Submitted 7 November 2015
Accepted 4 March 2016
Published 30 March 2016

Corresponding author
Andrew MacDonald,
andrew@maccas.net

Academic editor
Sebastian Ventura

Additional Information and
Declarations can be found on
page 16

DOl 10.7717/peerj-cs.52

© Copyright
2016 MacDonald

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

PhilDB: the time series database with
built-in change logging

Andrew MacDonald

Melbourne Victoria, Australia

ABSTRACT

PhilDB is an open-source time series database that supports storage of time series
datasets that are dynamic; that is, it records updates to existing values in a log as they
occur. PhilDB eases loading of data for the user by utilising an intelligent data write
method. It preserves existing values during updates and abstracts the update complexity
required to achieve logging of data value changes. It implements fast reads to make it
practical to select data for analysis. Recent open-source systems have been developed to
indefinitely store long-period high-resolution time series data without change logging.
Unfortunately, such systems generally require a large initial installation investment
before use because they are designed to operate over a cluster of servers to achieve
high-performance writing of static data in real time. In essence, they have a ‘big data’
approach to storage and access. Other open-source projects for handling time series data
that avoid the ‘big data” approach are also relatively new and are complex or incomplete.
None of these systems gracefully handle revision of existing data while tracking values
that change. Unlike ‘big data’ solutions, PhilDB has been designed for single machine
deployment on commodity hardware, reducing the barrier to deployment. PhilDB
takes a unique approach to meta-data tracking; optional attribute attachment. This
facilitates scaling the complexities of storing a wide variety of data. That is, it allows
time series data to be loaded as time series instances with minimal initial meta-data,
yet additional attributes can be created and attached to differentiate the time series
instances when a wider variety of data is needed. PhilDB was written in Python,
leveraging existing libraries. While some existing systems come close to meeting the
needs PhilDB addresses, none cover all the needs at once. PhilDB was written to fill this
gap in existing solutions. This paper explores existing time series database solutions,
discusses the motivation for PhilDB, describes the architecture and philosophy of the
PhilDB software, and performs an evaluation between InfluxDB, PhilDB, and SciDB.

Subjects Data Science, Databases
Keywords Time series, Database, Logging, Python, Data science, Temporal

INTRODUCTION

PhilDB was created to store changing time series data, which is of great importance to the
scientific community. In hydrology, for example, streamflow discharge can be regularly
updated through changes in quality control processes and there is a need to identify when
such data has changed. Efficient access to time series information supports effective and
thorough analysis. Currently, existing proprietary and open-source database solutions for
storing time series fail to provide for effortless scientific analysis. In practice, the steep
learning curves, time-consuming set up procedures, and slow read/write processes are

How to cite this article MacDonald (2016), PhilDB: the time series database with built-in change logging. Peer] Comput. Sci. 2:e52; DOI
10.7717/peerj-cs.52


https://peerj.com
mailto:andrew@maccas.net
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.52
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj-cs.52

PeerJ Computer Science

1OpenTSDB initial commit: 2010-04-11;
https://github.com/OpenTSDB/opentsdb.

?Druid initial commit: 2012-10-24;
https://github.com/druid-io/druid/.

?Kairosdb initial commit: 2013-02-06;
https://github.com/kairosdb/kairosdb.

4InfluxDB initial commit: 2013-04-12;
https://github.com/influxdb/influxdb.

considerable barriers to using these systems. More critically, most fail to provide the ability
to store any changes to a time series over time. Most current open-source database systems
are designed for handling ‘big data,” which in turn requires extreme computing power on
a cluster of servers.

This paper will explore existing time series database solutions. It will examine the need
for a liberally licensed, open-source, easily deployed time series database, that is capable
of tracking data changes, and look at why the existing systems that were surveyed failed to
meet these requirements. This paper will then describe the architecture and features of the
new system, PhilDB, that was designed to meet these outlined needs. Finally, an evaluation
will be performed to compare PhilDB to the most promising alternatives of the existing
open-source systems.

BACKGROUND: EXISTING SYSTEMS

Proprietary systems

There are a number of proprietary solutions for storage of time series data that have
been around since the mid-nineties to the early 2000s. Castillejos (2006) identified
three proprietary systems of note, FAME, TimelQ, and DBank, that have references
that range from 1995 to 2000. There are other proprietary systems, such as kdb+
(http://kx.com/software.php), that are commercially available today. This shows that time
series data storage is an existing problem. Compared to proprietary systems, open-source
systems can generally be used with the scientific Python ecosystem as described by Perez,
Granger ¢ Hunter (2011). Ready access to open-source systems also make them easier to
evaluate and integrate with. Therefore existing proprietary systems were not evaluated
any further. Discussion on the need for an open-source system is further covered in the
‘Motivation’ section.

Open-source systems

In recent years the development of open-source time series databases has taken off, with
most development beginning within the last five years. This can be seen by the number of
projects discussed here along with noting the initial commit dates.

‘Big data’ time series databases

Some of the most successful projects in the open-source time series database space are
OpenTSDB,1 Druid,> Kairosdb,” and InfluxDB.* The earliest start to development on
these systems was for OpenTSDB with an initial commit in April 2010. These systems are
designed to operate over a cluster of servers to achieve high-performance writing of static
data in real time. In essence, they have a ‘big data’ approach to storage and access. The
architectural approach to address big data requirements means a large initial installation
investment before use.

Alternate time series databases

In contrast to the ‘big data’ time series systems some small dedicated open-source code
bases are attempting to address the need for local or single server time series data storage.
These systems, however, have stalled in development, are poorly documented, or require a

MacDonald (2016), Peerd Comput. Sci., DOl 10.7717/peerj-cs.52 2118


https://github.com/OpenTSDB/opentsdb
https://github.com/druid-io/druid/
https://github.com/kairosdb/kairosdb
https://github.com/influxdb/influxdb
https://peerj.com
http://kx.com/software.php
http://dx.doi.org/10.7717/peerj-cs.52

PeerJ Computer Science

STimestore http://www.mike-stirling.
com/redmine/projects/timestore;
https://github.com/mikestir/timestore
initial commit 2012-12-27.

