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ABSTRACT
During the last years, several studies have been proposed about user identification by
means of keystroke analysis. Keystroke dynamics has a lower cost when compared to
other biometric-based methods since such a system does not require any additional
specific sensor, apart from a traditional keyboard, and it allows the continuous
identification of the users in the background aswell. The research proposed in this paper
concerns (i) the creation of a large integrated dataset of users typing on a traditional
keyboard obtained through the integration of three real-world datasets coming from
existing studies and (ii) the definition of an ensemble learning approach, made up of
basic deep neural network classifiers, with the objective of distinguishing the different
users of the considered dataset by exploiting a proper group of features able to capture
their typing style. After an optimization phase, in order to find the best possible
base classifier, we evaluated the ensemble super-classifier comparing different voting
techniques, namely majority and Bayesian, as well as training allocation strategies, i.e.,
random and K-means. The approach we propose has been assessed using the created
very large integrated dataset and the obtained results are very promising, achieving an
accuracy of up to 0.997 under certain evaluation conditions.

Subjects Human–Computer Interaction, Artificial Intelligence, Data Mining and Machine
Learning, Security and Privacy
Keywords Keystroke analysis, Biometric user identification, Ensemble learning, Deep learning,
Neural networks

INTRODUCTION
The problem of user authentication has been addressed in numerous research studies.
Various algorithms faced it exploiting the analysis of keystroke dynamics (Pin Shen
Teh & Yue, 2013; Revett, de Magalhães & Santos, 2007) and also recent studies assume
that the comprehension of the typing patterns of people can be useful to distinguish
or authenticate individuals (Maheshwary & Pudi, 2017; Dhakal et al., 2018; Venugopal
& Viji, 2019). Many of these approaches employ techniques relying on either simple
statistical machine learning (Maxion & Killourhy, 2010; Ahmadi et al., 2020) or neural
network algorithms (Darabseh & Siami Namin, 2015); moreover, they successfully mine
some typing patterns such as the timing of a single keystroke (Maheshwary & Pudi,
2017a), the pressure applied when typing (Dhakal et al., 2018), or, referring to mobile
and smartphone keystroke dynamics, some other mobile device-specific features (i.e., the
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device positioning, the accelerometer data, the dimension of the key touch area and the
position of the touch) (Revett, de Magalhães & Santos, 2007; Hellström, 2018).

Therefore, keystroke analysis has already proven to provide a significant contribution
in improving existing computer security systems, e.g., by means of a new security layer
allowing one to ensure a more efficient individual identification as well as to solve some
vulnerabilities of traditional authentication approaches (Dowland, Furnell & Papadaki,
2002; Bergadano, Gunetti & Picardi, 2002). As a matter of fact, traditional password-based
authentication approaches (Patel et al., 2020) can be easily compromised and they are
mainly based on a single authentication judgment whenever a session starts (Dowland,
Furnell & Papadaki, 2002). Within such a context, keystroke analysis can be effectively
exploited together with the existing authentication systems to ensure a more robust
identification, to be performed continuously during every user session. This could be used
to avoid, for example, the authentication on the part of a legitimate user and the subsequent
usage of the computer, or smart device, by other people while the genuine user is away for
a short time. Moreover, a keystroke-based authentication could prove extremely useful in
contexts wherein a large number of users can access legitimately a single shared device as
well as in common Cloud services.

Furthermore, keystroke analysis approaches applied to user authentication are not
intrusive. Indeed, the flow of events produced by recording the stream of typed keys
can be analyzed in real-time with different techniques and without any interference with
the behavior or activity of the user. Finally, while existing key-loggers can easily support
keystroke analysis, they are also useful to collect different events taking place in the user
typing, thus allowing the storage of more significant data with low costs.

Based on the aforementioned considerations, several machine learning algorithms have
been proposed to conduct keystroke analysis in the past years (Revett, de Magalhães &
Santos, 2007;Muliono, Ham & Darmawan, 2018). Nevertheless, several limitations need to
be overcome. Indeed, these algorithms are mainly based on a limited group of features
or assessed on limited datasets. As a consequence, the use of deep learning approaches to
perform keystroke-based authentication is very limited, as it requires large and balanced
datasets to successfully train the deep neural network model itself.

Nevertheless, the advantage of using a deep learning approach in keystroke analysis
is clear and it is highlighted in several contributions, such as the one in Sundararajan &
Woodard (2018), wherein the authors assert that deep learning techniques could be suitable
to perform biometric recognition, or the one in Çeker & Upadhyaya (2017b), where deep
learning techniques are demonstrated to be able to strengthen the capacity of all the
considered features and to manage large intra-class changes and noisy biometric data.

In order to overcome these gaps, this paper proposes a multiple classifier approach,
based on basic deep neural networks gathered into a unique ensemble classifier, in order
to perform keystroke analysis activities by means of a generalizable feature model. The
evaluation of the proposed approach, which is an expansion of the preliminary study
described in Bernardi et al. (2019), was performed by using the integration of three pre-
existing well-known datasets.

In summary, the main contributions this study can offer on the matter are the following:
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• the design and description of a large group of unique features characterizing the
properties of the typing events of a user;
• the modeling of a process for the integration of different keystroke datasets, based on
the defined feature model, into a large integrated dataset composed of 169,678 different
users;
• the design of an ensemble deep learning approach, formining and successfully exploiting
the very large keystroke dataset we built, which exploits different allocation and voting
strategies;
• the performing of several experiments and evaluations, using the very large integrated
dataset, useful to assess the validity of both the designed feature model and the ensemble
deep learning classifier.

The rest of this paper is structured as follows: the second section discusses the related
work and the background. The third section presents the feature model we adopted and
the classification approach we propose. The fourth section provides the evaluation and
the discussion of the obtained results, while the fifth section contains some considerations
about the validity of the used approach. Finally, the last section draws some conclusions
and future research directions.

