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ABSTRACT
The problem of determining the likelihood of the existence of a link between two nodes
in a network is called link prediction. This is made possible thanks to the existence
of a topological structure in most real-life networks. In other words, the topologies of
networked systems such as theWorldWideWeb, the Internet, metabolic networks, and
human society are far from random, which implies that partial observations of these
networks can be used to infer information about undiscovered interactions. Significant
research efforts have been invested into the development of link prediction algorithms,
and some researchers have made the implementation of their methods available to the
research community. These implementations, however, are often written in different
languages and use different modalities of interaction with the user, which hinders
their effective use. This paper introduces LinkPred, a high-performance parallel and
distributed link prediction library that includes the implementation of the major link
prediction algorithms available in the literature. The library can handle networks with
up to millions of nodes and edges and offers a unified interface that facilitates the use
and comparison of link prediction algorithms by researchers as well as practitioners.

Subjects Algorithms and Analysis of Algorithms, Computer Networks and Communications,
Network Science and Online Social Networks
Keywords Link prediction, Complex networks, Software library, High performance computing,
Graph embedding

INTRODUCTION
The field of complex networks, and more generally that of network science, aims at
studying networked systems, that is, systems composed of a large number of interacting
components (Albert & Barabási, 2002). Under this umbrella fall many seemingly disparate
networks, but which share common underlying topological properties that constitute
a fertile ground for analyzing and ultimately understanding these systems. Networks of
interest can be social, biological, informational, or technological. Link prediction is the task
of identifying links missing from a network (Lü & Zhou, 2011; Martínez, Berzal & Cubero,
2017; Guimerà & Sales-Pardo, 2009; Al Hasan et al., 2006; Guimerà & Sales-Pardo, 2009;
Clauset, Moore & Newman, 2008; Lü & Zhou, 2011; Cannistraci, Alanis-Lobato & Ravasi,
2013; Daminelli et al., 2015; Al Hasan et al., 2006; Wang, Satuluri & Parthasarathy, 2007;
Zhang et al., 2020; Beigi, Tang & Liu, 2020; Sajadmanesh et al., 2019; Makarov et al., 2019),
a problem with important applications, such as the reconstruction of networks from partial
observations (Guimerà & Sales-Pardo, 2009), recommendation of items in online shops
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and friends in social networks (Al Hasan et al., 2006), and the prediction of interactions in
biological networks (Clauset, Moore & Newman, 2008).

This paper introduces LinkPred, a C++ high-performance link prediction library
that includes the implementation of the major link prediction algorithms available
in the literature by development from scratch and wrapping or translating existing
implementations. The library is designed with three guiding principles, ease of use,
extensibility, and efficiency. To facilitate its use, LinkPred borrows heavily from the STL
design to offer an elegant and powerful interface. C++ users with minimum experience
using STL will find the library’s programming and usage style to be very familiar. Moreover,
the use of templates allows for greater flexibility when using LinkPred and allows for
integration within various contexts. The library contains bindings to Java and Python,
providing access to its main functionalities through easy-to-use classes. LinkPred is aimed
not only at practitioners but also at researchers in the field. It is designed to allow developers
of new link prediction algorithms to easily integrate their code into the library and evaluate
its performance. Efficiency-wise, the data structures used and implemented in LinkPred
are all chosen and designed to achieve high performance. Additionally, most code in
LinkPred is parallelized using OpenMp, which allows taking advantage of shared memory
architectures. Furthermore, a significant portion of the implemented predictors supports
distributed processing using MPI, allowing the library to handle very large networks with
up to hundreds of thousands to millions of nodes.

In the rest of this paper, an overview of related software packages is presented first,
followed by a description of the library’s architecture and main functionalities. Example
use cases with fully working code samples are presented next. The paper is then concluded
by showing performance results and a comparison against existing link prediction packages.

RELATED WORK
Several researchers in the area of link prediction have released implementations of
their methods (Clauset, Moore & Newman, 2008; Guimerà & Sales-Pardo, 2009; Liu et
al., 2013; Papadopoulos, Psomas & Krioukov, 2015; Muscoloni & Cannistraci, 2017). These
implementations are, naturally but inconveniently, written in different languages and offer
diverse modalities of interaction with the user, which complicates their effective use. There
is also a limited number of packages that provide unified interfaces to implementations
of topological ranking methods. The R package linkprediction (Bojanowski & Chrol, 2019),
for instance, includes the implementation of the most important topological similarity
algorithms. It offers a single method to compute the score of negative links using a specified
similarity index. This package has several limitations, however. First, it only accepts
connected undirected networks, which may be highly constraining as most real networks
are disconnected. Since the package computes all negative links’ scores, the size of networks
that the package can handle is also limited. Furthermore, linkprediction does not offer any
performance evaluation or test data generation functionalities. Other available packages
include the commercial graph platform Neo4J (Neo4J, 2019), and NetworkX (Hagberg,
Schult & Swart, 2019), which both contain the implementation of a limited number of
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topological ranking methods. The Python package linkpred (linkpred, 2020) contains the
implementation of a number of topological similarity methods and also global methods,
including rooted PageRank, Katz index (Katz, 1953), and SimRank (Jeh & Widom, 2002).
The library does not, however, support parallel and distributed implementations, nor does
it support performance evaluation functionalities.

GEM (Goyal & Ferrara, 2018b; Goyal & Ferrara, 2018a) is a Python package that
implements many state-of-the-art graph embedding techniques, including Locally Linear
Embedding (Roweis & Saul, 2000), Laplacian Eigenmaps (Belkin & Niyogi, 2001), Graph
Factorization (Koren, Bell & Volinsky, 2009; Ahmed et al., 2013), Higher-Order Proximity
preserved Embedding (HOPE) (Ou et al., 2016), Structural Deep Network Embedding
(SDNE) (Wang, Cui & Zhu, 2016), and node2vec (Grover & Leskovec, 2016). It also
includes several similarity measures that can be used in combination with these embedding
algorithms to predict links. GEM is, however,more focused on graph embedding techniques
than link prediction and, as such, does not include other types of link prediction methods
such as topological similarity and probabilistic methods. SNAP (Stanford Network Analysis
Platform) (Leskovec & Sosič, 2016), which is a general-purpose network analysis library,
also includes an implementation of node2vec and GraphWave (Donnat et al., 2018). Like
GEM, SNAP is not dedicated to link prediction, and apart from its graph embedding
algorithms, it includes only a limited number of topological similarity measures as part
of its experimental components (snap-exp). Another general-purpose network analysis
library is the Python package scikit-network (Bonald et al., 2020), which contains the
implementation of a number of local methods and graph embedding algorithms.

Given the importance of link prediction and the wide range of existing and potential
applications, the currently available software packages clearly lack functionality and
performance. Arguably, this state-of-affairs limits the successful application of existing
algorithms to real-life problems and the rigorous testing of newly proposed methods.
LinkPred aims at filling this gap that separates existing research from efficient software
implementations. Table 1 contains a comparison in terms of functionality betweenLinkPred
and the main open-source packages used for link prediction. The architecture of LinkPred
and the functionalities shown in Table 1 are discussed in detail in the next section.

