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ABSTRACT
Android is a free open-source operating system (OS), which allows an in-depth
understanding of its architecture. Therefore, many manufacturers are utilizing this
OS to produce mobile devices (smartphones, smartwatch, and smart glasses) in
different brands, including Google Pixel, Motorola, Samsung, and Sony. Notably, the
employment of OS leads to a rapid increase in the number of Android users. However,
unethical authors tend to develop malware in the devices for wealth, fame, or private
purposes. Although practitioners conduct intrusion detection analyses, such as static
analysis, there is an inadequate number of review articles discussing the research efforts
on this type of analysis. Therefore, this study discusses the articles published from 2009
until 2019 and analyses the steps in the static analysis (reverse engineer, features, and
classification) with taxonomy. Following that, the research issue in static analysis is also
highlighted. Overall, this study serves as the guidance for novice security practitioners
and expert researchers in the proposal of novel research to detect malware through
static analysis.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Mobile and Ubiquitous
Computing, Security and Privacy, Operating Systems
Keywords Android, Review, Static analysis, Machine learning, Features, Malware

INTRODUCTION
Mobile devices, such as smartphones, iPads, and computer tablets, have become everyday
necessities to perform important tasks, including education, paying bills online, bank
transactions, job information, and leisure. Based on the information from an online
mobile device production website, Android is one of the popular operating systems (OS)
used by manufacturers (Rayner, 2019; Jkielty, 2019). The open-source platform in Android
has facilitated the smartphone manufacturers in producing Android devices of various
sizes and types, such as smartphones, smartwatches, smart televisions, and smart glasses. In
the most recent decades, the quantity of remarkable Android gadgets accessible worldwide
has increased from 38 in 2009 to over 20,000 in 2016 (Android, 2019a). As a result of the
demand for this Android OS, the recent statistics from Statista revealed that the number
of Android malware increase to 26.6 million in March 2018 (Statista, 2019). Moreover,
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McAfee discovered a malware known as Grabos, which compromises the Android and
breaches Google Play Store security (McAfee, 2019). It was also predicted that 17.5 million
Android smartphones had downloaded this Grabos mobile malware before they were taken
down.

Mobile malware is designed to disable a mobile device, allow malicious acts to
remotely control the device, or steal personal information (Beal, 2013). Moreover,
these malicious acts able to run stealthily and bypass permission if the Android kernel
is compromised by mobile malware (Ma & Sharbaf, 2013; Aubrey-Derrick Schmidt et
al., 2009b). In September 2019, a total of 172 malicious applications were detected on
Google Play Store, with approximately 330 million installations. According to researchers,
the malicious components were hidden inside the functional applications. When the
applications are downloaded, it leads to the appearance of popup advertisements, which
remain appear even when the application was closed (O’Donnell, 2019). To detect this
malware, security practitioners conducting malware analysis, which aims to study the
malware characteristics and behaviour. There are dynamic, static, and hybrid analysis.

Table 1 shows comparison for static, dynamic and hybrid analysis done from previous
researches. Specifically, dynamic analysis is an analysis, which studies the execution and
behaviour of the malware (Enck, 2011; Yaqoob et al., 2019). However, dynamic analysis is
incapable of identifying several parts of the code operating outside the monitoring range.
Besides, provided that the dynamic analysis is a high resource-consuming analysis with a
high specification for hardware (Enck, 2011), static analysis is another alternative to detect
malware. It is an analysis, which examines malware without executing or running the
application. Additionally, this analysis able to identify malware more accurately, which
would act under unusual conditions (Castillo, 2011). This is due to static analysis examine
overall parts of a program including parts that excluded in dynamic analysis. Furthermore,
static analysis is able to detect unknown malware just as dynamic analysis could (Yerima,
Sezer & McWilliams, 2014) and requiring low resources.

To integrate the characteristics of the static and dynamic method, three-layer detection
model called SAMAdroid has been proposed by Saba Arshad et al. (2018) which combines
static and dynamic characteristics. Mobile Sandbox by Spreitzenbarth et al. (2015) which
proposed to use the results of static analysis to guide the dynamic analysis and finally realize
classification. The hybrid analysis technique is great to help in improving the accuracy, but
it also has a major drawback such as the waste of time and space for the huge number of
malware samples to be detected and analyzed (Fang et al., 2020; Alswaina & Elleithy, 2020).

Table 2 presents the past review articles on Android, with Feizollah et al. (2015)
specifically focusing on features, including static, dynamic, hybrid, and metadata. It
summarizes the features preferred researchers in their analysis. Comparatively, this study
placed more emphasis on features besides classification and obfuscation. Subsequent
reviews, namely Sufatrio et al. (2015) and Schmeelk, Yang & Aho (2015), highlighted the
survey, taxonomy, challenges, advantages, limitations in the existing research in theAndroid
security area, and the technique in the static analysis research on Android. However,
compared to the current review, the aforementioned reviews only presented a few features
and information on static analysis. In the Android permission category (Fang, Han & Li,
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Table 1 Comparisonmalware analysis techniques. Previous works compared using static, dynamic, and hybrid techniques.

Year References Analysis Features

2020 Fang et al. (2020) Static Texture, color, text
2019 Qiu et al. (2019) Static permissions, API calls, network addresses
2019 Zhang, Thing & Cheng (2019) Static Assembly, Dex, Xml, Apk
2019 Xu, Ren & Song (2019) Static CFG, DFG
2019 Omid Mirzaeiq et al. (2019) Static API calls
2019 Vega & Quintián (0000) Static Repackaging and standalone
2019 Vega et al. (2019) Static Root node, decision nodes, and leaf nodes
2019 Fasano et al. (2019) Static
2019 Blanc et al. (2019) Static Code metric
2019 Xie et al. (2019) Static Platform-based permissions, hard- ware components, and

suspicious API calls
2019 Turker & Can (2019) Static Permissions and API calls
2018 Atzeni et al. (2018) Hybrid Manifest file (i.e., number of activities, permissions,

receivers, filters), and the source code analysis
2018 Kim et al. (2019) Hybrid API call
2018 Ming Fan et al. (2018) Static Weighted-sensitive-API-call-based graph
2018 Sun et al. (2018, 2019) Dynamic Enabling the recording of parameters and return value of an

API call
2018 Martín, Rodríguez-Fernández & Camacho (2018) Dynamic transitions probabilities, states frequencies, and aggregated

state frequencies grouped
2018 Aktas & Sen (2018) Hybrid number of activities, services and receivers given in the

Manifest file and the size of the APK file
2018 Garcia, Hammad & Malek (2018) Static API usage, reflection-based features, and features from

native binaries of apps
2018 Calleja et al. (2018) Static API calls, intent actions and information flow
2018 Alswaina & Elleithy (2018) Static App’s permissions
2017 Massarelli et al. (2017) Dynamic Fingerprint
2017 Zhou et al. (2017) Static API call graphs
2017 Chakraborty, Pierazzi & Subrahmanian (2020) Hybrid API calls, code, Android Manifest, encryption or reflection
2017 Sedano et al. (2017b) Static Minimum-Redundancy Maximum- Relevance (MRMR)
2016 Battista et al. (2016) Static Java Bytecode
2016 Hsiao, Sun & Chen (2016) Dynamic API call
2016 González, Herrero & Corchado (2017) Static API call and the names of functions and methods
2016 Ming Fan et al. (2018) Static Subgraph
2016 Kang et al. (2016) Static n-opcode feature
2016 Malik & Khatter (2016) Dynamic System call
2016 Sedano et al. (2017a) Static Manifest file, apk file
2016 Feng et al. (2017) Hybrid Malware signatures
2015 Lee, Lee & Lee (2015) Static Signature extraction signature matching
2015 Aresu et al. (2016) Dynamic Fine-grained HTTP structural
2015 Li et al. (2015) Static API data dependency
2014 Deshotels, Notani & Lakhotia (2014a) Static API call, apk
2014 Kang et al. (2013) Static Bytecode frequency
2014 Suarez-Tangil et al. (2014) Static Code structures
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2014), this article reviewed the issues and existed countermeasures for permission-based
Android security. It also incorporated the necessary information related to Android
permission, namely permission documentation, over-claim of permission, permission
administration, and more.

Notably, our review article featured more aspects besides permission by putting an
in-depth focus on static analysis. Meanwhile, the other paper, evaluates three anti-viruses,
namely Stowaway, AASandbox, and Droidbox. To assist in the decision regarding the
better anti-virus, the aforementioned anti-viruses were separated using static and dynamic
analyses, followed by a comparison between one another (Ma & Sharbaf, 2013). Another
related review (Pan et al., 2020), provided the common features only andmentioned less the
deep learning part in static analysis. However, the information gained from past research,
specifically on features, deep learning and obfuscation was still lacking. In comparison to
the previous survey articles listed in the Table 2, the main contributions of the current
article are as follows:
(a) Present the information of static analysis in detail, specifically the dataset, reverse

engineer, features, and classification from 2009 until 2019.
(b) Review on the latest features in ten categories, namely advertisements libraries,

application programming interface (API), apk, dex and xml properties, directory
path, commands, a function call, geographic location, manifest file, network address,
and codebase.

(c) Review the classification section, which includes machine learning, deep learning,
graph, and other methods.

(d) Discuss on open research issues, which include the trends in the static analysis,
obfuscation, and the list of all previous static analysis experiments.
The remaining section of this article begins with section two, which presents the

methodology of this study into four steps. Section three reviews the existing research on
static analysis, which concludes the dataset, reverse engineer, features, and classification.
Section four discusses the open research issues in the static analysis, followed by section
five, which concludes the review.