RELATED WORK AND BACKGROUND
Keystroke dynamics analysis
During the past years, the problem of user identification has been tackled through
various algorithms based on the analysis of keystroke dynamics (Pin Shen Teh & Yue,
2013; Venugopal & Viji, 2019). Many of these approaches employ techniques relying
on either simple statistical machine learning (Maxion & Killourhy, 2010; Ahmadi et al.,
2020) or neural network algorithms (Darabseh & Siami Namin, 2015). Statistical machine
learning approaches carry out keystroke classification by using some of the following
techniques: K-Nearest Neighbours (KNN), Naive Bayes classifier (NB), Support Vector
Machines (SVM), etc.; among these, SVM algorithms provide the most promising results.
A statistical approach is used in Roh, Lee & Kim (2016), wherein the authors implement
classifiers with five features measured by means of smartphone sensors. In Alpar (2019) a
frequency-based authentication system called TAPSTROKE is proposed. The experiments
are conducted by using a one-class SVMwith a simple linear kernel for both Hamming and
Blackman window functions. A random forest (RF) classifier is proposed in Alshanketi,
Traore & Ahmed (2016) to improve accuracy performance in themobile keystroke dynamic
biometric authentication. The evaluation is performed on two public datasets and an ad-
hoc built dataset. The authors in Kang & Cho (2015) also study typing patterns of users
digitizing long and free text strings from various input devices, by evaluating different
statistical methods. Finally, in Wesoowski, Porwik & Doroz (2016), four classifiers (C4.5,
BN, SVM, and RF) in an ensemble approach are used to support electronic health record
security. A more recent approach (Lu et al., 2020) proposes a deep neural network model
(convolutional neural networks + recurrent neural networks) to learn the keystroke
data of free texts. The approach is validated on an existing dataset giving interesting
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results. Considering always the neural networks approach, several studies (Kim, Lee &
Shin, 2020) are also focused on the definition of feature-selection methods. In Loy, Lai &
Lim (2007), for example, the authors performed user classification by using perceptrons,
back-propagation, and ART-2 network. However, such approaches require a long time to
train the model and are mainly based on some manual tasks. Moreover, these models are
also difficult to be generalized (Deng, Heaton & Meltzner, 2014).

More recently, keystroke dynamics techniques have been used to authenticate a computer
user in the background, while the user is actively working at a terminal (Ceker & Upadhyaya,
2017a). In particular, the authors investigated the applicability of deep learning on three
different datasets by using convolutional neural networks and Gaussian data augmentation
techniques. In Chu-Hsing Lin (2018) recorded scan codes and keystroke sequences of
passwords are used to distinguish the legitimate users from the non-legitimate ones by
using deep convolutional neural networks (CNNs). When comparing the detection rates
between the CNN and a traditional neural network, the authors proved that the CNN
is the best choice. In Alpar (2017), the biometric keystroke authentication is performed
using Gauss-Newton-based neural networks to classify frequency spectrograms. The goal
of this study is to perform frequency authentication to enhance keystroke authentication
protocols.

Table 1 reports a summary of the characteristics of the above-described approaches. The
table highlights for each study the kind of classification approach, the adopted data type
(free text and fixed text), the number of users involved in the experimentation, and the
reached Equal Error Rate (EER).

The table shows that all the approaches give a good performance, but they are mainly
evaluated on a limited number of users and reach interesting performance only for a
small number of them. However, a very large benchmark dataset to be used in comparing
quantitatively deep learning techniques with existing machine learning approaches, in
the field of keystroke biometric analysis, is not yet published. This is mainly due to the
common unwillingness to freely publishing large datasets with suitable features.

Starting from the aforementioned observations, concerning user identification, in this
paper, we analyze the performance of a hierarchical multiple Deep Neural Network (DNN)
classifier learning algorithm that uses an accurately designed set of features. To obtain a
larger and varied dataset, we combined three existing datasets. This allowed us to validate
our approach using data from different typing scenarios, a scenario rarely tackled in the
literature.

Deep learning algorithms
Deep Learning (DL) algorithms have been used in the last years in several domains
becoming more and more diffused (Zhao et al., 2020; Yang et al., 2020; Junseob Kim, 2020).
They expand classical machine learning techniques by adding more complexity into the
model and transforming the data using various functions which hierarchically represent
them. This is usually done through several levels of abstraction, in turn, composed of
various artificial perceptrons (Yu & Deng, 2011). Indeed, DL neural networks simulate
the way biological nervous systems process information. In particular, these approaches
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Table 1 Best EERmetric for the proposed approach and SOTA approaches.

Approach Reference (Year) Data type #Users EER

Trigram-based Single DNN 7
layers (10 users)

1.11%

Trigram-based Single DNN 7
layers (100 users)

2.87%

Trigram-based Ensemble DNN
7 layers (10 users/cluster)

1.58%

Trigram-based Ensemble DNN
7 layers (100 users/cluster)

This work Free Text 1000

2.95%

Ensemble classifiers Porwik, Doroz & Wesolowski
(2021)

Free Text 150a 0.15%

Convolutional neural net-
work + Recursive neural net-
work

Lu et al. (2020) Free Text 260 2.67%

Modified STFT + Hamming 1.76%
Modified STFT + Blackman 2.60%
STFT + Hamming 8.50%
STFT + Blackman

Alpar (2019) Fixed Text 24

9.72%
Convolutional neural net-
works (CNN)

Ceker & Upadhyaya (2017) Free Text 39 2.16%

GN-ANN Alpar (2017) Fixed Text 12 4.10%
Random Forest (Pressure +
finger area)

5.65%

Random Forest (DT + FT +
Pressure + finger size)

Alshanketi, Traore & Ahmed
(2016)

Fixed Text 103
2.30%

Statistical Roh, Lee & Kim (2016) Fixed Text 15 7.35%
Statistical Kang & Cho (2015) Free Text 35 5.64%
Ensemble (C4.5, Bayesian
Network, SVM, Random For-
est)

Wesołowski, Porwik & Doroz
(2016)

Free Text 29a 2.17%

Random Forest Maxion & Killourhy (2010) Fixed Text 28a 8.6%
ARTMAP-FD Loy, Lai & Lim (2007) Fixed Text 100 11.78%

Notes.
aThe approach performs intrusion detection with respect to reference user profiles (binary classification) instead of user identification.

are based on neural networks made up of several hidden layers, whose input data are
transformed across several steps with different abstract and composite representations,
which realize pattern classification and feature learning through a hierarchy of concepts.