6tsdb initial commit: 2013-01-11; most
recent commit at time of writing: 2013-02-
17; https://github.com/gar1t/tsdb.

7Cube initial commit: 2011-09-13;
https://github.com/square/cube.

moderate investment of time to operate. For example Timestore’ was, at the time of writing,
last modified August 2013 with a total development history of 36 commits. Some of the
better progressed projects still only had minimal development before progress had ceased;
for example, tsdb® with a development start in January 2013 and the most recent commit at
time of writing in February 2013 for a total of 58 commits. Cube’ has a reasonable feature
set and has had more development effort invested than the other systems discussed here,
with a total of 169 commits, but it is no longer under active development according the
Readme file. Searching GitHub for ‘tsdb’ reveals a large number of projects named ‘tsdb’
or similar. The most popular of these projects (when ranked by stars or number of forks)
relate to the ‘big data’ systems described earlier (in particular, OpenTSDB, InfluxDB, and
KairosDB). There are numerous small attempts at solving time series storage in simpler
systems that fall short of a complete solutions. Of the systems discussed here, only Cube
had reasonable documentation, Timestore had usable documentation, and tsdb had no
clear documentation.

Scientific time series databases

At present, the only open-source solution that addresses the scientific need to track
changes to stored time series data as a central principle is SciDB (Stonebraker et

al., 2009; Stonebraker et al., 2011). SciDB comes with comprehensive documentation
(http://www.paradigm4.com/HTMLmanual/15.7/scidb_ug/) that is required for such a
feature rich system. The documentation is however lacking in clarity around loading data
with most examples being based around the assumption that the data already exists within
SciDB or is being generated by SciDB. While installation on a single server is relatively
straight forward (for older versions with binaries supplied for supported platforms) the
process is hard to identify as the community edition installation documentation is mixed in
with the documentation on installation of the enterprise edition of SciDB. Access to source
code is via tarballs; there is no source control system with general access to investigate the
history of the project in detail.

MOTIVATION

PhilDB aims at handling data for exploratory purposes with the intention to later integrate
with other systems, with minimal initial deployment overhead. It is assumed that the
smaller time series database systems discussed previously derive from similar needs. It
has been found “[m]ost scientists are adamant about not discarding any data” (Cudré-
Mauroux et al., 2009). In particular, experience in hydrology has found that hydrological
data requires the ability to track changes to it, since streamflow discharge can be regularly
updated through quality control processes or updates to the rating curves used to convert
from water level to discharge. Open-source ‘big data’ time series database offerings don’t
support the ability to track any changed values out of the box (such support would have
to be developed external to the system). Their design targets maximum efficiency of
write-once and read-many operations. When streamflow data is used within forecasting
systems, changes to the data can alter the forecast results. Being able to easily identify if a
change in forecast results is due to data or code changes greatly simplifies resolving issues

MacDonald (2016), Peerd Comput. Sci., DOl 10.7717/peerj-cs.52 318


http://www.mike-stirling.com/redmine/projects/timestore
http://www.mike-stirling.com/redmine/projects/timestore
https://github.com/mikestir/timestore
https://github.com/gar1t/tsdb
https://github.com/square/cube
https://peerj.com
http://www.paradigm4.com/HTMLmanual/15.7/scidb_ug/
http://dx.doi.org/10.7717/peerj-cs.52

PeerJ Computer Science

during development and testing. Therefore, both requirements of minimal deployment
overhead and logging of any changed values rule out the current ‘big data’ systems.

While SciDB does address the data tracking need, recent versions of the community
edition are complex to install since they require building from source, a process more
involved than the usual ./configure; make; make install’. Older versions are more readily
installed on supported platforms, however the system is still complex to use, requires
root access to install, a working installation of PostgreSQL and a dedicated user account
for running. Installation difficulty isn’t enough to rule out the system being a suitable
solution, but it does diminish its value as an exploratory tool. SciDB is also licensed under
the GNU Affero General Public License (AGPL), that can be perceived as a problem in
corporate or government development environments. In these environments, integration
with more liberally licensed (e.g. Apache License 2.0 or 3-clause BSD) libraries is generally
preferred with many online discussions around the choice of liberal licences for software in
the scientific computing space. For example, it can be argued that a simple liberal license
like the BSD license encourages the most participation and reuse of code (Brown, 2015;
VanderPlas, 2014; Hunter, 2004).

Finally, SciDB has a broader scope than just storage and retrieval of time series data,
since “SciDB supports both a functional and a SQL-like query language” (Stonebraker et
al., 2011). Having SQL-like query languanges does allow for SciDB to readily support many
high performance operations directly when handling large already loaded data. These query
languages do, however, add additional cognitive load (Sweller, Ayres & Kalyuga, 2011) for
any developer interfacing with the system as the query languages are specific to SciDB. If
using SciDB for performing complex operations on very large multi-dimensional array
datasets entirely within SciDB, learning these query languages would be well worth the
time. The Python API does enable a certain level of abstraction between getting data out
of SciDB and into the scientific Python ecosystem.

Of the other existing systems discussed here, none support logging of changed values.
Limited documentation makes them difficult to evaluate, but from what can be seen and
inferred from available information, the designs are targeted at the ‘write once, read many’
style of the ‘big data’ time series systems at a smaller deployment scale. These systems
were extremely early in development or yet to be started at time work began on PhilDB in
October 2013.

The need to be fulfilled is purely to store time series of floating point values and extract
them again for processing with other systems.

