± 0.01 0.70 ± 0.01

Word2Vec pretrained 0.34 ± 0.01 0.44 ± 0.01 0.59 ± 0.01 0.63 ± 0.01

Word2Vec (d = 300) 0.64 ± 0.01 0.68 ± 0.01 0.70 ± 0.01 0.71 ± 0.01

Word2Vec (d = 64) 0.65 ± 0.01 0.68 ± 0.01 0.70 ± 0.01 0.72 ± 0.01

Doc2Vec pretrained 0.54 ± 0.01 0.61 ± 0.00 0.65 ± 0.01 0.67 ± 0.01

Doc2Vec (d = 300) 0.49 ± 0.01 0.58 ± 0.01 0.66 ± 0.01 0.68 ± 0.01

Doc2Vec (d = 64) 0.50 ± 0.02 0.58 ± 0.01 0.65 ± 0.00 0.67 ± 0.01

Sent2Vec pretrained 0.63 ± 0.02 0.69 ± 0.01 0.74 ± 0.01 0.77 ± 0.01

Sent2Vec (d = 600) 0.68 ± 0.02 0.72 ± 0.01 0.75 ± 0.01 0.77 ± 0.01

Sent2Vec (d = 64) 0.68 ± 0.02 0.72 ± 0.01 0.75 ± 0.01 0.77 ± 0.01

Ernie pretrained 0.43 ± 0.01 0.52 ± 0.01 0.62 ± 0.01 0.65 ± 0.01

Note:
The best values with respect to confidence intervals are highlighted in bold.
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Despite being significantly simpler and easier to train, advanced models trained from
scratch generally performed better than their pre-trained counterparts. That is probably
because language, which is used to describe the scientific paper in computer science,
significantly differs from the language used in news or (average) Wikipedia article.
The best model out of advanced text embeddings is Sent2Vec (trained from scratch).
It also shows consistent results concerning the different share of labeled nodes. Another
insight is that advanced embeddings could not beat the Bag of Words technique when
the labeled data share is high enough. The nature of the data might explain this. Abstract
for scientific papers is just a set of keywords. In this case, the Bag of Words hypothesis is
applied very well. However, when there is a small percentage of labeled data (which is
the practical case), advanced embeddings significantly outperform Bag of Words, which
means that they tend to generalize better. One can note that choosing different values for
embeddings dimension does not influence the results significantly.

Table 2 present the results on CiteSeer-M10 dataset. This dataset differs from the first
one because texts are significantly shorter, but the total amount of nodes is bigger. One can
note that although Bag of Words is still the best out of the classic techniques, TF-IDF
performs almost as good on CiteSeer-M10. The quality does not degrade significantly
when the percentage of labeled nodes becomes smaller. The reason for that is two-fold:
firstly, the attributed network is large, so it is easier to generalize even with a smaller
number of labels. Secondly, text length is much smaller, therefore, there is less “variation”
in the data. Similarly to Cora, LDA performed even poorer than on the first dataset because
it is much harder to extract “topics” from a few words for small datasets.

Considering advanced text embedding techniques, all (except for Ernie) architectures
(at least in one of the configurations) outperform classic methods when the percentage of

Table 2 Text methods on Citeseer-M10 for node classification (micro-F1, metric lies between (0,1)
and higher value means better results).

% Labels 5% 10% 30% 50%

BoW 0.62 ± 0.00 0.66 ± 0.00 0.73 ± 0.01 0.76 ± 0.01

TF-IDF 0.61 ± 0.01 0.66 ± 0.01 0.72 ± 0.01 0.75 ± 0.00

LDA 0.37 ± 0.01 0.38 ± 0.00 0.39 ± 0.00 0.39 ± 0.00

SBERT pretrained 0.66 ± 0.00 0.68 ± 0.00 0.72 ± 0.01 0.73 ± 0.01

Word2Vec pretrained 0.67 ± 0.00 0.69 ± 0.00 0.72 ± 0.00 0.73 ± 0.01

Word2Vec (d = 300) 0.55 ± 0.00 0.57 ± 0.00 0.59 ± 0.00 0.60 ± 0.01

Word2Vec (d = 64) 0.58 ± 0.00 0.59 ± 0.00 0.61 ± 0.00 0.62 ± 0.01

Doc2Vec pretrained 0.68 ± 0.00 0.70 ± 0.00 0.74 ± 0.01 0.75 ± 0.00

Doc2Vec (d = 300) 0.53 ± 0.00 0.56 ± 0.00 0.59 ± 0.00 0.61 ± 0.00

Doc2Vec (d = 64) 0.56 ± 0.01 0.59 ± 0.00 0.62 ± 0.00 0.63 ± 0.00

Sent2Vec pretrained 0.68 ± 0.00 0.70 ± 0.00 0.73 ± 0.01 0.75 ± 0.01

Sent2Vec (d = 600) 0.64 ± 0.01 0.66 ± 0.00 0.70 ± 0.01 0.71 ± 0.01

Sent2Vec (d = 64) 0.63 ± 0.01 0.65 ± 0.00 0.68 ± 0.00 0.69 ± 0.01

Ernie pretrained 0.59 ± 0.01 0.63 ± 0.00 0.67 ± 0.00 0.68 ± 0.01

Note:
The best values with respect to confidence intervals are highlighted in bold.
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labeled nodes is small (5% or 10%). When the share of labeled data is more significant, they
show performance similar to Bag of Words. Opposite to the Cora results, one can note that
pre-trained versions of all models substantially outperform their counterparts trained from
scratch. The explanation for that might be that text length is relatively short, and the
amount of data is not enough to restore dependencies between words.