The training of a DL network resembles that of a simple artificial neural network and
consists of the following phases: (i) a forward phase, in which the activation signals of
the nodes, usually triggered by non-linear functions, are propagated from one layer to the
following one, and (ii) a backward phase, allowing the modification of the weights and
biases, if necessary, to enhance the network performance.

DL is suitable to solve complex problems particularly well and quickly, by employing
black-box models that can increase the overall performance (i.e., increase the accuracy or
reduce the error rate). Because of this, DL is getting more and more widespread in several
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complex domains of different nature (Alom et al., 2019; Yang, Venkatraman & Alazab,
2018; Alazab et al., 2020; Vasan et al., 2020; Zhaoet al., 2020).

Ensemble learning
Ensemble learning (Dietterich, 2000) consists in grouping a set of classifiers together in
order to classify new instances in a combined fashion, i.e., the decision of each classifier
is taken into account as a vote and all votes are combined, according to specific rules,
producing a final overall classification decision as its output.

Ensemble learning methods, which create a sort of super classifier, are in general much
more accurate than any single composing classifier by itself (Hakak et al., 2021). This is
because algorithms that output a single hypothesis suffer from three issues (partly solved
by ensembling techniques): (i) the statistical problem, (ii) the computational problem,
and (iii) the representation problem. These issues are usually solved by minimizing the
following two kinds of errors: variance in sensitivity and bias in the model itself.

Ensemble learning usually employs the same basic classifier repeated n times and the
output of each classifier is different because different samplings of the training data are
used or random parameters are present in the single basic classifier itself.

As a matter of fact, ensemble methods can be classified according to the following: (i)
their training allocation strategy and (ii) the type of combination of the outputs (votes)
(Bishop, 2006).

Concerning the training allocation strategy, bagging provides parallel training with
different training sets (through random allocation or clustering according to specific
rules), boosting employs sequential training by re-weighting the samples, while themixture
of experts encompasses parallel training with labor division.

Concerning the combination of the outputs, different choices could be made, such as
the following:

• unweighted average (Ju, Bibaut & van der Laan, 2018), which provides the mean of the
output votes for all basic classifiers, is the most common approach in the case of similar
component classifiers of comparable performance. In the case of classification problems,
the amount to be averaged corresponds to the predicted probability after a softmax
transformation, computed according to the following formula:

pij = softmax(si)[j] =
si[j]∑N

n=1exp(si[k])
(1)

where si is a score vector, output of the last layer of the neural network for the ith unit,
si[k] is the score corresponding to the kth class, and pij is the predicted probability for
unit i in class j.
• majority voting (Kokkinos & Margaritis, 2014), which counts the votes per label of all
basic classifiers and decides using the label with most votes. It is less sensitive to the
output coming from a single basic classifier than the unweighted averaging strategy.
• Bayesian voting, which states that each basic classifier outputs a hypothesis hj(x,y),
where x is the array of features and y the class associated to a sample to be tested. The
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Bayesian optimal classifier determines the class y according to the following criterion:

argmaxy
∑
hj

hj(y|x)P(Strain|hj)P(hj) (2)

where P(hj) is the prior distribution of hj , usually considered uniform, Strain the training
set of classifier j, and P(Strain|hj) the likelihood of the data under the hj hypothesis.
• stacking, which linearly combines all predicted outputs from the basic classifiers,
wherein each output is opportunely weighed through a weight vector learned by means
of a proper meta-learner. For example, predictions f1,f2,...,fm can be linearly combined
with weights ai,i∈ 1,...,m according to the following equation:

fstacking (x)=
m∑
k=1

ak fk(x). (3)

In this paper, we investigate the performance of the proposed ensemble classifier, described
in the following, by adopting both majority and Bayesian voting approaches.

APPROACH
In this section, we describe carefully the approach used to identify users by means of their
typing dynamics. The approach is based on three essential components:

• the feature model;
• the ensemble or hierarchical multiple classifier;
• the basic classifiers of the ensemble, exploiting deep neural networks.

In the following subsections, these three components are thoroughly detailed and
explained.

Features model
The approach we propose is based on the assumption that users can be identified by
analyzing their typing dynamics. In this subsection, we describe a set of features allowing
the capture and discrimination of such typing dynamics. Each proposed feature permits
the representation of a specific aspect of user typing dynamics and is obtained from our
previous analysis and from the study of the relevant literature (Killourhy & Maxion, 2009;
Banerjee et al., 2014; Feit, Weir & Oulasvirta, 2016).

The proposed model stems from the definition of the concept of keystroke stream.
Considering the release of a key as a key up (U ) event and the pressing of a key as a key
down (D) event, respectively, we can define a keystroke stream as a set of typing events as
follows:

KeystrokeStream={E1,...,Ef } (4)

where:

Ei ∈ {ci|ci ∈N }×{U ,D}×{ti} (5)

Hence, a typing event Ei is represented as a triple composed of a key code ci belonging
to the set N of all possible codes, an event type (D means ‘press’ and U means ‘release’)
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Figure 1 Example of a keystroke stream.
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and a timestamp ti (the temporal instant when the event took place). Figure 1 shows an
example of a keystroke stream, obtained when a user writes the sentence ‘‘Welcome back’’.
Each typing event is represented by means of down arrows for the pressing of a key and up
arrows for the release of a key.