ARCHITECTURE AND FUNCTIONALITIES
LinkPred aims at filling the existing gap between research and efficient software
implementations of link prediction algorithms. As shown in Fig. 1, it offers functionalities
at various levels to help use, implement and test link prediction methods. In this section,
a brief description of the functionalities available in LinkPred is given. More details can be
found in the library user guide.

Core components
At the core of LinkPred lie efficient data structures for storing and accessing network
data. These include the classes UNetwork and DNetwork used to represent undirected and
directed networks, respectively. These structures allow efficient access to nodes, edges, and
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Table 1 Comparison of LinkPred against the most important free/open-source link prediction software packages.

Functionality LinkPred NetworkX linkprediction GEM SNAP linkpred scikit-network

Supported languages C++, Python (a subset of the functionali-
ties), Java (a subset of the functionalities)

Python R Python C++, Python (a subset of the
functionalities)

Python Python

Topological similarity methods Yes (with shared memory and distributed
parallelism)

Yes
(no parallelism)

Yes
(no parallelism)

No No (A limited number of algo-
rithms is included as an experi-
mental component)

Yes (no parallelism) Yes (no parallelism)

Global link prediction methods Yes (with shared memory parallelism and
for some predictors also distributed paral-
lelism)

No No No No Yes (Rooted PageRank, SimRank,
Katz, shortest path)

No

Graph embedding algorithms LLE, Laplacian Eigenmaps, Graph Fac-
torization, DeepWalk, LINE, LargeVis,
node2vec, and HMSM

No No LLE, Laplacian Eigenmaps, Graph
Factorization, HOPE, SDNE, and
node2vec

node2vec and GraphWave No Spectral, SVD, GSVD, PCA, Ran-
dom Projection, Louvain, Hierar-
chical Louvain, Force Atlas, and
Spring.

Classifiers Yes (mainly via mlpack) No No No No No No

Similarity measures Yes No No Yes Yes No No

Test data generation Yes No No No No No No

Performance measures Yes No No No No No No
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Figure 1 Architecture of LinkPred.
Full-size DOI: 10.7717/peerjcs.521/fig-1

non-existing edges through C++-style iterators. Also included are auxiliary data structures
such as full and sparse node and edge maps.

The network data structures
The life cycle of a network has two distinct phases. In the pre-assembly phase, it is possible
to add nodes and edges to the network. It is also possible to access nodes and translate
external labels to internal IDs and vice versa. However, most functionalities related to
accessing edges are not yet available. As a result, the network at this stage is practically
unusable. To be able to use the network, it is necessary to assemble it first. Once assembled,
no new nodes or edges can be added (or removed) to the network. The network is then
fully functional and can be passed as an argument to any method that requires so.

To build a network, an empty network is first created by calling the default constructor:
UNetwork <> net;

Most classes in LinkPred manipulate networks through smart pointers for efficient
memory management. To create a shared pointer to a UNetwork object:
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auto net = std:: make_shared <UNetwork <>>();

Notice that the class UNetwork is a class template, which is instantiated with the default
template arguments. In this default setting, the labels are of type std::string, whereas
internal IDs are of type unsigned int, but UNetwork can be instantiated with several
other data types if wanted. For instance, the labels can be of type unsigned int, which
may reduce storage size in some situations.

Adding nodes is achieved by calling the method addNode, which takes as parameter the
node label and returns an std::pair containing, respectively, the node ID and a Boolean
which is set to true if the node is newly inserted, false if the node already exists. The nodes
IDs are guaranteed to be contiguous in 0,...,n−1, where n is the number of nodes.
auto res = net.addNode(label);
auto id = res.first; // This the node ID
bool inserted = res.second; // Was the node inserted or did it already exist?

The method addEdge is used to create an edge between two nodes specified by their IDs
(not their labels):
net.addEdge(i, j);

The last step in building the network is to assemble it:
net.assemble ();

The method assemble initializes the internal data structures and makes the network
ready to be used.

Nodes can be accessed through iterators provided by nodesBegin() and nodesEnd().
For convenience, the iterator points to a pair, the first element of which is the internal ID,
whereas the second is the external label.
std::cout << "ID\tLabel" << std::endl;
f o r ( auto it = net.nodesBegin (); it != net.nodesEnd (); ++it) {

std::cout << it->first << "\t" << it->second << std::endl;
}

Alternatively, one can iterate over labels in a similar way using the iterators
labelsBegin() and labelsEnd():
std::cout << "Label\tID" << std::endl;
f o r ( auto it = net.labelsBegin (); it != net.labelsEnd (); ++it) {

std::cout << it->first << "\t" << it->second << std::endl;
}

It is also possible to translate labels to IDs and vice versa using getID(label) and
getLabel(id) respectively. Oftentimes, one would want to iterate over a random
sample of nodes instead of the whole set. This can be easily done using the two methods
rndNodesBegin and rndNodesEnd.

Information on edges can only be accessed after assembling the network. One way to
access edges is to iterate over all edges in the network. This can be done using the method
edgesBegin() and edgesEnd(). As it is the case with nodes, it is possible to access a
random sample of edges using rndEdgesBegin and rndEdgesEnd. LinkPred offers the
possibility to iterate over negative links in the same way one iterates over positive edges.
This can be done using the method nonEdgesBegin() and nonEdgesEnd():
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std::cout << "Start\tEnd" << std::endl;
f o r ( auto it = net.nonEdgesBegin (); it != net.nonEdgesEnd (); ++it) {

std::cout << net.start(*it) << "\t" << net.end(*it) << std::endl;
}

It is also possible to iterate over a randomly selected sample of negative links using
rndNonEdgesBegin and rndNonEdgesEnd.

To represent directed networks, LinkPred offers the class DNetwork, which offers a very
similar interface to UNetwork.

Maps
Maps are a useful way to associate data with nodes and edges. Two types of maps are
available in LinkPred: node maps (class NodeMap) and edge maps (class EdgeMap), both
member of UNetwork. The first assigns data to the network nodes, whereas the latter maps
data to edges (see Fig. 2 for an example).

Creating a node map is achieved by calling the method createNodeMap on the network
object. This is a template method with themapped data type as the only template argument.
For example, to create a node map with data type double over the network net:
auto nodeMap = net. t empla t e createNodeMap <double >();

Creating an edge map can be done in a similar way:
auto edgeMap = net. t empla t e createEdgeMap <double >();

Both NodeMap and EdgeMap offer the same interface, which in fact is similar to std::map.
This includes the operator [], the methods at, begin, end, cbegin and cend. From the
performance point of view, NodeMap offers constant time access to mapped values, whereas
EdgeMap requires logarithmic time access (O(logm), m being the number of edges).

If a node map is sparse, that is, has non-default values only on a small subset of the
elements, it is better to use a sparse node map. To create a sparse node map:
auto nodeSMap = net. t empla t e createNodeSMap <double >(0.0);

Notice that the method takes as input one parameter that specifies the map’s default
value (in this case, it is 0.0). Hence, any node which is not explicitly assigned a value is
assumed to have the default value 0.0.

Graph algorithms
To facilitate the implementation of link prediction algorithms, LinkPred comes with a set
of graph-algorithmic tools such as efficient implementations of graph traversal, shortest
path algorithms, and graph embedding methods.