Table 3 presents the results of text embedding methods on DBLP dataset. The results
appear to be quite similar to the ones achieved on CiteSeer-M10 dataset: Bag of Words
and TF-IDF perform equally well, with the former performing slightly better. Also, there is
no dramatic degradation in the score when the percentage of labeled nodes is small.

Regarding advanced methods on DBLP dataset one can see that Sent2Vec outperforms
all other architectures. Word2Vec also show very decent results (especially in terms of
stability over different train rate sample). For Doc2Vec (in opposite to Sent2Vec) pre-
trained version performed far better than the one trained from scratch. Again, advanced
embeddings outperform classic techniques for a small percentage of labeled data and
perform almost as good in case of more labeled data.

To sum up text embeddings experiments:

1. Advanced text embedding techniques such as Sent2Vec, Doc2Vec, Word2Vec
outperform classic approaches such as Bag of Words and TF-IDF when the percentage
of labeled data is small (<30%) and performs similarly when it is higher. LDA generally
shows bad performance on all three datasets. Although pre-trained SBERT model
shows decent results on CiteSeer-M10 and DBLP, it was outperformed by other
architectures and even classic approaches.

Table 3 Text methods on DBLP for node classification (micro-F1, metric lies between (0,1) and
higher value means better results).

% Labels 5% 11% 30% 50%

BoW 0.75 ± 0.00 0.77 ± 0.00 0.79 ± 0.00 0.80 ± 0.00

TF-IDF 0.74 ± 0.01 0.76 ± 0.01 0.79 ± 0.01 0.80 ± 0.00

LDA 0.54 ± 0.00 0.55 ± 0.00 0.55 ± 0.00 0.56 ± 0.00

SBERT pretrained 0.69 ± 0.00 0.72 ± 0.00 0.75 ±0.01 0.75 ± 0.01

Word2Vec pretrained 0.72 ± 0.01 0.73 ± 0.01 0.74 ± 0.00 0.74 ± 0.01

Word2Vec (d = 300) 0.76 ± 0.00 0.76 ± 0.00 0.77 ± 0.00 0.77 ± 0.01

Word2Vec (d = 64) 0.76 ± 0.01 0.76 ± 0.00 0.76 ± 0.00 0.77 ± 0.00

Doc2Vec pretrained 0.73 ± 0.00 0.75 ± 0.00 0.76 ± 0.00 0.76 ± 0.00

Doc2Vec (d = 300) 0.55 ± 0.01 0.56 ± 0.00 0.57 ± 0.00 0.58 ± 0.00

Doc2Vec (d = 64) 0.54 ± 0.01 0.54 ± 0.00 0.55 ± 0.00 0.55 ± 0.00

Sent2Vec pretrained 0.73 ± 0.00 0.75 ± 0.00 0.77 ± 0.01 0.77 ± 0.01

Sent2Vec (d = 600) 0.77 ± 0.00 0.78 ± 0.00 0.79 ± 0.00 0.79 ± 0.01

Sent2Vec (d = 64) 0.77 ± 0.01 0.78 ± 0.00 0.78 ± 0.00 0.78 ± 0.00

Ernie pretrained 0.70 ± 0.01 0.71 ± 0.00 0.71 ± 0.00 0.73 ± 0.00

Note:
The best values with respect to confidence intervals are highlighted in bold.
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2. Ernie framework generally shows poor performance. The reasons for that is that it is not
optimized to produce sensible sentence embeddings. Architecture similar to Sentence
Bert might be applied to improve the model quality for these kinds of tasks.

3. In general, advanced embedding techniques and LDA show very consistent results even
for a small percentage of trained labels. In contrast, Bag of Words and TF-IDF show
degrading results when a small share of labeled nodes is available. However, when text
information is short (only titles) and there is more trained data in terms of the number
of nodes (documents), this effect is mitigated.

4. TF-IDF and Bag of Words generally performs better for short texts (paper titles) because
they are basically set of keywords. Advanced methods show good performance in both
settings (short and long texts).

5. One can see that in some cases, pre-trained models perform better and in some cases
worse, so it is better to experiment with both of the approaches.

Network methods
According to the results on Cora dataset (Table 4) DeepWalk and Node2Vec show similar
performance with DeepWalk being slightly better when the percentage of labeled nodes is
larger than 5%. HOPE shows inferior results (near to random) for node classification
task. When comparing the results with text embedding techniques (Table 1), one can
note that DeepWalk and Node2Vec outperform all the other algorithms at a significant
margin. Moreover, the tendency holds for different values of labeled nodes. It generally
means that the Cora graph structure has a higher correlation with the target.

For Citeseer-M10 dataset (Table 4), DeepWalk and Node2Vec show identical
performance for all labeled nodes’ values, whereas HOPE again performs quite poorly.
Interestingly, in contrast with Cora, here, one can see that text embedding techniques
outperform network embeddings.

Table 4 shows the results for network embedding methods on DBLP dataset. Similar to
the Citeseer-M10 dataset, we can see that DeepWalk and Node2Vec perform equally. Also,
one can see that text embedding techniques severely outperform network embeddings on
this dataset.