Looking at the stream described in the example above, in a flow of f typing events a
sentence S can be seen as a sequence of m words (with m≤ f ):

S=<W1,...,Wm > (6)

Moreover, Fig. 1 shows how each word Wi is delimited by word-breaking (https:
//unicode.org/reports/tr29/#Word_Boundaries) characters according to the Unicode
standard (The Unicode Consortium, 2011) (e.g., the two highlighted white-space divide the
keystroke sequence into two wordsW1=‘‘Welcome’’ andW2=‘‘back’’).

For each typing event Ei = (ci,D,ti) (e.g., the ci =’e’ key-down event highlighted in
green in the example), we also consider the three previous typing events ([Ei−3,Ei−2,Ei−1])
associated with the previous trigram (e.g., the character stream {(c,D,ti−3), (o, D,ti−2), (m,
D,ti−1)} of the figure).

Starting from the aforementioned notations, we computed the following features:
• Inter Keys Interval (IKI): It is the time (in milliseconds) intervening between two
subsequent key-down events. If IKIi is the inter keys interval of a generic typing event
Ei= (ci,D,ti), it can be calculated, based on the previous press event, as follows:

IKIi= ti− ti−1 (7)

where ti and ti−1 are the timestamps of the press events Ei and Ei−1, respectively. Referring
to Fig. 1 as an example, IKIi is the time interval between the key-press event of the ‘m’
character and the consecutive character ‘e’ (ith event, highlighted in green).
• Inter Keys Interval (IKI_2): It measures the time interval (in milliseconds) between the
last key-down event and the central key down of the previous trigram. If IKI_2i is the
IKI_2 of a generic typing event Ei= (ci,D,ti) , it can be calculated as follows:

IKI_2i= ti− ti−2 (8)
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where ti−2 is the instant when press event Ei−2 took place. Referring always to Fig. 1,
IKI_2i is the time between the key-press event ‘o’ and the event ‘e’ (ith event, highlighted
in green).
• Inter Keys Interval (IKI_3): It measures the time interval (in milliseconds) between
the last key down event and the first key down event of the last trigram. If IKI_3i is the
IKI_3 of a generic typing event Ei= (ci,D,ti), it can be computed in the following way:

IKI_3i= ti− ti−3 (9)

where ti−3 is the time of key press event Ei−3. Referring to Fig. 1, IKI_3i is the time
interval since the key-press of ‘c’ and the key-press of ‘e’ (ith event, highlighted in green).
• Words per minute (WPM): It is the words per minute rate, computed by sentence. For
example, considering sentence S made up ofm words, itsWPM is equal tom divided by
the difference between the timestamp of the last key-up event of the final wordWm (tewm )
and the timestamp of the first key-down event of the starting word (tsw1 ). Therefore, its
computation is performed as follows:

WPM =
m

tewm − tsw1
(10)

Figure 1 shows an example of WPM calculation for the sentence ‘‘Welcome back’’.
DTsentence is indicated in the figure as the time required to write the whole sentence,
made up of m= 2 words.
• Error Corrections (EC): it is the frequency of ‘‘Delete’’ (DEL) or ‘‘Backspace’’ key-press
events during the typing (i.e., the number of removed characters per minute). Even
if error correction operations are not limited to these events (for example, users can
exploit the pointer or other keys to mark and remove the text), here, we focus only on
the events that can be easily extracted from logs of existing applications. Indeed, even
if the EC metric does not take into account all possible kinds of text manipulations, it
is considered very representative of the mistake frequency of the user and hence highly
distinctive.

Finally, the model is completed by adding some aggregated metrics, i.e., average (AVG),
variance (VAR), and standard deviation (SD), for the obtained IKI , IKI_2, and IKI_3
features. These features are used to discriminate users on the basis of their typing speed.
Conversely, AVG_IKIj , VAR_IKIj , and SD_IKIj features provide a measure of the intrinsic
typing habits of a certain user, which are usually quite stable across the writing.

The final features set is composed of 16 features representing a user behavior along the
last trigram. This permits one to understand if the inter-key interval values for the trigrams
flow allow the capture of the typing behavior of the users and their better discrimination.
Indeed, the complete list of the considered features is reported in the first column of
Table 2. In the table, we also detailed, in the last column, the membership (black filled-in
small circle) or not (empty small circle) of each feature to the integrated dataset F . The
proposed feature set (F2) has been validated in a previous study (Bernardi et al., 2019),
showing better outcomes than another feature set (F1) composed of only 8 features.
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Table 2 Considered datasets in relation to the designed feature model. Filled-in circles indicate the fea-
tures considered in the final integrated dataset, while empty circles indicate the features not being present
in the final integrated dataset ( F).

Feature DT1 DT2 DT3 F

KEYCODE contained contained contained •

KEYCODE_PREV computed contained contained •

KEY PRESS TIME useful not useful contained ◦

KEY RELEASE TIME useful not useful contained ◦

IKI computed contained contained •

SD_IKI computed contained computed •

AVG_IKI computed computed computed •

VAR_IKI computed computed computed •

IKI_2 computed computed computed •

SD_IKI_2 computed computed computed •

AVG_IKI_2 computed computed computed •

VAR_IKI_2 computed computed computed •

IKI_3 computed computed computed •

SD_IKI_3 computed computed computed •

AVG_IKI_3 computed computed computed •

VAR_IKI_3 computed computed computed •

WPM computed contained contained •

EC computed computed computed •

Hierarchical multiple classifier
The classification methodology adopted in this paper is based on a hierarchical multiple
classifier schema, depicted in Fig. 2, wherein the training phase is in the upper part, whereas
the classification phase is in the lower one.
In the upper part of the figure, the partitioning procedure of the training phase is