Use case

To summarise, PhilDB has been created to provide a time series database system that is
easily deployed, used, and has logging features to track any new or changed values. It has
a simple API for writing both new and updated data with minimal user intervention. This
is to allow for revising time series from external sources where the data can change over
time, such as streamflow discharge data from water agencies. Furthermore, the simple API
extends to reading, to enable easy retrieval of time series, including the ability to read time
series as they appeared at a point in time from the logs.

MacDonald (2016), Peerd Comput. Sci., DOl 10.7717/peerj-cs.52 418


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.52

PeerJ Computer Science

ARCHITECTURE

PhilDB uses a central ‘meta-data store’ to track the meta information about time series
instances. Relational databases are a robust and reliable way to hold related facts. Since the
meta data is simply a collection of related facts about a time series, a relational database
is used for the meta-data store. Time series instances are associated with a user chosen
identifier and attributes and each time series instance is assigned a UUID (Leach, Mealling
¢~ Salz, 2005) upon creation, all of which is stored in the meta-data store. The actual time
series data (and corresponding log) is stored on disk with filenames based on the UUID
(details of the format are discussed in the ‘Database Format’ section). Information kept
in the meta-data store can then be used to look up the UUID assigned to a given time
series instance based on the requested identifier and attributes. Once the UUID has been
retrieved, accessing the time series data is a simple matter of reading the file from disk
based on the expected UUID derived filename.

Architecture philosophy

The reasoning behind this architectural design is so that:

* An easy to use write method can handle both new and updated data (at the same time if
needed).

* Read access is fast and easy for stored time series.

* Time series are easily read as they appeared at a point in time.

* Each time series instance can be stored with minimal initial effort.

Ease of writing data can come at the expense of efficiency to ensure that create, update or
append operations can be performed with confidence that any changes are logged without
having to make decisions on which portions of the data are current or new. The expectation
is that read performance has a greater impact on use as they are more frequent. Attaching a
time series identifier as the initial minimal information allows for data from a basic dataset
to be loaded and explored immediately. Additional attributes can be attached to a time
series instance to further differentiate datasets that share conceptual time series identifiers.
By default, these identifier and attribute combinations are then stored in a tightly linked
relational database. Conceptually this meta-data store could optionally be replaced by
alternative technology, such as flat files. As the data is stored in individual structured files,
the meta-data store acts as a minimal index with most of the work being delegated to the
operating system and in turn the file system.

IMPLEMENTATION

PhilDB is written in Python because it fits well with the scientific computing ecosystem
(Perez, Granger & Hunter, 2011). The core of the PhilDB package is the PhilDB database
class (http://phildb.readthedocs.org/en/latest/api/phildb.html#module-phildb.database),
that exposes high level methods for data operations. These high level functions are designed
to be easily used interactively in the IPython interpreter (Perez ¢ Granger, 2007) yet still
work well in scripts and applications. The goal of interactivity and scriptability are to enable

MacDonald (2016), Peerd Comput. Sci., DOl 10.7717/peerj-cs.52 5118


https://peerj.com
http://phildb.readthedocs.org/en/latest/api/phildb.html#module-phildb.database
http://dx.doi.org/10.7717/peerj-cs.52

PeerJ Computer Science

exploratory work and the ability to automate repeated tasks (Shin et al., 2011). Utilising
Pandas (McKinney, 2012) to handle complex time series operations simplifies the internal
code that determines if values require creation or updating. Returning Pandas objects from
the read methods allows for data analysis to be performed readily without further data
munging. Lower level functions are broken up into separate modules for major components
such as reading, writing, and logging, that can be easily tested as individual components.
The PhilDB class pulls together the low level methods, allowing for the presentation of a
stable interface that abstracts away the hard work of ensuring that new or changed values,
and only those values, are logged.

Installation of PhilDB is performed easily within the Python ecosystem using the
standard Python setup.py process, including installation from PyPI using ‘pip.’

Features
Key features of PhilDB are:

x A single write method accepting a pandas.Series object, data frequency and attributes
for writing or updating a time series.

* A read method for reading a single time series based on requested time series identifier,

frequency and attributes.

Advanced read methods for reading collections of time series.

Support for storing regular and irregular time series.

Logging of any new or changed values.

* X ¥ X

Log read method to extract a time series as it appeared on a given date.

Database format

The technical implementation of the database format, as implemented in version 0.6.1
of PhilDB (MacDonald, 2015), is described in this section. Due to the fact that PhilDB is
still in the alpha stage of development the specifics here may change significantly in the
future.

The meta-data store tracks attributes using a relational database, with the current
implementation using SQLite (Hipp, Kennedy ¢ Mistachkin, 2015). Actual time series
data are stored as flat files on disk, indexed by the meta-data store to determine the
path to a given series. The flat files are implemented as plain binary files that store a
‘long,” ‘double,” and ‘int’ for each record. The ‘long’ is the datetime stored as a ‘proleptic
Gregorian ordinal’ as determined by the Python datetime.datetime.toordinal method
(https://docs.python.org/2/library/datetime.html#datetime.date.toordinal) (Van Rossum,
2015). The ‘double’ stores the actual value corresponding to the datetime stored in the
preceding ‘long’. Finally, the ‘int’ is a meta value for marking additional information about
the record. In this version of PhilDB the meta value is only used to flag missing data values.
Individual changes to time series values are logged to HDF5 files (HDF Group, 1997) that
are kept alongside the main time series data file with every new value written as a row in
a table, each row having a column to store the date, value, and meta value as per the file
format. In addition, a final column is included to record the date and time the record was
written.

MacDonald (2016), Peerd Comput. Sci., DOl 10.7717/peerj-cs.52 6/18


https://peerj.com
https://docs.python.org/2/library/datetime.html#datetime.date.toordinal
http://dx.doi.org/10.7717/peerj-cs.52

PeerJ Computer Science

Table 1 Breakdown of length of time series in the evaluation dataset (all values rounded to nearest

day).