Generally, different datasets show different levels of importance for text and network
data. For some datasets, nodes from the same class tend to link each other (the
phenomenon is called homophily Barabási & Pósfai (2016)), which means that graph
structure is beneficial for predicting the target. For other datasets, nodes might also tend
to cite nodes from other classes. In this case, network information is less useful. Even
though on some datasets, one type of information (text or network) significantly
outperforms the other, still both might be useful as they tend to provide complementary
information (different “views” on target).

Fusion methods
When analyzing the results on the Cora dataset (Table 5), one can note that a naive
combination of textual and network features performs similarly to more advanced
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approaches TADW and TriDNR. Also, all approaches except TriDNR perform better than
methods that use only text or network information, so one can conclude that these two
types of information are complementing each other. GNNs significantly outperforms all

Table 5 Fusion methods on Cora for node classification (micro-F1, metric lies between (0,1) and
higher value means better results).

% Labels 5% 10% 30% 50%

BoW + DeepWalk 0.74 ± 0.01 0.80 ± 0.01 0.84 ± 0.00 0.86 ± 0.01

Sent2Vec + DeepWalk 0.76 ± 0.01 0.79 ± 0.00 0.84 ± 0.01 0.85 ± 0.01

TADW - TF-IDF 0.72 ± 0.02 0.80 ± 0.01 0.85 ± 0.01 0.86 ± 0.01

TADW - Sent2Vec 0.75 ± 0.01 0.80 ± 0.01 0.83 ± 0.00 0.85 ± 0.00

TADW - Ernie 0.57 (±0.02) 0.69 (±0.01) 0.80 (±0.00) 0.82 (±0.00)

TriDNR 0.59 ± 0.01 0.68 ± 0.00 0.75 ± 0.01 0.78 ± 0.01

GCN - TF-IDF 0.80 ± 0.01 0.83 ± 0.01 0.86 ± 0.01 0.87 ± 0.01

GCN - Sent2Vec 0.77 ± 0.01 0.82 ± 0.00 0.85 ± 0.01 0.87 ± 0.01

GCN - Ernie 0.60 ± 0.01 0.67 ± 0.02 0.77 ± 0.01 0.81 ± 0.00

GAT - TF-IDF 0.82 ± 0.02 0.84 ± 0.01 0.87 ± 0.01 0.88 ± 0.00

GAT - Sent2Vec 0.78 ± 0.00 0.81 ± 0.00 0.85 ± 0.01 0.86 ± 0.00

GAT - Ernie 0.58 ± 0.02 0.62 ± 0.02 0.71 ± 0.00 0.73 ± 0.00

GraphSAGE - TF-IDF 0.80 ± 0.01 0.84 ± 0.00 0.87 ± 0.01 0.87 ± 0.01

GraphSAGE - Sent2Vec 0.75 ± 0.01 0.80 ± 0.01 0.86 ± 0.01 0.88 ± 0.00

GraphSAGE - Ernie 0.29 ± 0.04 0.33 ± 0.05 0.34 ± 0.04 0.37 ± 0.02

GIC - TF-IDF 0.74 ± 0.01 0.81 ± 0.00 0.85 ± 0.00 0.88 ± 0.00

GIC - Sent2Vec 0.66 ± 0.00 0.76 ± 0.02 0.84 ± 0.00 0.86 ± 0.00

GIC - Ernie 0.34 ± 0.03 0.37 ± 0.02 0.37 ± 0.01 0.38 ± 0.01

Note:
The best values with respect to confidence intervals are highlighted in bold.

Table 4 Network methods for node classification (micro-F1, metric lies between (0,1) and higher
value means better results).

% Labels 5% 10% 30% 50%

CORA

DeepWalk 0.72 ± 0.01 0.77 ± 0.00 0.81 ± 0.00 0.82 ± 0.01

Node2Vec 0.74 ± 0.01 0.76 ± 0.01 0.80 ± 0.00 0.81 ± 0.01

HOPE 0.29 ± 0.00 0.30 ± 0.00 0.30 ± 0.00 0.31 ± 0.00

CITESEER

DeepWalk 0.63 ± 0.00 0.65 ± 0.01 0.67 ± 0.00 0.68 ± 0.00

Node2Vec 0.63 ± 0.01 0.65 ± 0.00 0.67 ± 0.00 0.68 ± 0.00

HOPE 0.12 ± 0.00 0.13 ± 0.00 0.17 ± 0.00 0.20 ± 0.00

DBLP

DeepWalk 0.52 ± 0.00 0.53 ± 0.00 0.53 ± 0.00 0.53 ± 0.00

Node2Vec 0.52 ± 0.00 0.53 ± 0.00 0.53 ± 0.00 0.53 ± 0.00

HOPE 0.29 ± 0.01 0.30 ± 0.01 0.31 ± 0.00 0.31 ± 0.00

Note:
The best values with respect to confidence intervals are highlighted in bold.
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the other approaches. The best variation is the GAT with TF-IDF text encoding.
Nevertheless, almost all other GNN approaches lead to similar solid results. We can
observe an intriguing effect that the GIC model highly relies on the train set size. This
model accounts for network substructures like communities. So to efficiently learn it, GIC
requires substantial part of the graph to train to good quality. Another remarkable thing is
that text embeddings with high individual performance require a larger subsample of a
graph to achieve competitive results. However, this effect is less noticeable for the GAT
model because GAT relies more on the attention mechanism than the graph structure.