Graph traversal and shortest paths algorithms
LinkPred provides two classes for graph traversal: BFS, for Breadth-First traversal, and
DFS for Depth-First traversal. They both inherit from the abstract class GraphTraversal,
which declares one virtual method traverse. It takes as parameter the source node from
where the traversal starts and a reference to a NodeProcessor object, which is in charge of
processing nodes sequentially as they are visited.
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Figure 2 A node map associate values to nodes (A), whereas an edge map associates values to edges
(B).

Full-size DOI: 10.7717/peerjcs.521/fig-2

In addition to graph traversal routines, LinkPred contains an implementation of
Dijkstra’s algorithm for solving the shortest path problem. To use it, it is first necessary
to define a length (or weight) map that specifies the length associated with every edge in
the graph. A length map is simply a map over the set of edges, that is, an object of type
EdgeMap which can take integer or double values. The class Dijkstra offers two methods
for computing distances:

• The method getShortestPath, which computes and returns the shortest path between
two nodes and its length.
• The method getDist, which returns the distance between a source node and all other
nodes. The returned value is a nodemap, where each node is mapped to a pair containing
the distance from the source node and the number of edges in the corresponding shortest
path.

Both methods run Dijkstra’s algorithm, except that getShortestPath stops once the
destination node is reached, whereas getDist continues until all reachable nodes are
visited.

Computing shortest-path distances in large networks requires not only considerable
time but also significant space resources. Consequently, efficient management of
memory is necessary to render the task feasible in such situations. The abstract class
NetDistCalculator provides an interface for an additional layer over the class Dijkstra
which facilitates its use and can serve to manage memory usage. A NetDistCalculator

object is associated with a single length map and provides two methods for computing
distances:

• getDist(i, j): Computes and returns the distance between the two nodes i and j.
The returned value is an std::pair, with the first element being the distance, whereas
the second is the number of hops in the shortest path joining the two nodes.
• getDist(i): Computes and returns a node map containing the distances from node i
to all other nodes in the network.

LinkPred has two implementations of NetDistCalculator: ESPDistCalculator, an
exact shortest path distance calculator which caches distances according to different
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strategies to balance memory usage and computation, and ASPDistCalculator,
an approximate shortest path distance calculator. The approximation used in
ASPDistCalculator works as follows. A set L of nodes called landmarks is selected,
and the distance from each landmark to all other nodes is pre-computed and stored in
memory. The distance between any two nodes i, j is then approximated by:

dij 'min
k∈L
[dik+dkj]. (1)

The landmarks are passed to ASPDistCalculator object using themethod setLandmarks.
Naturally, by increasing the number of landmarks, more precision can be obtained, be it
though at a higher computational and memory cost.

Graph embedding algorithms
Graph embedding consists in transforming the graph’s nodes and edges into elements
of a low-dimensional vector space while preserving, as much as possible, its structural
properties (Goyal & Ferrara, 2018c). It is a problem with important applications in various
fields, including link prediction (Goyal & Ferrara, 2018c; Kazemi & Poole, 2018; Alharbi,
Benhidour & Kerrache, 2016; Wang, Cui & Zhu, 2016), product recommendation (Koren,
Bell & Volinsky, 2009), data visualization (van der Maaten & Hinton, 2008; Tang et al.,
2016; Cao, Lu & Xu, 2016), and node classification (Bhagat, Cormode & Muthukrishnan,
2011; Tang, Aggarwal & Liu, 2016).

LinkPred contains several state-of-the-art graph embedding algorithms, some of
which are implemented from scratch, whereas others are based on publicly available
implementations. These include methods based on matrix decomposition, namely
Locally Linear Embedding (Roweis & Saul, 2000) implemented in the class LLE, Laplacian
Eigenmaps (Belkin & Niyogi, 2001) implemented in the class LEM, andMatrix Factorization
(Koren, Bell & Volinsky, 2009) (also referred to as Graph Factorization in Goyal & Ferrara,
(2018c); Ahmed et al., (2013)) implemented in the class MatFact. Also available are
methods based on random walks, including DeepWalk (Perozzi, Al-Rfou & Skiena, 2014)
implemented in the class DeepWalk, Large InformationNetworks Embedding (LINE) (Tang
et al., 2015), implemented in the class LINE, LargeVis (Tang et al., 2016) implemented in
the class LargeVis, and node2vec (Grover & Leskovec, 2016), which is implemented in the
class Node2Vec. Additionally, the librray includes the implementation of the Hidden the
Metric Space Model (HMSM) embedding method (Alharbi, Benhidour & Kerrache, 2016)
available through the class HMSM.

To provide a uniform interface, all embedding algorithms implemented in LinkPred
inherit from the abstract class Encoder, which declares the following methods:

• The method init, which is first called to initialize the internal data structures of the
encoder. This is a pure virtual method of the class Encoder and must be implemented
by derived classes.
• Once the encoder is initialized, the method encode, also a pure virtual method, is
called to perform the embedding. This step typically involves solving an optimization
problem, which can be computationally intensive both in terms of memory and CPU
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usage, especially for very large networks. The dimension of the embedding space can be
queried and set using getDim and setDim respectively.
• The node embedding or the node code, which is the vector of coordinates assigned to the
node, can be obtained by calling the method getNodeCode. The edge code is by default
the concatenation of its two nodes’ codes and can be obtained using getEdgeCode.
Hence, in the default case, the edge code dimension is double that of a node. Classes that
implement the Encoder interface may change this default behavior if desired. The user
can query the dimension of the edge code using the method getEdgeCodeDim.

Having a unified interface for encoders allows embedding algorithms to be easily
combined with different classifiers and similaritymeasures to obtain various link prediction
methods, as explained in the next sections. It also allows users to use their own embedding
algorithms to build and test new link prediction methods.

Machine learning algorithms
The library contains the implementations of several classifiers and similarity measures that
can be combined with graph embedding algorithms (see the previous section) to build a
variety of link prediction methods. Available classifiers, most of which are derived from
mlpack (Curtin et al., 2013), include logistic regression, feed-forward neural networks,
linear support vector machine, and Naive Bayes classifier. All binary classifiers in LinkPred
implement the interface Classifier, which provides two important methods: the method
learn which trains the classifier on a training set, and the method predict which predicts
the output for a given input.

Similar to classifiers, all similarity measures in LinkPred inherit from the abstract class
SimMeasure, which defines one method, sim, which computes the similarity between two
input vectors. Implemented similarity measures include cosine similarity, dot product
similarity, L1, L2 and Lp similarity, and Pearson similarity.