Mean 16,310 days
Std 2,945 days
Min 10,196 days
25% 14,120 days
50% 15,604 days
75% 18,256 days
Max 22,631 days

Distribution of lengths of time series
F—_— = = = - —{ I - — = = = = - ]

10000 12000 14000 16000 18000 20000 22000
Days

Figure 1 Distribution of time series length for the 221 time series in the evaluation dataset.

EVALUATION

Of the open-source systems evaluated (as identified in the section ‘Open-source Systems’),
InfluxDB came the closest in terms of minimal initial installation requirements and feature
completeness, however, it doesn’t support the key feature of update logging. Contrasting
with InfluxDB, SciDB met the requirement of time series storage with update logging but
didn’t meet the requirement for simplicity to deploy and use. Both these systems were
evaluated in comparison to PhilDB.

Evaluation dataset

The Hydrological Reference Stations (Zhang et al., 2014) dataset from the Australian
Bureau of Meteorology (http://www.bom.gov.au/water/hrs/) was used for the evaluation.
This dataset consists of daily streamflow data for 221 time series with a mean length of
16,310 days, the breakdown of the series lengths are in Table 1 and visualised in Fig. 1.

Evaluation method
Three key aspects were measured during the evaluation:

* Write performance
* Read performance
* Disk usage

Ease of installation and use, while subjective, is also discussed in the installation and
usage sections related to each database.

To simplify the evaluation process and make it easily repeatable, the SciDB 14.3 virtual
appliance image (SciDB14.3-CentOS6-VirtualBox-4.2.10.ova from https://downloads.
paradigm4.com/) was used to enable easy use of the SciDB database. This virtual appliance

MacDonald (2016), Peerd Comput. Sci., DOl 10.7717/peerj-cs.52 718


https://peerj.com
http://www.bom.gov.au/water/hrs/
https://downloads.paradigm4.com/
https://downloads.paradigm4.com/
http://dx.doi.org/10.7717/peerj-cs.52

PeerJ Computer Science

was based on a CentOS Linux 6.5 install. The PhilDB and InfluxDB databases were installed
into the same virtual machine to enable comparison between systems. The virtual machine
host was a Mid-2013 Apple Macbook Air, with a 1.7 GHz Intel Core i7 CPU, 8GB of DDR3
RAM and a 500GB SSD hard drive. VirtualBox 4.3.6 191406 was used on the host machine
for running the virtual appliance image with the guest virtual machine being allocated 2
processors and 4GB of RAM.

Write performance was evaluated by writing all time series from the evaluation dataset
(described in the section ‘Evaluation Dataset’) into the time series databases being evaluated.
This first write will be referred to as the initial write for each database. To track the
performance of subsequent updates and reading the corresponding logged time series a
further four writes were performed. These writes will be referred to as ‘first update’ through
to ‘fourth update’. The update data was created by multiplying some or all of the original
time series by 1.1 as follows:

x First update: multiplied the last 10 values in the time series by 1.1 leaving the rest of the
record the same.

* Second update: multiplied the first 10 values by 1.1, resulting in reverting the previously
modified 10 values.

* Third update: multiplied the entire original series by 1.1 resulting in an update to all
values aside from the first 10.

x Fourth update: the original series multiplied by 1.1 again, which should result in zero
updates.

The SciDB load method used in this experiment did not support updating individual
values. The entire time series needed to be passed or the resulting array would consist of
only the supplied values. Due to this only full updates were tested and not individual record
updates or appends.

Performance reading the data back out of each database system was measured by
recording the time taken to read each individual time series, after each update, and
analysing those results.

As can be seen by Fig. 2, InfluxDB performance was a long way behind SciDB and
PhilDB. Given the performance difference and that InfluxDB doesn’t support change
logging only the initial load and first read were performed for InfluxDB.

Disk usage was measured by recording the size of the data directories as reported by
the ‘du’ Unix command. The size of the data directory was measured before loading any
data and subtracted from subsequent sizes. Between each data write (initial load and four
updates) the disk size was measured to note the incremental changes.

For both PhilDB and SciDB the evaluation process described in this section was
performed four times and the mean of the results analysed. Results between the four runs
were quite similar so taking the mean gave results similar to the individual runs. Analysing
and visualising an individual run rather than the mean would result in the same conclusions.

MacDonald (2016), Peerd Comput. Sci., DOl 10.7717/peerj-cs.52 8118


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.52

PeerJ Computer Science

Read and write comparison (log scale)

I Read
I Write

InfluxDB read

InfluxDB write

PhilDB Server/Client first read

PhilDB first read

PhilDB initial load

SciDB first read

SciDB initial load

10" 102 10° 10*
Total time (Seconds)

o
=)

1

Figure 2 Total write/read time for 221 daily time series.

Evaluated databases
This section discusses each of the evaluated databases. Firstly, they are introduced and then
their installation and usage is considered.

InfluxDB

Paul Dix (CEO of InfluxDB) found that performance and ease of installation were the
main concerns of users of existing open-source time series database systems (Dix, 2014).
InfluxDB was built to alleviate both those concerns.

While InfluxDB is designed for high performance data collection, it is not designed
for bulk loading of data. Searching the InfluxDB issue tracker on GitHub (https:
//github.com/influxdata/influxdb/issues), it can be seen that bulk loading has been a
recurring problem with improvement over time. Bulk loading performance is, however,
still poor compared to SciDB and PhilDB, as seen later in the performance results (section
‘Performance’). A key feature of interest with InfluxDB was the ability to identify time
series with tags. This feature is in line with the attributes concept used by PhilDB, thereby
allowing multiple time series to be grouped by a single key identifier but separated by
additional attributes or tags.