detailed. As a matter of fact, in this phase, data are partitioned into sub-datasets (D1,
. . .Dn). In particular, the initial dataset is split into a set of data clusters which represent
a sub-population of the initial training data. The splitting is performed by ensuring that
each class is included in h sub-datasets, where h is an odd number at least equal to three
(to allow for the majority voting during classification). Two different strategies for the
class distribution into the clusters are evaluated in this paper: (i) the random and (ii) the
K-means cluster data allocation strategy. The former consists in randomly choosing the
classes associated with each sub-dataset; conversely, the latter entails a K-means clustering
algorithm to group in the same sub-dataset all the closest classes (Coates & Ng, 2012).
Specifically, we applied this algorithm to the centroids of the observations of each class.
This allows one to group the classes into K clusters in which the elements of a single cluster
represent the classes whose observations are allocated to a certain sub-dataset.

Each obtained sub-dataset (D1,D2, . . .DN ) is then used to train a single basic component
classifier. The set of considered basic component classifiers (C1, C2, . . .CN ) is reported in
Fig. 2 as well. Each classifier is also designed to classify as ‘‘error instances’’ all the instances
belonging to classes not used to train the classifier itself.
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Figure 2 Overview schema of the considered hierarchical multiple classifier.
Full-size DOI: 10.7717/peerjcs.525/fig-2

Finally, an ensemble super-classifier is constructed by combining all the basic component
classifiers and allowing them to vote. The ensemble super-classifier is based on a voting
approach exploiting the results of the single component classifiers previously designed.
The error instances generated by the component classifiers are ignored by the ensemble
super-classifier.

During the test phase, for an unknown data instance, the basic component classifiers
are applied to it to produce the inputs for the super-classifier (voter). The final result is
produced by the ensemble super-classifier according to the input and the considered voting
approach. The voting is performed by using two different approaches: (i) a simple majority
voting system and (ii) a Bayesian network-based voting system.

Basic DNN component classifier
As regards the basic component classifiers of the ensemble, we considered a DNN model
like the one shown in Fig. 3.
The architecture of the considered basic DNN exhibits the following layers:

• Input layer : the entry point of the considered neural network, composed of one node
for each of the 16 features we described previously;
• n sequences of three layers: the sequence is made up of a batch normalization layer, a
proper hidden layer, and a dropout layer. These layers are tightly coupled and will be
replicated n times in the experiments we carried out. More in detail, the three layers of
the series are the following:
1. the batch normalization layer (Ioffe & Szegedy, 2015), added to improve the training

process by means of speed improvements, the usage of better learning rates, and
more flexibility in the initialization of the hyper-parameters. These in turn foster a
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Figure 3 The considered basic DNN classifier for user identification.
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more stable gradient propagation in the network leading to higher accuracy for both
validation and test.

2. the actual hidden layer, made up of a variable number of ‘‘perceptrons’’, decreasing
from the layer closer to the input towards the layer closer to the output. The output
of each perceptron of the hidden layer is a weighted sum of its inputs and is processed
through a non-linear function called ‘‘activation function’’ (e.g., a ReLu, a sigmoid,
or a soft-plus function).

3. The dropout layer, used for regularization purposes, by reducing the model
complexity with a random deactivation of some perceptrons according to a Bernoulli
distribution with a given p probability. In our experiments, we used 0.5 as ‘‘drop’’
probability.

• a final batch normalization layer : used to improve the training of the output layer.
• Output layer : this layer produces the final classification. In this work, we employed a
dense layer wherein every node in input is linked to every node in the output.

The DNN architecture we considered was trained by exploiting cross-entropy (Mannor,
Peleg & Rubinstein, 2005) as a loss function, whose optimization is achieved by means
of a Stochastic Gradient Descent (SGD) technique. In particular, as regards SGD, we
adopted a momentum of 0.08 and a fixed decay of 1e−6. In order to improve the learning
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performance, SGD was also integrated, in all experiments, with Nesterov Accelerated
Gradient (NAG) correction to avoid excessive changes in the parameter space (Sutskever et
al., 2013). During the training step, we tested architectures configured with an increasing
number of hidden layers (n), in order to find out the best possible performance.

EVALUATION
In this section, the evaluation setting, the considered datasets, and the results we obtained
are described.

Setting
The validation is carried out by using the hierarchical multiple classifier, composed of a set
of basic DNN classifiers, on the feature model previously described.

The basic DNN classifiers are trained for a changing number of layers as well as for
a varying number of epochs. The latter represents a hyper-parameter which shows how
many times the training is performed on the whole training dataset. The basic deep neural
network classifier was implemented using Tensorflow (https://www.tensorflow.org/), an
open platform for machine learning tasks, and Keras (https://keras.io/), an open-source
neural network library written in Python. Similarly, the hierarchical multiple classifier
was developed using the Python programming language. Different numbers of clusters
(or classifiers) and different numbers of users per cluster have been evaluated along this
experimentation. Finally, the multiple classifier has been evaluated by considering two
different voting approaches: a simple majority vote and a Bayesian network-based vote.

The metrics used to evaluate the training performance are the Accuracy and the Loss.
The loss function used is, as already stated, the cross-entropy and gives information on how
well the dataset is modeled by the network. High values of loss mean that the predictions
are totally wrong. On the other hand, if the loss is low, the prediction is performing well.

As regards the classification results, they were evaluated using the following metrics:
Accuracy, F1 score, and ROC Area.

The accuracy is defined as follows:

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
(11)

where tp means true positives (the number of relevant retrieved instances), tn means true
negatives, fnmeans false negatives (the number of not retrieved relevant instances), and fp
means false positives (the number of irrelevant retrieved instances).