Link predictors
LinkPred includes a large selection of link prediction algorithms which can be broadly
classified into three categories: topological similarity methods, global methods, and
graph-embedding techniques. In terms of topological similarity predictors, the library
contains the implementations of the most known algorithms existing in the literature,
including Common Neighbors, Adamic-Adard, Resource Allocation, Cannistraci Resource
Allocation, and Jackard Index, among other predictors. (Liben-Nowell & Kleinberg, 2007;
Newman, 2001; Jaccard, 1901; Adamic & Adar, 2003; Ravasz et al., 2002; Papadimitriou,
Symeonidis & Manolopoulos, 2012; Liu & Lü, 2010; Lichtenwalter, Lussier & Chawla,
2010; Yang, Yang & Zhang (2015); Yang, Lichtenwalter & Chawla, 2015; Zhu & Xia, 2015;
Muscoloni & Cannistraci, 2017; Cannistraci, Alanis-Lobato & Ravasi, 2013; Daminelli et
al., 2015). Due to their local nature, these algorithms can scale to very large networks,
especially when executed on distributed architectures. Addiitonally, the library includes
several state-of-the-art global link predictors, such as SBM (Guimerà & Sales-Pardo, 2009),
HRG (Clauset, Moore & Newman, 2008), FBM (Liu et al., 2013), HyperMap (Papadopoulos
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et al., 2012; Papadopoulos, Psomas & Krioukov, 2015) and the popularity-similarity method
proposed in Kerrache, Alharbi & Benhidour (2020).

LinkPred also supports link prediction algorithms based on graph embedding, where
the network is first embedded into a low dimensional vector space, whereby nodes are
assigned coordinates in that space while preserving the network’s structural properties.
These coordinates can be used either to compute the similarity between nodes or as
features to train a classifier to discriminate between existing edges (the positive class) and
non-existing edges (the negative class) (Goyal & Ferrara, 2018c). LinkPred provides two
classes that can be used to build link prediction algorithms based on graph embedding: the
class UECLPredictor, which combines an encoder (a graph embedding algorithm) and a
classifier, and the class UESMPredictor, which pairs the encoder with a similarity measure
as illustrated in Fig. 3.

In addition to algorithms for undirected networks, several adaptations of topological
similarity methods to directed networks are available as well. The library offers a unified
interface for all link prediction algorithms, simplifying the use and comparison of different
prediction methods. The interface is called ULPredictor for predictors in undirected
networks and DLPredictor for those in directed networks. Most implemented predictors
support shared-memory parallelism, and a large number of them support distributed
memory parallelism, allowing LinkPred to take advantage of the power of HPC clusters to
handle very large networks.

The predictor interface
As stated above, all link predictors for undirected networks must inherit from the abstract
class ULPredictor. It declares three important pure virtual methods that the derivative
classes must implement:

• The method void init(): This method is used to initialize the predictor’s state,
including any internal data structures.
• The method void learn(): In algorithms that require learning, it is in this method
that the model is built. The learning is separated from prediction because, typically, the
model is independent of the set of edges to be predicted.
• The method double score(Edge const & e): returns the score of the edge e (usually
a non-existing edge).

In addition to these three basic methods, ULPredictor declares the following three
virtual methods, which by default use the method score to assign scores to edges, but
which can be redefined by derived classes to achieve better performance:

• The method void predict(EdgeRndIt begin, EdgeRndIt end, ScoreRndIt

scores): In this method, the edges to be predicted are passed to the predictor in
the form of a range (begin, end) in addition to a third parameter (scores) to which the
scores are written. This is a virtual method that uses the method score to assign scores
to edges and can be redefined by derived classes to provide better performance.
• The method std::pair<NonEdgeIt, NonEdgeIt> predictNeg(ScoreRndIt

scores) predicts the score for all negative (non-existing) links in the network. The
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prediction.
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scores are written into the random output iterator scores. The method returns a pair
of iterators begin and end to the range of non-existing links predicted by the method.
• The method std::size_t top(std::size_t k, EdgeRndOutIt eit, ScoreRndIt

sit) finds the k negative edges with the top scores. The edges are written to the output
iterator eit, whereas the scores are written to sit.

The class ULPredictor offers default implementations for the methods top, predict
and predictNeg. Sub-classes may use these implementations or redefine them to achieve
better performance.

The abstract class DLPredictor plays the same role as ULPredictor but for link
predictors in directed networks. It offers the same interface as the latter but with different
default template arguments and methods implementation.

Performance evaluation
LinkPred offers a set of tools that help to streamline the performance evaluation
procedure. This includes data setup functionalities, which can be used to create test
data by removing and adding edges to ground truth networks. The library also includes
efficient implementations of the most important performance measures used in link
prediction literature, including the area under the receiver operating characteristic (ROC)
curve, the area under the precision–recall (PR) curve, and top precision. The area under
the PR curve can be computed using two integration methods: the trapezoidal rule,
which uses a linear interpolation between the PR points, and the more accurate nonlinear
interpolation method proposed in Davis & Goadrich (2006). In addition to performance
measures implementations, LinkPred contains helper classes, namely PerfEvaluator

and PerfEvalExp, that facilitate the comparative evaluation of multiple link prediction
algorithms using multiple performance measures.

All performance measures inherit from the abstract class PerfMeasure. The
most important method in this class is eval which evaluates the value of
the performance measure. The performance measure results are written to an
object of type PerfResults passed as a parameter of the method. The class
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PerfResults is defined as std::map<std::string, double>, which allows the
possibility of associating several result values with a single performance measure.

An important class of performance measures is performance curves such as ROC and
PR curves. They are represented by the abstract class PerfCurve, which inherits from the
class PerfMeasure. The class PerfCurve defines a new virtual method getCurve, which
returns the performance curve in the form of an std::vector of points. In the remainder
of this section, more details of the performance measures implemented in LinkPred are
presented.

Receiver operating characteristic curve (ROC)
One of the most important performance measure used in the field of link prediction is the
receiver operating (ROC) curve, in which the true positive rate (recall) is plotted against
the false positive rate. The ROC curve can be computed using the class ROC. Figure 4A
shows an example ROC curve obtained using this class.

The default behavior of the ROC performance measure is to compute the positive and
negative edge scores and then compute the area under the curve, whichmay lead tomemory
issues with large networks. To compute the area under the curve without storing both types
of scores, the class ROC offers a method that streams scores without storing them. To enable
this method, call setStrmEnabled(bool) on the ROC object. To specify which scores to
stream use the method setStrmNeg(bool). By default, the negative scores are streamed,
while the positive scores are stored. Passing false to setStrmNeg switches this. In addition
to consuming little memory, the streaming method supports distributed processing (in
addition to shared memory parallelism), making it suitable for large networks.

Precision–recall curve
The precision–recall (PR) curve is also a widely used measure of link prediction algorithms’
performance. In this curve, the precision is plotted as a function of the recall. The PR curve
can be computed using the class PR. The area under the PR curve can be computed using
two integration methods:

• The trapezoidal rule which assumes a linear interpolation between the PR points.
• Nonlinear interpolation as proposed by Jesse Davis and Mark Goadrich (Davis &
Goadrich, 2006).

The second method is more accurate, as linear integration tends to overestimate the
area under the curve (Davis & Goadrich, 2006). Furthermore, the implementation of
Davis-Goadrich nonlinear interpolation in LinkPred ensures little to no additional cost
compared to the trapezoidal method. Figure 4B shows an example PR curve obtained using
the class PR.