Installation: InfluxDB is easily installed compared to the other open-source systems
reviewed, as demonstrated by the short install process shown below. Installation of pre-
built packages on Linux requires root access (https://influxdb.com/docs/v0.9/introduction/
installation.html). Installation of InfluxDB was performed in the CentOS Linux 6.5 based
virtual machine containing the pre-installed SciDB instance.

wget http://influxdb.s3.amazonaws.com/influxdb-0.9.6.1-1.x86_64.rpm
sudo yum localinstall influxdb-0.9.6.1-1.x86_64.rpm

MacDonald (2016), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.52 9/18


https://peerj.com
https://github.com/influxdata/influxdb/issues
https://github.com/influxdata/influxdb/issues
https://influxdb.com/docs/v0.9/introduction/installation.html
https://influxdb.com/docs/v0.9/introduction/installation.html
http://dx.doi.org/10.7717/peerj-cs.52

PeerJ Computer Science

Starting the InfluxDB service with:

sudo /etc/init.d/influxdb start

Usage: Loading of data into the InfluxDB instance was performed using the InfluxDB
Python API that was straight forward to use. However, poor performance of bulk loads
lead to a lot of experimentation on how to most effectively load large amounts of data
quickly, including trying curl and the Influx line protocol format directly. The final solution
used was to chunk the data into batches of 10 points using the Pandas groupby functionality
before writing into InfluxDB using the InfluxDB Python API DataFrameClient write_points
method, for example:
streamflow = pandas.read_csv(filename, parse_dates=True, index_col=0, header = None)
for k, g in streamflow.groupby (np.arange (len(streamflow))//100) :
influx_client.write_points(g, station_id)

In addition to experimenting with various API calls, configuration changes were
attempted resulting in performance gains by lowering values related to the WAL
options (the idea was based on an older GitHub issue discussing batch loading
(https://github.com/influxdata/influxdb/issues/3282) and WAL tuning to improve
performance). Despite all this effort, bulk data loading with InfluxDB was impractically
slow with a run time generally in excess of one hour to load the 221 time series (compared
to the less than 2 minutes for SciDB and PhilDB). Reading was performed using the Python
API InfluxDBClient query method:

streamflow = influx_client.query (' SELECT_*_ FROM _Q{0}’.format (7410730"))

PhilDB

PhilDB has been designed with a particular use case in mind as described in the ‘Use Case’
section. Installation of PhilDB is quite easy where a compatible Python environment exists.
Using a Python virtualenv removes the need to have root privileges to install PhilDB and
no dedicated user accounts are required to run or use PhilDB. A PhilDB database can be
written to any location the user has write access, allowing for experimentation without
having to request a database be created or needing to share a centralised install.
Installation: Installation of PhilDB is readily performed using pip:

pip install phildb

Usage: The experimental dataset was loaded into a PhilDB instance using a Python script.
Using PhilDB to load data can be broken into three key steps.
First, initialise basic meta information:

db.add_measurand(’Q’, ’'STREAMFLOW’, ’'Streamflow’)
db.add_source (' BOM_HRS’, ’'Bureau_of Meteorology; Hydrological Reference Stations_
dataset.’)

This step only need to be performed once, when configuring attributes for the PhilDB
instance for the first time, noting additional attributes can be added later.

Second, add an identifier for a time series and a time series instance record based on the
identifier and meta information:

db.add_timeseries (station_id)

db.add_timeseries_instance (station_id, ’'D’, ’’, measurand = 'Q’, source = ’'BOM_HRS’)

MacDonald (2016), Peerd Comput. Sci., DOl 10.7717/peerj-cs.52 10/18


https://peerj.com
https://github.com/influxdata/influxdb/issues/3282
http://dx.doi.org/10.7717/peerj-cs.52

PeerJ Computer Science

Multiple time series instances, based on different combinations of attributes, can be
associated with an existing time series identifier. Once a time series instance has been
created it can be written to and read from.

Third, load the data from a Pandas time series:
streamflow = pandas.read_csv(filename, parse_dates=True, index_col=0, header = None)
db.write(station_id, ’'D’, streamflow, measurand = ’'Q’, source = ’'BOM_HRS’)

In this example the Pandas time series is acquired by reading a CSV file using the Pandas
read_csv method, but any data acquisition method that forms a Pandas.Series object could
be used. Reading a time series instance back out is easily performed with the read method:

streamflow = db.read(station_id, ’'D’, measurand = ’'Q’, source = ’'BOM_HRS’)

The keyword arguments are optional provided the time series instance can be uniquely
identified.

SciDB
SciDB, as implied by the name, was designed with scientific data in mind. As a result
SciDB has the feature of change logging, allowing past versions of series to be retrieved.
Unfortunately SciDB only identifies time series by a single string identifier, therefore
storing multiple related time series would require externally managed details about what
time series are stored and with what identifier. Due to the sophistication of the SciDB
system it is relatively complex to use with two built in languages, AFL and AQL, that allow
for two different approaches to performing database operations. This, in turn, increases
the amount of documentation that needs to be read to identify which method to use for
a given task (such as writing a time series into the database). While the documentation is
comprehensive in detailing the available operations, it is largely based on the assumption
that the data is already within SciDB and will only be operated on within SciDB, with
limited examples on how to load or extract data via external systems.
Installation: SciDB does not come with binary installers for newer versions and the build
process is quite involved. Instructions for the build proccess are only available from
the SciDB forums using a registered account (http://forum.paradigm4.com/t/release-15-
7/843). Installation of older versions is comparable to InfluxDB with the following steps
listed in the user guide:
yum install -y https://downloads.paradigmd.com/scidb-14.12-repository.rpm
yum install -y scidb-14.12-installer

Same as InfluxDB, SciDB requires root access to install and a dedicated user account
for running the database. A PostgreSQL installation is also required by SciDB for storing
information about the time series data that SciDB stores. Unlike InfluxDB, SciDB has
authentication systems turned on by default that requires using dedicated accounts even
for basic testing and evaluation.