SURVEY METHODOLOGY
Methodology
This section describes the method to retrieve the articles related to malware detection
using static analysis for Android. We used Web of Science to run the review, eligibility and
exclusion criteria, steps of the review process (identification, screening, eligibility), and
data analysis.

Identification
The review was performed based on the main journal database in the Web of Science
(WoS). This database covers more than 256 disciplines with millions of journals regarding
the subjects related to network security, computer system, development, and planning.
It also stores over 100 years of comprehensive backfile and citation data established by
Clarivate Analytics (CA), which are ranked through three separate measures, namely
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Table 2 Comparison with previous review articles. Summarization of previous related review articles in detecting malware.

References Ma & Sharbaf
(2013)

Fang, Han & Li
(2014)

Feizollah et al.
(2015)

Sufatrio et al. (2015) Schmeelk, Yang &
Aho (2015)

Pan et al. (2020) This paper

Title Investigation of
Static and Dynamic
Android Anti-virus
Strategies

Permission-
based Android
Security: Issues and
Countermeasures

A Review on Feature
Selection in Mobile
Malware Detection

Securing Android: A
Survey, Taxonomy,
and Challenges

Android Malware
Static Analysis
Techniques

A Systematic
Literature Review of
Android Malware
Detection Using
Static Analysis

Malware Detection
using Static Analysis
for Android: A
Review and Open
Research Issue

Year 2013 2014 2015 2015 2015 2020 Current paper
Citations 9 132 172 146 21 1
Dataset X X X

Reverse engineer
tools

X X X

All static features X X X X

All classifications
(Machine learning,
deep learning, graph,
and others)

X

Obfuscation
constraints
and methods to
overcome it

X
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citations, papers, and citations per paper. The search strings in the CA database were
‘‘static analysis’’, ‘‘malware’’, and ‘‘Android’’.

There were 430 records identified through database searching. These journals and
conferences are mainly from Computer and Security and IEEE Access, which are listed
in Table 3. Collections of the studies that are related to Android malware detection using
static analysis in the reference section, where studies take up a small proportion in the
primary studies. All the studies related to search terms are taken into account, and the
searching range is from January 2009 to December 2019.

Screening
Experiment articles were identified in the static analysis, omitting other unrelated articles.
Initially, the searching of articles was specified into a journal article and excluded review
articles, books, and conference proceedings. To focus specifically on static analysis, the
articles, which combined both static and dynamic analyses, were removed. Another
criterion focused on the selection of the articles was the use of English, which therefore
removed all non-English articles to avoid any difficulty in translating in the future. The
selection of articles took place from 2009 to 2019, totaling the duration to 10 years. This
duration was suitable for exploring the evolution of research in security areas. Apart from
that, the Android platform was the focus of this study.

Eligibility
Figure 1 depicts the review that process involved four steps; identification, screening,
eligibility, and analysis. The review was performed in mid of 2019. Based on previous
studies, the process used similar keywords related to malware detection, static analysis,
and security. After the identification process, we remove any duplicated articles. During
the screening process, we discover 375 documents and remove a few articles and left 172
articles. This is because the articles were unrelated to the interested area. Lastly, we used
150 articles for review (Shaffril, Krauss & Samsuddin, 2018).

Data analysis included
Then we analyzed the remaining articles, extracted the abstract, and downloaded the full
articles. This is to find the appropriate topic in-depth and to have a strong justification
for the research. Then, this process organized the topic and subtopic accordingly based on
the static analysis. Qualitative analysis was performed based on content analysis to identify
issues related to this study.

Static analysis
Mobile malware compromises Android devices (smartphone, smartwatch, and smart
television) for wealth, stealing data, and personal purposes. The examples of mobile
malware include root exploit, botnets, worms, and Trojan. To detect malware, most of
security practitioners perform two types of analysis; dynamic and static.

Specifically, dynamic analysis is an experiment, which detects malware by executing
malware and benign applications to monitor and differentiate their behaviours. However,
the monitoring of all behaviours is costly and requires high specifications in terms of device
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Table 3 The main journals and conferences. Collections of the studies that are related to Android mal-
ware detection using static analysis, where studies take up a small proportion in the primary studies. The
highest number of journals and conferences are manually counted.

Category Acronym Full name

Journal – IEEE Access
– Computers and Security
PICECE Palestinian International Conference on Electrical and

Computer Engineering
– Computer Virology
–
ASME Manufacturing Science and Engineering
KSII Internet and Information Systems
–
– Current Bioinformatics
– Neural Computation
– Frontiers of Information Technology and Electronic

Engineering
– Neurocomputing
JISA Information Security and Applications
– Advances in Intelligent Systems and Computing
– IEEE Transactions on Information Forensics and Security

Conference ACM Conference on Multimedia
DSC IEEE International Conference on Data Science in

Cyberspace
FSE ACM SIGSOFT International Symposium on Foundations

of Software Engineering
TrustCom IEEE International Conference on Trust, Security and

Privacy in Computing and Communications
GLOBECOM IEEE Global Communications Conference
SIN International Conference on Security of Information and

Networks
MALWARE International Conference on Malicious and Unwanted

Software
ICC IEEE International Conference on Communications
ICISSP International Conference on Information Systems Security

and Privacy
PIMRC IEEE International Symposium on Personal, Indoor and

Mobile Radio Communications
IJCNN International Joint Conference on Neural Networks
Big Data IEEE International Conference on Big Data

memory, CPU, and storage. Furthermore, the malware is inflicted on a device at a certain
time or whenever the attacker decides on it. Accordingly, as the dynamic analysis only
monitors behaviours at a certain range of time based on the research period, numerous
malware activities outside the research period might be omitted (Feizollah et al., 2013;
Yerima, Sezer & Muttik, 2015; Wei et al., 2017). Furthermore, dynamic analysis requires a
separate and closed virtual environment to run a malware and observe its behaviour on
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Figure 1 The flow diagram of the study. Each step indicates the number of articles taken fromWeb of
Science based on identification, screening, eligibility, and analysis processes.

Full-size DOI: 10.7717/peerjcs.522/fig-1

the system. However, an isolated setup dynamic leads to an impractical analysis in the
Android platform due to the increase in power and memory consumption. While power
and memory are the most concerning constraints of Android devices, static analysis is the
alternative for the dynamic analysis.

Static analysis is a category of analysis, which investigates the malware application
code and examine full activities in an application within an unlimited range of time,
by without executing the application (Chess & McGraw, 2004). The main step of static
analysis procedure is the reverse engineer process, which retrieves the whole code and
further scrutinises the structure and substance within the application (Sharif et al., 2008;
Chang & Hwang, 2007; Aafer, Du & Yin, 2013). Therefore, this analysis can examine the
overall code with low requirement for memory resources and minimum CPU processes.
Additionally, the analysis process is prompt due to the absence of the application. With this
analysis, unknown malware is also identified using enhanced detection accuracy through
machine learning approaches (Narudin et al., 2014; Feizollah et al., 2013). Table 4 presents
the advantages and disadvantages of dynamic and static analyses.

A lot of researchers publish their works using static approaches for malware detection
on the Android platform. Even in this static approach, in its turn, contains a number
of approaches. For example, there are signature-based approach and other approach are
depending on detection and classification of the source code. Signature-based detection
utilizes its specification by having an information of malware signatures determined and
arranged in advance inspection (Samra et al., 2019). However, signature-based approach
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Table 4 Advantages and disadvantages between dynamic, static and hybrid.Dynamic, static, and hybrid analysis techniques have their own pros
and cons. This table summarizes the advantages and disadvantages of these techniques.

Dynamic Static Hybrid

Advantages
Able to detect unknown malware Able to detect unknown malware with the aid of

machine learning
Able to detect unknown malware with
combination of static and dynamic analysis

Able to detect benign applications, which abruptly
transform into malware during its execution

The application of reverse engineer takes a short
amount of time
The examination on the overall code, followed by
the identification of a possible action
Low resources (e.g., CPU, memory, network,
and storage). Therefore, this analysis is suitable
for mobile device which equipped with low
specifications.

Limitations
High resources (e.g., CPU, memory, network, and
storage)

Inability to detect normal application, which
promptly transforms the malware

Waste of time

Higher time consumption to run the application
for further analysis and exploration

Obfuscation Require more spaces for huge number of
malware samples

Possibly omits the malware activities outside the
analysis range

The investigation is continued to determine the
minimal features (e.g., permission, a function call,
and strings) to detect malware

Difficulty in detecting applications, which can
hide malicious behaviour when it is operated
The investigation is continued to determine the
minimal features (e.g., traffic and memory) to
detect malware

are not able to detect unknown malware even though this approach is a set of features that
uniquely differentiate the executable code (Gibert, Mateu & Planes, 2020).

Obfuscation is one of the obstacles in the static analysis, which is used bymalware authors
in their malicious software to evade the intrusion detection or antivirus system (Wei et
al., 2017). The examples of the obfuscation methods are renaming the code, adding
unnecessary codes, and encrypting the string. Therefore, security practitioners need to
overcome obfuscation to increase their detection results. Accordingly, the alternatives
performed by the security practitioners are presented in ‘Obfuscation’.

Table 4 shows that both static and dynamic analyses have similar limitations despite
the selection of the ideal features in minimal amount. In detecting malware, features refer
to the attributes or elements to differentiate an application, which may either be malware
or benign. Security practitioners are faced with obstacles in investigating various features
in all types of categories (e.g., permission, API, directory path, and code-based) and the
need to simultaneously reduce these features. Notably, determining the ideal features in
minimal amount is crucial to enhance the accuracy of the analyses (e.g., the accuracy of
the predictive model) and reduce data and model complexity (Feizollah et al., 2015).