Tables 6 and 7 show that on Citeseer and DBLP networks, unlike the Cora dataset, the
naive combination of BoW and DeepWalk significantly outperforms much more advanced
algorithms. However, some GNN models still show superior performance. GraphSAGE
with Sent2Vec initial features gives the best results on almost all percentages of training
nodes except for 50%. It refers us to the nature of GraphSAGE. It works in an inductive
and scalable manner by sampling the node neighbors before GCN aggregation, so for
larger networks than Cora, it performs better. However, GCN still shows good
performance for large train parts. The difference is that GCN requires a whole node
neighborhood while GraphSAGE samples it with random walks. It seems that this effect is
similar to the dramatic growth of the GIC performance described above. Generally, the
fusion of text and graph information shows superior results to network or text embeddings
alone. However, GNN tends to perform better with sparse input features like TF-IDF.

Table 6 Fusion methods on Citeseer-M10 for node classification (micro-F1, metric lies between (0,1)
and higher value means better results).

% Labels 5% 10% 30% 50%

BoW + DeepWalk 0.73 ± 0.01 0.76 ± 0.00 0.81 ± 0.01 0.83 ± 0.01

Sent2Vec + DeepWalk 0.73 ± 0.01 0.75 ± 0.00 0.79 ± 0.01 0.80 ± 0.01

TADW - TF-IDF 0.47 ± 0.02 0.51 ± 0.01 0.57 ± 0.01 0.59 ± 0.01

TADW - Sent2Vec 0.57 ± 0.01 0.60 ± 0.00 0.65 ± 0.01 0.66 ± 0.01

TADW - Ernie 0.41 (±0.01) 0.46 (±0.01) 0.53 (±0.01) 0.56 (±0.01)

TriDNR 0.63 ± 0.01 0.68 ± 0.00 0.74 ± 0.01 0.77 ± 0.01

GCN - TF-IDF 0.71 ± 0.01 0.76 ± 0.01 0.81 ± 0.01 0.83 ± 0.01

GCN - Sent2Vec 0.73 ± 0.01 0.80 ± 0.00 0.84 ± 0.01 0.87 ± 0.01

GCN - Ernie 0.71 ± 0.01 0.75 ± 0.00 0.78 ± 0.00 0.79 ± 0.00

GAT - TF-IDF 0.72 ± 0.01 0.76 ± 0.01 0.82 ± 0.00 0.84 ± 0.01

GAT - Sent2Vec 0.75 ± 0.01 0.79 ± 0.00 0.81 ± 0.00 0.83 ± 0.00

GAT - Ernie 0.70 ± 0.02 0.74 ± 0.00 0.77 ± 0.00 0.78 ± 0.01

GraphSAGE - TF-IDF 0.72±0.01 0.77 ± 0.01 0.83 ± 0.00 0.85 ± 0.01

GraphSAGE - Sent2Vec 0.75 ± 0.01 0.80 ± 0.01 0.85 ± 0.00 0.86 ± 0.00

GraphSAGE - Ernie 0.58 ± 0.1 0.63 ± 0.01 0.65 ± 0.01 0.68 ± 0.01

GIC - TF-IDF 0.66 ± 0.00 0.70 ± 0.01 0.80 ± 0.00 0.83 ± 0.01

GIC - Sent2Vec 0.74 ± 0.01 0.78 ± 0.00 0.83 ± 0.00 0.84 ± 0.00

GIC - Ernie 0.49 ± 0.05 0.57 ± 0.02 0.57 ± 0.02 0.63 ± 0.00

Note:
The best values with respect to confidence intervals are highlighted in bold.
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It could be because high-quality, dense vectors are susceptible to any change, so it is hard to
mix information from different domains based on dense vectors.

Link prediction
Text methods
For the task of link prediction, one can expect text embeddings to perform more
consistently concerning train ratio in comparison with network embeddings. Because
network embedding techniques “suffer” twice when the percentage of train data is
decreasing: firstly, it affects the initial graph, so it is harder to learn embeddings
themselves. Secondly, it is harder to train a classifier using less data, whereas text
embeddings have only the second problem: they are not dependent on the graph structure.

Table 8 shows results of text embedding techniques on Cora dataset. Again, one can
see that BoW outperforms other methods, but LDA demonstrates much better
performance for link prediction contrary to node classification. Similar to node
classification problem on link prediction, advanced network embeddings perform worse
when the percentage of train data is high but show better results when it gets lower.

Table 9 show results for classic methods for link prediction problem on CiteSeer dataset.
Surprisingly, here BoW and TF-IDF perform very poorly, whereas SBERT shows superior
performance. SBERT performance makes more sense since it is trained to differentiate
two texts from each other, so it fits well for such tasks.

Generally, one can say that for link prediction choice of the text embeddings algorithm
should be dependent on dataset, as there is no universal best performer.

Table 7 Fusion methods on DBLP for node classification (micro-F1, metric lies between (0,1) and
higher value means better results).