Only Ubuntu and CentOS/RHEL Linux variants are listed as supported platforms in the
install guide.
Usage: It took a considerable amount of time to identify the best way to load data into a
SciDB instance, however once that was worked out, the actual load was quick and effective
consisting of two main steps.

MacDonald (2016), Peerd Comput. Sci., DOl 10.7717/peerj-cs.52 11/18


https://peerj.com
http://forum.paradigm4.com/t/release-15-7/843
http://forum.paradigm4.com/t/release-15-7/843
http://dx.doi.org/10.7717/peerj-cs.52

PeerJ Computer Science

First, a time series needs to be created:
iquery —-g "CREATE_ARRAY, 0${station} _<date:datetime, streamflow:double>_[i

=0:%,10000,0];"

It is worth noting that datetime and double need to be specified for time series storage,
since SciDB can hold many different array types aside from plain time series. Additionally,
SciDB identifiers can not start with a numeric character so all time series identifiers were
prefixed with a ‘Q’ (where ‘Q’ was chosen in this case because it is conventionally used in
the hydrological context to represent streamflow discharge).

Second, the data is written using the iquery LOAD method as follows:

iquery -n —gq "LOAD_QS${station}_ FROM_'/home/scidb/${station}.scidb’;"

This method required creating data files in a specific SciDB text format before using the
csv2scidb command that ships with SciDB.

Identifying the correct code to read data back out required extensive review of the
documentation, but was quick and effective once the correct code to execute was identified.
The SciDB Python code to read a time series back as a Pandas.DataFrame object is as follows:

streamflow = sdb.wrap_array (’'Q’ + station_id).todataframe ()

A contributing factor to the difficulty of identifying the correct code is that syntax errors
with the AQL based queries (using the SciDB iquery command or via the Python API) are
at times uninformative about the exact portion of the query that is in error.

Performance

It should be noted that PhilDB currently only supports local write, which is advantageous
for performance, compared to InfluxDB that only supports network access. InfluxDB
was hosted locally, which prevents network lag, but the protocol design still reduced
performance compared to the direct write as done by PhilDB. Although SciDB has network
access, only local write performance (using the SciDB iquery command) and network
based read access (using the Python API) were evaluated. SciDB was also accessed locally
to avoid network lag when testing the network based API. For a comparable network read
access comparison the experimental PhilDB Client/Server software was also used.

Write performance
Write performance was measured by writing each of the 221 time series into the database
under test and recording the time spent per time series.

As can be seen in Fig. 2, SciDB and PhilDB have a significant performance advantage
over InfluxDB for bulk loading of time series data. SciDB write performance is comparable
to PhilDB, so a closer comparison between just SciDB and PhilDB write performance is
shown in Fig. 3.

It can be seen that while PhilDB has at times slightly better write performance, SciDB
has more reliable write performance with a tighter distribution of write times. It can also
be seen from Fig. 3 that write performance for SciDB does marginally decrease as more
updates are written. PhilDB write performance while more variable across the dataset is also
variable in performance based on how much of the series required updating. Where the

MacDonald (2016), Peerd Comput. Sci., DOl 10.7717/peerj-cs.52 12/18


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.52

PeerJ Computer Science

Write performance
SciDB initial load FLTF -

SciDB first update (last 10 values) k —ED— bl
SciDB second update (first 10 values) F —Dj— =1
SciDB third update (entire series) FTF -
SciDB fourth update (entire series) F —ED— =1
PhilDB initial load - LT} -+
PhilDB first update (last 10 values) -1 F--4
PhilDB second update (first 10 values) 1— —ED— =]
PhilDB third update (entire series) t—--4_ T F---
PhilDB fourth update (entire series) -{ITF+F--4
0 50 100 150 200 250 300 350 400
Milliseconds

Figure 3 Distribution of write times for 221 time series.

fourth update writes the same data as the third update it can be seen that the performance
distribution is closer to that of the initial load than the third load, since the data has actually
remained unchanged.

Both SciDB and PhilDB perform well at loading datasets of this size with good write
performance.

Read performance

InfluxDB read performance is adequate and SciDB read speed is quite good, however
PhilDB significantly out-performs both InfluxDB and SciDB in read speed, as can be
seen in Fig. 2. Even the PhilDB server/client model, which has yet to be optimised for
performance, out-performed both InfluxDB and SciDB. Read performance with PhilDB is
consistent as the time series are updated, as shown in Fig. 4, due to the architecture keeping
the latest version of time series in a single file. Reading from the log with PhilDB does show
a decrease in performance as the size of the log grows, but not as quickly as SciDB. While
PhilDB maintains consistent read performance and decreasing log read performance,
SciDB consistently decreases in performance with each update for reading both current
and logged time series.

Disk usage

After the initial load InfluxDB was using 357.21 megabytes of space. This may be due to
the indexing across multiple attributes to allow for querying and aggregating multiple time
series based on specified attributes. This is quite a lot of disk space being used compared to
SciDB (93.64 megabytes) and PhilDB (160.77 megabytes) after the initial load. As can be

MacDonald (2016), Peerd Comput. Sci., DOl 10.7717/peerj-cs.52 13/18


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.52

PeerJ Computer Science

Distribution of time series read durations

SciDB first read I
SciDB second read I
SciDB third read -
SciDB fourth read —0—
SciDB fifth read I
PhilDB first read
PhilDB second read
PhilDB third read
PhilDB fourth read
PhilDB fifth read
PhilDB Server/Client first read {3 -
PhilDB Server/Client second read T3 =
PhilDB Server/Client third read T —
PhilDB Server/Client fourth read T - 4
PhilDB Server/Client fifth read T —
SciDB first log read 0
SciDB second log read I
-
-

e S DP

SciDB third log read
SciDB fourth log read
PhilDB first log read
PhilDB second log read
PhilDB third log read
PhilDB fourth log read

o g T D

0 100 200 300 400 500
Milliseconds

Figure 4 Distribution of read durations for the 221 time series from the evaluation dataset.

seen in Fig. 5, SciDB disk usage increases linearly with each update when writing the entire
series each time. In contrast, updates with PhilDB only result in moderate increases and
depends on how many values are changed. If the time series passed to PhilDB for writing is
the same as the already stored time series then no changes are made and the database size
remains the same, as can be seen between update 3 and 4 in Fig. 5.