General performance curves
LinkPred offers the possibility of calculating general performance curves using the class
GCurve. A performance curve is, in general, defined by giving the x and y coordinates
functions. These are passed as parameters, in the form of lambdas, to the constructor of the
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Figure 4 Example of performance curves generated by LinkPred (the plots are created using an exter-
nal tool). The area under the curve (shown in gray) is the value associated with the performance curve.
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class GCurve. The associated performance value is the area under the curve computed using
the trapezoidal rule (linear interpolation). For example, the ROC curve can be defined as:
GCurve <> cur(fpr , rec , "ROC");

The two first parameters of the constructors are lambdas having the signature:
double (std:: size_t tp, std:: size_t fn, std:: size_t tn, std:: size_t fp, std:: size_t

P, std:: size_t N)

Top precision
The top precision measure is defined as the ratio of true positives within the top l scored
edges, l > 0 being a parameter of the measure (usually l is set to the number of links
removed from the network). Top precision is implemented by the class TPR, and since it is
not a curve measure, this class inherits directly from PerfMeasure. The class TPR offers two
approaches for computing top-precision. The first approach requires computing the score
of all negative links, whereas the second approach calls the method top of the predictor.
The first approach is, in general, more precise but may require more memory and time.
Consequently, the second approach is the performance measure of choice for very large
networks.

Simplified interface and bindings
The simplified interface provides the essential functionalities available in LinkPred via a
small number of easy-to-use classes. These classes are very intuitive and can be used with a
minimum learning effort. They are ideal for initial use of the library and exploring its main
functionalities. Java and Python bindings for the simplified interface are also available,
facilitating the library’s use by users who are more comfortable using these languages.
The simplified interface contains two main classes: Predictor, which allows computing
the scores for an input network using all available link prediction algorithms, and the
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class Evaluator, which can be used for performance evaluation. Also included are simple
structures to store prediction and performance results. These classes are designed in a
simple way that allows uniform usage across different programming languages.

EXAMPLE USE CASES
This section describes four main use scenarios of the library. The first use case demonstrates
the working of the simplified interface in different languages, which is typical for first-time
use of the library or for users who prefer to use the library in Python or Java. The second
scenario consists in computing the scores of all non-existing links in a network, which
is the typical use case for a practitioner working on networked data. Researchers in link
prediction are typically interested in implementing new link prediction algorithms, which
is presented as the third use case, and evaluating their performance, which is use case
number four.

Using the simplified interface
The first example program shows how to use the simplified interface to obtain the top k
ranked edges using Adamic Adar index in C++:
# in c l ude <linkpred.hpp >
# in c l ude <iostream >
us ing namespace LinkPred ::Simp;
i n t main() {

i n t k = 10;
// Create a prtedictor object
Predictor p;
// Load network from file
p.loadnet("Zakarays_Karate_Club.edges");
// Predict the top k edges using Adamic Adar index
std::vector <EdgeScore > esv = p.predTopADA(k);
// Print the scores
f o r ( auto it = esv.begin(); it != esv.end(); ++it) {

std::cout << it->i << "\t" << it->j << "\t" << it->score << std::endl;
}
r e tu rn 0;

}

in Python:
# Import the module
import LinkPredPython as lpp
k = 10;
# Create a predictor object
p = lpp.Predictor ();
# Load network from file
p.loadnet("Zakarays_Karate_Club.edges");
# Predict the top k edges using Adamic Adar index
esv = p.predTopADA(k);
# Print the scores
f o r es in esv:

p r i n t (es.i + "\t" + es.j + "\t" + "{:.4f}". format (es.score));

and finally, in Java;
pub l i c c l a s s PredictorExp {

s t a t i c {
// Load the library
System.loadLibrary("LinkPredJava");
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}
pub l i c s t a t i c void main(String [] args) {

i n t k = 10;
// Create a prtedictor object
Predictor p = new Predictor ();
// Load network from file
p.loadnet("Zakarays_Karate_Club.edges");
// Predict the top k edges using Adamic Adar index
EdgeScoreVec esv = p.predTopADA(k);
// Print the scores
f o r ( i n t i = 0; i < esv.size(); i++) {

EdgeScore es = esv.get(i);
System.out.println(es.getI() + "\t" + es.getJ() + "\t" + es.getScore ());

}
}

}

The output of these three programs is as follows:
1 33 1.61374
1 34 2.71102
2 34 2.25292
3 32 1.67334
3 34 4.71938
5 6 1.99226
7 11 1.99226
8 14 1.8082
32 24 1.66562
24 25 1.63159

In the second example, the performance measure of several link prediction algorithms
is evaluated by removing 10% of the links from the network and using it as a test set. The
performance is assessed using two performance measures, area under the ROC curve, and
top-precision. The code for this example in C++:
# in c l ude <linkpred.hpp >
# in c l ude <iostream >
us ing namespace LinkPred ::Simp;
i n t main() {

i n t nbRuns = 10;
double edgeRemRatio = 0.1;
// Create an evaluator object
Evaluator eval;
// Add predictors to be evaluated
eval.addCNE ();
eval.addADA ();
eval.addKAB ();
// Add performance measures
eval.addROC ();
eval.addTPR ();
// Run experiment on the specified network
eval.run("Zakarays_Karate_Club.edges", nbRuns , edgeRemRatio);
r e tu rn 0;

}

in Python:
# Import the module
import LinkPredPython as lpp
nbRuns = 10;
edgeRemRatio = 0.1;
# Create an evaluator object
ev = lpp.Evaluator ();

Kerrache (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.521 16/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.521


# Add predictors to be evaluated
ev.addCNE ();
ev.addADA ();
ev.addKAB ();
# Add performance measures
ev.addROC ();
ev.addTPR ();
# Run experiment on the specified network
ev.run("Zakarays_Karate_Club.edges", nbRuns , edgeRemRatio);

and in Java:
pub l i c c l a s s EvaluatorExp {

s t a t i c {
// Load the library
System.loadLibrary("LinkPredJava");

}
pub l i c s t a t i c void main(String [] args) {

i n t nbRuns = 10;
double edgeRemRatio = 0.1;
// Create an evaluator object
Evaluator eval = new Evaluator ();
// Add predictors to be evaluated
eval.addCNE ();
eval.addADA ();
eval.addKAB ();
// Add performance measures
eval.addROC ();
eval.addTPR ();
// Run experiment on the specified network
eval.run("Zakarays_Karate_Club.edges", nbRuns , edgeRemRatio);

}
}

The output of these three programs is as follows:
#ratio ROCADA ROCCNE ROCKAB TPRADA TPRCNE TPRKAB
0.10 0.7737 0.7149 0.8280 0.1250 0.1932 0.1250
0.10 0.6593 0.6333 0.7030 0.1250 0.0000 0.1250
0.10 0.5967 0.5762 0.6095 0.1875 0.1818 0.2500
0.10 0.8464 0.7913 0.9343 0.1875 0.1290 0.3750
0.10 0.8324 0.7785 0.8967 0.1250 0.1750 0.1250
0.10 0.7240 0.6953 0.7547 0.0000 0.2222 0.0000
0.10 0.6753 0.6610 0.7262 0.0000 0.1591 0.1250
0.10 0.6048 0.5792 0.6672 0.0000 0.0000 0.0000
0.10 0.7627 0.7547 0.7808 0.2917 0.3194 0.3750
0.10 0.6442 0.5835 0.6727 0.1250 0.1250 0.1250

Predicting missing links
When dealing with networked data, a data scientist may be interested in reconstructing a
network from partial observations or predicting future interactions. LinkPred offers two
ways to solve such problems, computing the scores of all non-existing links and computing
top k edges, which may be more efficient for large networks. This section demonstrates
how to perform both tasks.