% Labels 5% 10% 30% 50%

BoW + DeepWalk 0.77 ± 0.02 0.79 ± 0.01 0.81 ± 0.01 0.82 ± 0.01

Sent2Vec + DeepWalk 0.78 ± 0.01 0.80 ± 0.00 0.80 ± 0.01 0.80 ± 0.01

TriDNR 0.72 ± 0.01 0.75 ± 0.00 0.78 ± 0.01 0.79 ± 0.01

GCN - TF-IDF 0.71 ± 0.01 0.76 ± 0.01 0.81 ± 0.01 0.83 ± 0.01

GCN - Sent2Vec 0.78 ± 0.01 0.80 ± 0.00 0.81 ± 0.01 0.81 ± 0.01

GCN - Ernie 0.74 ± 0.01 0.75 ± 0.01 0.76 ± 0.01 0.77 ± 0.01

GAT - TF-IDF 0.79 ± 0.00 0.80 ± 0.00 0.82 ±0.00 0.82 ± 0.00

GAT - Sent2Vec 0.79 ± 0.00 0.79 ± 0.00 0.80 ± 0.01 0.80 ± 0.00

GAT - Ernie 0.73 ± 0.00 0.73 ± 0.00 0.75 ± 0.00 0.75 ± 0.00

GraphSAGE - TF-IDF 0.79 ± 0.01 0.79 ± 0.01 0.81 ± 0.00 0.82 ± 0.00

GraphSAGE - Sent2Vec 0.79 ± 0.00 0.80 ± 0.00 0.81 ± 0.00 0.81 ± 0.00

GraphSAGE - Ernie 0.70 ± 0.03 0.70 ± 0.02 0.71 ± 0.01 0.72 ± 0.01

GIC - TF-IDF 0.75 ± 0.00 0.77 ± 0.00 0.80 ± 0.00 0.81 ± 0.00

GIC - Sent2Vec 0.78 ± 0.00 0.79 ± 0.00 0.81± 0.00 0.81 ± 0.00

GIC - Ernie 0.51 ± 0.04 0.57 ± 0.02 0.63 ± 0.03 0.71 ± 0.01

Note:
The best values with respect to confidence intervals are highlighted in bold.
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Network methods

When one masks edges of a network, it changes the graph structure (contrary to node
classification), so it might be more challenging for structural network embedding method
to perform well. Table 10 shows how network embedding algorithms perform on Cora for
link prediction task.

Table 9 Text embeddings on Citeseer-M10 for link prediction (micro-F1, metric lies between (0,1)
and higher value means better results).

% Train edges 5% 10% 30% 50%

BoW 0.52 ± 0.01 0.52 ± 0.00 0.52 ± 0.01 0.52 ± 0.00

TF-IDF 0.52 ± 0.01 0.52 ± 0.01 0.53 ± 0.01 0.53 ± 0.00

LDA 0.69 ± 0.01 0.69 ± 0.01 0.70 ± 0.01 071 ± 0.01

SBERT pretrained 0.84 ± 0.00 0.85 ± 0.00 0.86 ± 0.01 0.86 ± 0.01

Word2Vec pretrained 0.53 ± 0.01 0.53 ± 0.01 0.54 ± 0.00 0.54 ± 0.01

Word2Vec (d = 300) 0.54 ± 0.00 0.54 ± 0.00 0.54 ± 0.00 0.54 ± 0.01

Word2Vec (d = 64) 0.54 ± 0.01 0.54 ± 0.01 0.54 ± 0.00 0.54 ± 0.01

Doc2Vec (pretrained) 0.55 ± 0.01 0.55 ± 0.00 0.55 ± 0.00 0.55 ± 0.00

Doc2Vec (d = 300) 0.77 ± 0.01 0.77 ± 0.00 0.78 ± 0.00 0.79 ± 0.00

Doc2Vec (d = 64) 0.77 ± 0.01 0.77 ± 0.01 0.77 ± 0.00 0.78 ± 0.00

Sent2Vec pretrained 0.54 ± 0.01 0.54 ± 0.01 0.55 ± 0.01 0.55 ± 0.01

Sent2Vec (d = 600) 0.54 ± 0.00 0.55 ± 0.01 0.55 ± 0.00 0.56 ± 0.01

Sent2Vec (d = 64) 0.53 ± 0.00 0.53 ± 0.01 0.54 ± 0.00 0.54 ± 0.01

Ernie pretrained 0.84 ± 0.01 0.84 ± 0.01 0.85 ± 0.01 0.85 ± 0.01

Note:
The best values with respect to confidence intervals are highlighted in bold.

Table 8 Text embeddings on Cora for link prediction (micro-F1, metric lies between (0,1) and higher
value means better results).