Figure 2 illustrates the static analysis operation, which consisted of several steps. The first
step was the acquirement of the benign and malware datasets in the Android application,
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Figure 2 Malware detection using static analysis. The static analysis operation, which consisted of sev-
eral steps. The steps included dataset collections, reverse engineer, features identification, and classifica-
tion.

Full-size DOI: 10.7717/peerjcs.522/fig-2

each with the (.apk) filename extension. This was followed by the reverse engineering
performed on these applications to retrieve the code by extracting a few folders from one
.apk file, which consisted of nested files with codes (Java or smali). Furthermore, one
.apk would comprise approximately a thousand lines of codes. Therefore, with a total of
1,000 applications in one dataset, the security practitioners were required to scrutinise
millions of lines of code. With the completion of the reverse engineering, an analysis
would be conducted, which involved features. Features consist of a series of application
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Figure 3 Dataset of Android samples. This dataset collected from five main dataset group samples. The
datasets were used by the previous researchers for their works too.

Full-size DOI: 10.7717/peerjcs.522/fig-3

characteristics for the detection of malware, while classification is an approach used to
differentiate between malware and benign (normal) application. The following section
thoroughly discusses the static analysis, which specifically begins with a focus on the
dataset.

Dataset
Figure 3 illustrates the Android malware dataset from different places. Notably, the
majority of the datasets were obtained from universities. The datasets were in the form
of an Android application package, which was followed by an .apk filename extension.
Malgenome (Anonymous, 0000d) is the name of Android malware dataset, which was made
to be publicly available with permission from their administrator. These malware samples,
which were collected by North Carolina State University (NCSU) from August 2010 to
October 2011, covered multiple families of malware consisting of botnet and root exploit.
The characterization of the malware families was based on the method of the installation,
the way the malware carried the malicious payloads, and its method of activation.

Androzoo (Allix et al., 2018; du Luxembourg, 2016) is another dataset consisting of
approximately more than three million of Android applications (.apk). This dataset
originates from the University of Luxembourg to contribute to the community for research
purposes and further explore the notable development in the detection of malware, which
damages the Android. Drebin (Technische Universität Braunschweig, 2016) dataset also
presents Android malware publicly with strict requirements. A university from Germany
(University in Braunschweig, Germany) collected 5,560 samples with 179 families. The time
range provided for the malware was from August 2010 to October 2012. The university
project, which was known as MobileSandbox, was an initiative for the acquirement of
samples for academia and industry.

Android malware dataset (AMD) is a public Android malware dataset from the
University of South Florida, which consists of 24,650 samples with 71 categorised families.
To obtain this dataset, the user is required to acquire permission from the university and
provide authentic information with evidence. The academia and the industry are allowed
to use these samples for research purposes.

Contagio (MilaParkour, 2019) dataset presents the malware, which focuses on mobile
malware, with a condition that the user should omit one sample to obtain another sample.
It provides a dropbox for the user to share their mobile malware samples. According to
their blogspot (MilaParkour, 2019), the name of the administrator of this dataset is Mila
Parkour, who is reachable only through emails. Based on Table 5, which presents the
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Table 5 Previous article with the use of different datasets. Presents the research articles and the respective datasets, and it could be seen that the
dataset providers receive significant attention from other universities and the industry.

Dataset References of the articles with the use of the respective datasets

Malgenome Anonymous (0000d) Yerima, Sezer & McWilliams (2014), Firdaus et al. (2017), Firdaus & Anuar
(2015), Firdaus et al (2018)

Drebin Anonymous (0000c) Firdaus et al. (2017); Firdaus et al. (2018); Firdaus et al. (2018)
Android malware dataset (AMD) Badhani & Muttoo (2019)
ContagioMilaParkour (2019) Feldman, Stadther & Wang (2014); Islamic & Minna (2015)
Androzoo Université du Luxembourg (2018) Razak et al. (2019); Firdaus et al. (2017); Razak et al. (2018); Firdaus et al.

(2017)

Figure 4 Reverse engineer tools for static analysis. This is the example of reverse engineer tools that
have been used by the previous researchers to extract the code for malware.

Full-size DOI: 10.7717/peerjcs.522/fig-4

research articles and the respective datasets, it could be seen that the dataset providers
receive significant attention from other universities and the industry. It is hoped that this
action would enhance the security of the Android device and its users from time to time.

Reverse engineer
Static analysis is an activity to investigate the code of an application without executing it. In
order to investigate, security practitioners implement the reverse engineering method. This
method reversed from the executable file to its source code (Dhaya & Poongodi, 2015). This
reverse engineering process loads the executable into a disassembler to discover what the
program does. Figure 4 illustrates the tools used to perform a reverse engineering method,
which was also adopted by security practitioners to identify Android malware. Table 6
illustrates the tools adopted in the respective articles.

Features
Once the researchers reverse engineer the executable file using specific tools, they need to
select features from the source code. Feature selection is important in order to increase
the accuracy of the detection system (Feizollah et al., 2015; Chanda & Biswas, 2019; Klaib,
Sara & Hasan, 2020) Figure 5 presents the taxonomy of multiple static features. The next
sections are the details for each type of static feature.

Advertisement libraries. Provided that most Android applications are available for free
download, Android developers need to include advertisement libraries (ad libraries) in
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Table 6 Previous articles and the respective reverse engineer tools. The tools for reverse engineer
adopted in the respective articles are listed in this table.

Tools References to the articles and the respective tools

apktool Wiśniewski (2010); Deshotels, Notani & Lakhotia (2014b);Wu et al. (2012); Faruki et
al. (2013); Luoshi et al. (2013)

aapt Android (2013); Sanz et al. (2013)
androguard Desnos (2012a); Suarez-Tangil et al. (2014); Sahs & Khan (2012); Aafer, Du & Yin

(2013); Junaid, Liu & Kung (2016a)
baksmali Anonymous (2019b); Apvrille & Strazzere (2012); Huang, Tsai & Hsu (2012); Grace

et al. (2012b); Zhou et al. (2013); Zhou et al. (2012); Grace et al. (2012a)
dex2jar Anonymous (2019d); Huang et al. (2014a); Sheen, Anitha & Natarajan (2015); Lee &

Jin (2013); Luoshi et al. (2013)
jadx Skylot (2015); Firdaus & Anuar (2015)
dedexer Anonymous (0000b)
smali Kang et al. (2013); Anonymous (2019b)

Figure 5 Taxonomy of multiple static features. Each static feature was figure out from the various ex-
periments done using the specific tools and methods.

Full-size DOI: 10.7717/peerjcs.522/fig-5

the free application for financial purposes. During the run-time of the application, the
ad libraries would transfer the data regarding users’ activities. The developer would then
receive an incentive based on certainmetrics of the information. Adrisk (Grace et al., 2012a)
scrutinised and measured the risk of the codes of the ad libraries to detect applications,
which may harm the users.

Application programming interface. Application program interface (API) is a set of code
ready for certain functionalities. Android application developers use this API for their
application. Usually, there is documentation ready to use the API. Nevertheless, the
attacker uses certain API for their malware application. Accordingly, to detect malware,
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security practitioners inspect API features that regularly used by the attackers. The
articles that involves API features are Droidlegacy (Deshotels, Notani & Lakhotia, 2014b),
Droidapimiiner (Aafer, Du & Yin, 2013), Warning system (Lee & Jin, 2013; Chang &
Hwang, 2007;Wu et al., 2012;Bartel et al., 2012;Grace et al., 2012b;Wu et al., 2012; Shuying
Liang et al., 2013; Zhou et al., 2013; Feng et al., 2014; Huang et al., 2014; Steven Arzt et al.,
2014; Arp et al., 2014; Luoshi et al., 2013; Yerima, Sezer & Muttik, 2014; Seo et al., 2014;
Sheen, Anitha & Natarajan, 2015; Peiravian & Zhu, 2013).

Apk, dex and xml properties. Several security practitioners adopted the features, which
consist of .apk file properties. The authors of the malwares (Kang et al., 2015) and (Zhou
et al., 2012) are examined in two experiments due to the significant number of Android
malwares written by a similar person. Therefore, the features of the malwares include serial
numbers of the author, author’s information, name, contact and organization information,
developer certification, author’s ID, and public key fingerprints of the author.Other features
highlighted in this section are the application name, category, package, description, rating
values, rating counts, size, number of zip entries, and common folders (Samra, Kangbin &
Ghanem, 2013; Shabtai, Fledel & Elovici, 2010).

Directory path. Directory path allows access for a specific folder in the operating system
(OS). It was found by security practitioners that the attacker incorporated a directory path
for a sensitive folder in their malware. Meanwhile, several paths related to Android
kernel directory were identified by another study (Firdaus & Anuar, 2015), such as
‘data/local/tmp/rootshell’, ‘/proc’, and ‘/system/bin/su’.

Commands. Two types of commands are available, namely (1) root command and (2)
botnet command. Specifically, several root commands were identified by (Firdaus & Anuar,
2015) in theUnixmachine, such as ‘cp’, ‘cat’, ‘kill’, and ‘mount’. Normally, these commands
were used by the administrators to execute higher privileged actions in the Unix machine.
Provided that Android architecture was based on the Unix kernel, the attackers included
root commands in their malware to control the victim’s Android devices. Therefore, the
identification of root commands is crucial in investigating malwares.

The second type of command is a botnet command. Meanwhile, one type of malware,
which is known as amobile botnet, includes botnet commands in their malware codes, such
as ‘note’, ‘push’, ‘soft’, ‘window’, ‘xbox’, and ‘mark’. The attacker used these commands
to communicate with the command and control (C&C) server, while droidanalyzer (Seo
et al., 2014) combines API, root command, and botnet command into a set of features to
detect root exploit and mobile botnet.