The F1 score is the weighted harmonic mean of precision and recall, which, in turn, are
computed according to the following formulas:

Precision=
tp

tp+ fp
(12)

Recall =
tp

tp+ fn
(13)
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Finally, the ROC (Receiver Operating Characteristic) Area (or AUC—Area Under the
ROCCurve)measures the probability that a relevant instance randomly selected is classified
above a not relevant one. This graph, drawn as a function of the sensitivity (or True Positive
Rate—TPR) and of the specificity (or False Positive Rate—FPR), is important also because
the higher the area under the curve, the higher the measure of accuracy.

To perform a comparison with other state-of-the-art (SOTA) methods, the classic
Equal Error Rate (EER) metric was adopted as well. It represents the error value when the
percentage of times that an imposter is erroneously identified as a legitimate user is equal
to the percentage of times that a legitimate user is wrongly identified as an imposter.

The experiments were performed by using an Intel Core i9 7920X (12 cores), with RAM
of 16GB and 4 GPUs (NVIDIA Titan Xp).

Dataset
Based on the study of the literature, we observed that a high number of ad-hoc datasets have
been recently built, mainly to evaluate specific keystroke biometric approaches. Since these
datasets are quite small and not easy to compare, they are not useful to evaluate the existing
approaches. This consideration drove our idea to generate a new dataset as an integration
of some existing ones. This should be useful to overrun the limitations discussed above
and may support the study and the comparison of the different approaches, promising also
a generalization of the obtained research results. The integration process, proposed in this
study, has been developed to combine different existing datasets into a new one consistent
with the feature model we designed and with the features available in each source datasets.
The obtained integrated dataset is a larger one, suitable to perform the validation of our
proposed approach. The integration process consists of the following main steps:
1. the evaluation of each dataset according to the designed feature model;
2. the cleaning and filtering of the datasets;
3. the specification of the data transformation rules;
4. the merging of the datasets.
The first step allowed the evaluation of all the features in each initial input dataset to

assess their suitability according to the designed feature model.
In the following step, the input datasets are cleaned by filtering all the unnecessary

information.
In the third step, for each input dataset, some processing modules were added to specify

the logic used to transform (or evaluate when needed) the source features into the target
features.

The cleaned and transformed datasets were then combined in the last step.
The integration process we devised is designed to ensure an easy and iterative extension

of the integrated datasets, by adding new transformation rules for each newly added dataset,
and it was written in Python language.

In this study, we integrated three datasets (DT1, DT2, DT3) whose statistics and features,
referred to the designed feature model, are reported in Tables 3 and 2, respectively. The
selection of the datasets was performed by considering the following criteria: (i) the
data acquisition process has to be meticulous, repeatable, and well documented; (ii) the
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Table 3 Characteristics of the considered datasets.

Dataset #Users #Samples per user Samples size Reference

DT1 1500 4 954.82 Banerjee et al. (2014)
DT2 30 ≈ 1200 89.65 Feit, Weir & Oulasvirta (2016)
DT3 168000 11.25 48.85 Dhakal et al. (2018)

dataset subjects have to be widely varied in terms of samples per user as well as regarding
the particular typing scenario; (iii) the information contained in each dataset has to be
compatible, to a certain extent, to the designed feature model.

For all considered datasets, Table 3 shows the number of users, the samples per user,
the sample size (evaluated as the average number of characters per sentence), as well as the
corresponding reference. Looking at the first row, in DT1 there are 1,500 users and four
sentences are typed by each user. The sentences have various lengths (the average length of
the sentences is 955 characters and there is no sentence with less than 100 characters). In
the second row of the table, DT2 contains the data of 30 users and each user types ≈1200
small sentences (the average length is about 90 characters). Finally, in the last row of the
table, the description of dataset DT3 is reported. It contains data from about 168,000 users.
Each user types about 11 small sentences (the average length is 49 and the largest sentence
is composed of 141 characters). The data were collected via an online typing test published
as a part of a free typing speed assessment Web page.

Table 2 highlights, for all the datasets, if a considered feature is: (i) already contained in it
(contained); (ii) useful to calculate other features (useful); (iii) not useful to calculate other
features (not useful) and (iv) computed by using existing features (computed). Filled-in
circles indicate features considered in the final integrated dataset, while empty circles
characterize features not being present in the final integrated dataset, which is available
online at this link (https://doi.org/10.6084/m9.figshare.14066456).

Training results
In this subsection, we discuss some results obtained from the execution of the training
process of both the basic component classifier and the ensemble super-classifier.

The basic neural networks are trained by changing the number of epochs and layers.
The number of epochs should be set to ensure the best performance of the network. This
is obtained when the network accuracy trend becomes approximately stable. The time to
reach a stable condition is related to the learning rate, a hyper-parameter that defines to
what extent newly acquired information overrides old information, which was varied to
find its best-performing value.

The plots depicted in Figs. 4 and 5 show the accuracy and the loss for a set number of
layers (ranging from 6 to 9) versus an increasing number of epochs in the training phase
of the basic component neural network (the figures depict for each considered layer the
best learning rate). Looking at Fig. 4, we can observe that in all cases the obtained accuracy
after 100 epochs is higher than 90%. The worst accuracy is obtained when the number of
layers is 9; indeed, in this case, the curve starts well, but when it reaches saturation (about
after 100 epochs) its performance tends more and more slightly to become the worst one.
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Figure 4 Accuracy versus the number of epochs with six, seven, eight and nine layers for the basic neu-
ral network (in a typical training session).
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Figure 5 Loss versus the number of epochs with six, seven, eight and nine layers for the basic neural
network classifier (in a typical training session).
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The best curve is for almost all the epochs the one of the 8-layer classifier, but if we observe
carefully the trends in the end (about after 300 epochs), the accuracy value of the 7-layer
classifier is the closest to 1, thus resulting in the best configuration. Finally, the 6-layer
classifier exhibits always an intermediate trend, compared to the other curves.