Performance summary

Each database has different design goals that results in different performance profiles.
InfluxDB is not well suited to this use case with a design focusing on high performance
writing of few values across many time series for metric collection, leading to poor
performance for bulk loading of individual time series.

SciDB fares much better with consistent read and write performance, with slight
performance decreases as time series are updated, likely due to design decisions that focus
on handling large multi-dimensional array data for high performance operations. Design
decisions for SciDB that lead to consistent read and write performance appear to also give
the same read performance when accessing historical versions of time series. Achieving
consistent read and write performance (including reading historical time series) seems to
have come at the expense of disk space with SciDB consuming more space than PhilDB
and increasing linearly as time series are updated.

PhilDB performs quite well for this particular use case, with consistently fast reads
of the latest time series. This consistent read performance does come at the expense of
reading historical time series from the logs, which does degrade as the logs grow. Write
performance for PhilDB, while variable, varies due to the volume of data changing.

MacDonald (2016), Peerd Comput. Sci., DOl 10.7717/peerj-cs.52 14/18


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.52

PeerJ Computer Science

Disk usage comparison

1200
I InfluxDB disk usage
I PhilDB disk usage
1000 SciDB disk usage
o
2
2 800
©
(@)
)
2 600
)
(@)
©
5
< 400
B
(@]
200
0 Initial Update 1 Update 2 Update 3 Update 4
InfluxDB disk usage 357.21 nan nan nan nan
PhilDB disk usage 93.64 96.26 96.28 119.12 119.12
SciDB disk usage 160.77 415.05 667.91 920.79 1173.74

Figure 5 Disk usage after initial data load and each subsequent data update.

The performance of PhilDB (particularly the excellent read performance) compared to
SciDB for this use case was unexpected since the design aimed for an easy to use API at the
expense of efficiency.

FUTURE WORK

PhilDB is still in its alpha stage. Before reaching the beta stage, development efforts shall
investigate:
+ Complete attribute management to support true arbitrary attribute creation and
attachment.
* Possible alternative back ends, using alternative data formats, disk paths, and relational
databases.
* More sophisticated handling of time zone meta-data.
* Storage of quality codes or other row level attributes.
* Formalisation of UUID usage for sharing of data.

CONCLUSION

In conclusion, there is a need for an accessible time series database that can be deployed
quickly so that curious minds, such as those in our scientific community, can easily analyse
time series data and elucidate world-changing information. For scientific computing, it is
important that any solution is capable of tracking subsequent data changes.

Although InfluxDB comes close with features like tagging of attributes and a clear API,
it lacks the needed change logging feature and presently suffers poor performance for bulk

MacDonald (2016), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.52

15/18


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.52

PeerJ Computer Science

loading of historical data. InfluxDB has clearly been designed with real-time metrics based
time series in mind and as such doesn’t quite fit the requirements outlined in this paper.

While SciDB has the important feature of change logging and performs quite well,
it doesn’t have a simple mechanism for tracking time series by attributes. SciDB is well
suited for handing very large multi-dimensional arrays, which can justify the steep learning
curve for such work, but for input/output of plain time series such complexity is a little
unnecessary.

PhilDB addresses this gap in existing solutions, as well as surpassing them for
efficiency and usability. Finally, PhilDB’s source code has been released on GitHub
(https://github.com/amacd31/phildb) under the permissive 3-clause BSD open-source
license to help others easily extract wisdom from their data.

ACKNOWLEDGEMENTS

I would like to thank Di MacDonald for her editorial advice on various drafts, my fiancée
Katrina Cornelly for her support and editorial advice, and my colleague Richard Laugesen
for his valuable review comments on an earlier draft. PhilDB was named in memory of my
father Phillip MacDonald.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The author received no funding for this work.

Competing Interests
The author declares there are no competing interests.

Author Contributions

e Andrew MacDonald conceived and designed the experiments, performed the
experiments, analyzed the data, wrote the paper, prepared figures and/or tables,
performed the computation work, reviewed drafts of the paper.

Data Availability
The following information was supplied regarding data availability:

Source code stored on Zenodo (zenodo.org) with the DOI 10.5281/zenodo.32437
accessible at 10.5281/zenodo.32437 or https://zenodo.org/record/32437.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.52#supplemental-information.

REFERENCES

Brown CT. 2015. On licensing bioinformatics software: use the BSD, Luke. Available at
http://ivory.idyll.org/ blog/ 2015- on-licensing-in-bioinformatics.html (accessed 10 July
2015).

MacDonald (2016), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.52 16/18


https://peerj.com
https://github.com/amacd31/phildb
http://dx.doi.org/10.5281/zenodo.32437
https://zenodo.org/record/32437
http://dx.doi.org/10.7717/peerj-cs.52#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.52#supplemental-information
http://ivory.idyll.org/blog/2015-on-licensing-in-bioinformatics.html
http://dx.doi.org/10.7717/peerj-cs.52

PeerJ Computer Science

Castillejos AM. 2006. Management of time series data. PhD thesis, University of
Canberra. Available at http:// www.canberra.edu.au/ researchrepository/ file/ 82315¢f7-
7446-fcf2-6115-b94fbd7599c6/ 1/ full_text.pdf .