% Train edges 5% 10% 30% 50%

BoW 0.69 ± 0.01 0.71 ± 0.00 0.75 ± 0.01 0.76 ± 0.00

TF-IDF 0.67 ± 0.01 0.69 ± 0.01 0.72 ± 0.01 0.74 ± 0.01

LDA 0.68 ± 0.01 0.69 ± 0.01 0.71 ± 0.01 071 ± 0.01

SBERT pretrained 0.69 ± 0.00 0.71 ± 0.00 0.74 ± 0.01 0.76 ± 0.01

Word2Vec pretrained 0.60 ± 0.02 0.62 ± 0.00 0.63 ± 0.00 0.64 ± 0.01

Word2Vec (d = 300) 0.68 ± 0.00 0.70 ± 0.00 0.72 ± 0.00 0.73 ± 0.01

Word2Vec (d = 64) 0.70 ± 0.00 0.70 ± 0.00 0.72 ± 0.01 0.73 ± 0.01

Doc2Vec pretrained 0.63 ± 0.02 0.66 ± 0.00 0.70 ± 0.00 0.70 ± 0.00

Doc2Vec (d = 300) 0.67 ± 0.01 0.70 ± 0.00 0.73± 0.00 0.74 ± 0.00

Doc2Vec (d = 64) 0.66 ± 0.01 0.68 ± 0.00 0.69 ± 0.00 0.69 ± 0.00

Sent2Vec pretrained 0.66 ± 0.01 0.69 ± 0.00 0.73 ± 0.00 0.75 ± 0.00

Sent2Vec (d = 600) 0.71 ± 0.00 0.72 ± 0.01 0.75 ± 0.00 0.76 ± 0.01

Sent2Vec (d = 64) 0.70 ± 0.01 0.71 ± 0.00 0.73 ± 0.00 0.74 ± 0.00

Ernie pretrained 0.56 ± 0.01 0.58 ± 0.01 0.62 ± 0.01 0.63 ± 0.01

Note:
The best values with respect to confidence intervals are highlighted in bold.
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For Citeseer-M10 dataset (Table 10), the situation is quite similar to Cora dataset in a
sense that Node2Vec performs better than DeepWalk, and both of these methods
significantly outperform HOPE. Results for DBLP are omitted, but they are pretty much
the same.

To sum these experiments up, for a link prediction problem (contrary to node
classification), text information plays a much more critical role than graph structure.

Fusion methods
For the link prediction task, one can see (Table 11) that classic methods (BoW and TF-
IDF) outperform more advanced combinations (Sent2Vec and Word2Vec). Also, TADW
performs on the same level that plain text embedding techniques. It might happen because
TADW relies mostly on network information rather than on text. However, the
performance of the GIC and SBERTmixture for this dataset is high. It means that methods
preserving node clustering in the embedding space can improve the quality of each other.

A combination of TADW and Ernie shows by far the best results on the Citeseer-
M10 dataset (Table 12). It becomes more evident when the percentage of training edges is
high. It also follows previous results on using text embeddings, such as SBERT, on this
dataset. Interestingly, usage of SBERT alone performs better than in combination with
GCN. However, GraphSAGE mixture with SBERT shows close results to the pure text
embedding. It means that the entire graph structure adds more noise to the fine
embeddings for document clustering. Thus, careful selection of local neighbors is a crucial
part to utilize all SBERT properties. Also, GNNs shows consistent results for different
percentage of train edges, whereas other methods seem to degrade heavily as the
percentage of train edges becomes lower.

Generally, one can see that for the link prediction task (as opposed to node classification
problem), SBERT and Ernie show superior performance to other text embedding
techniques when used alone and in combination with Graph Neural Networks. However,
TF-IDF still shows high performance in fusion tasks.

Table 10 Network embeddings for link prediction (micro-F1, metric lies between (0,1) and higher
value means better results).

% Train Edges 5% 10% 30% 50%

CORA

DeepWalk 0.56 ± 0.01 0.60 ± 0.00 0.66 ± 0.00 0.66 ± 0.01

Node2Vec 0.57 ± 0.01 0.61 ± 0.01 0.65 ± 0.01 0.68 ± 0.01

HOPE 0.50 ± 0.00 0.50 ± 0.00 0.51 ± 0.00 0.52 ± 0.00

CITESEER

DeepWalk 0.55 ±0.01 0.59 ± 0.01 0.66 ± 0.01 0.66 ± 0.00

Node2Vec 0.55 ± 0.00 0.59 ± 0.00 0.69 ± 0.00 0.71 ± 0.00

HOPE 0.50 ± 0.00 0.51 ± 0.00 0.54 ± 0.00 0.57 ± 0.00

Note:
The best values with respect to confidence intervals are highlighted in bold.
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Network visualization
The main goal of network visualization is to produce a “meaningful” 2D plot of nodes.
Meaningful visualization would place nodes from one class close to each other and nodes
from different classes far away from each other. Consequently, having solved the
visualization problem, one automatically gets node clustering and vice versa.

To produce a 2D plot, one has to find a vector of two points describing the position of a
node. This problem can be solved in two ways using network embeddings:

1. Explicitly learn embeddings of size 2 using any methods described in the previous
chapters.

2. First, learn embeddings of length d, then use a dimensionality reduction method to
obtain vectors of the size 2.

We follow the second approach since the first one generally produces worse results, as it
is a much more challenging task to learn a realistic representation of size 2.

For embeddings compression, we will use t-distributed Stochastic Neighbor Embedding
(t-SNE) presented by Maaten & Hinton (2008). Firstly, t-SNE initialize the projection to

Table 11 Fusion embeddings on Cora for link prediction (micro-F1, metric lies between (0,1) and
higher value means better results).