Similar, but symmetrical, considerations can be inferred from Fig. 5 regarding the loss
values. In this case, for all the considered layers, we obtained loss values very close to zero,
and the best results are obtained when the number of layers is 7 and the number of epochs
is closer to 300.
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Figure 6 The accuracy and the validation accuracy for the whole ensemble classifier with 10 and 100
clusters (in a typical training session).
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Given the above considerations, we considered, in the following evaluation of the
hierarchical multiple classifier, basic classifiers composed of neural networks endowed
with 7 layers, since this configuration provides the best possible performance.

Concerning the hierarchical multiple classifier, some other considerations can be
made about the number of adopted clusters, since the clustering strategy may affect both
accuracy and loss during the training of the ensemble itself. Figure 6 shows the accuracy and
validation accuracy obtained for the hierarchical multiple classifier when we set the number
of clusters to 10 (100 users per classifier) and 100 (10 users per classifier), respectively. The
figure shows that the best values of accuracy are obtained when the number of clusters is
100, this confirms the intuition that the fewer the users to be discriminated by each basic
classifier (more clusters means fewer users per cluster), the higher the performance of
the classifier itself and so the performance of the whole ensemble. The figure shows that
the accuracy becomes almost constant when the number of epochs is more than 250: this
means that after about 250 epochs the whole ensemble will not be learning anymore and
the accuracy will not become higher. Similar observations can be made for the validation
accuracy, i.e., the accuracy calculated for the validation dataset; however, in such a case, the
threshold after which the accuracy tends to stabilize amounts to about 100 epochs. It is also
worth noting that the validation accuracy curves are always lower than the corresponding
accuracy curves, even if the difference, at most, is about 1.25%, dropping from about
99.5% to 98.25%. This indicates that the validation on a never-seen dataset is anyway high
performing.

Similar, but symmetrical, trends are experienced by the loss curves reported in Fig. 7.
The figure highlights that the curves are noisier whenever the number of clusters is 10, i.e.,
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we need to discriminate 100 users per basic classifier. This corroborates further the above
considerations, that is, a larger number of users per cluster (classifier) makes the overall
classification of the ensemble more difficult and unstable. Finally, as it is the case with
the accuracy, when the loss becomes constant the network does not learn anymore. This
happens, in the case of the loss, after almost 150 epochs, thus a little earlier than when the
accuracy curves reach saturation, but consistently with the validation accuracy curves.

Classification results
This subsection describes the results we achieved during the classification phase on the
test set. Table 4 shows the accuracy obtained considering different combinations of (i) the
number of clusters (first column), (ii) the number of users per cluster (second column)
(iii) the allocation method of the users to the clusters (third column), (iv) the voting
method of the ensemble super-classifier (fourth column), and (v) the number of epochs
(fifth column). The numbers of clusters we considered are 100, 50, 20, and 10, respectively.
The evaluation is performed by considering 1,000 users that are equally distributed on each
cluster (for example, if the number of considered clusters is 100 the number of users per
cluster is 10).

The allocation methods we evaluated are random or K-means, while the only considered
voting methods are majority and Bayesian. Finally, three different numbers of epochs,
namely 100, 200, and 300, were considered, in order to encompass the most significant
values found out in the training process of both the single and the ensemble classifiers.

The table shows that for all the considered combinations the obtained accuracy values
are always greater than 0.868 (this value is obtained when the number of clusters is set to
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Table 4 Classification results using both the integrated feature dataset F and the ensemble multiclas-
sifier.

Number of
clusters

Users per
cluster

Allocation
method

Voting
method

Epochs Accuracy

Majority 100 0.972
Majority 200 0.988
Majority 300 0.994
Bayesian 100 0.980
Bayesian 200 0.984

Random

Bayesian 300 0.995
Majority 100 0.971
Majority 200 0.985
Majority 300 0.991
Bayesian 100 0.984
Bayesian 200 0.988

100 10

K-means

Bayesian 300 0.997
Majority 100 0.939
Majority 200 0.966
Majority 300 0.984
Bayesian 100 0.945
Bayesian 200 0.957

Random

Bayesian 300 0.987
Majority 100 0.920
Majority 200 0.958
Majority 300 0.976
Bayesian 100 0.957
Bayesian 200 0.971

50 20

K-means

Bayesian 300 0.993
Majority 100 0.953
Majority 200 0.974
Majority 300 0.978
Bayesian 100 0.964
Bayesian 200 0.964

Random

Bayesian 300 0.990
Majority 100 0.934
Majority 200 0.969
Majority 300 0.984
Bayesian 100 0.973
Bayesian 200 0.978

20 50

K-means

Bayesian 300 0.994
Majority 100 0.906
Majority 200 0.952

(continued on next page)

10, adopting the K-Means algorithm and the majority voting, and considering 100 epochs).
However, the overall average value, across all the combinations, of the obtained accuracy
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Table 4 (continued)

Number of
clusters

Users per
cluster

Allocation
method

Voting
method

Epochs Accuracy

Majority 300 0.976
Bayesian 100 0.894
Bayesian 200 0.942

Random

Bayesian 300 0.982
Majority 100 0.868
Majority 200 0.940
Majority 300 0.965
Bayesian 100 0.930
Bayesian 200 0.959

10 100

K-
means

Bayesian 300 0.990

is 0.965, which is a very good result on average. Furthermore, the best accuracy (0.997, in
bold in the table) was obtained when the number of clusters is set to 100, the K-Means
algorithm as well as the Bayesian voting system are adopted, and 300 epochs are considered.
The results of the table confirm that smaller clusters permit a better overall performance
and that applying either K-Means or random distribution methods leads to very similar
outcomes (the average accuracy values are 0.966 and 0.965, respectively).