Other than ad libraries, certain researchers inspect the Android Debug Bridge (adb)
code. ADB (Android Developers, 2017) is a tool, which provides a command-line access
facility for users or developers to communicate with Android mobile devices. This facility
allows the installation of unwanted applications and execution of various Unix by the
attacker in the victim’s device. Therefore, RODS (Firdaus et al., 2018) is a root exploit
detection system for the detection of a root exploit malware with ADB features.
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Function call. In programming, a function call is a declaration, which consists of a name
and is followed by an argument in parenthesis. The list of the argument may include
any numbers of the name, which are either separated by commas or left empty. Another
study by Aubrey-Derrick Schmidt et al. (2009a) involved the extraction of a function call
through readelf, which was then used for the features in machine learning prediction.
Meanwhile, Gascon et al. (2013) extracted the function calls in a graph to identify the nodes
from the start to the end of the process.

Geographic location. Geographic location is a feature, which identifies the origin of the
application. The geographic detector was identified as one of the features in research
by (Steven Arzt et al., 2014). Provided that 35% of the mobile malware families appeared to
originate from China with 40% of the facilities originating from Russia, Ukraine, Belorus,
Latvia, and Lithuania countries, it was crucial to consider geographic location as one of the
features for the detection of Android malware. For this reason, researchers increased the
risk signal for the applications originating from the aforementioned countries.

Manifest file. Android application is built on the top of the application framework which
provides an interface for the user. The program is based on the Android application package
file in the (.apk) format, which is also used to install an application in android-based
mobile devices. It consists of meta-inf, resource, assets and library directory, classes.dex,
resources.arsc, and androidmanifest.xml file. One of the files, androidmanifest.xml
(manifest file), is an essential file with contents of various features, such as permission,
intent, hardware component, and components of the application (activities, services,
broadcast receivers, and content providers) (Android, 2015).
(a) Permission

Permission is a unique security mechanism for Android devices. To enable the
permission, the user needs to allow the application during the installation period.
However, many users accidentally enable certain permissions, which leads to access to
sensitive security-relevant resources. Therefore, permission features were examined in
many studies. Based on the application of permission in several studies to measure the
risk of the application, permission was further identified as malicious (Razak et al., 2018;
Razak et al., 2019). Some other studies, such as (Hao Peng et al., 2012; Samra, Kangbin &
Ghanem, 2013; Walenstein, Deshotels & Lakhotia, 2012; Huang, Tsai & Hsu, 2012; Sahs &
Khan, 2012; Sanz et al., 2013; Talha, Alper & Aydin, 2015; Aung & Zaw, 2013), used the
permission features as the inputs for machine learning prediction.
(b) Intent

The intent is coded in the manifest file and allows a component of the application
to request certain functionality from another component from other application. For
example, application A can use the component of application B for the management of
photos in the device despite the exclusion of the component from application A. Provided
that this feature enables malicious activities among the attackers, several experiments used
intent (declared in the manifest file) as one of the features for the detection of malware,
such as (Feizollah et al., 2017; Fazeen & Dantu, 2014).
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(c) Application component
The manifest file declared application component, which consists of four types, namely

(1) activities, (2) services, (3) broadcast receivers, and (4) content providers. Specifically,
activity is represented as the user interface or interactive screen to the users, while service
refers to an operation occurring in the backgrounds, which perform the long-service
process. This is followed by broadcast receivers, which respond to system-wide broadcast
announcements. On the other hand, content providers manage a structured set of
application data. Overall, these four components follow a life cycle model during execution.
Dexteroid (Junaid, Liu & Kung, 2016) proposed a framework, which systematically guides
the event sequences through the reverse engineering/reconstruction of the life cycle
models and the extraction of callback sequences from event sequences to detect malicious
behaviours.
(d) Hardware component

Themanifest file also incorporated hardware components in the Android application. To
illustrate, the developer requested access to the camera of an Android device by declaring it
in themanifest file to enable the use of the camera for the application. However, the attacker
declared unrelated hardware components in their game application, such as camera and
data. As a result, the security researchers were prompted to use hardware component as
the features in their experiment (Arp et al., 2014) to detect malware (Allahham & Rahman,
2018).

Network address. Access to the Internet is essential for attackers to retrieve private
information of the victim, change the settings, or execute malicious commands. This
process requires the incorporation of the Uniform Resource Locator (URL) or network
address in the malware code. The examples of sensitive URLs include the Android Market
on Google Play, Gmail, Google calendar, Google documents, and XML schemas. These
features were used in Luoshi et al. (2013) and Apvrille & Strazzere (2012), Mohd Azwan
Hamza & Ab Aziz (2019) for malware detection.

Code-based. Code-based or code structure comprises a line or set of programming language
codes in an application. Two studies applied code structures (code chunk grammar) as
the features for malware detection, which is focused on the internal structure of the code
units (Suarez-Tangil et al., 2014; Atici, Sagiroglu & Dogru, 2016). This feature enables the
analysis and differentiation between malware and benign applications. Another study
by Firdaus & Anuar (2015) identified several code-based strings, namely ‘.exec’, ‘forked’,
‘setptywindowsize’, and ‘createsubprocess’. In comparison with the normal application, it
was found that the attacker frequently used these code-based features in the development
of malware. Therefore, these features were also used in this study to detect malware.

Opcode (operation code) is another code-based feature. It is a part of the instruction
to inform the CPU regarding the tasks to be fulfilled. Assembly language used this opcode
to execute the instruction. Also referred to as bytecode, the examples of an opcode for
Android included OP_ADD_DOUBLE, OP_ADD_FLOAT, OP_ADD_INT_2ADDR, and
OP_SUB_LONG (Developer, 2020). Specifically, this feature was adopted in the studies
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Figure 6 Categories of features in total and years. (A) The graph shows the features identified using
static analysis, depicts that researchers prefer to investigate permission and API features compare to oth-
ers. (B) Total number of features based on years.

Full-size DOI: 10.7717/peerjcs.522/fig-6

by Zheng, Sun & Lui (2013),Medvet & Mercaldo (2016), Faruki et al. (2013) and Zhao et al.
(2019) to detect Android malware in the static analysis. Further examples of the features
in this section are method (Kim et al., 2018), opcode (Zhao et al., 2019), byte stream @
byte block (Faruki et al., 2013), Dalvik code (Gascon et al., 2013), and code involving
encryption (Gu et al., 2018). The selection of the features by security practitioners is
followed by classification. This process was performed to receive the features as input and
differentiate between either the application malware or benign (normal).

Figure 6 depicts that researchers prefer to investigate permission and API features
compare to others. However, the trend in permission features is decline from 2013 until
2018. However, API features takes place in previous experiments as it increased from six
(2014) to 9 (2019). This indicates that the API trend would increase in following year in
static detection.

Classification
In the classification process for static analysis, many security analysts used two types of
methods; (1) Machine learning (ML) and (2) Graph. The following section presents the
ML studies with static features.

Machine learning (ML). Machine learning is a scientific discipline, which is capable to
predict future decisions based on the experience it has gained through past inputs (learning
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Figure 7 Mining in static analysis. A few types of machine learning available, with each type, has its own
classifier as listed in figure.

Full-size DOI: 10.7717/peerjcs.522/fig-7

set), followed by a prediction of the outputs. Basing on a given dataset, the learning set
makes intelligent decisions according to certain algorithms. One of the machine learning
types is supervised based on the data for the training stage to create a function. Furthermore,
each part of the training data contains input (features or characteristics) and output (class
label-malware and benign). This is followed by the training stage, which calculates the
approximate distance between the input and output examples to create a model. This
training stage could classify unknown applications, such as malware or benign application.
Four types of ML are present, such as (1) classical learning; (2) reinforcement learning, (3)
neural network and deep learning, and (4) ensemble method. Figure 7 illustrates the ML
taxonomy, which starts with classical learning.
(a) Supervised Learning

Supervised learning (SL) is a process of learning from previous instances to predict
future classes. Therefore, the prediction of the class label involves the construction of a
concise model from previous experience. The machine learning classifier is then used to
test the unknown class (Kotsiantis, 2007). To detect Android malware with static features,
the SL method is widely used by security practitioners. Accordingly, the previous articles
adopting this method are illustrated in Table 7.
(b) Unsupervised Learning

Unsupervised learning is another type of learning involved in machine learning. It is
a clustering technique where the data is unlabeled and has also been used in computer
security areas, including malware detection and forensic (Beverly, Garfinkel & Cardwell,
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Table 7 Machine learning and its classifier used in studies.Machine learning types supervised and unsupervised with the classifier and the respec-
tive articles. To detect Android malware with static features, the supervised learning method is widely used by security practitioners.