The following code excerpt shows how to compute and print the scores of all non-
existing links in a network using SBM. The observed network is passed as an argument to
the constructor of the algorithm, which is then initialized by calling the method init. The
learning process, if any, is triggered by a call to the method learn. The simplest way to
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obtain the score of a non-existing link is to call the method score, though other methods
of the predictor interface may result in better performance.
# in c l ude <linkpred.hpp >
# in c l ude <iostream >
us ing namespace LinkPred;
i n t main() {

// Read the network from file
auto net = UNetwork <>::read("Zakarays_Karate_Club.edges");
// Create an SBM predictor (777 is a seed)
USBMPredictor <> predictor(net , 777);
// Initialize predictor
predictor.init();
// Train predictor
predictor.learn();
// Print scores
std::cout << "#Start\tEnd\tScore\n";
f o r ( auto it=net ->nonEdgesBegin ();it!=net ->nonEdgesEnd ();++it){

auto i = net ->getLabel(net ->start(*it));
auto j = net ->getLabel(net ->end(*it));
double sc = predictor.score(*it);
std::cout << i << "\t" << j << "\t" << sc << std::endl;

}
r e tu rn 0;

}

The first few lines of the output of this program are as follows:
#Start End Score
1 31 0.208413
1 10 0.248398
1 28 0.229615
1 29 0.246439
1 33 0.316544
1 17 0.685567
1 34 0.315658
1 15 0.17834
1 16 0.178189
...

We can also use an embedding-classifier predictor. In the following code, the graph is
embedded using node2vec and logistic regression is used to predict scores.
# in c l ude <linkpred.hpp >
# in c l ude <iostream >
us ing namespace LinkPred;
i n t main() {

// Read the network from file
auto net = UNetwork <>::read("Zakarays_Karate_Club.edges");
// Create a node2vec encoder (777 is a seed)
auto encoder = std:: make_shared <Node2Vec <>>(net , 777);
// Create a logistic regresser (0.001 is the regularization coefficient , and 888

is a seed)
auto classifier = std:: make_shared <LogisticRegresser <>>(0.001, 888);
// Create an encoder -classifier predictor (999 is a seed)
UECLPredictor <> predictor(net , encoder , classifier , 999);
// Initialize predictor
predictor.init();
// Train predictor
predictor.learn();
// Print scores
std::cout << "#Start\tEnd\tScore\n";
f o r ( auto it=net ->nonEdgesBegin ();it!=net ->nonEdgesEnd ();++it){
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auto i = net ->getLabel(net ->start(*it));
auto j = net ->getLabel(net ->end(*it));
double sc = predictor.score(*it);
std::cout << i << "\t" << j << "\t" << sc << std::endl;

}
r e tu rn 0;

}

The following is partial output of this program:
#Start End Score
1 31 0.415466
1 10 0.506023
1 28 0.240406
1 29 0.417463
1 33 0.336364
1 17 0.390554
1 34 0.741211
1 15 0.203656
1 16 0.256206
...

Instead of computing the scores of all non-existing links, it is possible to extract the top
k ranked edges only. Besides convenience, this approach may be the only viable option
for very large networks due to memory considerations. Furthermore, for many prediction
algorithms, particularly topological similarity methods, finding the top k edges is much
faster than computing the scores of all non-existing links. The following code shows how
to find the top k edges using Resource Allocation index.
# in c l ude <linkpred.hpp >
# in c l ude <iostream >
us ing namespace LinkPred;
i n t main() {

i n t k = 10;
// Read the network from file
auto net = UNetwork <>::read("Zakarays_Karate_Club.edges");
// Create a RAL predictor
URALPredictor <> predictor(net);
// Initialize predictor
predictor.init();
// Train predictor
predictor.learn();
// Allocate memory
std::vector < typename UNetwork <>::Edge > edges(k);
std::vector <double > scores(k);
// Find top k edges
k = predictor.top(k, edges.begin(), scores.begin());
// Print edges and scores
std::cout << "#Start\tEnd\tScore\n";
f o r ( i n t l = 0; l < k; l++) {

auto i = net ->getLabel(net ->start(edges[l]));
auto j = net ->getLabel(net ->end(edges[l]));
std::cout << i << "\t" << j << "\t" << scores[l] <<std::endl;

}
r e tu rn 0;

}

This is the output of this program:
#Start End Score
1 17 0.5
1 34 0.9
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2 34 0.783333
3 32 0.479167
3 34 1.56667
5 6 0.645833
7 11 0.645833
32 24 0.47549
28 26 0.533333
24 25 0.583333

Implementing a new link prediction algorithm
The first step in implementing a new link prediction algorithm is to inherit from
ULPredictor and implement the necessary methods. For a minimal implementation,
the three methods init, learn and score must at least be defined. To achieve better
performance one may want to redefine the three other methods (top, predict and
predictNeg).

Suppose one wants to create a very simple link prediction algorithm that assigns as
score to (i,j) the score κi+κj , the sum of the degrees of the two nodes. In a file named
sdpredictor.hpp, write the following code:
# i f n d e f SDPREDICTOR_HPP_
# d e f i n e SDPREDICTOR_HPP_
# in c l ude <linkpred.hpp >
c l a s s SDPredictor: pub l i c LinkPred :: ULPredictor <> {

us ing LinkPred :: ULPredictor <>::net;
us ing LinkPred :: ULPredictor <>::name;

pub l i c :
us ing Edge = typename LinkPred :: ULPredictor <>::Edge;
SDPredictor(std::shared_ptr <LinkPred ::UNetwork <> const > net) : LinkPred ::

ULPredictor <>(net) {
name = "SD";

}
v i r t u a l void init();
v i r t u a l void learn();
v i r t u a l double score(Edge cons t & e);
v i r t u a l ~SDPredictor () = d e f a u l t ;

};
# end i f

In a file named sdpredictor.cpp write the implementation of the inherited methods
(note that this predictor does not require initialization or learning):
# in c l ude "sdpredictor.hpp"
// No init required
void SDPredictor ::init() {}
// No training required
void SDPredictor ::learn() {}
// Here , we compute the score
double SDPredictor ::score(Edge cons t & e) {

auto i = net ->start(e);
auto j = net ->end(e);
// Return the sum of degrees
r e tu rn net ->getDeg(i) + net ->getDeg(j);

}

This predictor is now ready to be used with LinkPred classes and methods including
performance evaluating routines. For instance, it is possible to write a code that extracts
the edges with the top scores as follows:
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# in c l ude "sdpredictor.hpp"
# in c l ude <iostream >
us ing namespace LinkPred;
i n t main() {

std:: size_t k = 10;
// Read network from file
auto net = UNetwork <>::read("Zakarays_Karate_Club.edges");
// Create predictor
SDPredictor predictor(net);
// Initilize predictor
predictor.init();
// Train predictor
predictor.learn();
// Allocate memory
std::vector < typename UNetwork <>::Edge > edges(k);
std::vector <double > scores(k);
// Find top k edges
k = predictor.top(k, edges.begin(), scores.begin());
// Print edges and scores
std::cout << "#Start\tEnd\tScore\n";
f o r ( i n t l = 0; l < k; l++) {

auto i = net ->getLabel(net ->start(edges[l]));
auto j = net ->getLabel(net ->end(edges[l]));
std::cout << i << "\t" << j << "\t" << scores[l] <<std::endl;

}
r e tu rn 0;

}

Upon compiling and executing this code, the output will be as follows (for compilation
instructions, the reader is invited to consult the library user guide):
#Start End Score
1 33 28
1 34 33
1 24 21
2 33 21
2 34 26
3 34 27
4 34 23
6 34 21
7 34 21
8 34 21

New link prediction algorithms can also be easily integrated into the library source code,
as explained in detail in the library user guide.