By the same token, the two different voting methods (majority or Bayesian) produce
0.960 and 0.970 as average accuracy values, indicating a light advantage of the Bayesian
voting method.

Finally, Fig. 8 shows the ROC curve of the ensemble classifier obtained with an increasing
number of clusters (10, 20, 50, 100) when the best on average allocation and votingmethods
are employed, i.e., K-means clustering and Bayesian voting. The figure demonstrates that
the ensemble super-classifier exploiting 100 clusters has the best measure of separability
(AUC = 0.991 and F1= 0.98) and the best accuracy, given that the higher the area
under the curve, the higher the measure of accuracy. This confirms, even more, the
considerations already drawn previously regarding the fact that choosing small clusters is
the best performing choice. On the other hand, the worst values are obtained when the
number of clusters is 10 (AUC = 0.957 and F1= 0.97), i.e., when the basic classifiers have
to deal with 100 users each. Notwithstanding, also in this worst case the results are good in
the context of deep learning techniques.

In order to provide an indication of the performance of the proposed approach in
comparison with those proposed in recent years, we calculated also the value of the
EER with and without ensemble and for different numbers of users involved. In Table 1,
presented in the second section of the manuscript, for each comparable approach, the value
of the best EER (last column) is reported. It is worth noting that the proposed approach
for 100 users, without using dataset partitioning and ensemble, is still able to provide
acceptable performance with respect to other SOTA methods. Above one hundred users
and up to one thousand, our ensemble approach provides the same level of performance
with small degradation. We cannot perform a comparison with other SOTA methods in
terms of performance for more than one hundred users since this information, although
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interesting, is not available. Finally, since Table 1 shows that the only approach that provides
better results than our solution, in terms of EER, is the one proposed in Porwik, Doroz
& Wesolowski (2021), we can say that, differently from this work, this performs intrusion
detection using binary classification and is not able to identify the typing user within a
large dataset.

THREATS TO THE VALIDITY OF THE STUDY
This section discusses the main threats to the validity of our research.

Construct validity threats concern the relationship between theory and observation, i.e.,
whether there could be some oversights and omissions in the measurements. A possible
discussion about the construct validity has been briefly discussed previously when the
EC feature has been introduced. Specifically, this metric does not include all the possible
correction events, but we only focused on the events that can be easily extracted from the
available datasets. Moreover, we adopted a ‘‘blind’’ notion of error since the correct text the
user is typing is not always known. In order to avoid such limitations in the applicability of
the approach, we only considered the errors that required an explicit action by the user (i.e.,
explicit deletes with ‘‘cancel’’ and ‘‘backspace’’ keys). Considering it within these limits,
the EC can still be considered as being significantly representative of the error frequency
of the typing user and the obtained results confirm that it is highly discriminating.
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A further possible construct validity may regard the computation of the typing speed
in the form of words per minute. As a matter of fact, it may be tricky to estimate it in
case no transcription tasks are performed by the users. In the considered data, two out of
three datasets appear to be keyboard interactions recorded during transcription tasks, so
the computation of timing-related features is simplified. In future developments, it could
be devised a proper methodology to measure time-related features also in typing scenarios
with many pauses.

Internal validity threats concern those factors being able to influence our observations.
In this study, an internal validity threat is represented by the fact that we considered in our
experiment some existing labeled datasets: if the typing is not correctly associated with the
users or the datasets are not obtained with a rigorous process, we could have classification
errors. This risk is strongly mitigated because the selected datasets are well documented
and referenced.

Threats to external validity concern the generalization of our findings in real-world
typing. We have assessed our approach on a 169,530-user dataset from three existing
datasets having different sizes, characteristics, and previously adopted with different goals.
This represents a novelty with respect to similar studies that are mainly based on ad-hoc
built datasets.

However, as already stated, two out of three datasets appear to be keyboard interactions
recorded during transcription tasks, while in other real-world typing scenarios people
constantly pause during periods of typing, perhaps due to thinking about what to type
next, switching back and forth between different programs, drifting attention because of
everyday life distractions, etc.

Moreover, we have only considered data from the physical keyboard of an actual desktop
computer, which could be quite different from those derived from ‘‘virtual’’ keyboards on
mobile devices.

At any rate, in the future, it is possible to further integrate more datasets coming from
more real-world typing scenarios, allocating different typing behaviors to different basic
classifiers, to be optimized separately one from the other.

Finally, our evaluation is performed on clusters of a maximum of one thousand users
from the complete dataset, assessing the ensemble performance only in this range. In order
to generalize the performance on a larger number of users (more than one thousand),
further experiments need to be performed.

CONCLUSION AND FUTURE WORK
This paper proposes an innovative approach that aims at discriminating many users on the
basis of their typing dynamics. The approach considers a group of 16 unique features used
for training a hierarchical multiple classifier exploiting single basic deep neural networks. A
large dataset was constructed in order to validate such an approach, through the integration
of three real-world existing datasets. First, we have optimized a basic classifier implemented
as a deep neural network, and then we have built a hierarchical multiple classifier with
different strategies for allocating users and various strategies for the final voting procedure.
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We have achieved the best performance when K-Means is used for user allocation and
Bayesian voting is employed for the final decision: this configuration leads to a very
promising overall accuracy of 0.997.

This study has multiple future developments that can be addressed. The first is to verify
the possibility of integrating new features into the existing dataset. This is a preliminary
step that will provide us the possibility to evaluate how to extend our investigation and
how to obtain an even larger dataset.

Moreover, we plan to test other allocation strategies and other voting techniques,
such as stacking, comparing them to identify the best-performing ones. Finally, Process
Mining techniques (Bernardi et al., 2014) will be considered to identify users even using a
higher-level behavioral model.
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The code is available at: https://github.com/marioluca/keystroke-dynamics-ensemble-
classifier.
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