Cudré-Mauroux P, Kimura H, Lim K-T, Rogers J, Simakov R, Soroush E, Ve-
likhov P, Wang DL, Balazinska M, Becla J, DeWitt D, Heath B, Maier D, Mad-
den S, Patel J, Stonebraker M, Zdonik S. 2009. A demonstration of SciDB: a
science-oriented DBMS. Proceedings of the VLDB Endowment 2(2):1534-1537
DOI 10.14778/1687553.1687584.

Dix P. 2014. InfluxDB: one year of InfluxDB and the road to 1.0. Available at https:
//influxdb.com/blog/ 2014/ 09/ 26/ one-year- of-influxdb-and- the-road-to- 1_0.html
(accessed 11 September 2015).

HDF Group. 1997. Hierarchical Data Format, version 5. Available at hitp:// www.
hdfgroup.org/ HDF5/.

Hipp DR, Kennedy D, Mistachkin J. 2015. SQLite. Available at https:// www.sqlite.org/
download.html.

Hunter JD. 2004. Why we should be using BSD. Available at http:// nipy.sourceforge.net/
nipy/stable/ faq/ johns_bsd_pitch.html (accessed 9 October 2015).

Leach PJ, Mealling M, Salz R. 2005. A Universally Unique IDentifier (UUID) URN
Namespace. Available at https:// tools.ietf.org/ html/rfc4122 (accessed 9 September
2015).

MacDonald A. 2015. phildb: Version 0.6.1. Available at hitp://dx.doi.org/ 10.5281/ zenodo.
32437.

McKinney W. 2012. Python for data analysis: data wrangling with Pandas, NumPy, and
IPython. Sebastopol: O’Reilly Media, Inc.

Perez F, Granger BE. 2007. IPython: a system for interactive scientific computing.
Computing in Science & Engineering 9(3):21-29 DOI 10.1109/MCSE.2007.53.

Perez F, Granger BE, Hunter JD. 2011. Python: an ecosystem for scientific computing.
Computing in Science & Engineering 13(2):13-21 DOI 10.1109/MCSE.2010.119.

Shin D, Schepen A, Peatey T, Zhou S, MacDonald A, Chia T, Perkins J, Plummer N.
2011. WAFARI: a new modelling system for seasonal streamflow forecasting service
of the bureau of meteorology, Australia. In: MODSIM 2011, modelling and simulation
society of Australian and New Zealand. 19th International Congress on Modelling and
Simulation, Perth, Australia, 12—16 December 2011. Available at hitp:// www.mssanz.
org.au/modsim2011/E12/shin.pdf .

Stonebraker M, Becla J, DeWitt DJ, Lim K-T, Maier D, Ratzesberger O, Zdonik SB.
2009. Requirements for science data bases and SciDB. In: Conference on Innovative
Data Systems Research (CIDR), vol. 7, 173-184.

Stonebraker M, Brown P, Poliakov A, Raman S. 2011. The architecture of SciDB. In:
Cushing JB, French J, Bowers S, eds. Scientific and statistical database management:
lecture notes in computer science. number 6809. Berlin Heidelberg: Springer, 1-16.

Sweller J, Ayres PL, Kalyuga S. 2011. Cognitive load theory. In: Explorations in the
learning sciences, instructional systems and performance technologies. New York:
Springer.

MacDonald (2016), Peerd Comput. Sci., DOl 10.7717/peerj-cs.52 1718


https://peerj.com
http://www.canberra.edu.au/researchrepository/file/82315cf7-7446-fcf2-6115-b94fbd7599c6/1/full_text.pdf
http://www.canberra.edu.au/researchrepository/file/82315cf7-7446-fcf2-6115-b94fbd7599c6/1/full_text.pdf
http://dx.doi.org/10.14778/1687553.1687584
http://dx.doi.org/10.14778/1687553.1687584
https://influxdb.com/blog/2014/09/26/one-year-of-influxdb-and-the-road-to-1_0.html
https://influxdb.com/blog/2014/09/26/one-year-of-influxdb-and-the-road-to-1_0.html
http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/
https://www.sqlite.org/download.html
https://www.sqlite.org/download.html
http://nipy.sourceforge.net/nipy/stable/faq/johns_bsd_pitch.html
http://nipy.sourceforge.net/nipy/stable/faq/johns_bsd_pitch.html
https://tools.ietf.org/html/rfc4122
http://dx.doi.org/10.5281/zenodo.32437
http://dx.doi.org/10.5281/zenodo.32437
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1109/MCSE.2010.119
http://www.mssanz.org.au/modsim2011/E12/shin.pdf
http://www.mssanz.org.au/modsim2011/E12/shin.pdf
http://dx.doi.org/10.7717/peerj-cs.52

PeerJ Computer Science

Van Rossum G. 2015. Python Programming Language. Available at www.python.org.

VanderPlas J. 2014. The whys and hows of licensing scientific code. Available at hiip:

// www.astrobetter.com/blog/ 2014/ 03/ 10/ the-whys-and- hows-of-licensing- scientific-
code/ (accessed 9 October 2015).

Zhang SX, Bari M, Amirthanathan G, Kent D, MacDonald A, Shin D. 2014. Hydrologic
reference stations to monitor climate-driven streamflow variability and trends. In:
Hydrology and Water Resources Symposium. Barton, ACT: Engineers Australia.
Available at http:// search.informit.com.au/documentSummary;res=IELENG;dn=
388693597051917.

MacDonald (2016), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.52 18/18


https://peerj.com
http://www.python.org
http://www.astrobetter.com/blog/2014/03/10/the-whys-and-hows-of-licensing-scientific-code/
http://www.astrobetter.com/blog/2014/03/10/the-whys-and-hows-of-licensing-scientific-code/
http://www.astrobetter.com/blog/2014/03/10/the-whys-and-hows-of-licensing-scientific-code/
http://search.informit.com.au/documentSummary;res=IELENG;dn=388693597051917
http://search.informit.com.au/documentSummary;res=IELENG;dn=388693597051917
http://dx.doi.org/10.7717/peerj-cs.52