Performance evaluation
Another use case scenario is evaluating and comparing the performance of link prediction
algorithms. LinkPred offers several ways to achieve this, offering various degrees of control
on the evaluation process. One such method is shown in the code sample below. Here, the
user defines a factory class used to instantiate the prediction algorithms and performance
measures. The parameters of the experiment, including the ratio of removed edges and
the number of test runs, are passed through an object of type PerfeEvalExpDescp. The
evaluation is finally conducted by passing the factory and parameter objects to an object of
type PerfEvalExp then calling the method run.
# in c l ude <linkpred.hpp >
us ing namespace LinkPred;
// This class is used to create predictors and performance measures
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c l a s s Factory: pub l i c PEFactory <> {
pub l i c :

// Create predictors
v i r t u a l std::vector <std::shared_ptr <ULPredictor <>>> getPredictors(std::

shared_ptr <UNetwork <> const > obsNet) {
std::vector <std::shared_ptr <ULPredictor <>>> prs;
// Add predictors
prs.push_back(std:: make_shared <URALPredictor <>>(obsNet));
prs.push_back(std:: make_shared <UKABPredictor <>>(obsNet));
r e tu rn prs;

}
// Create performance measures
v i r t u a l std::vector <std::shared_ptr <PerfMeasure <>>> getPerfMeasures(TestData <>

cons t & testData) {
std::vector <std::shared_ptr <PerfMeasure <>>> pms;
// Add top -precision
pms.push_back(std:: make_shared <TPR <>>(testData.getNbPos ()));
// Add AUCROC
pms.push_back(std:: make_shared <ROC <>>());
r e tu rn pms;

}
v i r t u a l ~Factory () = d e f a u l t ;

};
i n t main() {

// Read reference network from file
auto refNet = UNetwork <>::read("Zakarays_Karate_Club.edges");
// Description of the experiment
PerfeEvalExpDescp <> ped;
ped.refNet = refNet;
ped.nbTestRuns = 10;
ped.seed = 777;
// Create the factory object
auto factory = std:: make_shared <Factory >();
// Create the experiment object
PerfEvalExp <> exp(ped , factory);
// Run the experiment
exp.run();
r e tu rn 0;

}

The output results for the first few iterations is a s follows:
#ratio ROCKAB ROCRAL TPRKAB TPRRAL
0.10 0.8615 0.8028 0.1250 0.1250
0.10 0.7943 0.7823 0.1250 0.1667
0.10 0.6945 0.6712 0.0000 0.0000
0.10 0.6417 0.6219 0.2500 0.1250
0.10 0.5817 0.5487 0.0000 0.0000
0.10 0.8527 0.8386 0.3750 0.3438
0.10 0.5705 0.5167 0.0000 0.0000
0.10 0.8834 0.8359 0.1250 0.1250
0.10 0.8962 0.8617 0.2500 0.1250
0.10 0.7650 0.7433 0.2500 0.2500

More use case examples can be found in the library documentation. These include using
other link prediction algorithms, computing the scores of a specific set of edges, and other
methods for computing the performance of one or several link prediction algorithms.

EXPERIMENTAL RESULTS
In addition to providing an easy interface to use, create and evaluate link prediction
algorithms, LinkPred is designed to handle very large networks, which is a quality that is
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essential for most practical applications. To demonstrate the performance of LinkPred,
its time performance is compared to that of the R package linkprediction and the Python
packages linkpred, NetworkX and scikit-network. To conduct a fair and meaningful
comparison, two issues are to be resolved. First, these packages do not implement the
same set of algorithms, and only a limited number of topological similarity methods are
implemented by all five libraries. Accordingly, the Resource Allocation index is chosen as
the comparison task, since it is implemented by all five packages and exhibits the same
network data access patterns as most local methods. The second issue that needs to be
addressed is that the libraries under consideration offer programming interfaces with
different semantics. For instance, scikit-network computes the score for edges given as
input, whereas the R package linkprediction and Python packages Linkpred and NetworkX
do not require input and instead return the scores of non-existing links. Furthermore, the
Python package linkpred returns the scores of only candidate edges that have a non-zero
score. To level the field, the comparison shall consist in computing the scores of all
non-existing links, even those with zero scores. All networks used in this experiment are
connected due to the restriction imposed by the package linkprediction. A description of
these networks is given in Table 4 of the appendix. For the sake of fairness, parallelism
is disabled in LinkPred, and all experiments are conducted on a single core of an Intel
Core i7-4940MX CPU with 32GB of memory. The time reported in Table 2 is the average
execution time over ten runs, excluding the time required to read the network from file.
The time for LinkPred is reported for C++ code and the Java and Python bindings. The
results show that LinkPred is typically one to two orders of magnitudes faster than the other
packages. This, of course, can in part be explained by the interpreted nature of Python
and R, but it also highlights the fact that link prediction is a computationally intensive
task that is best handled by high-performance software that uses efficient data structures
and algorithms. As shown in the table, the Java binding of LinkPred introduces a small
overhead compared to its Python binding due to more complex data marshaling in the
latter. Nevertheless, the Python binding is significantly faster than the Python packages
and, except for a couple of networks, is also faster than linkprediction.

Table 3 shows the time taken by LinkPred to complete different link prediction tasks on
various hardware architectures. It shows that the library can handle very large networks
in relatively small amounts of time, even when the available computational resources are
limited.

CONCLUSION AND FUTURE WORK
LinkPred is a distributed and parallel library for link prediction in complex networks. It
contains the implementation of the most important link prediction algorithms found in
the literature. The library is designed not only to achieve high performance but also to be
easy-to-use and extensible. The experiments show that the library can handle very large
networks with up to millions of nodes and edges and is one to two orders of magnitude
faster than existing Python and R packages. LinkPrted components interact through clearly
defined and easy interfaces, allowing users to plug their own components into the library by

Kerrache (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.521 23/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.521


Table 2 Time (in seconds) required to compute the score of all non-existing links using Resource Allocation index on a single core.

Network LinkPred
(C++)

LinkPred
(Java)

LinkPred
(Python)

Python
package
NetworkX

R package
linkprediction

Python
package
linkpred

Python
package
scikit-network

Political Blogs 0.02 0.03 0.14 1.83 3.70 0.68 3.13
Diseasome 0.04 0.16 0.86 6.33 2.53 1.26 14.98
Email 0.05 0.12 0.56 7.78 6.88 1.60 9.63
Web Edu 0.14 0.72 4.16 36.92 8.67 5.31 68.71
Java 0.08 0.23 1.04 17.08 55.54 8.95 17.82
Power 0.36 1.83 11.05 80.55 3.80 11.16 183.71
Erdos 02 0.76 3.62 21.71 179.75 44.15 30.42 358.37
World Air 0.31 1.10 5.79 81.06 55.06 11.71 97.91
Oregon 2.32 9.62 56.96 525.76 573.47 157.60 936.84
PGP 2.42 9.12 51.31 603.75 35.74 57.32 862.56
Spam 0.99 2.33 10.33 318.16 199.83 42.80 171.68
Indochina 2004 2.48 10.04 59.16 1,086.26 91.95 74.61 1,003.82

Table 3 Time achieved by LinkPred on different prediction tasks. Column n contains the number of nodes in the network, whereasm shows the
number of edges.