Machine learning type Classifier Reference

Supervised K-nearest neighbor Anonymous (2019b); Aafer, Du & Yin (2013)
Support vector machine (svm) Aafer, Du & Yin (2013); Sahs & Khan (2012);

Huang, Tsai & Hsu (2012); Arp et al. (2014);
Anonymous (2019b); Anonymous (2019d); Arp et
al. (2014)

CART Aung & Zaw (2013)
Adaboost Huang, Tsai & Hsu (2012); Sheen, Anitha &

Natarajan (2015)
Bayes Yerima, Sezer & McWilliams (2014); Lee, Lee & Lee

(2015); Hao Peng et al. (2012); Sanz et al. (2013);
Shabtai, Fledel & Elovici (2010)

Logistic Regression Talha, Alper & Aydin (2015)
Prism (PART) Aubrey-Derrick Schmidt et al. (2009a); Yerima,

Sezer & Muttik (2014); Shabtai, Fledel & Elovici
(2010)

Voting feature interval (vfi) Shabtai, Fledel & Elovici (2010)
Random forest Shabtai, Fledel & Elovici (2010); Sanz et al. (2013);

Aafer, Du & Yin (2013); Huang, Tsai & Hsu (2012)

Sequential minimal optimisation (smo) Sanz et al. (2013)
Instance-based learning with parameter k (ibk) Sanz et al. (2013)
Simple logistic Sanz et al. (2013)
Multilayer perceptron Firdaus & Anuar (2015)

Unsupervised K-means Fan et al. (2019);Wu et al. (2012); Samra, Kangbin
& Ghanem (2013); Aung & Zaw (2013)

Normalised Compression distance (NCD) Lu et al. (2012); Crussell, Gibler & Chen (2012)

2011). Clustering refers to the division of a large dataset into smaller data sets with several
similarities. It classifies a given object set through a certain number of clusters (assume k
clusters) to determine the k centroids assigned for each cluster. In this case, this algorithm
selects the centroid by random from the applications set, extracts each application from a
given dataset, and assigns it to the nearest centroid. Table 7 tabulates the previous articles,
which adopted this method.
(c) Reinforcement learning

A reinforcement learning model consists of an agent (a set of actions A) and an
environment (the state space S) (Anderson et al., 2018). Deep reinforcement learning was
introduced by reinforcement agents as a framework to play Atari games, which often
exceed human performance (Volodymyr Mnih et al., 2013; Volodymyr et al., 2015). The
advances in deep learning may extract high-level features from raw sensory data, leading
to breakthroughs in computer vision and speech recognition. In the case of deep learning,
the agent would be required to learn a value function in an end-to-end way, which takes
raw pixels as input and predicts the output rewards for each action.
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The learned value function is called deep Q learning, in which Q function is learned
and refined from over hundreds of games (Anderson, Filar & Roth, 2017). The Q-learning
algorithm was trained in network (Volodymyr Mnih et al., 2013) with stochastic gradient
descent to update the weights. Replay mechanism was used from random samples previous
transitions to lead smooth training distribution over past behaviors to overcome the
correlated data and non-stationary distributions problems. Anderson et al. (2018) propose
a framework based on reinforcement learning (RL) for attacking static portable executable
(PE) anti-malware engines. Meanwhile, a DQN-based mobile proposed by Wan et al.
(2018) to enhance the malware detection performance. The results shown from simulation
can increase the malware detection accuracy and reduce the detection delay as compared
to a Q-learning based malware detection scheme.
(d) Neural Network and Deep Learning

The evolution of Neural Network (NN) has been associated with various challenges
since the mid-20th century. McCulloch and Pitts obtained the first inspiration of NN in
1943 from biological neurons, which was followed by proposing a computational model for
the development of hypothetical nets. Although this proposal was simulated by Nathaniel
Rochester at IBM research laboratory, this attempt was unsuccessful at the end. Developed
by Frank Rosenblatt at Cornell Aeronautical Laboratory, the perceptron became the first
learning machine (Mahdavifar & Ghorbani, 2019).

Despite all the upgrades on NNs, Deep learning (DL) was developed in 2006 and
has been used in almost every application. As a new variation of the classical Multilayer
Perceptron (MLP), the DL aims to produce high-level and flexible features from the raw
pixel data to assist in generalising the classification. Furthermore, DL also operates with
complex applications containing millions of data, which require a large number of neurons
and hidden layers. A few DL frameworks have been developed in the recent years, such
as TensorFlow (Abadi, Agarwal & Barham, 2016), Caffe (Yangqing Jia et al., 2014), and
Theano (Al-Rfou et al., 2016) to ensure an efficient implementation of Deep Network
(DN) architectures and omit the unnecessary coding scratching (Mahdavifar & Ghorbani,
2019). Additionally, the DL method extracts the features based on the layer’s level, which
could either be high or low.

Figure 8 depicts the differences between ML and DL. It shows that ML requires the
security practitioners to extract the features manually and select the ML classifier, which is
suitable for the selected features. However, DL involves automatic feature extraction part
and malware classification. It trains the model end-to-end with the Android application
package (.apk) file and their categories, each labelled as malware or benign. The DL gains
and creates a prediction model through the automatic selection of the feature.

As one of the major models in deep learning, a convolutional neural network (CNN)
has been widely used for image recognition (Li et al., 2018). It could be seen in the
past few years that many studies have implemented Deep Neural Networks (DNN) to
classify malware (Pascanu et al., 2015; Saxe & Berlin, 2016; Zhao et al., 2019). Additionally,
although the recurrent neural networks have been explored since the 1980s, they have
become uncommercial due to several issues (Pascanu et al., 2015). Several machine learning
methods have addressed network or malware attacks on personal computers or mobile
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Figure 8 Differences betweenML and DL. (A) ML extract the features manually and select the ML clas-
sifier. (B) DL involves automatic feature extraction and malware classification.

Full-size DOI: 10.7717/peerjcs.522/fig-8

devices. Simultaneously, several techniques were proposed by researchers who applied DL
algorithms to detect or categorize malware using static, dynamic, or hybrid approaches,
detection of network intrusions and phishing/spam attacks, and inspection of website
defacements (Venkatraman, Alazab & Vinayakumar, 2019).
(e) Ensemble method

Another technique in machine learning and pattern recognition is ensemble learning.
The increase in the implementation of ensemble learning methods could be seen in the
computational biology field due to the unique advantages in managing small sample size,
high dimension, and complex data structures (Yang et al., 2010). The function of ensemble
learning is to build a prediction model by combining the strengths of the collection of
simpler base models (Hastie, Tibshirani & Friedman, 2009). A few approaches are applied
in ensemble methods, such as bagging, boosting, and random forest. This method is
also a simple device, which is popular especially in the predictive performance of a base
procedure.

The bagging procedure appears to be a variance reduction scheme for some base
procedure, while the boosting methods mainly reduce the bias of the base procedure.
Therefore, the significant difference between bagging and boosting ensemble methods is
indicated. Compared to bagging and boosting, the random forest approach is a highly
distinguished ensemble method. The first proposal of the random forest was made by
Amit & Geman (1997). While the performance of random forests is on the same level as
boosting, it could exhibit better performance in the perspective of prediction.

Table 8 shows previous works done using different types of machine learnings as
mentioned before. From the table, we can summarize classical learning is still valid to be
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Table 8 Static analysis works using various types of machine learning.We can summarize classical learning is still valid to be used in experiment
execution but there are a lot of works are using deep learning and graph method in the current trend.

Year Ref Machine Learning used (X)

Classical
learning

Reinforcement
learning

Neural
network &
deep
learning

Ensemble
method

Others Metrics

2019 Yildiz & Doǧru
(2019)

X Support Vector
Machine (SVM)

2019 Singh, Jaidhar &
Kumara (2019)

X Linear Support
Vector Machine
(L-SVM)

2019 Lei et al. (2019) X k-means
2018 Firdaus et al.

(2018)
X Logitboost

2018 SL et al. (2015) X Hotbooting-Q
2018 Yangqing Jia et al.

(2014)
X Stochastic

gradient descent
(SGD)

2018 Firdaus et al.
(2017)

X Multilayer
Perceptron
(MLP), Voted
Perceptron (VP)
and Radial Basis
Function Network
(RBFN).

2018 Firdaus et al.
(2018)

X Naïve Bayes (NB),
functional trees
(FT), J48, random
forest (RF),
and multilayer
perceptron (MLP)

2018 Li et al. (2018) X Bayesian
calibration

2017 Anderson, Filar &
Roth (2017)

X Direct gradient-
based, White-box,
Binary black-box

2017 Volodymyr Mnih
et al. (2013)

X Black-box

2016 Junaid, Liu &
Kung (2016)

X Control flow
graph

2016 Wan et al. (2018) X FCNN, DistBelief
2016 Abadi, Agarwal &

Barham (2016)
X FCNN

(continued on next page)
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Table 8 (continued)

Year Ref Machine Learning used (X)

Classical
learning

Reinforcement
learning

Neural
network &
deep
learning

Ensemble
method

Others Metrics

2015 Pascanu et al.
(2015)

X Sequential
Minimal
Optimization
(SMO), Support
Vector Machine
(SVM)

2015 Kang et al. (2015) X Naïve Bayes
2015 Talha, Alper &

Aydin (2015)
X Support Vector

Machine (SVM)
2015 Anderson et al.

(2018)
X Deep Q-network

2015 Al-Rfou et al.
(2016)

X Echo state
networks (ESN)

2014 Deshotels, Notani
& Lakhotia
(2014a)

X Class Dependence
Graph (CDG)

2014 Feng et al. (2014) X Inter-Component
Call Graph

2014 Huang et al.
(2014)

X Control flow
graph (CFG) and
call graph (CG)

2014 Steven Arzt et al.
(2014)

X Inter-procedural
control-flow graph
(ICFG)

2014 Mahdavifar &
Ghorbani (2019)

X FCNN, MNIST
digit

2013 Shuying Liang et
al. (2013)

X Entry-Point
Saturation (EPS)

2013 Zhou et al. (2013) X Vantage Point
Tree (VPT)

2013 Beverly, Garfinkel
& Cardwell (2011)

X Q-learning

2012 Amit & Geman
(1997)

X Program
dependence
graphs (PDGs)

2010 Saxe et al. (2015) X Jaccard set-based
index
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used in experiment execution but there are a lot of works are using deep learning and
graph method. The current trends show the demand using the deep learning technique to
defend against an increasing number of sophisticated malware attacks where deep learning
based have become a vital component of our economic and national security. Many recent
studies on Android malware detection have leveraged graph analysis as mentioned in the
next section.