% Train Edges 5% 10% 30% 50%

TADW - BoW 0.72 ± 0.02 0.72 ± 0.01 0.73 ± 0.01 0.73 ± 0.01

TADW - TF-IDF 0.73 ± 0.02 0.74 ± 0.01 0.74 ± 0.01 0.75 ± 0.01

TADW - Sent2Vec 0.70 ± 0.01 0.70 ± 0.01 0.71 ± 0.00 0.73 ± 0.00

TADW - Word2Vec 0.64 ± 0.01 0.68 ± 0.00 0.71 ± 0.01 0.72 ± 0.01

TADW - Ernie 0.51 ± 0.01 0.53 ± 0.01 0.54 ± 0.01 0.54 ± 0.01

GCN - TF-IDF 0.78 ± 0.01 0.78 ± 0.01 0.79 ± 0.01 0.80 ± 0.01

GCN - Sent2Vec 0.69 ± 0.01 0.71 ± 0.01 0.73 ± 0.01 0.75 ± 0.01

GCN - SBERT 0.67 ± 0.01 0.69 ± 0.01 0.71 ± 0.01 0.73 ± 0.01

GCN (Custom) 0.72 ± 0.01 0.75 ± 0.01 0.75 ± 0.01 0.75 ± 0.01

GCN - Ernie 0.62 ± 0.01 0.63 ± 0.00 0.63 ± 0.00 0.68 ± 0.01

GAT - TF-IDF 0.71 ± 0.01 0.73 ± 0.01 0.75 ± 0.01 0.75 ± 0.01

GAT - Sent2Vec 0.61 ± 0.01 0.61 ± 0.01 0.65 ± 0.01 0.68 ± 0.01

GAT - SBERT 0.65 ± 0.01 0.69 ± 0.01 0.72 ± 0.01 0.74 ± 0.01

GAT - Ernie 0.56 ± 0.01 0.56 ± 0.02 0.59 ± 0.01 0.62 ± 0.01

GraphSAGE - TF-IDF 0.75 ± 0.01 0.78 ± 0.01 0.79 ± 0.01 0.80 ± 0.01

GraphSAGE - Sent2Vec 0.66 ± 0.01 0.70 ± 0.01 0.74 ± 0.01 0.75 ± 0.01

GraphSAGE - SBERT 0.58 ± 0.01 0.62 ± 0.01 0.69 ± 0.01 0.64 ± 0.01

GraphSAGE - Ernie 0.50 ± 0.01 0.50 ± 0.01 0.53 ± 0.01 0.56 ± 0.01

GIC - TF-IDF 0.73 ± 0.01 0.75 ± 0.01 0.77 ± 0.01 0.78 ± 0.01

GIC - Sent2Vec 0.74 ± 0.01 0.75 ± 0.01 0.77 ± 0.01 0.78 ± 0.01

GIC - SBERT 0.74 ± 0.01 0.76 ± 0.01 0.78 ± 0.01 0.80 ± 0.01

GIC - Ernie 0.65 ± 0.01 0.69 ± 0.01 0.69 ± 0.01 0.74 ± 0.01

Note:
The best values with respect to confidence intervals are highlighted in bold.

Makarov et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.526 19/26

http://dx.doi.org/10.7717/peerj-cs.526
https://peerj.com/computer-science/


the two-dimensional space. Then, it calculates similarities between all points in both spaces
and converts it to the joint probability distributions. Finally, it enhances projection via
minimization of the Kullback-Leibler divergence between distributions in original and
manifold spaces.

For all models, hyperparameters are chosen in the same way as in previous experiments.
For GCN model, we take the output of the first activation layer.

When analyzing result obtained without fusion (Fig. 1), one can note that even simple
TF-IDF method provides a solid baseline as most of the classes (represented by colors)
are clearly separable. There are some exceptions, such as purple and pink classes, which
were not concentrated. Sent2Vec shows even better results: samples of every class are
tightly clustered together. The only problem is that clusters themselves are very close to
each other, which means that it would be rather hard to separate them using clustering
algorithms. For DeepWalk model, different classes are placed quite far away from each
other, which solves the problem mentioned above. However, some classes are split, for
example, green and red classes consist of multiple clusters.

Table 12 Fusion embeddings on Citeseer-M10 for link prediction (micro-F1, metric lies between
(0,1) and higher value means better results).