Network n m Task Hardware Time (sec.)

Brightkite 58,228 214,078 Compute ROC using
10% removed edges for
ADA.

1 node, 6 cores (Core
i7-8750H)

32.92

Yahoo IM 100,001 587,964 Find the top 104 edges
using RAL.

1 node, 1 core (Core
i7-8750H)

6.70

Twitter 404,719 713,319 Find the top 105 edges
using RAL.

1 node, 1 core (Core
i7-8750H)

16.93

Youtube 1,134,890 2,987,624 Find the top 105 edges
using CNE.

1 node, 6 cores (Core
i7-8750H)

79,41

CA Roads 1,965,206 2,766,607 Find the top 105 edges
using CNE.

1 node, 6 cores (Core
i7-8750H)

7.08

Wiki Talks 2,394,385 4,659,565 Find the top 105 edges
using CNE.

1 node, 6 cores (Core
i7-8750H)

470.04

Internet 124,651 193,620 Compute top-precision
using 10% removed
edges for eight
algorithms.

8 nodes, 16 cores in
each node (Xeon E5-
2650)

3.73

Amazon 334,863 925,872 Compute top-precision
using 10% removed
edges for eight
algorithms.

8 nodes, 16 cores in
each node (Xeon E5-
2650)

24.17

implementing these interfaces. In particular, users can integrate their own link prediction
algorithms and performance measures seamlessly into the library. This makes LinkPred an
ideal tool for practitioners as well as researchers in link prediction.

The library can be improved and extended in several ways, such as adding R and
Octave/Matlab bindings. Another possibility for improvement is implementing further
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Table 4 Description of the networks used in the experimental analysis. Columns n andm represent the number of nodes and edges in the net-
work, respectively.

Network Description n m

Amazon (Yang & Leskovec, 2015) Amazon product co-purchasing network. An edge indicates
that two products have been co-purchased. Data available at
https://snap.stanford.edu/data/com-Amazon.html.

334,863 925,872

Brightkite (Cho, Myers & Leskovec, 2011) Friendship network on the social platform Brightkite. The
data is available at https://snap.stanford.edu/data/loc-
Brightkite.html.

58,228 214,078 7

CA Roads (Leskovec et al., 2009) California road network. Data available at https://snap.
stanford.edu/data/roadNet-CA.html.

1,965,206 2,766,607

Diseasome (Goh et al., 2007) A network of genes’ disorders and disease linked by known
disorder–gene associations. The data is available at http://
gephi.org/datasets/diseasome.gexf.zip.

1,419 2,738

Email (Guimerà et al., 2003) The symmetrized network of email communication
at the University Rovira i Virgili (Tarragona, Spain).
The nodes represent users, and edges indicate an email
communication took place between the two uses. The
dataset is available at http://deim.urv.cat/~alexandre.arenas/
data/welcome.htm.

1,133 5,451

Erdos 02 The 2002 version of Erdös’ co-authorship network.
The network is available at http://vlado.fmf.uni-
lj.si/pub/networks/data/Erdos/Erdos02.net.

6,927 11,850

Indochina 2004 (Boldi & Vigna, 2004; Boldi et al., 2011) A WWW network available at http://networkrepository.
com/web_indochina_2004.php.

11,358 47,606

Internet (Batagelj & Mrvar, 2006) Network of Internet routers. The network is available at
https://sparse.tamu.edu/Pajek/internet.

124,651 193,620

Java The symmetrized version of a network where nodes
represent Java classes and edges represent compile-time
dependencies between two classes. The dataset can be found
at http://vlado.fmf.uni-lj.si/pub/networks/data/GD/GD.
htm.

1,538 7,817

Oregon (Leskovec, Kleinberg & Faloutsos, 2005) Autonomous Systems (AS) peering network inferred from
Oregon route-views on May 26, 2001.The data is available
at https://snap.stanford.edu/data/oregon1_010526.txt.gz.

11,174 23,409

PGP (Boguñá et al., 2004) A social network of users using Pretty Good Privacy (PGP)
algorithm. The network is available at http://deim.urv.cat/
~alexandre.arenas/data/welcome.htm.

10,680 24,316

Political Blogs (Adamic & Glance, 2005) A network of hyperlinks among political web blogs. The
data is available at http://networkrepository.com/web-
polblogs.php.

643 2,280

Power (Watts & Strogatz, 1998) The Western States Power Grid of the United States. Data
available at http://www-personal.umich.edu/~mejn/
netdata/.

4,941 6,594

Spam (Castillo, Chellapilla & Denoyer, 2008) A WWW network available at http://networkrepository.
com/web-spam.php.

4,767 37,375

Twitter (Gleich & Rossi, 2014) A Twitter network of follow relationship. Data available at
http://networkrepository.com/soc-twitter-follows.php.

404,719 713,319

(continued on next page)
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Table 4 (continued)

Network Description n m

Web Edu (Gleich, Zhukov & Berkhin, 2004) A WWW network available at http://networkrepository.
com/web-edu.php.

3,031 6,474

Wiki Talks (Leskovec, Huttenlocher & Kleinberg, 2010b;
Leskovec, Huttenlocher & Kleinberg, 2010a)

A symmetrized version of the Wikipedia talk network. A
node represents a user, and an edge indicates that one user
edited the talk age of another user. Data available at https://
snap.stanford.edu/data/wiki-Talk.html.

2,394,385 4,659,565

World Transport (Guimerà et al., 2005) A worldwide airport network. Nodes represent cities, and
edges indicate a flight connecting two cities. The data is
available at http://seeslab.info/media/filer_public/63/97/
63979ddc-a625-42f9-9d3d-8fdb4d6ce0b0/airports.zip.

3,618 14,142

Yahoo IM (Yahoo! Webscope, 2008) Network of sample Yahoo! Messenger communication
events. The data is available at https://webscope.sandbox.
yahoo.com/catalog.php?datatype=g.

100,001 587,964

Youtube (Yang et al., 2015) A Youtube friendship network. Data available at https://
snap.stanford.edu/data/com-Youtube.html.

1,134,890 2,987,624

Zakary’s Karate Club (Zachary, 1977) A friendship network among members of a karate club
at an American university. The data was collected in the
1970s by Wayne Zachary and is available at http://konect.
cc/networks/ucidata-zachary

34 78

graph embedding algorithms, particularly those based on deep neural networks. Also
important is handling dynamic (time-evolving) networks. Finally, sampling-basedmethods
such as SBM and FBM, although producing good results, are only usable with small
networks because they are computationally intensive. Distributed implementations of
these algorithms will allow using them in practical situations on large networks.
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