Graph. The use of a graph is another method in machine learning and pattern recognition,
which is performed by investigating the data and control-flow analysis. It is also capable
of identifying unknown malware through the examination on the flow of the code. This
method is preferred by security analysts due to the uniform flow despite the changes
made by the malware authors on the API calls to avoid intrusion detection systems. The
types of analysis in graph method include call graph, inter-component call graph (ICCG),
control-flow graph (CFG), and dependence graph, while Table 9 lists the previous works
of research on static malware detection using the graph method.

A call graph (specifically known as flow graph) is a graph representing the control and
data flow of the application, which investigates the exchange of information through the
procedures. A node in the graph represents a procedure or function, as seen from the x and
y symbols, which indicate that procedure x calls for procedure y. Apposcopy (Feng et al.,
2014) presents its new form of call graph known as inter-component call graph (ICCG) to
match malware signature. As a directed graph where nodes are known as components in
an application, it establishes ICCG from a call graph and the results of the pointer analysis.
The objective of apposcopy is to measure the inter-component communication (ICC),
calls, and flow relations.

Another graph called a control flow graph (CFG) is also applied bymany security analysts
to investigate the malware programme. Woodpecker (Grace et al., 2012b) created the CFG
start from each entry point (activity, service, receiver, content provider), which is defined
in the permission stated in the androidmanifest.xml file. Furthermore, the public interface
or services from an execution path is discovered through the flow graph. However, it would
be considered by Woodpecker as a capability leak if it is not guarded by the permission
requirement nor prevented from being invoked by another unrelated application. The
same graph was applied in subsequent works of research, namely Flowdroid (Steven Arzt
et al., 2014), Dendroid (Suarez-Tangil et al., 2014; Sahs & Khan, 2012), Asdroid (Huang
et al., 2014a), Anadroid (Shuying Liang et al., 2013), Adrisk (Grace et al., 2012a), and
Dexteroid (Junaid, Liu & Kung, 2016a).

Another graph is the dependency graph, which illustrates the dependencies of several
objects on each other. An example could be seen in the dead code elimination case process,
in which the graph identifies the dependencies between operation and variables. With the
dependency of non-operation on certain variables, these variables would be considered
dead and should be deleted. The studies, which adopted this type of graph are CHEX (Lu
et al., 2012), Dnadroid (Crussell, Gibler & Chen, 2012), Droidlegacy (Deshotels, Notani &
Lakhotia, 2014b; Zhou et al., 2013).
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Table 9 Previous static analysis research, which used the graphmethod. The types of analysis in graph method include call graph, inter-
component call graph (ICCG), control-flow graph (CFG), and dependence graph.

Type of graph Reference

Call graph Copes (Bartel et al., 2012), Leakminer (Yang & Yang, 2012), Riskranker (Grace et al., 2011), A3 (Luoshi
et al., 2013) and (Gascon et al., 2013)

Inter-component call graph (ICCG) Feng et al. (2014)
Control flow graph (CFG) Woodpecker (Grace et al., 2012b), Flowdroid (Steven Arzt et al., 2014), Dendroid (Suarez-Tangil et al.,

2014; Sahs & Khan, 2012), Asdroid (Huang et al., 2014a), Anadroid (Shuying Liang et al., 2013), Adrisk
(Grace et al., 2012a), and Dexteroid (Junaid, Liu & Kung, 2016a)

Dependency graph CHEX (Lu et al., 2012), Dnadroid (Crussell, Gibler & Chen, 2012), Droidlegacy (Deshotels, Notani &
Lakhotia, 2014b) and (Zhou et al., 2013)

Others. Besides machine learning and graph, several security practitioners adopted
different methods, such as Normalized Compression Distance (NCD). Adopted in the
studies by Desnos (2012b) and Paturi et al. (2013), this method can measure the similarities
between the malwares and represent them in the form of a distance matrix. Despite the
evolution of manymalwares from time to time, some of their behaviour patterns are similar
to each other. The calculation of the similarities using NCD would identify the malwares,
which share the same distance.

A study known as DelDroid (Hammad, Bagheri & Malek, 2019) implemented a method
called as Multiple-DomainMatrix (MDM). This method refers to a complex system, which
calculates multiple domains and is based on the Design-Structure Matrix (DSM) model.
Furthermore, MDM is formed by the connection of DSM models with each other. The
study initialised multiple domains in the MDM to represent the architecture of an Android
system for privilege analysis. To illustrate, the incorporation of certain definitions in the
MDM representation in the architecture enables DelDroid to identify the communication
of the application, which may result in an unauthorised malware attack.

Another previous static experiment was conducted on the MD5 signature of the
application to detect malware (Seo et al., 2014). In the first process, the study assigned
the application as level C (the lowest level of suspicion), followed by calculation and
cross-reference in the database of signatures. The application would be recorded if the
result was positive. However, it would be identified as malware if the result of the suspicion
was R. The system examined the files inside the application to find any matched MD5
signature.

Androsimilar (Faruki et al., 2013) practised a method known as a statistical similarity
digest hashing scheme, which inspects the similarity on the byte stream based on robust
statistical malicious static features. It is also a foot-printing method, which identifies the
regions or areas of statistical similarity with known malware. Following that, it generates
variable-length signatures to detect unknown malware (zero-day).

The following study is DroidMOSS (Zhou et al., 2012), which identifies between the
repackaged (modified) and original application. This function is important due to the
content of malicious activities in many Android repackaged applications. This study
used a fuzzy hashing technique, which generated fingerprint based on this technique to
localise and detect any previously applied modifications to the original application. It then
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Figure 9 Popular methods among security practitioners in static analysis. Both ML and graph were the
popular methods among security practitioners in static analysis. (A) ML was more preferred compared to
graph. (B) The graph method was found to exceed the ML method in 2011, 2012, and 2014.

Full-size DOI: 10.7717/peerjcs.522/fig-9

calculated the edited distance to measure the similarity between the applications. When
the result of the similarity exceeds certain values, the application would be considered as a
modified sample.

Under another static experiment, a study by Apvrille & Strazzere (2012) adopted a
method known as a risk score weight, which was performed through the calculation of the
risk score based on the selected features in the code. When the features were identified, the
score increased according to certain risky patterns of properties. Particularly, the patterns
were based on different likelihoods of the given situations between normal and malware
samples. Lastly, the percentage of the likelihood was calculated. Figure 9 shows that both
ML and graph were the popular methods among security practitioners in static analysis.
The graph method was found to exceed the ML method in 2011, 2012, and 2014, although
ML was more preferred compared to graph in other years. However, this situation reveals
that graphs and ML are favourable options in the static experiment.

A study started to utilise DL (part of ML) in the static experiment in 2019, which
also combined DL (Convolutional neural network—CNN) with Control flow graph
(CFG). Notably, provided that API was the only feature utilised in this study, many
future opportunities were available to combine different DL classifiers (Recurrent neural
network—RNN,Generative* adversarial networks—GANorDeep belief network*—DBN)
with other features besides API and different types of graph. It is noteworthy that DL could
also be combined with NCD and MDM.

Open research issues
This section explains the issues involved in the static analysis, which were derived from
previous research articles. Specifically, a discussion is made on the advantages and
disadvantages of the open-source operating system, which rely on the availability of
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the kernel application code. Another issue on static analysis is code obfuscation used by
the malware developer to increase the difficulty to detect the malware and research done to
counter obfuscation. Then, we review overall static analysis articles, how to detect unknown
malware, the combination of static and dynamic, resource consumption, future work, and
features.

Open source advantages and disadvantages
Provided that Android malware is an open-source operating system, there is a continuous
increase in its amount. To illustrate, one of the open-source availabilities is the kernel
application code. Accordingly, Samsung officially provides its kernel operating system to
the public (Samsung, 2019) for kernel enhancement or private purposes. Furthermore, any
person may download the link according to the mobile device version. The code is also
available in Lenovo (Lenovo, 2021), LG (Official, 2019c), Sony (Sony, 2019e), Htc (HTC,
2019b), Asus (ASUS, 2019a), Motorola (Official, 2019d), and other mobile providers.
Consequently, this code availability may allow malware writers to identify and manage the
vulnerabilities of the kernel’s operating system.

Even though the availability of open-source contributes to its easy access, it is also
available for security practitioners to research it. These practitioners may be the researchers
of universities, the staff of the mobile providers, Android Google researchers, freelance
programmers, and the Android community. They also invent various frameworks,
algorithms, and suggestions to improve the security of the operating system. The version
of the kernel is updated every year, while the mobile providers are informed to regarding
the kernel updates. These studies, including static analysis, would increase the confidence
of Android users worldwide.

Obfuscation
Static analysis involves reverse engineering, such as decompile and disassemble, while
malware developer utilises the obfuscation method to increase the difficulty of the
decompiling process and lead to confusion in it. Obfuscation is a technique, which increases
the difficulty in understanding the programmes due to the failure of the lead security
analysts to distinguish betweenmalware and benign application. Notably, it is a well-known
obstacle to be examined by static analysis. Figure 10 illustrates the types of obfuscation,
which include encryption, oligomorphic, polymorphism, and metamorphism (Moser,
Kruegel & Kirda, 2007; You & Yim, 2010).

The encryption method was extensively practised by the malware writers. In this
case, the important code or strings, which revealed the malware detector or security
practitioner, should be identified. Accordingly, the code was encrypted and converted to
the ciphertext. Furthermtore, various algorithms to encrypt the code are present, such as
Caesar, Playfair, Data Encryption Standard (DES), Advanced Encryption Standard (AES),
and Rivest-Shamir-Adelman (RSA). Therefore, for the security practitioner to understand
the behaviour of the malware, the encrypted code should be decrypted using the correct
decryptor (Wei et al., 2017).