% Train Edges 5 % 10 % 30 % 50 %

TADW - BoW 0.50 ± 0.01 0.51 ± 0.02 0.51 ± 0.01 0.52 ± 0.01

TADW - TF-IDF 0.51 ± 0.01 0.51 ± 0.01 0.51 ± 0.01 0.52 ± 0.01

TADW - Sent2Vec 0.52 ± 0.01 0.53 ± 0.00 0.53 ± 0.00 0.54 ± 0.00

TADW - Word2Vec 0.52 ± 0.01 0.52 ± 0.01 0.53 ± 0.00 0.53 ± 0.00

TADW - Ernie 0.74 ± 0.01 0.75 ± 0.01 0.77 ± 0.02 0.78 ± 0.01

GCN - TF-IDF 0.68 ± 0.01 0.69 ± 0.01 0.70 ± 0.01 0.70 ± 0.01

GCN - Sent2Vec 0.59 ± 0.01 0.62 ± 0.01 0.67 ± 0.01 0.68 ± 0.01

GCN - SBERT 0.68 ± 0.01 0.70 ± 0.01 0.72 ± 0.01 0.77 ± 0.01

GCN (Custom) 0.61 ± 0.01 0.67 ± 0.00 0.68 ± 0.01 0.68 ± 0.01

GCN - Ernie 0.67 ± 0.01 0.67 ± 0.01 0.76 ± 0.00 0.78 ± 0.01

GAT - TF-IDF 0.60 ± 0.01 0.63 ± 0.01 0.65 ± 0.01 0.64 ± 0.01

GAT - Sent2Vec 0.59 ± 0.01 0.63 ± 0.01 0.64 ± 0.01 0.63 ± 0.01

GAT - SBERT 0.61 ± 0.01 0.65 ± 0.01 0.71 ± 0.01 0.73 ± 0.01

GAT - Ernie 0.61 ± 0.00 0.64 ± 0.01 0.69 ± 0.01 0.70 ± 0.01

GraphSAGE - TF-IDF 0.66 ± 0.01 0.67 ± 0.01 0.73 ± 0.01 0.78 ± 0.01

GraphSAGE - Sent2Vec 0.64 ± 0.01 0.66 ± 0.01 0.73 ± 0.01 0.78 ± 0.01

GraphSAGE - SBERT 0.61 ± 0.01 0.63 ± 0.01 0.71 ± 0.01 0.83 ± 0.01

GraphSAGE - Ernie 0.63 ± 0.02 0.72 ± 0.01 0.72 ± 0.01 0.80 ± 0.01

GIC - TF-IDF 0.62 ± 0.01 0.66 ± 0.01 0.74 ± 0.01 0.80 ± 0.01

GIC - Sent2Vec 0.62 ± 0.01 0.66 ± 0.01 0.75 ± 0.01 0.81 ± 0.01

GIC - SBERT 0.63 ± 0.01 0.66 ± 0.01 0.75 ± 0.01 0.78 ± 0.01

GIC - Ernie 0.63 ± 0.01 0.66 ± 0.00 0.73 ± 0.01 0.81 ± 0.00

Note:
The best values with respect to confidence intervals are highlighted in bold.
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Fusion methods provide even better visualizations: TADW shows the result that is very
similar to DeepWalk but with better consistency across different classes. TriDNR is more
similar to Sent2Vec because it provides a very clean separation of classes. However, the
classes themselves are located very close to each other, so it would be hard to apply
clustering algorithms. GCN provides the best result since classes are far away from each
other and clearly separated, so it would be elementary to cluster points in the embedding
space.

DISCUSSION
One can see that fusion of text and graph information shows superior results for all
machine learning tasks on graphs compared to methods that use only text or network
information. It proves that text information and graph structure are complementary to
each other, but each component’s contribution depends on a task and a dataset. It is also
clear that using advanced text embedding techniques such as Sent2Vec and SBERT can
significantly boost the performance of fusion methods. The reason is that advanced text
embeddings can better capture the semantic of the words (synonyms, antonyms) and,
therefore, better generalize. Moreover, pre-trained embeddings might be preferable when
the number of training samples is low. However, Bag of Words and TF-IDF provide a

Figure 1 Embeddings visualization on Cora. (A) TF-IDF (text embedding). (B) Sent2Vec (text embedding). (C) DeepWalk (network embedding).
(D) TADW (fusion). (E) TriDnr (fusion). (F) GCN (fusion). Full-size DOI: 10.7717/peerj-cs.526/fig-1
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substantial baseline for machine learning tasks on citation networks because a set of
keywords can efficiently represent nodes (scientific papers). Also, sparse vectors are less
sensible to the minor changes, so it fits the fusion task better.

The choice of the text embedding technique should be task-dependent: SBERT works
better for link prediction, whereas Sent2Vec shows good performance for node
classification. It can be explained by the fact that Sent2Vec is aimed to preserve the overall
semantics of a text. In contrast, SBERT is specifically trained to predict whether two
texts describe the same thing or not, so it is no wonder that SBERT is incredibly good at
solving a link prediction problem. The GraphSAGE shows better performance for large
networks compared to the other GNNs because it is designed for scalable inductive
learning. GIC works much better when the training part of the network is large. It requires
many details about graph substructure to utilize all power of cluster-level loss. Also, SBERT
and ERNIE perform better in fusion when the GNN model accurately selects the nodes
to be aggregated. So the modification of models like GIC and GraphSAGE, which work
with subgraph structures, could leverage the boost in its performance after some
modifications.

Unfortunately, our custom GCN architecture, which allows learning word and
network embeddings simultaneously, does not outperform state-of-the-art algorithms.
Nevertheless, there is some potential for it. As mentioned before, the GCN part could
be replaced by GraphSAGE or GIC models. Furthermore, pretraining of text embedding
layer with further fine-tuning can show much better results on bigger networks
(millions of nodes) due to the better quality of source text embeddings. The other possible
modification of the fusion technique is to use the graph as a source of pairs for the SBERT
framework.

CONCLUSION
A comprehensive comparison of different fusion methods for machine learning problems
on networks was conducted in this work. The best combinations of network and text
embeddings for different machine learning tasks were outlined and compared with the
traditional approaches. The new GCN architecture was proposed for learning text and
network representations simultaneously. Main conclusions of the work:

1. Fusion of text and graph information allows boosting performance on machine learning
tasks significantly.

2. Usage of advanced text embeddings such as Sent2Vec and SBERT can improve the
accuracy of different fusion architectures such as TADW and GCN. SBERT generally
works better for link prediction, Sent2Vec for node classification.

3. There is no universal solution that fits all problems and all datasets. Different methods
(and combinations of methods) might work better for different datasets.

4. Proposed GCNmodification does not work well for datasets considered in this work but
might show a better performance for bigger networks with more text data.
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This work can be continued in the following ways. Firstly, it is promising to experiment
with the proposed GCN architecture using bigger networks (ideally millions of nodes).
It might show better results because a lot of data is required to learn sensible word
embeddings. However, it is better to use models that work on the subgraph level
(GraphSAGE or GIC) for better scalability and synergy with SBERT and ERNIE features.
Another possible extension is to use a joint loss to learn network and text embeddings
simultaneously. For instance, combining GNNs and BERT might present very competitive
results for link prediction. Also, networks could be a source of positive pairs for contrastive
learning technique (like SBERT is trained) or even provide more insights on knowledge
graph related problems (like suggested by Deng, Rangwala & Ning (2020)).
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