Besides being amalware capable ofmutating@ changing the decryptor, the oligomorphic
is also able to generate multiple decryptors to hundreds of types (You & Yim, 2010).
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Figure 10 Types of obfuscation. Types of obfuscation identified include encryption, oligomorphic, poly-
morphism, and metamorphism.

Full-size DOI: 10.7717/peerjcs.522/fig-10

Consequently, the security practitioner would need to change different decryptor multiple
times until the code is returned to the normal string. Nevertheless, this type of obfuscation
does not affect the size or shape of the code. Another type of obfuscation is polymorphic. It
is a descriptor, which affects the size or shape of the code. Compared to oligomorphic, it is
more advanced due to the incorporation of code transposition, register reassignment, dead
code @ nop insertion, and armoring. Meanwhile, metamorphism is an approach beyond
the oligomorphic and polymorphic types due to the absence of decryptor in its mechanism.
Therefore, its constant body could be hidden from memory and increase the difficulty of
the static investigation to detect malware.

The following information is the obfuscation methods that regularly used by
polymorphism (polimorphic) and metamorphism (metamorphic) obfuscation (You &
Yim, 2010).
(a) Code transportation

Code transposition is a method, which restructures the orders of the original code
without causing any effects on its conduct. This process is performed with two methods.
The first method is the random restructure of the original code by including jumps
or unconditional branches. However, security practitioners can detect obfuscation by
removing those jumps or unconditional branches. The second method is the production
of new generations by selecting and restructuring independent instructions without any
impact on others. However, the adoption of these methods is challenging for the malware
writer, while the security practitioners are faced with a difficulty to detect this method of
obfuscation.
(b) Register reassignment

Register reassignment is another method of obfuscation, which shifts the registers of
the code from one generation to another. This method is performed without changing the
behaviour of the code while keeping the programme of the code similar to its original state.
(c) Dead-code/nop insertion
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Known as nop insertion, dead-code is a method, which adds several unnecessary
instructions in the code and simultaneously keeps the behaviour of the code similar to its
original state. Nevertheless, in certain situations, security practitioners able to detect this
obfuscation by removing the aforementioned code.
(d) Substitution of equivalent instruction sequences

The original code is changed through the substitution of several instructions. To
illustrate, the SUB instruction is changed to XOR, while PUSH is changed to MOV.

Research to counter obfuscation. To overcome obfuscation, many studies were conducted
on different approaches. Study byCrussell, Gibler & Chen (2012) used program dependence
graph (PDG) to prevent program transformations in obfuscation. Droidlegacy (Deshotels,
Notani & Lakhotia, 2014b) use graph node to represents the java class in detecting light
obfuscation. Droidanalytics (Zheng, Sun & Lui, 2013) and Drebin (Arp et al., 2014) extract
the API calls while the codes running during execution time. In order to control the flow of
obfuscation, Apposcopy use inter-component communication (ICC) to write the signature.
Research by Firdaus (2017) uses jadx, one of reverse engineer tool to de-obfuscation the
obfuscation codes. Summary of studies conducted to overcome obfuscation shown in
Table 10.

Advantage of obfuscation. Despite the adoption of the obfuscation method by the malware
writers or the attackers to evade detection, obfuscation also serves the following advantages
based on other points of views:
(a) Reduction of the size of the application

Google (Android, 2019b) encourages developers to enable shrinking in their release to
build an application to remove any unused codes and resources. Furthermore, provided
that obfuscation would shorten the names of the classes and members in the code, the
developer will be able to reduce the size of the application. Notably, the size of the
application is a significant concern in Android handheld devices (smartphones, smart
glasses, and smartwatch) with limited storage and resources.
(b) The difficulty for the malware writer to understand the obfuscated normal application

To develop malware in certain situations, malware writers need to perform reverse
engineering on the normal repackaged application. Therefore it is able to confuse them
to steal private information and discover application vulnerabilities from that obfuscated
normal @ benign application code (Diego et al., 2004).
(c) Security practitioners can detect malware easily

Obfuscation also facilitates the detection of malware by the researcher (Nissim et al.,
2014). To illustrate, there are certain situations where malware regularly adopts similar
obfuscation marks, which is impossible to exist in normal application. Therefore, security
practitioners able to detect malware with the presence of these marks. Following all the
advantages and drawbacks, continuous research on obfuscation is crucial to obtain better
results from the detection of malware through the static analysis.
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Table 10 Studies conducted to overcome obfuscation. To overcome obfuscation, many studies were conducted on different approaches.

References Year Solution for the obfuscation

DNADroid (Crussell, Gibler & Chen, 2012) 2012 Using programme dependence graphs (PDGs), DNADroid
can prevent typical program transformations in
obfuscation.

Apvrille & Strazzere (2012) 2012 Detects encryption attempts as one of the obfuscation
methods

DroidAPIMiner (Aafer, Du & Yin, 2013) 2013 Includes features, which are regularly used for obfuscation,
such as substring (), indexOf(), getBytes(), valueOf(),
replaceAll(), Append(), getInstance(), doFinal(), and
Crypto.spec.DESKeySpec

Androsimilar (Faruki et al., 2013) 2013 Adopts statistically strong file features based on a
normalised entropy

Droidanalytics (Zheng, Sun & Lui, 2013) 2013 Only extracts the API calls in methods and classes, which
will be executed in the run time. Additionally, the generated
signature, which is based on the analyst-defined API, which
have the ability to update flexibly.

Apposcopy (Feng et al., 2014) 2014 Includes the predicate inter-component communication
(ICC), which allows the writing of signatures, which are
resilient to high-level control flow obfuscation.

Drebin (Arp et al., 2014) 2014 DREBIN extracts API calls related to obfuscation and
loading of code, such as DexClassLoader.loadClass() and
Cipher.getInstance

Dendroid (Suarez-Tangil et al., 2014) 2014 Concentrates on the internal structure of code units
(methods) to resist obfuscation.

Droidlegacy (Deshotels, Notani & Lakhotia, 2014b) 2014 Graph node represents the Java class, which detects light
obfuscation.

Firdaus (2017) 2017 Uses Jadx (a reverse engineering tool), which provides the
de-obfuscation option. It is capable of de-obfuscating the
obfuscation code in minimal error.

The list of all articles in the detection of malware in static analysis
To identify the trends in the detection of malware through static analysis, this section
presents a list of previous works of research, which cover all areas (year, features, and
classification). Table 11 lists a study DroidARA (Fan et al., 2019) in 2019, which performed
an experiment combined with DL and graph and differentiation between malware and
normal application. It applied a call graph to extract the API features and convolutional
neural network (CNN) for classification. At the time of writing this paper, this is a new
trend in detecting Android malware. Therefore, in future research, it is possible to witness
more research combination similar to this with different features.

From the lists,most of researchers usedAPI andmanifest file features in their experiments
to detect themalware. It proofs thatAPI featureswere the popular codes used by themalware
developers to create themalware. The program is based on the Android application package
file in the (.apk) format, which is also used to install an application in android-basedmobile
devices. Every app project must have an androidmanifest.xml file at the root of the project
source set. This manifest file is regularly in a binary form inside the APK, however when
chosen in the APK Analyzer, the xml form is restructured and produced. There are some
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Table 11 The detection of malware, which attacks Android OS, based on previous static analysis. To identify the trends in the detection of malware through static
analysis, this section presents a list of previous works of research, which cover all areas (year, features, and classification).

Year Ref Features (•) Classification (X)

AD API A DP C F G M N CB ML DL Graph Other

2019 Hammad,
Bagheri
& Malek
(2019)

• Multiple-
Domain
Matrix
(MDM)

2019 Fan et al.
(2019)

• X X

2019 Badhani
& Muttoo
(2019)

• • X

2019 Wu et al.
(2019)

• X

2019 Liu et al.
(2019)

• • X

2019 Alotaibi
(2019)

• • • X

2019 Zhang,
Tian &
Duan
(2019)

• X

2019 Alsoghyer
&
Almomani
(2019)

• X

2019 Yildiz &
Doǧru
(2019)

• • X

2019 Singh,
Jaidhar &
Kumara
(2019)

• • X

2019 Lei et al.
(2019)

• X X

2018 Firdaus et
al. (2018)

• • • X

2018 Zhao et al.
(2019)

• X

2018 Gu et al.
(2018)

• X
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Table 11 (continued)

Year Ref Features (•) Classification (X)

AD API A DP C F G M N CB ML DL Graph Other

2018 Firdaus et
al. (2017)

• • • X

2018 Firdaus et
al. (2018)

• • • •

2018 Klieber et
al. (2018)

• X

2018 Kumar,
Kuppusamy
& Aghila
(2018)

• X

2018 Wang et
al. (2018)

• • • • X

2018 Ma Zhao-
hui et al.
(2017)

• X

2017 Feizollah
et al.
(2017)

• X

2017 Kim et al.
(2018)

• X

2017 Zhou et al.
(2017)

• X

2017 Pooryousef
& Amini
(2017)

• X

2017 Wu et al.
(2018)

• X

2017 Chang &
De Wang
(2017)

• • X

2016 Junaid,
Liu &
Kung
(2016a)

• X

2016 Atici,
Sagiroglu
& Dogru
(2016)

• X X

2016 Medvet &
Mercaldo
(2016)

• X
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Table 11 (continued)

Year Ref Features (•) Classification (X)

AD API A DP C F G M N CB ML DL Graph Other

2016 Wu et al.
(2016)

• X

2016 Nissim et
al. (2016)

• X

2015 Sheen,
Anitha &
Natarajan
(2015)

• • X

2015 Kang et al.
(2015)

• • • X

2015 Kang et al.
(2015)

• • • X

2015 Firdaus
& Anuar
(2015)

• • • X

2015 Talha,
Alper &
Aydin
(2015)

• X

2015 Junaid,
Liu &
Kung
(2016a)

• • X

2015 Lee, Lee &
Lee (2015)

•

2015 Elish et al.
(2015)

• • X

2015 Gordon et
al. (2015)

• X

2014 Yerima,
Sezer &
McWilliams
(2014)

• • X

2014 Arp et al.
(2014)

• • • X

2014 Deshotels,
Notani &
Lakhotia
(2014b)

• X
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Table 11 (continued)

Year Ref Features (•) Classification (X)

AD API A DP C F G M N CB ML DL Graph Other

2014 Feng et al.
(2014)

• X

2014 Huang et
al. (2014a)

• • X

2014 Steven
Arzt et al.
(2014)

• X

2014 Yerima,
Sezer &
Muttik
(2014)

• • • X

2014 Seo et al.
(2014)

• • MD5
signature

2014 Suarez-
Tangil et
al. (2014)

• X

2013 Aafer,
Du & Yin
(2013)

• X

2013 Lee & Jin
(2013)

•

2013 Shuying
Liang et al.
(2013)

• • X

2013 Zhou et al.
(2013)

• • X

2013 Luoshi et
al. (2013)

• • • X

2013 Peiravian
& Zhu
(2013)

• • X

2013 Samra,
Kangbin &
Ghanem
(2013)

• • X
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Table 11 (continued)

Year Ref Features (•) Classification (X)

AD API A DP C F G M N CB ML DL Graph Other

2013 Gascon et
al. (2013)

• X

2013 Huang,
Tsai
& Hsu
(2012)

• X

2013 Aung
& Zaw
(2013)

• X

2013 Faruki et
al. (2013)

• Similarity
digest
hashing

2013 Paturi et
al. (2013)

• Normalised
Compression
Distance
(NCD)

2013 Apvrille
& Apvrille
(2013)

• X

2013 Yerima et
al. (2013)

• • X

2013 Borja
Sanz et al.
(2013)

• X

2012 Grace et
al. (2012a)

• X

2012 Wu et al.
(2012)

• • X

2012 Bartel et
al. (2012)

• • X

2012 Grace et
al. (2012b)

• • X

2012 Zhou et al.
(2012)

• Fuzzy
hashing
technique

2012 Hao Peng
et al.
(2012)

• X
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Table 11 (continued)

Year Ref Features (•) Classification (X)

AD API A DP C F G M N CB ML DL Graph Other

2012 Walenstein,
Deshotels
&
Lakhotia
(2012)

• X

2012 Sahs &
Khan
(2012)

• X X

2012 Sanz et al.
(2013)

• X

2012 Apvrille &
Strazzere
(2012)

• • • Risk score
weight

2012 Lu et al.
(2012)

• X

2012 Crussell,
Gibler
& Chen
(2012)

• X

2012 Desnos
(2012b)

• Normalised
Compression
Distance
(NCD)

2012 Sarma et
al. (2012)

• X

2012 Yang &
Yang
(2012)

• • X

2011 Grace et
al. (2011)

• • X

2010 Shabtai,
Fledel &
Elovici
(2010)

• • • X

2009 Aubrey-
Derrick
Schmidt et
al. (2009a)

• X

Notes.
AD, Advertisement libraries; API, API; A, apk, dex and XML properties; DP, Directory path; C, Commands; F, unction call; G, Geographic; M, Manifest file; N, Network address or URLs; CB,
Code-based.
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changes of the androidmanifest.xml document from a library application depends on was
converged into the last androidmanifest.xml record. Other package files fall down into apk,
xml and dex properties feature.

Besides the combination of DL and graph, ML and graph were also combined in the
studies by Atici, Sagiroglu & Dogru (2016) in 2016 and Sahs & Khan (2012) in 2012. These
studies utilised a similar graph, which was the Control flow graph (CFG), indicating
that the combination of ML and graph increased the detection result. Therefore, future
work is suggested to test this combination in different static features. Other parts of
classification (Multiple-Domain Matrix (MDM), MD5 signature, similarity digest hashing,
normalized compression distance (NCD), and fuzzy hashing technique) were also useful
in the detection of malware with static features. These classifications also contributed to
the availability of future work combinations with ML, DL, and graph.

Detect unknown malware
Initially, static analysis is unable to discover new or unknown malware as it only
examined the code of the application without executing it. To elaborate on this situation,
certain malware only executes certain parts whenever the application runs. Provided the
drawback of static analysis in the identification of unknown malware, many security
practitioners started to adopt machine learning, such as (Lee, Lee & Lee, 2015; Yerima,
Sezer & McWilliams, 2014), Drebin (Arp et al., 2014; Yerima, Sezer & Muttik, 2014),
Droidapiminer (Aafer, Du & Yin, 2013; Apvrille & Apvrille, 2013), Androsimilar (Faruki et
al., 2013; Lee & Jin, 2013; Yerima et al., 2013; Paturi et al., 2013; Shabtai, Fledel & Elovici,
2010), and (Firdaus & Anuar, 2015). Similarly, the graph approach was also a suitable
approach for this identification, as shown in Elish et al. (2015), Riskranker (Grace et al.,
2011), andDendroid (Suarez-Tangil et al., 2014). The Elish et al. (2015) study utilised a data
dependence graph (DDG), Riskranker, and Dendroid, which employed the control-flow
graph (CFG).

Combination of static and dynamic analyses
It was proven in Moser, Kruegel & Kirda (2007) that static analysis was inadequate for the
detection of malware as this analysis should be combined with dynamic analysis to detect
the malware effectively. Compared to static analysis, the dynamic analysis can evade the
obfuscation technique. Essentially, provided that each type of analysis (static and dynamic)
has its advantages and drawbacks, the combination of static and dynamic analyses would
increase the effectiveness of the countermeasure action on the malware.

Resource consumption in Android OS and deep learning
Deep learning (DL) is a subset of machine learning in artificial intelligence (AI), which
is also known as a deep neural network or deep neural learning. Notably, with unlabeled
and unstructured data, DL is capable of learning and predicting the output. It imitates
the human brain in data processing, development of patterns from that data, and the
implementation of decision making. It could be seen from the current trends that deep
learning (DL) technique has a potential for further discovery. The implementation of
this technique enables the DL to automatically determine the ideal features for prediction
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and classification. Currently, DL is widely used in almost every area, such as large scale
image recognition tasks, automated driving, new cancer cell detection, hearing and speech
translation, and aerospace area identification (Mathworks, 2020).

However, DL requires substantial computing power, which needs a high amount of the
graphic processing unit (GPU) based on the data to be processed (Mathworks, 2020). This
situation leads to an issue in the detection of malware, which attacks Android devices.
Provided that Android mobile device is a device with small computing power, the adoption
of DL becomes the main concern. However, the transfer of information from the Android
device to the cloud provider is possible only for the execution of the DL process, which
would then develop the device. Therefore, the large-scale adoption of DL is possible for
future work in the static analysis.

Future work in static analysis
It could be seen from the review in the previous sections (‘SurveyMethodology’) that many
future opportunities for the static analysis to detect themalware, which attacks the Android.
One of the opportunities is the combination of different DL classifier (Recurrent neural
network—RNN,Generative* adversarial networks—GANorDeep belief network*—DBN)
with other features besides API, with different types of graph. However, ‘The list of all
articles in the detection of malware in static analysis’ shows that only one experiment
started the combination between DL and graph with one API feature in 2019. Therefore,
the accuracy of detection results would increase, leading to the identification of a new
family of malware. It is also noteworthy that other future alternatives are available for the
combination of DL with NCD and MDM.

Popular features (API and manifest file)
‘The list of all articles in the detection of malware in static analysis’ shows that many static
analysis researchers frequently applied the manifest file and API calls as the features in their
experiments. To illustrate, these popular features had been examined by the researchers
from 2010 until 2019 due to the official update for Android and the addition of new features
from time to time. However, most of the malwares still utilised similar features within this
timespan, while other malwares utilised the latest and updated features. Therefore, the
researchers are required to place continuous focus on these popular features.

The manifest file is one file with numerous features in it, such as permission, intent,
hardware component, and application component, while API is a ready code for the
programmer to develop their application. Therefore, it is crucial for researchers to
thoroughly scrutinise these two categories of features. Moreover, some researchers
incorporated other features to combine the manifest and API for more effective malware
detection.

CONCLUSIONS
Following the interest to explore the recent studies in the static analysis, a review
was performed on the existing studies by past security investigators on Android
malware detection, which was explained through phases (reverse engineer, features, and
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classification). Furthermore, this review covered the information within the ten years range
(2009 to 2019). In this article, the features used in the static analysis were also reviewed.
Within the aforementioned timespan, many security practitioners still preferred the API
andmanifest files, indicating the relevance of these two features. Moreover, the latest trends
in classification were highlighted, which consists of machine learning, deep learning, graph,
and other methods. These trends have proven the relevance of the graph method compared
to machine learning. Static analysis researchers began the adoption of deep learning in their
detection. This article also discussed the open research issues in the static analysis, including
obfuscation as one of the weaknesses of static analysis and the methods of overcoming
it. Many static analysis researchers implemented multiple methods to solve obfuscation
and achieve a successful malware detection, such as concentrating the codes with the
implementation of obfuscation (DexClassLoader.loadClass, Crypto.spec.DESKeySpec, and
Cipher.getInstance) using a tool with the de-obfuscation option, including the adoption
of graph node and program dependence graphs (PDGs).
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